linux/net/netfilter/nf_conntrack_core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Connection state tracking for netfilter.  This is separated from,
   3   but required by, the NAT layer; it can also be used by an iptables
   4   extension. */
   5
   6/* (C) 1999-2001 Paul `Rusty' Russell
   7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
   8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
   9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/types.h>
  15#include <linux/netfilter.h>
  16#include <linux/module.h>
  17#include <linux/sched.h>
  18#include <linux/skbuff.h>
  19#include <linux/proc_fs.h>
  20#include <linux/vmalloc.h>
  21#include <linux/stddef.h>
  22#include <linux/slab.h>
  23#include <linux/random.h>
  24#include <linux/jhash.h>
  25#include <linux/siphash.h>
  26#include <linux/err.h>
  27#include <linux/percpu.h>
  28#include <linux/moduleparam.h>
  29#include <linux/notifier.h>
  30#include <linux/kernel.h>
  31#include <linux/netdevice.h>
  32#include <linux/socket.h>
  33#include <linux/mm.h>
  34#include <linux/nsproxy.h>
  35#include <linux/rculist_nulls.h>
  36
  37#include <net/netfilter/nf_conntrack.h>
  38#include <net/netfilter/nf_conntrack_l4proto.h>
  39#include <net/netfilter/nf_conntrack_expect.h>
  40#include <net/netfilter/nf_conntrack_helper.h>
  41#include <net/netfilter/nf_conntrack_seqadj.h>
  42#include <net/netfilter/nf_conntrack_core.h>
  43#include <net/netfilter/nf_conntrack_extend.h>
  44#include <net/netfilter/nf_conntrack_acct.h>
  45#include <net/netfilter/nf_conntrack_ecache.h>
  46#include <net/netfilter/nf_conntrack_zones.h>
  47#include <net/netfilter/nf_conntrack_timestamp.h>
  48#include <net/netfilter/nf_conntrack_timeout.h>
  49#include <net/netfilter/nf_conntrack_labels.h>
  50#include <net/netfilter/nf_conntrack_synproxy.h>
  51#include <net/netfilter/nf_nat.h>
  52#include <net/netfilter/nf_nat_helper.h>
  53#include <net/netns/hash.h>
  54#include <net/ip.h>
  55
  56#include "nf_internals.h"
  57
  58__cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
  59EXPORT_SYMBOL_GPL(nf_conntrack_locks);
  60
  61__cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
  62EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
  63
  64struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
  65EXPORT_SYMBOL_GPL(nf_conntrack_hash);
  66
  67struct conntrack_gc_work {
  68        struct delayed_work     dwork;
  69        u32                     last_bucket;
  70        bool                    exiting;
  71        bool                    early_drop;
  72        long                    next_gc_run;
  73};
  74
  75static __read_mostly struct kmem_cache *nf_conntrack_cachep;
  76static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
  77static __read_mostly bool nf_conntrack_locks_all;
  78
  79/* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
  80#define GC_MAX_BUCKETS_DIV      128u
  81/* upper bound of full table scan */
  82#define GC_MAX_SCAN_JIFFIES     (16u * HZ)
  83/* desired ratio of entries found to be expired */
  84#define GC_EVICT_RATIO  50u
  85
  86static struct conntrack_gc_work conntrack_gc_work;
  87
  88void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
  89{
  90        /* 1) Acquire the lock */
  91        spin_lock(lock);
  92
  93        /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
  94         * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
  95         */
  96        if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
  97                return;
  98
  99        /* fast path failed, unlock */
 100        spin_unlock(lock);
 101
 102        /* Slow path 1) get global lock */
 103        spin_lock(&nf_conntrack_locks_all_lock);
 104
 105        /* Slow path 2) get the lock we want */
 106        spin_lock(lock);
 107
 108        /* Slow path 3) release the global lock */
 109        spin_unlock(&nf_conntrack_locks_all_lock);
 110}
 111EXPORT_SYMBOL_GPL(nf_conntrack_lock);
 112
 113static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
 114{
 115        h1 %= CONNTRACK_LOCKS;
 116        h2 %= CONNTRACK_LOCKS;
 117        spin_unlock(&nf_conntrack_locks[h1]);
 118        if (h1 != h2)
 119                spin_unlock(&nf_conntrack_locks[h2]);
 120}
 121
 122/* return true if we need to recompute hashes (in case hash table was resized) */
 123static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
 124                                     unsigned int h2, unsigned int sequence)
 125{
 126        h1 %= CONNTRACK_LOCKS;
 127        h2 %= CONNTRACK_LOCKS;
 128        if (h1 <= h2) {
 129                nf_conntrack_lock(&nf_conntrack_locks[h1]);
 130                if (h1 != h2)
 131                        spin_lock_nested(&nf_conntrack_locks[h2],
 132                                         SINGLE_DEPTH_NESTING);
 133        } else {
 134                nf_conntrack_lock(&nf_conntrack_locks[h2]);
 135                spin_lock_nested(&nf_conntrack_locks[h1],
 136                                 SINGLE_DEPTH_NESTING);
 137        }
 138        if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
 139                nf_conntrack_double_unlock(h1, h2);
 140                return true;
 141        }
 142        return false;
 143}
 144
 145static void nf_conntrack_all_lock(void)
 146        __acquires(&nf_conntrack_locks_all_lock)
 147{
 148        int i;
 149
 150        spin_lock(&nf_conntrack_locks_all_lock);
 151
 152        nf_conntrack_locks_all = true;
 153
 154        for (i = 0; i < CONNTRACK_LOCKS; i++) {
 155                spin_lock(&nf_conntrack_locks[i]);
 156
 157                /* This spin_unlock provides the "release" to ensure that
 158                 * nf_conntrack_locks_all==true is visible to everyone that
 159                 * acquired spin_lock(&nf_conntrack_locks[]).
 160                 */
 161                spin_unlock(&nf_conntrack_locks[i]);
 162        }
 163}
 164
 165static void nf_conntrack_all_unlock(void)
 166        __releases(&nf_conntrack_locks_all_lock)
 167{
 168        /* All prior stores must be complete before we clear
 169         * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
 170         * might observe the false value but not the entire
 171         * critical section.
 172         * It pairs with the smp_load_acquire() in nf_conntrack_lock()
 173         */
 174        smp_store_release(&nf_conntrack_locks_all, false);
 175        spin_unlock(&nf_conntrack_locks_all_lock);
 176}
 177
 178unsigned int nf_conntrack_htable_size __read_mostly;
 179EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
 180
 181unsigned int nf_conntrack_max __read_mostly;
 182EXPORT_SYMBOL_GPL(nf_conntrack_max);
 183seqcount_t nf_conntrack_generation __read_mostly;
 184static unsigned int nf_conntrack_hash_rnd __read_mostly;
 185
 186static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
 187                              const struct net *net)
 188{
 189        unsigned int n;
 190        u32 seed;
 191
 192        get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
 193
 194        /* The direction must be ignored, so we hash everything up to the
 195         * destination ports (which is a multiple of 4) and treat the last
 196         * three bytes manually.
 197         */
 198        seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
 199        n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
 200        return jhash2((u32 *)tuple, n, seed ^
 201                      (((__force __u16)tuple->dst.u.all << 16) |
 202                      tuple->dst.protonum));
 203}
 204
 205static u32 scale_hash(u32 hash)
 206{
 207        return reciprocal_scale(hash, nf_conntrack_htable_size);
 208}
 209
 210static u32 __hash_conntrack(const struct net *net,
 211                            const struct nf_conntrack_tuple *tuple,
 212                            unsigned int size)
 213{
 214        return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
 215}
 216
 217static u32 hash_conntrack(const struct net *net,
 218                          const struct nf_conntrack_tuple *tuple)
 219{
 220        return scale_hash(hash_conntrack_raw(tuple, net));
 221}
 222
 223static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
 224                                  unsigned int dataoff,
 225                                  struct nf_conntrack_tuple *tuple)
 226{       struct {
 227                __be16 sport;
 228                __be16 dport;
 229        } _inet_hdr, *inet_hdr;
 230
 231        /* Actually only need first 4 bytes to get ports. */
 232        inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
 233        if (!inet_hdr)
 234                return false;
 235
 236        tuple->src.u.udp.port = inet_hdr->sport;
 237        tuple->dst.u.udp.port = inet_hdr->dport;
 238        return true;
 239}
 240
 241static bool
 242nf_ct_get_tuple(const struct sk_buff *skb,
 243                unsigned int nhoff,
 244                unsigned int dataoff,
 245                u_int16_t l3num,
 246                u_int8_t protonum,
 247                struct net *net,
 248                struct nf_conntrack_tuple *tuple)
 249{
 250        unsigned int size;
 251        const __be32 *ap;
 252        __be32 _addrs[8];
 253
 254        memset(tuple, 0, sizeof(*tuple));
 255
 256        tuple->src.l3num = l3num;
 257        switch (l3num) {
 258        case NFPROTO_IPV4:
 259                nhoff += offsetof(struct iphdr, saddr);
 260                size = 2 * sizeof(__be32);
 261                break;
 262        case NFPROTO_IPV6:
 263                nhoff += offsetof(struct ipv6hdr, saddr);
 264                size = sizeof(_addrs);
 265                break;
 266        default:
 267                return true;
 268        }
 269
 270        ap = skb_header_pointer(skb, nhoff, size, _addrs);
 271        if (!ap)
 272                return false;
 273
 274        switch (l3num) {
 275        case NFPROTO_IPV4:
 276                tuple->src.u3.ip = ap[0];
 277                tuple->dst.u3.ip = ap[1];
 278                break;
 279        case NFPROTO_IPV6:
 280                memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
 281                memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
 282                break;
 283        }
 284
 285        tuple->dst.protonum = protonum;
 286        tuple->dst.dir = IP_CT_DIR_ORIGINAL;
 287
 288        switch (protonum) {
 289#if IS_ENABLED(CONFIG_IPV6)
 290        case IPPROTO_ICMPV6:
 291                return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
 292#endif
 293        case IPPROTO_ICMP:
 294                return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
 295#ifdef CONFIG_NF_CT_PROTO_GRE
 296        case IPPROTO_GRE:
 297                return gre_pkt_to_tuple(skb, dataoff, net, tuple);
 298#endif
 299        case IPPROTO_TCP:
 300        case IPPROTO_UDP: /* fallthrough */
 301                return nf_ct_get_tuple_ports(skb, dataoff, tuple);
 302#ifdef CONFIG_NF_CT_PROTO_UDPLITE
 303        case IPPROTO_UDPLITE:
 304                return nf_ct_get_tuple_ports(skb, dataoff, tuple);
 305#endif
 306#ifdef CONFIG_NF_CT_PROTO_SCTP
 307        case IPPROTO_SCTP:
 308                return nf_ct_get_tuple_ports(skb, dataoff, tuple);
 309#endif
 310#ifdef CONFIG_NF_CT_PROTO_DCCP
 311        case IPPROTO_DCCP:
 312                return nf_ct_get_tuple_ports(skb, dataoff, tuple);
 313#endif
 314        default:
 315                break;
 316        }
 317
 318        return true;
 319}
 320
 321static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
 322                            u_int8_t *protonum)
 323{
 324        int dataoff = -1;
 325        const struct iphdr *iph;
 326        struct iphdr _iph;
 327
 328        iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
 329        if (!iph)
 330                return -1;
 331
 332        /* Conntrack defragments packets, we might still see fragments
 333         * inside ICMP packets though.
 334         */
 335        if (iph->frag_off & htons(IP_OFFSET))
 336                return -1;
 337
 338        dataoff = nhoff + (iph->ihl << 2);
 339        *protonum = iph->protocol;
 340
 341        /* Check bogus IP headers */
 342        if (dataoff > skb->len) {
 343                pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
 344                         nhoff, iph->ihl << 2, skb->len);
 345                return -1;
 346        }
 347        return dataoff;
 348}
 349
 350#if IS_ENABLED(CONFIG_IPV6)
 351static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
 352                            u8 *protonum)
 353{
 354        int protoff = -1;
 355        unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
 356        __be16 frag_off;
 357        u8 nexthdr;
 358
 359        if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
 360                          &nexthdr, sizeof(nexthdr)) != 0) {
 361                pr_debug("can't get nexthdr\n");
 362                return -1;
 363        }
 364        protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
 365        /*
 366         * (protoff == skb->len) means the packet has not data, just
 367         * IPv6 and possibly extensions headers, but it is tracked anyway
 368         */
 369        if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
 370                pr_debug("can't find proto in pkt\n");
 371                return -1;
 372        }
 373
 374        *protonum = nexthdr;
 375        return protoff;
 376}
 377#endif
 378
 379static int get_l4proto(const struct sk_buff *skb,
 380                       unsigned int nhoff, u8 pf, u8 *l4num)
 381{
 382        switch (pf) {
 383        case NFPROTO_IPV4:
 384                return ipv4_get_l4proto(skb, nhoff, l4num);
 385#if IS_ENABLED(CONFIG_IPV6)
 386        case NFPROTO_IPV6:
 387                return ipv6_get_l4proto(skb, nhoff, l4num);
 388#endif
 389        default:
 390                *l4num = 0;
 391                break;
 392        }
 393        return -1;
 394}
 395
 396bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
 397                       u_int16_t l3num,
 398                       struct net *net, struct nf_conntrack_tuple *tuple)
 399{
 400        u8 protonum;
 401        int protoff;
 402
 403        protoff = get_l4proto(skb, nhoff, l3num, &protonum);
 404        if (protoff <= 0)
 405                return false;
 406
 407        return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
 408}
 409EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
 410
 411bool
 412nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
 413                   const struct nf_conntrack_tuple *orig)
 414{
 415        memset(inverse, 0, sizeof(*inverse));
 416
 417        inverse->src.l3num = orig->src.l3num;
 418
 419        switch (orig->src.l3num) {
 420        case NFPROTO_IPV4:
 421                inverse->src.u3.ip = orig->dst.u3.ip;
 422                inverse->dst.u3.ip = orig->src.u3.ip;
 423                break;
 424        case NFPROTO_IPV6:
 425                inverse->src.u3.in6 = orig->dst.u3.in6;
 426                inverse->dst.u3.in6 = orig->src.u3.in6;
 427                break;
 428        default:
 429                break;
 430        }
 431
 432        inverse->dst.dir = !orig->dst.dir;
 433
 434        inverse->dst.protonum = orig->dst.protonum;
 435
 436        switch (orig->dst.protonum) {
 437        case IPPROTO_ICMP:
 438                return nf_conntrack_invert_icmp_tuple(inverse, orig);
 439#if IS_ENABLED(CONFIG_IPV6)
 440        case IPPROTO_ICMPV6:
 441                return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
 442#endif
 443        }
 444
 445        inverse->src.u.all = orig->dst.u.all;
 446        inverse->dst.u.all = orig->src.u.all;
 447        return true;
 448}
 449EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
 450
 451/* Generate a almost-unique pseudo-id for a given conntrack.
 452 *
 453 * intentionally doesn't re-use any of the seeds used for hash
 454 * table location, we assume id gets exposed to userspace.
 455 *
 456 * Following nf_conn items do not change throughout lifetime
 457 * of the nf_conn:
 458 *
 459 * 1. nf_conn address
 460 * 2. nf_conn->master address (normally NULL)
 461 * 3. the associated net namespace
 462 * 4. the original direction tuple
 463 */
 464u32 nf_ct_get_id(const struct nf_conn *ct)
 465{
 466        static __read_mostly siphash_key_t ct_id_seed;
 467        unsigned long a, b, c, d;
 468
 469        net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
 470
 471        a = (unsigned long)ct;
 472        b = (unsigned long)ct->master;
 473        c = (unsigned long)nf_ct_net(ct);
 474        d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
 475                                   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
 476                                   &ct_id_seed);
 477#ifdef CONFIG_64BIT
 478        return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
 479#else
 480        return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
 481#endif
 482}
 483EXPORT_SYMBOL_GPL(nf_ct_get_id);
 484
 485static void
 486clean_from_lists(struct nf_conn *ct)
 487{
 488        pr_debug("clean_from_lists(%p)\n", ct);
 489        hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
 490        hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
 491
 492        /* Destroy all pending expectations */
 493        nf_ct_remove_expectations(ct);
 494}
 495
 496/* must be called with local_bh_disable */
 497static void nf_ct_add_to_dying_list(struct nf_conn *ct)
 498{
 499        struct ct_pcpu *pcpu;
 500
 501        /* add this conntrack to the (per cpu) dying list */
 502        ct->cpu = smp_processor_id();
 503        pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
 504
 505        spin_lock(&pcpu->lock);
 506        hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
 507                             &pcpu->dying);
 508        spin_unlock(&pcpu->lock);
 509}
 510
 511/* must be called with local_bh_disable */
 512static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
 513{
 514        struct ct_pcpu *pcpu;
 515
 516        /* add this conntrack to the (per cpu) unconfirmed list */
 517        ct->cpu = smp_processor_id();
 518        pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
 519
 520        spin_lock(&pcpu->lock);
 521        hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
 522                             &pcpu->unconfirmed);
 523        spin_unlock(&pcpu->lock);
 524}
 525
 526/* must be called with local_bh_disable */
 527static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
 528{
 529        struct ct_pcpu *pcpu;
 530
 531        /* We overload first tuple to link into unconfirmed or dying list.*/
 532        pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
 533
 534        spin_lock(&pcpu->lock);
 535        BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
 536        hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
 537        spin_unlock(&pcpu->lock);
 538}
 539
 540#define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
 541
 542/* Released via destroy_conntrack() */
 543struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
 544                                 const struct nf_conntrack_zone *zone,
 545                                 gfp_t flags)
 546{
 547        struct nf_conn *tmpl, *p;
 548
 549        if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
 550                tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
 551                if (!tmpl)
 552                        return NULL;
 553
 554                p = tmpl;
 555                tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
 556                if (tmpl != p) {
 557                        tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
 558                        tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
 559                }
 560        } else {
 561                tmpl = kzalloc(sizeof(*tmpl), flags);
 562                if (!tmpl)
 563                        return NULL;
 564        }
 565
 566        tmpl->status = IPS_TEMPLATE;
 567        write_pnet(&tmpl->ct_net, net);
 568        nf_ct_zone_add(tmpl, zone);
 569        atomic_set(&tmpl->ct_general.use, 0);
 570
 571        return tmpl;
 572}
 573EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
 574
 575void nf_ct_tmpl_free(struct nf_conn *tmpl)
 576{
 577        nf_ct_ext_destroy(tmpl);
 578
 579        if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
 580                kfree((char *)tmpl - tmpl->proto.tmpl_padto);
 581        else
 582                kfree(tmpl);
 583}
 584EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
 585
 586static void destroy_gre_conntrack(struct nf_conn *ct)
 587{
 588#ifdef CONFIG_NF_CT_PROTO_GRE
 589        struct nf_conn *master = ct->master;
 590
 591        if (master)
 592                nf_ct_gre_keymap_destroy(master);
 593#endif
 594}
 595
 596static void
 597destroy_conntrack(struct nf_conntrack *nfct)
 598{
 599        struct nf_conn *ct = (struct nf_conn *)nfct;
 600
 601        pr_debug("destroy_conntrack(%p)\n", ct);
 602        WARN_ON(atomic_read(&nfct->use) != 0);
 603
 604        if (unlikely(nf_ct_is_template(ct))) {
 605                nf_ct_tmpl_free(ct);
 606                return;
 607        }
 608
 609        if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
 610                destroy_gre_conntrack(ct);
 611
 612        local_bh_disable();
 613        /* Expectations will have been removed in clean_from_lists,
 614         * except TFTP can create an expectation on the first packet,
 615         * before connection is in the list, so we need to clean here,
 616         * too.
 617         */
 618        nf_ct_remove_expectations(ct);
 619
 620        nf_ct_del_from_dying_or_unconfirmed_list(ct);
 621
 622        local_bh_enable();
 623
 624        if (ct->master)
 625                nf_ct_put(ct->master);
 626
 627        pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
 628        nf_conntrack_free(ct);
 629}
 630
 631static void nf_ct_delete_from_lists(struct nf_conn *ct)
 632{
 633        struct net *net = nf_ct_net(ct);
 634        unsigned int hash, reply_hash;
 635        unsigned int sequence;
 636
 637        nf_ct_helper_destroy(ct);
 638
 639        local_bh_disable();
 640        do {
 641                sequence = read_seqcount_begin(&nf_conntrack_generation);
 642                hash = hash_conntrack(net,
 643                                      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
 644                reply_hash = hash_conntrack(net,
 645                                           &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
 646        } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
 647
 648        clean_from_lists(ct);
 649        nf_conntrack_double_unlock(hash, reply_hash);
 650
 651        nf_ct_add_to_dying_list(ct);
 652
 653        local_bh_enable();
 654}
 655
 656bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
 657{
 658        struct nf_conn_tstamp *tstamp;
 659
 660        if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
 661                return false;
 662
 663        tstamp = nf_conn_tstamp_find(ct);
 664        if (tstamp && tstamp->stop == 0)
 665                tstamp->stop = ktime_get_real_ns();
 666
 667        if (nf_conntrack_event_report(IPCT_DESTROY, ct,
 668                                    portid, report) < 0) {
 669                /* destroy event was not delivered. nf_ct_put will
 670                 * be done by event cache worker on redelivery.
 671                 */
 672                nf_ct_delete_from_lists(ct);
 673                nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
 674                return false;
 675        }
 676
 677        nf_conntrack_ecache_work(nf_ct_net(ct));
 678        nf_ct_delete_from_lists(ct);
 679        nf_ct_put(ct);
 680        return true;
 681}
 682EXPORT_SYMBOL_GPL(nf_ct_delete);
 683
 684static inline bool
 685nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
 686                const struct nf_conntrack_tuple *tuple,
 687                const struct nf_conntrack_zone *zone,
 688                const struct net *net)
 689{
 690        struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 691
 692        /* A conntrack can be recreated with the equal tuple,
 693         * so we need to check that the conntrack is confirmed
 694         */
 695        return nf_ct_tuple_equal(tuple, &h->tuple) &&
 696               nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
 697               nf_ct_is_confirmed(ct) &&
 698               net_eq(net, nf_ct_net(ct));
 699}
 700
 701static inline bool
 702nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
 703{
 704        return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
 705                                 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
 706               nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
 707                                 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
 708               nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
 709               nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
 710               net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
 711}
 712
 713/* caller must hold rcu readlock and none of the nf_conntrack_locks */
 714static void nf_ct_gc_expired(struct nf_conn *ct)
 715{
 716        if (!atomic_inc_not_zero(&ct->ct_general.use))
 717                return;
 718
 719        if (nf_ct_should_gc(ct))
 720                nf_ct_kill(ct);
 721
 722        nf_ct_put(ct);
 723}
 724
 725/*
 726 * Warning :
 727 * - Caller must take a reference on returned object
 728 *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
 729 */
 730static struct nf_conntrack_tuple_hash *
 731____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
 732                      const struct nf_conntrack_tuple *tuple, u32 hash)
 733{
 734        struct nf_conntrack_tuple_hash *h;
 735        struct hlist_nulls_head *ct_hash;
 736        struct hlist_nulls_node *n;
 737        unsigned int bucket, hsize;
 738
 739begin:
 740        nf_conntrack_get_ht(&ct_hash, &hsize);
 741        bucket = reciprocal_scale(hash, hsize);
 742
 743        hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
 744                struct nf_conn *ct;
 745
 746                ct = nf_ct_tuplehash_to_ctrack(h);
 747                if (nf_ct_is_expired(ct)) {
 748                        nf_ct_gc_expired(ct);
 749                        continue;
 750                }
 751
 752                if (nf_ct_key_equal(h, tuple, zone, net))
 753                        return h;
 754        }
 755        /*
 756         * if the nulls value we got at the end of this lookup is
 757         * not the expected one, we must restart lookup.
 758         * We probably met an item that was moved to another chain.
 759         */
 760        if (get_nulls_value(n) != bucket) {
 761                NF_CT_STAT_INC_ATOMIC(net, search_restart);
 762                goto begin;
 763        }
 764
 765        return NULL;
 766}
 767
 768/* Find a connection corresponding to a tuple. */
 769static struct nf_conntrack_tuple_hash *
 770__nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
 771                        const struct nf_conntrack_tuple *tuple, u32 hash)
 772{
 773        struct nf_conntrack_tuple_hash *h;
 774        struct nf_conn *ct;
 775
 776        rcu_read_lock();
 777
 778        h = ____nf_conntrack_find(net, zone, tuple, hash);
 779        if (h) {
 780                /* We have a candidate that matches the tuple we're interested
 781                 * in, try to obtain a reference and re-check tuple
 782                 */
 783                ct = nf_ct_tuplehash_to_ctrack(h);
 784                if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
 785                        if (likely(nf_ct_key_equal(h, tuple, zone, net)))
 786                                goto found;
 787
 788                        /* TYPESAFE_BY_RCU recycled the candidate */
 789                        nf_ct_put(ct);
 790                }
 791
 792                h = NULL;
 793        }
 794found:
 795        rcu_read_unlock();
 796
 797        return h;
 798}
 799
 800struct nf_conntrack_tuple_hash *
 801nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
 802                      const struct nf_conntrack_tuple *tuple)
 803{
 804        return __nf_conntrack_find_get(net, zone, tuple,
 805                                       hash_conntrack_raw(tuple, net));
 806}
 807EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
 808
 809static void __nf_conntrack_hash_insert(struct nf_conn *ct,
 810                                       unsigned int hash,
 811                                       unsigned int reply_hash)
 812{
 813        hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
 814                           &nf_conntrack_hash[hash]);
 815        hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
 816                           &nf_conntrack_hash[reply_hash]);
 817}
 818
 819int
 820nf_conntrack_hash_check_insert(struct nf_conn *ct)
 821{
 822        const struct nf_conntrack_zone *zone;
 823        struct net *net = nf_ct_net(ct);
 824        unsigned int hash, reply_hash;
 825        struct nf_conntrack_tuple_hash *h;
 826        struct hlist_nulls_node *n;
 827        unsigned int sequence;
 828
 829        zone = nf_ct_zone(ct);
 830
 831        local_bh_disable();
 832        do {
 833                sequence = read_seqcount_begin(&nf_conntrack_generation);
 834                hash = hash_conntrack(net,
 835                                      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
 836                reply_hash = hash_conntrack(net,
 837                                           &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
 838        } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
 839
 840        /* See if there's one in the list already, including reverse */
 841        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
 842                if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
 843                                    zone, net))
 844                        goto out;
 845
 846        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
 847                if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
 848                                    zone, net))
 849                        goto out;
 850
 851        smp_wmb();
 852        /* The caller holds a reference to this object */
 853        atomic_set(&ct->ct_general.use, 2);
 854        __nf_conntrack_hash_insert(ct, hash, reply_hash);
 855        nf_conntrack_double_unlock(hash, reply_hash);
 856        NF_CT_STAT_INC(net, insert);
 857        local_bh_enable();
 858        return 0;
 859
 860out:
 861        nf_conntrack_double_unlock(hash, reply_hash);
 862        NF_CT_STAT_INC(net, insert_failed);
 863        local_bh_enable();
 864        return -EEXIST;
 865}
 866EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
 867
 868void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
 869                    unsigned int bytes)
 870{
 871        struct nf_conn_acct *acct;
 872
 873        acct = nf_conn_acct_find(ct);
 874        if (acct) {
 875                struct nf_conn_counter *counter = acct->counter;
 876
 877                atomic64_add(packets, &counter[dir].packets);
 878                atomic64_add(bytes, &counter[dir].bytes);
 879        }
 880}
 881EXPORT_SYMBOL_GPL(nf_ct_acct_add);
 882
 883static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
 884                             const struct nf_conn *loser_ct)
 885{
 886        struct nf_conn_acct *acct;
 887
 888        acct = nf_conn_acct_find(loser_ct);
 889        if (acct) {
 890                struct nf_conn_counter *counter = acct->counter;
 891                unsigned int bytes;
 892
 893                /* u32 should be fine since we must have seen one packet. */
 894                bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
 895                nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
 896        }
 897}
 898
 899static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
 900{
 901        struct nf_conn_tstamp *tstamp;
 902
 903        atomic_inc(&ct->ct_general.use);
 904        ct->status |= IPS_CONFIRMED;
 905
 906        /* set conntrack timestamp, if enabled. */
 907        tstamp = nf_conn_tstamp_find(ct);
 908        if (tstamp)
 909                tstamp->start = ktime_get_real_ns();
 910}
 911
 912static int __nf_ct_resolve_clash(struct sk_buff *skb,
 913                                 struct nf_conntrack_tuple_hash *h)
 914{
 915        /* This is the conntrack entry already in hashes that won race. */
 916        struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
 917        enum ip_conntrack_info ctinfo;
 918        struct nf_conn *loser_ct;
 919
 920        loser_ct = nf_ct_get(skb, &ctinfo);
 921
 922        if (nf_ct_is_dying(ct))
 923                return NF_DROP;
 924
 925        if (!atomic_inc_not_zero(&ct->ct_general.use))
 926                return NF_DROP;
 927
 928        if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
 929            nf_ct_match(ct, loser_ct)) {
 930                struct net *net = nf_ct_net(ct);
 931
 932                nf_ct_acct_merge(ct, ctinfo, loser_ct);
 933                nf_ct_add_to_dying_list(loser_ct);
 934                nf_conntrack_put(&loser_ct->ct_general);
 935                nf_ct_set(skb, ct, ctinfo);
 936
 937                NF_CT_STAT_INC(net, insert_failed);
 938                return NF_ACCEPT;
 939        }
 940
 941        nf_ct_put(ct);
 942        return NF_DROP;
 943}
 944
 945/**
 946 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
 947 *
 948 * @skb: skb that causes the collision
 949 * @repl_idx: hash slot for reply direction
 950 *
 951 * Called when origin or reply direction had a clash.
 952 * The skb can be handled without packet drop provided the reply direction
 953 * is unique or there the existing entry has the identical tuple in both
 954 * directions.
 955 *
 956 * Caller must hold conntrack table locks to prevent concurrent updates.
 957 *
 958 * Returns NF_DROP if the clash could not be handled.
 959 */
 960static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
 961{
 962        struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
 963        const struct nf_conntrack_zone *zone;
 964        struct nf_conntrack_tuple_hash *h;
 965        struct hlist_nulls_node *n;
 966        struct net *net;
 967
 968        zone = nf_ct_zone(loser_ct);
 969        net = nf_ct_net(loser_ct);
 970
 971        /* Reply direction must never result in a clash, unless both origin
 972         * and reply tuples are identical.
 973         */
 974        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
 975                if (nf_ct_key_equal(h,
 976                                    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
 977                                    zone, net))
 978                        return __nf_ct_resolve_clash(skb, h);
 979        }
 980
 981        /* We want the clashing entry to go away real soon: 1 second timeout. */
 982        loser_ct->timeout = nfct_time_stamp + HZ;
 983
 984        /* IPS_NAT_CLASH removes the entry automatically on the first
 985         * reply.  Also prevents UDP tracker from moving the entry to
 986         * ASSURED state, i.e. the entry can always be evicted under
 987         * pressure.
 988         */
 989        loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
 990
 991        __nf_conntrack_insert_prepare(loser_ct);
 992
 993        /* fake add for ORIGINAL dir: we want lookups to only find the entry
 994         * already in the table.  This also hides the clashing entry from
 995         * ctnetlink iteration, i.e. conntrack -L won't show them.
 996         */
 997        hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
 998
 999        hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1000                                 &nf_conntrack_hash[repl_idx]);
1001        return NF_ACCEPT;
1002}
1003
1004/**
1005 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1006 *
1007 * @skb: skb that causes the clash
1008 * @h: tuplehash of the clashing entry already in table
1009 * @hash_reply: hash slot for reply direction
1010 *
1011 * A conntrack entry can be inserted to the connection tracking table
1012 * if there is no existing entry with an identical tuple.
1013 *
1014 * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1015 * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1016 * will find the already-existing entry.
1017 *
1018 * The major problem with such packet drop is the extra delay added by
1019 * the packet loss -- it will take some time for a retransmit to occur
1020 * (or the sender to time out when waiting for a reply).
1021 *
1022 * This function attempts to handle the situation without packet drop.
1023 *
1024 * If @skb has no NAT transformation or if the colliding entries are
1025 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1026 * and @skb is associated with the conntrack entry already in the table.
1027 *
1028 * Failing that, the new, unconfirmed conntrack is still added to the table
1029 * provided that the collision only occurs in the ORIGINAL direction.
1030 * The new entry will be added after the existing one in the hash list,
1031 * so packets in the ORIGINAL direction will continue to match the existing
1032 * entry.  The new entry will also have a fixed timeout so it expires --
1033 * due to the collision, it will not see bidirectional traffic.
1034 *
1035 * Returns NF_DROP if the clash could not be resolved.
1036 */
1037static __cold noinline int
1038nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1039                    u32 reply_hash)
1040{
1041        /* This is the conntrack entry already in hashes that won race. */
1042        struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1043        const struct nf_conntrack_l4proto *l4proto;
1044        enum ip_conntrack_info ctinfo;
1045        struct nf_conn *loser_ct;
1046        struct net *net;
1047        int ret;
1048
1049        loser_ct = nf_ct_get(skb, &ctinfo);
1050        net = nf_ct_net(loser_ct);
1051
1052        l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1053        if (!l4proto->allow_clash)
1054                goto drop;
1055
1056        ret = __nf_ct_resolve_clash(skb, h);
1057        if (ret == NF_ACCEPT)
1058                return ret;
1059
1060        ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1061        if (ret == NF_ACCEPT)
1062                return ret;
1063
1064drop:
1065        nf_ct_add_to_dying_list(loser_ct);
1066        NF_CT_STAT_INC(net, drop);
1067        NF_CT_STAT_INC(net, insert_failed);
1068        return NF_DROP;
1069}
1070
1071/* Confirm a connection given skb; places it in hash table */
1072int
1073__nf_conntrack_confirm(struct sk_buff *skb)
1074{
1075        const struct nf_conntrack_zone *zone;
1076        unsigned int hash, reply_hash;
1077        struct nf_conntrack_tuple_hash *h;
1078        struct nf_conn *ct;
1079        struct nf_conn_help *help;
1080        struct hlist_nulls_node *n;
1081        enum ip_conntrack_info ctinfo;
1082        struct net *net;
1083        unsigned int sequence;
1084        int ret = NF_DROP;
1085
1086        ct = nf_ct_get(skb, &ctinfo);
1087        net = nf_ct_net(ct);
1088
1089        /* ipt_REJECT uses nf_conntrack_attach to attach related
1090           ICMP/TCP RST packets in other direction.  Actual packet
1091           which created connection will be IP_CT_NEW or for an
1092           expected connection, IP_CT_RELATED. */
1093        if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1094                return NF_ACCEPT;
1095
1096        zone = nf_ct_zone(ct);
1097        local_bh_disable();
1098
1099        do {
1100                sequence = read_seqcount_begin(&nf_conntrack_generation);
1101                /* reuse the hash saved before */
1102                hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1103                hash = scale_hash(hash);
1104                reply_hash = hash_conntrack(net,
1105                                           &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
1106
1107        } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1108
1109        /* We're not in hash table, and we refuse to set up related
1110         * connections for unconfirmed conns.  But packet copies and
1111         * REJECT will give spurious warnings here.
1112         */
1113
1114        /* Another skb with the same unconfirmed conntrack may
1115         * win the race. This may happen for bridge(br_flood)
1116         * or broadcast/multicast packets do skb_clone with
1117         * unconfirmed conntrack.
1118         */
1119        if (unlikely(nf_ct_is_confirmed(ct))) {
1120                WARN_ON_ONCE(1);
1121                nf_conntrack_double_unlock(hash, reply_hash);
1122                local_bh_enable();
1123                return NF_DROP;
1124        }
1125
1126        pr_debug("Confirming conntrack %p\n", ct);
1127        /* We have to check the DYING flag after unlink to prevent
1128         * a race against nf_ct_get_next_corpse() possibly called from
1129         * user context, else we insert an already 'dead' hash, blocking
1130         * further use of that particular connection -JM.
1131         */
1132        nf_ct_del_from_dying_or_unconfirmed_list(ct);
1133
1134        if (unlikely(nf_ct_is_dying(ct))) {
1135                nf_ct_add_to_dying_list(ct);
1136                NF_CT_STAT_INC(net, insert_failed);
1137                goto dying;
1138        }
1139
1140        /* See if there's one in the list already, including reverse:
1141           NAT could have grabbed it without realizing, since we're
1142           not in the hash.  If there is, we lost race. */
1143        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
1144                if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1145                                    zone, net))
1146                        goto out;
1147
1148        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1149                if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1150                                    zone, net))
1151                        goto out;
1152
1153        /* Timer relative to confirmation time, not original
1154           setting time, otherwise we'd get timer wrap in
1155           weird delay cases. */
1156        ct->timeout += nfct_time_stamp;
1157
1158        __nf_conntrack_insert_prepare(ct);
1159
1160        /* Since the lookup is lockless, hash insertion must be done after
1161         * starting the timer and setting the CONFIRMED bit. The RCU barriers
1162         * guarantee that no other CPU can find the conntrack before the above
1163         * stores are visible.
1164         */
1165        __nf_conntrack_hash_insert(ct, hash, reply_hash);
1166        nf_conntrack_double_unlock(hash, reply_hash);
1167        local_bh_enable();
1168
1169        help = nfct_help(ct);
1170        if (help && help->helper)
1171                nf_conntrack_event_cache(IPCT_HELPER, ct);
1172
1173        nf_conntrack_event_cache(master_ct(ct) ?
1174                                 IPCT_RELATED : IPCT_NEW, ct);
1175        return NF_ACCEPT;
1176
1177out:
1178        ret = nf_ct_resolve_clash(skb, h, reply_hash);
1179dying:
1180        nf_conntrack_double_unlock(hash, reply_hash);
1181        local_bh_enable();
1182        return ret;
1183}
1184EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1185
1186/* Returns true if a connection correspondings to the tuple (required
1187   for NAT). */
1188int
1189nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1190                         const struct nf_conn *ignored_conntrack)
1191{
1192        struct net *net = nf_ct_net(ignored_conntrack);
1193        const struct nf_conntrack_zone *zone;
1194        struct nf_conntrack_tuple_hash *h;
1195        struct hlist_nulls_head *ct_hash;
1196        unsigned int hash, hsize;
1197        struct hlist_nulls_node *n;
1198        struct nf_conn *ct;
1199
1200        zone = nf_ct_zone(ignored_conntrack);
1201
1202        rcu_read_lock();
1203 begin:
1204        nf_conntrack_get_ht(&ct_hash, &hsize);
1205        hash = __hash_conntrack(net, tuple, hsize);
1206
1207        hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1208                ct = nf_ct_tuplehash_to_ctrack(h);
1209
1210                if (ct == ignored_conntrack)
1211                        continue;
1212
1213                if (nf_ct_is_expired(ct)) {
1214                        nf_ct_gc_expired(ct);
1215                        continue;
1216                }
1217
1218                if (nf_ct_key_equal(h, tuple, zone, net)) {
1219                        /* Tuple is taken already, so caller will need to find
1220                         * a new source port to use.
1221                         *
1222                         * Only exception:
1223                         * If the *original tuples* are identical, then both
1224                         * conntracks refer to the same flow.
1225                         * This is a rare situation, it can occur e.g. when
1226                         * more than one UDP packet is sent from same socket
1227                         * in different threads.
1228                         *
1229                         * Let nf_ct_resolve_clash() deal with this later.
1230                         */
1231                        if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1232                                              &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
1233                                continue;
1234
1235                        NF_CT_STAT_INC_ATOMIC(net, found);
1236                        rcu_read_unlock();
1237                        return 1;
1238                }
1239        }
1240
1241        if (get_nulls_value(n) != hash) {
1242                NF_CT_STAT_INC_ATOMIC(net, search_restart);
1243                goto begin;
1244        }
1245
1246        rcu_read_unlock();
1247
1248        return 0;
1249}
1250EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1251
1252#define NF_CT_EVICTION_RANGE    8
1253
1254/* There's a small race here where we may free a just-assured
1255   connection.  Too bad: we're in trouble anyway. */
1256static unsigned int early_drop_list(struct net *net,
1257                                    struct hlist_nulls_head *head)
1258{
1259        struct nf_conntrack_tuple_hash *h;
1260        struct hlist_nulls_node *n;
1261        unsigned int drops = 0;
1262        struct nf_conn *tmp;
1263
1264        hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1265                tmp = nf_ct_tuplehash_to_ctrack(h);
1266
1267                if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1268                        continue;
1269
1270                if (nf_ct_is_expired(tmp)) {
1271                        nf_ct_gc_expired(tmp);
1272                        continue;
1273                }
1274
1275                if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1276                    !net_eq(nf_ct_net(tmp), net) ||
1277                    nf_ct_is_dying(tmp))
1278                        continue;
1279
1280                if (!atomic_inc_not_zero(&tmp->ct_general.use))
1281                        continue;
1282
1283                /* kill only if still in same netns -- might have moved due to
1284                 * SLAB_TYPESAFE_BY_RCU rules.
1285                 *
1286                 * We steal the timer reference.  If that fails timer has
1287                 * already fired or someone else deleted it. Just drop ref
1288                 * and move to next entry.
1289                 */
1290                if (net_eq(nf_ct_net(tmp), net) &&
1291                    nf_ct_is_confirmed(tmp) &&
1292                    nf_ct_delete(tmp, 0, 0))
1293                        drops++;
1294
1295                nf_ct_put(tmp);
1296        }
1297
1298        return drops;
1299}
1300
1301static noinline int early_drop(struct net *net, unsigned int hash)
1302{
1303        unsigned int i, bucket;
1304
1305        for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1306                struct hlist_nulls_head *ct_hash;
1307                unsigned int hsize, drops;
1308
1309                rcu_read_lock();
1310                nf_conntrack_get_ht(&ct_hash, &hsize);
1311                if (!i)
1312                        bucket = reciprocal_scale(hash, hsize);
1313                else
1314                        bucket = (bucket + 1) % hsize;
1315
1316                drops = early_drop_list(net, &ct_hash[bucket]);
1317                rcu_read_unlock();
1318
1319                if (drops) {
1320                        NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1321                        return true;
1322                }
1323        }
1324
1325        return false;
1326}
1327
1328static bool gc_worker_skip_ct(const struct nf_conn *ct)
1329{
1330        return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1331}
1332
1333static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1334{
1335        const struct nf_conntrack_l4proto *l4proto;
1336
1337        if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1338                return true;
1339
1340        l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1341        if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1342                return true;
1343
1344        return false;
1345}
1346
1347#define DAY     (86400 * HZ)
1348
1349/* Set an arbitrary timeout large enough not to ever expire, this save
1350 * us a check for the IPS_OFFLOAD_BIT from the packet path via
1351 * nf_ct_is_expired().
1352 */
1353static void nf_ct_offload_timeout(struct nf_conn *ct)
1354{
1355        if (nf_ct_expires(ct) < DAY / 2)
1356                ct->timeout = nfct_time_stamp + DAY;
1357}
1358
1359static void gc_worker(struct work_struct *work)
1360{
1361        unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1362        unsigned int i, goal, buckets = 0, expired_count = 0;
1363        unsigned int nf_conntrack_max95 = 0;
1364        struct conntrack_gc_work *gc_work;
1365        unsigned int ratio, scanned = 0;
1366        unsigned long next_run;
1367
1368        gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1369
1370        goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1371        i = gc_work->last_bucket;
1372        if (gc_work->early_drop)
1373                nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1374
1375        do {
1376                struct nf_conntrack_tuple_hash *h;
1377                struct hlist_nulls_head *ct_hash;
1378                struct hlist_nulls_node *n;
1379                unsigned int hashsz;
1380                struct nf_conn *tmp;
1381
1382                i++;
1383                rcu_read_lock();
1384
1385                nf_conntrack_get_ht(&ct_hash, &hashsz);
1386                if (i >= hashsz)
1387                        i = 0;
1388
1389                hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1390                        struct net *net;
1391
1392                        tmp = nf_ct_tuplehash_to_ctrack(h);
1393
1394                        scanned++;
1395                        if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1396                                nf_ct_offload_timeout(tmp);
1397                                continue;
1398                        }
1399
1400                        if (nf_ct_is_expired(tmp)) {
1401                                nf_ct_gc_expired(tmp);
1402                                expired_count++;
1403                                continue;
1404                        }
1405
1406                        if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1407                                continue;
1408
1409                        net = nf_ct_net(tmp);
1410                        if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1411                                continue;
1412
1413                        /* need to take reference to avoid possible races */
1414                        if (!atomic_inc_not_zero(&tmp->ct_general.use))
1415                                continue;
1416
1417                        if (gc_worker_skip_ct(tmp)) {
1418                                nf_ct_put(tmp);
1419                                continue;
1420                        }
1421
1422                        if (gc_worker_can_early_drop(tmp))
1423                                nf_ct_kill(tmp);
1424
1425                        nf_ct_put(tmp);
1426                }
1427
1428                /* could check get_nulls_value() here and restart if ct
1429                 * was moved to another chain.  But given gc is best-effort
1430                 * we will just continue with next hash slot.
1431                 */
1432                rcu_read_unlock();
1433                cond_resched();
1434        } while (++buckets < goal);
1435
1436        if (gc_work->exiting)
1437                return;
1438
1439        /*
1440         * Eviction will normally happen from the packet path, and not
1441         * from this gc worker.
1442         *
1443         * This worker is only here to reap expired entries when system went
1444         * idle after a busy period.
1445         *
1446         * The heuristics below are supposed to balance conflicting goals:
1447         *
1448         * 1. Minimize time until we notice a stale entry
1449         * 2. Maximize scan intervals to not waste cycles
1450         *
1451         * Normally, expire ratio will be close to 0.
1452         *
1453         * As soon as a sizeable fraction of the entries have expired
1454         * increase scan frequency.
1455         */
1456        ratio = scanned ? expired_count * 100 / scanned : 0;
1457        if (ratio > GC_EVICT_RATIO) {
1458                gc_work->next_gc_run = min_interval;
1459        } else {
1460                unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1461
1462                BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1463
1464                gc_work->next_gc_run += min_interval;
1465                if (gc_work->next_gc_run > max)
1466                        gc_work->next_gc_run = max;
1467        }
1468
1469        next_run = gc_work->next_gc_run;
1470        gc_work->last_bucket = i;
1471        gc_work->early_drop = false;
1472        queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1473}
1474
1475static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1476{
1477        INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1478        gc_work->next_gc_run = HZ;
1479        gc_work->exiting = false;
1480}
1481
1482static struct nf_conn *
1483__nf_conntrack_alloc(struct net *net,
1484                     const struct nf_conntrack_zone *zone,
1485                     const struct nf_conntrack_tuple *orig,
1486                     const struct nf_conntrack_tuple *repl,
1487                     gfp_t gfp, u32 hash)
1488{
1489        struct nf_conn *ct;
1490
1491        /* We don't want any race condition at early drop stage */
1492        atomic_inc(&net->ct.count);
1493
1494        if (nf_conntrack_max &&
1495            unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1496                if (!early_drop(net, hash)) {
1497                        if (!conntrack_gc_work.early_drop)
1498                                conntrack_gc_work.early_drop = true;
1499                        atomic_dec(&net->ct.count);
1500                        net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1501                        return ERR_PTR(-ENOMEM);
1502                }
1503        }
1504
1505        /*
1506         * Do not use kmem_cache_zalloc(), as this cache uses
1507         * SLAB_TYPESAFE_BY_RCU.
1508         */
1509        ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1510        if (ct == NULL)
1511                goto out;
1512
1513        spin_lock_init(&ct->lock);
1514        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1515        ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1516        ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1517        /* save hash for reusing when confirming */
1518        *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1519        ct->status = 0;
1520        ct->timeout = 0;
1521        write_pnet(&ct->ct_net, net);
1522        memset(&ct->__nfct_init_offset, 0,
1523               offsetof(struct nf_conn, proto) -
1524               offsetof(struct nf_conn, __nfct_init_offset));
1525
1526        nf_ct_zone_add(ct, zone);
1527
1528        /* Because we use RCU lookups, we set ct_general.use to zero before
1529         * this is inserted in any list.
1530         */
1531        atomic_set(&ct->ct_general.use, 0);
1532        return ct;
1533out:
1534        atomic_dec(&net->ct.count);
1535        return ERR_PTR(-ENOMEM);
1536}
1537
1538struct nf_conn *nf_conntrack_alloc(struct net *net,
1539                                   const struct nf_conntrack_zone *zone,
1540                                   const struct nf_conntrack_tuple *orig,
1541                                   const struct nf_conntrack_tuple *repl,
1542                                   gfp_t gfp)
1543{
1544        return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1545}
1546EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1547
1548void nf_conntrack_free(struct nf_conn *ct)
1549{
1550        struct net *net = nf_ct_net(ct);
1551
1552        /* A freed object has refcnt == 0, that's
1553         * the golden rule for SLAB_TYPESAFE_BY_RCU
1554         */
1555        WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1556
1557        nf_ct_ext_destroy(ct);
1558        kmem_cache_free(nf_conntrack_cachep, ct);
1559        smp_mb__before_atomic();
1560        atomic_dec(&net->ct.count);
1561}
1562EXPORT_SYMBOL_GPL(nf_conntrack_free);
1563
1564
1565/* Allocate a new conntrack: we return -ENOMEM if classification
1566   failed due to stress.  Otherwise it really is unclassifiable. */
1567static noinline struct nf_conntrack_tuple_hash *
1568init_conntrack(struct net *net, struct nf_conn *tmpl,
1569               const struct nf_conntrack_tuple *tuple,
1570               struct sk_buff *skb,
1571               unsigned int dataoff, u32 hash)
1572{
1573        struct nf_conn *ct;
1574        struct nf_conn_help *help;
1575        struct nf_conntrack_tuple repl_tuple;
1576        struct nf_conntrack_ecache *ecache;
1577        struct nf_conntrack_expect *exp = NULL;
1578        const struct nf_conntrack_zone *zone;
1579        struct nf_conn_timeout *timeout_ext;
1580        struct nf_conntrack_zone tmp;
1581
1582        if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1583                pr_debug("Can't invert tuple.\n");
1584                return NULL;
1585        }
1586
1587        zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1588        ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1589                                  hash);
1590        if (IS_ERR(ct))
1591                return (struct nf_conntrack_tuple_hash *)ct;
1592
1593        if (!nf_ct_add_synproxy(ct, tmpl)) {
1594                nf_conntrack_free(ct);
1595                return ERR_PTR(-ENOMEM);
1596        }
1597
1598        timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1599
1600        if (timeout_ext)
1601                nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1602                                      GFP_ATOMIC);
1603
1604        nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1605        nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1606        nf_ct_labels_ext_add(ct);
1607
1608        ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1609        nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1610                                 ecache ? ecache->expmask : 0,
1611                             GFP_ATOMIC);
1612
1613        local_bh_disable();
1614        if (net->ct.expect_count) {
1615                spin_lock(&nf_conntrack_expect_lock);
1616                exp = nf_ct_find_expectation(net, zone, tuple);
1617                if (exp) {
1618                        pr_debug("expectation arrives ct=%p exp=%p\n",
1619                                 ct, exp);
1620                        /* Welcome, Mr. Bond.  We've been expecting you... */
1621                        __set_bit(IPS_EXPECTED_BIT, &ct->status);
1622                        /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1623                        ct->master = exp->master;
1624                        if (exp->helper) {
1625                                help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1626                                if (help)
1627                                        rcu_assign_pointer(help->helper, exp->helper);
1628                        }
1629
1630#ifdef CONFIG_NF_CONNTRACK_MARK
1631                        ct->mark = exp->master->mark;
1632#endif
1633#ifdef CONFIG_NF_CONNTRACK_SECMARK
1634                        ct->secmark = exp->master->secmark;
1635#endif
1636                        NF_CT_STAT_INC(net, expect_new);
1637                }
1638                spin_unlock(&nf_conntrack_expect_lock);
1639        }
1640        if (!exp)
1641                __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1642
1643        /* Now it is inserted into the unconfirmed list, bump refcount */
1644        nf_conntrack_get(&ct->ct_general);
1645        nf_ct_add_to_unconfirmed_list(ct);
1646
1647        local_bh_enable();
1648
1649        if (exp) {
1650                if (exp->expectfn)
1651                        exp->expectfn(ct, exp);
1652                nf_ct_expect_put(exp);
1653        }
1654
1655        return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1656}
1657
1658/* On success, returns 0, sets skb->_nfct | ctinfo */
1659static int
1660resolve_normal_ct(struct nf_conn *tmpl,
1661                  struct sk_buff *skb,
1662                  unsigned int dataoff,
1663                  u_int8_t protonum,
1664                  const struct nf_hook_state *state)
1665{
1666        const struct nf_conntrack_zone *zone;
1667        struct nf_conntrack_tuple tuple;
1668        struct nf_conntrack_tuple_hash *h;
1669        enum ip_conntrack_info ctinfo;
1670        struct nf_conntrack_zone tmp;
1671        struct nf_conn *ct;
1672        u32 hash;
1673
1674        if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1675                             dataoff, state->pf, protonum, state->net,
1676                             &tuple)) {
1677                pr_debug("Can't get tuple\n");
1678                return 0;
1679        }
1680
1681        /* look for tuple match */
1682        zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1683        hash = hash_conntrack_raw(&tuple, state->net);
1684        h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1685        if (!h) {
1686                h = init_conntrack(state->net, tmpl, &tuple,
1687                                   skb, dataoff, hash);
1688                if (!h)
1689                        return 0;
1690                if (IS_ERR(h))
1691                        return PTR_ERR(h);
1692        }
1693        ct = nf_ct_tuplehash_to_ctrack(h);
1694
1695        /* It exists; we have (non-exclusive) reference. */
1696        if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1697                ctinfo = IP_CT_ESTABLISHED_REPLY;
1698        } else {
1699                /* Once we've had two way comms, always ESTABLISHED. */
1700                if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1701                        pr_debug("normal packet for %p\n", ct);
1702                        ctinfo = IP_CT_ESTABLISHED;
1703                } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1704                        pr_debug("related packet for %p\n", ct);
1705                        ctinfo = IP_CT_RELATED;
1706                } else {
1707                        pr_debug("new packet for %p\n", ct);
1708                        ctinfo = IP_CT_NEW;
1709                }
1710        }
1711        nf_ct_set(skb, ct, ctinfo);
1712        return 0;
1713}
1714
1715/*
1716 * icmp packets need special treatment to handle error messages that are
1717 * related to a connection.
1718 *
1719 * Callers need to check if skb has a conntrack assigned when this
1720 * helper returns; in such case skb belongs to an already known connection.
1721 */
1722static unsigned int __cold
1723nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1724                         struct sk_buff *skb,
1725                         unsigned int dataoff,
1726                         u8 protonum,
1727                         const struct nf_hook_state *state)
1728{
1729        int ret;
1730
1731        if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1732                ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1733#if IS_ENABLED(CONFIG_IPV6)
1734        else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1735                ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1736#endif
1737        else
1738                return NF_ACCEPT;
1739
1740        if (ret <= 0) {
1741                NF_CT_STAT_INC_ATOMIC(state->net, error);
1742                NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1743        }
1744
1745        return ret;
1746}
1747
1748static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1749                          enum ip_conntrack_info ctinfo)
1750{
1751        const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1752
1753        if (!timeout)
1754                timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1755
1756        nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1757        return NF_ACCEPT;
1758}
1759
1760/* Returns verdict for packet, or -1 for invalid. */
1761static int nf_conntrack_handle_packet(struct nf_conn *ct,
1762                                      struct sk_buff *skb,
1763                                      unsigned int dataoff,
1764                                      enum ip_conntrack_info ctinfo,
1765                                      const struct nf_hook_state *state)
1766{
1767        switch (nf_ct_protonum(ct)) {
1768        case IPPROTO_TCP:
1769                return nf_conntrack_tcp_packet(ct, skb, dataoff,
1770                                               ctinfo, state);
1771        case IPPROTO_UDP:
1772                return nf_conntrack_udp_packet(ct, skb, dataoff,
1773                                               ctinfo, state);
1774        case IPPROTO_ICMP:
1775                return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1776#if IS_ENABLED(CONFIG_IPV6)
1777        case IPPROTO_ICMPV6:
1778                return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1779#endif
1780#ifdef CONFIG_NF_CT_PROTO_UDPLITE
1781        case IPPROTO_UDPLITE:
1782                return nf_conntrack_udplite_packet(ct, skb, dataoff,
1783                                                   ctinfo, state);
1784#endif
1785#ifdef CONFIG_NF_CT_PROTO_SCTP
1786        case IPPROTO_SCTP:
1787                return nf_conntrack_sctp_packet(ct, skb, dataoff,
1788                                                ctinfo, state);
1789#endif
1790#ifdef CONFIG_NF_CT_PROTO_DCCP
1791        case IPPROTO_DCCP:
1792                return nf_conntrack_dccp_packet(ct, skb, dataoff,
1793                                                ctinfo, state);
1794#endif
1795#ifdef CONFIG_NF_CT_PROTO_GRE
1796        case IPPROTO_GRE:
1797                return nf_conntrack_gre_packet(ct, skb, dataoff,
1798                                               ctinfo, state);
1799#endif
1800        }
1801
1802        return generic_packet(ct, skb, ctinfo);
1803}
1804
1805unsigned int
1806nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1807{
1808        enum ip_conntrack_info ctinfo;
1809        struct nf_conn *ct, *tmpl;
1810        u_int8_t protonum;
1811        int dataoff, ret;
1812
1813        tmpl = nf_ct_get(skb, &ctinfo);
1814        if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1815                /* Previously seen (loopback or untracked)?  Ignore. */
1816                if ((tmpl && !nf_ct_is_template(tmpl)) ||
1817                     ctinfo == IP_CT_UNTRACKED) {
1818                        NF_CT_STAT_INC_ATOMIC(state->net, ignore);
1819                        return NF_ACCEPT;
1820                }
1821                skb->_nfct = 0;
1822        }
1823
1824        /* rcu_read_lock()ed by nf_hook_thresh */
1825        dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1826        if (dataoff <= 0) {
1827                pr_debug("not prepared to track yet or error occurred\n");
1828                NF_CT_STAT_INC_ATOMIC(state->net, error);
1829                NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1830                ret = NF_ACCEPT;
1831                goto out;
1832        }
1833
1834        if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1835                ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1836                                               protonum, state);
1837                if (ret <= 0) {
1838                        ret = -ret;
1839                        goto out;
1840                }
1841                /* ICMP[v6] protocol trackers may assign one conntrack. */
1842                if (skb->_nfct)
1843                        goto out;
1844        }
1845repeat:
1846        ret = resolve_normal_ct(tmpl, skb, dataoff,
1847                                protonum, state);
1848        if (ret < 0) {
1849                /* Too stressed to deal. */
1850                NF_CT_STAT_INC_ATOMIC(state->net, drop);
1851                ret = NF_DROP;
1852                goto out;
1853        }
1854
1855        ct = nf_ct_get(skb, &ctinfo);
1856        if (!ct) {
1857                /* Not valid part of a connection */
1858                NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1859                ret = NF_ACCEPT;
1860                goto out;
1861        }
1862
1863        ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1864        if (ret <= 0) {
1865                /* Invalid: inverse of the return code tells
1866                 * the netfilter core what to do */
1867                pr_debug("nf_conntrack_in: Can't track with proto module\n");
1868                nf_conntrack_put(&ct->ct_general);
1869                skb->_nfct = 0;
1870                NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1871                if (ret == -NF_DROP)
1872                        NF_CT_STAT_INC_ATOMIC(state->net, drop);
1873                /* Special case: TCP tracker reports an attempt to reopen a
1874                 * closed/aborted connection. We have to go back and create a
1875                 * fresh conntrack.
1876                 */
1877                if (ret == -NF_REPEAT)
1878                        goto repeat;
1879                ret = -ret;
1880                goto out;
1881        }
1882
1883        if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1884            !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1885                nf_conntrack_event_cache(IPCT_REPLY, ct);
1886out:
1887        if (tmpl)
1888                nf_ct_put(tmpl);
1889
1890        return ret;
1891}
1892EXPORT_SYMBOL_GPL(nf_conntrack_in);
1893
1894/* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1895   implicitly racy: see __nf_conntrack_confirm */
1896void nf_conntrack_alter_reply(struct nf_conn *ct,
1897                              const struct nf_conntrack_tuple *newreply)
1898{
1899        struct nf_conn_help *help = nfct_help(ct);
1900
1901        /* Should be unconfirmed, so not in hash table yet */
1902        WARN_ON(nf_ct_is_confirmed(ct));
1903
1904        pr_debug("Altering reply tuple of %p to ", ct);
1905        nf_ct_dump_tuple(newreply);
1906
1907        ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1908        if (ct->master || (help && !hlist_empty(&help->expectations)))
1909                return;
1910
1911        rcu_read_lock();
1912        __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1913        rcu_read_unlock();
1914}
1915EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1916
1917/* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1918void __nf_ct_refresh_acct(struct nf_conn *ct,
1919                          enum ip_conntrack_info ctinfo,
1920                          const struct sk_buff *skb,
1921                          u32 extra_jiffies,
1922                          bool do_acct)
1923{
1924        /* Only update if this is not a fixed timeout */
1925        if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1926                goto acct;
1927
1928        /* If not in hash table, timer will not be active yet */
1929        if (nf_ct_is_confirmed(ct))
1930                extra_jiffies += nfct_time_stamp;
1931
1932        if (READ_ONCE(ct->timeout) != extra_jiffies)
1933                WRITE_ONCE(ct->timeout, extra_jiffies);
1934acct:
1935        if (do_acct)
1936                nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1937}
1938EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1939
1940bool nf_ct_kill_acct(struct nf_conn *ct,
1941                     enum ip_conntrack_info ctinfo,
1942                     const struct sk_buff *skb)
1943{
1944        nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1945
1946        return nf_ct_delete(ct, 0, 0);
1947}
1948EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1949
1950#if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1951
1952#include <linux/netfilter/nfnetlink.h>
1953#include <linux/netfilter/nfnetlink_conntrack.h>
1954#include <linux/mutex.h>
1955
1956/* Generic function for tcp/udp/sctp/dccp and alike. */
1957int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1958                               const struct nf_conntrack_tuple *tuple)
1959{
1960        if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1961            nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1962                goto nla_put_failure;
1963        return 0;
1964
1965nla_put_failure:
1966        return -1;
1967}
1968EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1969
1970const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1971        [CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1972        [CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1973};
1974EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1975
1976int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1977                               struct nf_conntrack_tuple *t)
1978{
1979        if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1980                return -EINVAL;
1981
1982        t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1983        t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1984
1985        return 0;
1986}
1987EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1988
1989unsigned int nf_ct_port_nlattr_tuple_size(void)
1990{
1991        static unsigned int size __read_mostly;
1992
1993        if (!size)
1994                size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1995
1996        return size;
1997}
1998EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1999#endif
2000
2001/* Used by ipt_REJECT and ip6t_REJECT. */
2002static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2003{
2004        struct nf_conn *ct;
2005        enum ip_conntrack_info ctinfo;
2006
2007        /* This ICMP is in reverse direction to the packet which caused it */
2008        ct = nf_ct_get(skb, &ctinfo);
2009        if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2010                ctinfo = IP_CT_RELATED_REPLY;
2011        else
2012                ctinfo = IP_CT_RELATED;
2013
2014        /* Attach to new skbuff, and increment count */
2015        nf_ct_set(nskb, ct, ctinfo);
2016        nf_conntrack_get(skb_nfct(nskb));
2017}
2018
2019static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2020                                 struct nf_conn *ct,
2021                                 enum ip_conntrack_info ctinfo)
2022{
2023        struct nf_conntrack_tuple_hash *h;
2024        struct nf_conntrack_tuple tuple;
2025        struct nf_nat_hook *nat_hook;
2026        unsigned int status;
2027        int dataoff;
2028        u16 l3num;
2029        u8 l4num;
2030
2031        l3num = nf_ct_l3num(ct);
2032
2033        dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2034        if (dataoff <= 0)
2035                return -1;
2036
2037        if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2038                             l4num, net, &tuple))
2039                return -1;
2040
2041        if (ct->status & IPS_SRC_NAT) {
2042                memcpy(tuple.src.u3.all,
2043                       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2044                       sizeof(tuple.src.u3.all));
2045                tuple.src.u.all =
2046                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2047        }
2048
2049        if (ct->status & IPS_DST_NAT) {
2050                memcpy(tuple.dst.u3.all,
2051                       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2052                       sizeof(tuple.dst.u3.all));
2053                tuple.dst.u.all =
2054                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2055        }
2056
2057        h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2058        if (!h)
2059                return 0;
2060
2061        /* Store status bits of the conntrack that is clashing to re-do NAT
2062         * mangling according to what it has been done already to this packet.
2063         */
2064        status = ct->status;
2065
2066        nf_ct_put(ct);
2067        ct = nf_ct_tuplehash_to_ctrack(h);
2068        nf_ct_set(skb, ct, ctinfo);
2069
2070        nat_hook = rcu_dereference(nf_nat_hook);
2071        if (!nat_hook)
2072                return 0;
2073
2074        if (status & IPS_SRC_NAT &&
2075            nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2076                                IP_CT_DIR_ORIGINAL) == NF_DROP)
2077                return -1;
2078
2079        if (status & IPS_DST_NAT &&
2080            nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2081                                IP_CT_DIR_ORIGINAL) == NF_DROP)
2082                return -1;
2083
2084        return 0;
2085}
2086
2087/* This packet is coming from userspace via nf_queue, complete the packet
2088 * processing after the helper invocation in nf_confirm().
2089 */
2090static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2091                               enum ip_conntrack_info ctinfo)
2092{
2093        const struct nf_conntrack_helper *helper;
2094        const struct nf_conn_help *help;
2095        int protoff;
2096
2097        help = nfct_help(ct);
2098        if (!help)
2099                return 0;
2100
2101        helper = rcu_dereference(help->helper);
2102        if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2103                return 0;
2104
2105        switch (nf_ct_l3num(ct)) {
2106        case NFPROTO_IPV4:
2107                protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2108                break;
2109#if IS_ENABLED(CONFIG_IPV6)
2110        case NFPROTO_IPV6: {
2111                __be16 frag_off;
2112                u8 pnum;
2113
2114                pnum = ipv6_hdr(skb)->nexthdr;
2115                protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2116                                           &frag_off);
2117                if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2118                        return 0;
2119                break;
2120        }
2121#endif
2122        default:
2123                return 0;
2124        }
2125
2126        if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2127            !nf_is_loopback_packet(skb)) {
2128                if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2129                        NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2130                        return -1;
2131                }
2132        }
2133
2134        /* We've seen it coming out the other side: confirm it */
2135        return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2136}
2137
2138static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2139{
2140        enum ip_conntrack_info ctinfo;
2141        struct nf_conn *ct;
2142        int err;
2143
2144        ct = nf_ct_get(skb, &ctinfo);
2145        if (!ct)
2146                return 0;
2147
2148        if (!nf_ct_is_confirmed(ct)) {
2149                err = __nf_conntrack_update(net, skb, ct, ctinfo);
2150                if (err < 0)
2151                        return err;
2152        }
2153
2154        return nf_confirm_cthelper(skb, ct, ctinfo);
2155}
2156
2157static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2158                                       const struct sk_buff *skb)
2159{
2160        const struct nf_conntrack_tuple *src_tuple;
2161        const struct nf_conntrack_tuple_hash *hash;
2162        struct nf_conntrack_tuple srctuple;
2163        enum ip_conntrack_info ctinfo;
2164        struct nf_conn *ct;
2165
2166        ct = nf_ct_get(skb, &ctinfo);
2167        if (ct) {
2168                src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2169                memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2170                return true;
2171        }
2172
2173        if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2174                               NFPROTO_IPV4, dev_net(skb->dev),
2175                               &srctuple))
2176                return false;
2177
2178        hash = nf_conntrack_find_get(dev_net(skb->dev),
2179                                     &nf_ct_zone_dflt,
2180                                     &srctuple);
2181        if (!hash)
2182                return false;
2183
2184        ct = nf_ct_tuplehash_to_ctrack(hash);
2185        src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2186        memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2187        nf_ct_put(ct);
2188
2189        return true;
2190}
2191
2192/* Bring out ya dead! */
2193static struct nf_conn *
2194get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2195                void *data, unsigned int *bucket)
2196{
2197        struct nf_conntrack_tuple_hash *h;
2198        struct nf_conn *ct;
2199        struct hlist_nulls_node *n;
2200        spinlock_t *lockp;
2201
2202        for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2203                lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2204                local_bh_disable();
2205                nf_conntrack_lock(lockp);
2206                if (*bucket < nf_conntrack_htable_size) {
2207                        hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2208                                if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2209                                        continue;
2210                                /* All nf_conn objects are added to hash table twice, one
2211                                 * for original direction tuple, once for the reply tuple.
2212                                 *
2213                                 * Exception: In the IPS_NAT_CLASH case, only the reply
2214                                 * tuple is added (the original tuple already existed for
2215                                 * a different object).
2216                                 *
2217                                 * We only need to call the iterator once for each
2218                                 * conntrack, so we just use the 'reply' direction
2219                                 * tuple while iterating.
2220                                 */
2221                                ct = nf_ct_tuplehash_to_ctrack(h);
2222                                if (iter(ct, data))
2223                                        goto found;
2224                        }
2225                }
2226                spin_unlock(lockp);
2227                local_bh_enable();
2228                cond_resched();
2229        }
2230
2231        return NULL;
2232found:
2233        atomic_inc(&ct->ct_general.use);
2234        spin_unlock(lockp);
2235        local_bh_enable();
2236        return ct;
2237}
2238
2239static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2240                                  void *data, u32 portid, int report)
2241{
2242        unsigned int bucket = 0, sequence;
2243        struct nf_conn *ct;
2244
2245        might_sleep();
2246
2247        for (;;) {
2248                sequence = read_seqcount_begin(&nf_conntrack_generation);
2249
2250                while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2251                        /* Time to push up daises... */
2252
2253                        nf_ct_delete(ct, portid, report);
2254                        nf_ct_put(ct);
2255                        cond_resched();
2256                }
2257
2258                if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2259                        break;
2260                bucket = 0;
2261        }
2262}
2263
2264struct iter_data {
2265        int (*iter)(struct nf_conn *i, void *data);
2266        void *data;
2267        struct net *net;
2268};
2269
2270static int iter_net_only(struct nf_conn *i, void *data)
2271{
2272        struct iter_data *d = data;
2273
2274        if (!net_eq(d->net, nf_ct_net(i)))
2275                return 0;
2276
2277        return d->iter(i, d->data);
2278}
2279
2280static void
2281__nf_ct_unconfirmed_destroy(struct net *net)
2282{
2283        int cpu;
2284
2285        for_each_possible_cpu(cpu) {
2286                struct nf_conntrack_tuple_hash *h;
2287                struct hlist_nulls_node *n;
2288                struct ct_pcpu *pcpu;
2289
2290                pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2291
2292                spin_lock_bh(&pcpu->lock);
2293                hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2294                        struct nf_conn *ct;
2295
2296                        ct = nf_ct_tuplehash_to_ctrack(h);
2297
2298                        /* we cannot call iter() on unconfirmed list, the
2299                         * owning cpu can reallocate ct->ext at any time.
2300                         */
2301                        set_bit(IPS_DYING_BIT, &ct->status);
2302                }
2303                spin_unlock_bh(&pcpu->lock);
2304                cond_resched();
2305        }
2306}
2307
2308void nf_ct_unconfirmed_destroy(struct net *net)
2309{
2310        might_sleep();
2311
2312        if (atomic_read(&net->ct.count) > 0) {
2313                __nf_ct_unconfirmed_destroy(net);
2314                nf_queue_nf_hook_drop(net);
2315                synchronize_net();
2316        }
2317}
2318EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2319
2320void nf_ct_iterate_cleanup_net(struct net *net,
2321                               int (*iter)(struct nf_conn *i, void *data),
2322                               void *data, u32 portid, int report)
2323{
2324        struct iter_data d;
2325
2326        might_sleep();
2327
2328        if (atomic_read(&net->ct.count) == 0)
2329                return;
2330
2331        d.iter = iter;
2332        d.data = data;
2333        d.net = net;
2334
2335        nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2336}
2337EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2338
2339/**
2340 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2341 * @iter: callback to invoke for each conntrack
2342 * @data: data to pass to @iter
2343 *
2344 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2345 * unconfirmed list as dying (so they will not be inserted into
2346 * main table).
2347 *
2348 * Can only be called in module exit path.
2349 */
2350void
2351nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2352{
2353        struct net *net;
2354
2355        down_read(&net_rwsem);
2356        for_each_net(net) {
2357                if (atomic_read(&net->ct.count) == 0)
2358                        continue;
2359                __nf_ct_unconfirmed_destroy(net);
2360                nf_queue_nf_hook_drop(net);
2361        }
2362        up_read(&net_rwsem);
2363
2364        /* Need to wait for netns cleanup worker to finish, if its
2365         * running -- it might have deleted a net namespace from
2366         * the global list, so our __nf_ct_unconfirmed_destroy() might
2367         * not have affected all namespaces.
2368         */
2369        net_ns_barrier();
2370
2371        /* a conntrack could have been unlinked from unconfirmed list
2372         * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2373         * This makes sure its inserted into conntrack table.
2374         */
2375        synchronize_net();
2376
2377        nf_ct_iterate_cleanup(iter, data, 0, 0);
2378}
2379EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2380
2381static int kill_all(struct nf_conn *i, void *data)
2382{
2383        return net_eq(nf_ct_net(i), data);
2384}
2385
2386void nf_conntrack_cleanup_start(void)
2387{
2388        conntrack_gc_work.exiting = true;
2389        RCU_INIT_POINTER(ip_ct_attach, NULL);
2390}
2391
2392void nf_conntrack_cleanup_end(void)
2393{
2394        RCU_INIT_POINTER(nf_ct_hook, NULL);
2395        cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2396        kvfree(nf_conntrack_hash);
2397
2398        nf_conntrack_proto_fini();
2399        nf_conntrack_seqadj_fini();
2400        nf_conntrack_labels_fini();
2401        nf_conntrack_helper_fini();
2402        nf_conntrack_timeout_fini();
2403        nf_conntrack_ecache_fini();
2404        nf_conntrack_tstamp_fini();
2405        nf_conntrack_acct_fini();
2406        nf_conntrack_expect_fini();
2407
2408        kmem_cache_destroy(nf_conntrack_cachep);
2409}
2410
2411/*
2412 * Mishearing the voices in his head, our hero wonders how he's
2413 * supposed to kill the mall.
2414 */
2415void nf_conntrack_cleanup_net(struct net *net)
2416{
2417        LIST_HEAD(single);
2418
2419        list_add(&net->exit_list, &single);
2420        nf_conntrack_cleanup_net_list(&single);
2421}
2422
2423void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2424{
2425        int busy;
2426        struct net *net;
2427
2428        /*
2429         * This makes sure all current packets have passed through
2430         *  netfilter framework.  Roll on, two-stage module
2431         *  delete...
2432         */
2433        synchronize_net();
2434i_see_dead_people:
2435        busy = 0;
2436        list_for_each_entry(net, net_exit_list, exit_list) {
2437                nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2438                if (atomic_read(&net->ct.count) != 0)
2439                        busy = 1;
2440        }
2441        if (busy) {
2442                schedule();
2443                goto i_see_dead_people;
2444        }
2445
2446        list_for_each_entry(net, net_exit_list, exit_list) {
2447                nf_conntrack_proto_pernet_fini(net);
2448                nf_conntrack_ecache_pernet_fini(net);
2449                nf_conntrack_expect_pernet_fini(net);
2450                free_percpu(net->ct.stat);
2451                free_percpu(net->ct.pcpu_lists);
2452        }
2453}
2454
2455void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2456{
2457        struct hlist_nulls_head *hash;
2458        unsigned int nr_slots, i;
2459
2460        if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2461                return NULL;
2462
2463        BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2464        nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2465
2466        hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2467
2468        if (hash && nulls)
2469                for (i = 0; i < nr_slots; i++)
2470                        INIT_HLIST_NULLS_HEAD(&hash[i], i);
2471
2472        return hash;
2473}
2474EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2475
2476int nf_conntrack_hash_resize(unsigned int hashsize)
2477{
2478        int i, bucket;
2479        unsigned int old_size;
2480        struct hlist_nulls_head *hash, *old_hash;
2481        struct nf_conntrack_tuple_hash *h;
2482        struct nf_conn *ct;
2483
2484        if (!hashsize)
2485                return -EINVAL;
2486
2487        hash = nf_ct_alloc_hashtable(&hashsize, 1);
2488        if (!hash)
2489                return -ENOMEM;
2490
2491        old_size = nf_conntrack_htable_size;
2492        if (old_size == hashsize) {
2493                kvfree(hash);
2494                return 0;
2495        }
2496
2497        local_bh_disable();
2498        nf_conntrack_all_lock();
2499        write_seqcount_begin(&nf_conntrack_generation);
2500
2501        /* Lookups in the old hash might happen in parallel, which means we
2502         * might get false negatives during connection lookup. New connections
2503         * created because of a false negative won't make it into the hash
2504         * though since that required taking the locks.
2505         */
2506
2507        for (i = 0; i < nf_conntrack_htable_size; i++) {
2508                while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2509                        h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2510                                              struct nf_conntrack_tuple_hash, hnnode);
2511                        ct = nf_ct_tuplehash_to_ctrack(h);
2512                        hlist_nulls_del_rcu(&h->hnnode);
2513                        bucket = __hash_conntrack(nf_ct_net(ct),
2514                                                  &h->tuple, hashsize);
2515                        hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2516                }
2517        }
2518        old_size = nf_conntrack_htable_size;
2519        old_hash = nf_conntrack_hash;
2520
2521        nf_conntrack_hash = hash;
2522        nf_conntrack_htable_size = hashsize;
2523
2524        write_seqcount_end(&nf_conntrack_generation);
2525        nf_conntrack_all_unlock();
2526        local_bh_enable();
2527
2528        synchronize_net();
2529        kvfree(old_hash);
2530        return 0;
2531}
2532
2533int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2534{
2535        unsigned int hashsize;
2536        int rc;
2537
2538        if (current->nsproxy->net_ns != &init_net)
2539                return -EOPNOTSUPP;
2540
2541        /* On boot, we can set this without any fancy locking. */
2542        if (!nf_conntrack_hash)
2543                return param_set_uint(val, kp);
2544
2545        rc = kstrtouint(val, 0, &hashsize);
2546        if (rc)
2547                return rc;
2548
2549        return nf_conntrack_hash_resize(hashsize);
2550}
2551
2552static __always_inline unsigned int total_extension_size(void)
2553{
2554        /* remember to add new extensions below */
2555        BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2556
2557        return sizeof(struct nf_ct_ext) +
2558               sizeof(struct nf_conn_help)
2559#if IS_ENABLED(CONFIG_NF_NAT)
2560                + sizeof(struct nf_conn_nat)
2561#endif
2562                + sizeof(struct nf_conn_seqadj)
2563                + sizeof(struct nf_conn_acct)
2564#ifdef CONFIG_NF_CONNTRACK_EVENTS
2565                + sizeof(struct nf_conntrack_ecache)
2566#endif
2567#ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2568                + sizeof(struct nf_conn_tstamp)
2569#endif
2570#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2571                + sizeof(struct nf_conn_timeout)
2572#endif
2573#ifdef CONFIG_NF_CONNTRACK_LABELS
2574                + sizeof(struct nf_conn_labels)
2575#endif
2576#if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2577                + sizeof(struct nf_conn_synproxy)
2578#endif
2579        ;
2580};
2581
2582int nf_conntrack_init_start(void)
2583{
2584        unsigned long nr_pages = totalram_pages();
2585        int max_factor = 8;
2586        int ret = -ENOMEM;
2587        int i;
2588
2589        /* struct nf_ct_ext uses u8 to store offsets/size */
2590        BUILD_BUG_ON(total_extension_size() > 255u);
2591
2592        seqcount_init(&nf_conntrack_generation);
2593
2594        for (i = 0; i < CONNTRACK_LOCKS; i++)
2595                spin_lock_init(&nf_conntrack_locks[i]);
2596
2597        if (!nf_conntrack_htable_size) {
2598                /* Idea from tcp.c: use 1/16384 of memory.
2599                 * On i386: 32MB machine has 512 buckets.
2600                 * >= 1GB machines have 16384 buckets.
2601                 * >= 4GB machines have 65536 buckets.
2602                 */
2603                nf_conntrack_htable_size
2604                        = (((nr_pages << PAGE_SHIFT) / 16384)
2605                           / sizeof(struct hlist_head));
2606                if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2607                        nf_conntrack_htable_size = 65536;
2608                else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2609                        nf_conntrack_htable_size = 16384;
2610                if (nf_conntrack_htable_size < 32)
2611                        nf_conntrack_htable_size = 32;
2612
2613                /* Use a max. factor of four by default to get the same max as
2614                 * with the old struct list_heads. When a table size is given
2615                 * we use the old value of 8 to avoid reducing the max.
2616                 * entries. */
2617                max_factor = 4;
2618        }
2619
2620        nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2621        if (!nf_conntrack_hash)
2622                return -ENOMEM;
2623
2624        nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2625
2626        nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2627                                                sizeof(struct nf_conn),
2628                                                NFCT_INFOMASK + 1,
2629                                                SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2630        if (!nf_conntrack_cachep)
2631                goto err_cachep;
2632
2633        ret = nf_conntrack_expect_init();
2634        if (ret < 0)
2635                goto err_expect;
2636
2637        ret = nf_conntrack_acct_init();
2638        if (ret < 0)
2639                goto err_acct;
2640
2641        ret = nf_conntrack_tstamp_init();
2642        if (ret < 0)
2643                goto err_tstamp;
2644
2645        ret = nf_conntrack_ecache_init();
2646        if (ret < 0)
2647                goto err_ecache;
2648
2649        ret = nf_conntrack_timeout_init();
2650        if (ret < 0)
2651                goto err_timeout;
2652
2653        ret = nf_conntrack_helper_init();
2654        if (ret < 0)
2655                goto err_helper;
2656
2657        ret = nf_conntrack_labels_init();
2658        if (ret < 0)
2659                goto err_labels;
2660
2661        ret = nf_conntrack_seqadj_init();
2662        if (ret < 0)
2663                goto err_seqadj;
2664
2665        ret = nf_conntrack_proto_init();
2666        if (ret < 0)
2667                goto err_proto;
2668
2669        conntrack_gc_work_init(&conntrack_gc_work);
2670        queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2671
2672        return 0;
2673
2674err_proto:
2675        nf_conntrack_seqadj_fini();
2676err_seqadj:
2677        nf_conntrack_labels_fini();
2678err_labels:
2679        nf_conntrack_helper_fini();
2680err_helper:
2681        nf_conntrack_timeout_fini();
2682err_timeout:
2683        nf_conntrack_ecache_fini();
2684err_ecache:
2685        nf_conntrack_tstamp_fini();
2686err_tstamp:
2687        nf_conntrack_acct_fini();
2688err_acct:
2689        nf_conntrack_expect_fini();
2690err_expect:
2691        kmem_cache_destroy(nf_conntrack_cachep);
2692err_cachep:
2693        kvfree(nf_conntrack_hash);
2694        return ret;
2695}
2696
2697static struct nf_ct_hook nf_conntrack_hook = {
2698        .update         = nf_conntrack_update,
2699        .destroy        = destroy_conntrack,
2700        .get_tuple_skb  = nf_conntrack_get_tuple_skb,
2701};
2702
2703void nf_conntrack_init_end(void)
2704{
2705        /* For use by REJECT target */
2706        RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2707        RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2708}
2709
2710/*
2711 * We need to use special "null" values, not used in hash table
2712 */
2713#define UNCONFIRMED_NULLS_VAL   ((1<<30)+0)
2714#define DYING_NULLS_VAL         ((1<<30)+1)
2715
2716int nf_conntrack_init_net(struct net *net)
2717{
2718        int ret = -ENOMEM;
2719        int cpu;
2720
2721        BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2722        BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2723        atomic_set(&net->ct.count, 0);
2724
2725        net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2726        if (!net->ct.pcpu_lists)
2727                goto err_stat;
2728
2729        for_each_possible_cpu(cpu) {
2730                struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2731
2732                spin_lock_init(&pcpu->lock);
2733                INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2734                INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2735        }
2736
2737        net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2738        if (!net->ct.stat)
2739                goto err_pcpu_lists;
2740
2741        ret = nf_conntrack_expect_pernet_init(net);
2742        if (ret < 0)
2743                goto err_expect;
2744
2745        nf_conntrack_acct_pernet_init(net);
2746        nf_conntrack_tstamp_pernet_init(net);
2747        nf_conntrack_ecache_pernet_init(net);
2748        nf_conntrack_helper_pernet_init(net);
2749        nf_conntrack_proto_pernet_init(net);
2750
2751        return 0;
2752
2753err_expect:
2754        free_percpu(net->ct.stat);
2755err_pcpu_lists:
2756        free_percpu(net->ct.pcpu_lists);
2757err_stat:
2758        return ret;
2759}
2760