linux/net/tls/tls_sw.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
   5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
   6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
   7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
   8 *
   9 * This software is available to you under a choice of one of two
  10 * licenses.  You may choose to be licensed under the terms of the GNU
  11 * General Public License (GPL) Version 2, available from the file
  12 * COPYING in the main directory of this source tree, or the
  13 * OpenIB.org BSD license below:
  14 *
  15 *     Redistribution and use in source and binary forms, with or
  16 *     without modification, are permitted provided that the following
  17 *     conditions are met:
  18 *
  19 *      - Redistributions of source code must retain the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer.
  22 *
  23 *      - Redistributions in binary form must reproduce the above
  24 *        copyright notice, this list of conditions and the following
  25 *        disclaimer in the documentation and/or other materials
  26 *        provided with the distribution.
  27 *
  28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  35 * SOFTWARE.
  36 */
  37
  38#include <linux/sched/signal.h>
  39#include <linux/module.h>
  40#include <crypto/aead.h>
  41
  42#include <net/strparser.h>
  43#include <net/tls.h>
  44
  45static int __skb_nsg(struct sk_buff *skb, int offset, int len,
  46                     unsigned int recursion_level)
  47{
  48        int start = skb_headlen(skb);
  49        int i, chunk = start - offset;
  50        struct sk_buff *frag_iter;
  51        int elt = 0;
  52
  53        if (unlikely(recursion_level >= 24))
  54                return -EMSGSIZE;
  55
  56        if (chunk > 0) {
  57                if (chunk > len)
  58                        chunk = len;
  59                elt++;
  60                len -= chunk;
  61                if (len == 0)
  62                        return elt;
  63                offset += chunk;
  64        }
  65
  66        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  67                int end;
  68
  69                WARN_ON(start > offset + len);
  70
  71                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
  72                chunk = end - offset;
  73                if (chunk > 0) {
  74                        if (chunk > len)
  75                                chunk = len;
  76                        elt++;
  77                        len -= chunk;
  78                        if (len == 0)
  79                                return elt;
  80                        offset += chunk;
  81                }
  82                start = end;
  83        }
  84
  85        if (unlikely(skb_has_frag_list(skb))) {
  86                skb_walk_frags(skb, frag_iter) {
  87                        int end, ret;
  88
  89                        WARN_ON(start > offset + len);
  90
  91                        end = start + frag_iter->len;
  92                        chunk = end - offset;
  93                        if (chunk > 0) {
  94                                if (chunk > len)
  95                                        chunk = len;
  96                                ret = __skb_nsg(frag_iter, offset - start, chunk,
  97                                                recursion_level + 1);
  98                                if (unlikely(ret < 0))
  99                                        return ret;
 100                                elt += ret;
 101                                len -= chunk;
 102                                if (len == 0)
 103                                        return elt;
 104                                offset += chunk;
 105                        }
 106                        start = end;
 107                }
 108        }
 109        BUG_ON(len);
 110        return elt;
 111}
 112
 113/* Return the number of scatterlist elements required to completely map the
 114 * skb, or -EMSGSIZE if the recursion depth is exceeded.
 115 */
 116static int skb_nsg(struct sk_buff *skb, int offset, int len)
 117{
 118        return __skb_nsg(skb, offset, len, 0);
 119}
 120
 121static int padding_length(struct tls_sw_context_rx *ctx,
 122                          struct tls_prot_info *prot, struct sk_buff *skb)
 123{
 124        struct strp_msg *rxm = strp_msg(skb);
 125        int sub = 0;
 126
 127        /* Determine zero-padding length */
 128        if (prot->version == TLS_1_3_VERSION) {
 129                char content_type = 0;
 130                int err;
 131                int back = 17;
 132
 133                while (content_type == 0) {
 134                        if (back > rxm->full_len - prot->prepend_size)
 135                                return -EBADMSG;
 136                        err = skb_copy_bits(skb,
 137                                            rxm->offset + rxm->full_len - back,
 138                                            &content_type, 1);
 139                        if (err)
 140                                return err;
 141                        if (content_type)
 142                                break;
 143                        sub++;
 144                        back++;
 145                }
 146                ctx->control = content_type;
 147        }
 148        return sub;
 149}
 150
 151static void tls_decrypt_done(struct crypto_async_request *req, int err)
 152{
 153        struct aead_request *aead_req = (struct aead_request *)req;
 154        struct scatterlist *sgout = aead_req->dst;
 155        struct scatterlist *sgin = aead_req->src;
 156        struct tls_sw_context_rx *ctx;
 157        struct tls_context *tls_ctx;
 158        struct tls_prot_info *prot;
 159        struct scatterlist *sg;
 160        struct sk_buff *skb;
 161        unsigned int pages;
 162        int pending;
 163
 164        skb = (struct sk_buff *)req->data;
 165        tls_ctx = tls_get_ctx(skb->sk);
 166        ctx = tls_sw_ctx_rx(tls_ctx);
 167        prot = &tls_ctx->prot_info;
 168
 169        /* Propagate if there was an err */
 170        if (err) {
 171                if (err == -EBADMSG)
 172                        TLS_INC_STATS(sock_net(skb->sk),
 173                                      LINUX_MIB_TLSDECRYPTERROR);
 174                ctx->async_wait.err = err;
 175                tls_err_abort(skb->sk, err);
 176        } else {
 177                struct strp_msg *rxm = strp_msg(skb);
 178                int pad;
 179
 180                pad = padding_length(ctx, prot, skb);
 181                if (pad < 0) {
 182                        ctx->async_wait.err = pad;
 183                        tls_err_abort(skb->sk, pad);
 184                } else {
 185                        rxm->full_len -= pad;
 186                        rxm->offset += prot->prepend_size;
 187                        rxm->full_len -= prot->overhead_size;
 188                }
 189        }
 190
 191        /* After using skb->sk to propagate sk through crypto async callback
 192         * we need to NULL it again.
 193         */
 194        skb->sk = NULL;
 195
 196
 197        /* Free the destination pages if skb was not decrypted inplace */
 198        if (sgout != sgin) {
 199                /* Skip the first S/G entry as it points to AAD */
 200                for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
 201                        if (!sg)
 202                                break;
 203                        put_page(sg_page(sg));
 204                }
 205        }
 206
 207        kfree(aead_req);
 208
 209        spin_lock_bh(&ctx->decrypt_compl_lock);
 210        pending = atomic_dec_return(&ctx->decrypt_pending);
 211
 212        if (!pending && ctx->async_notify)
 213                complete(&ctx->async_wait.completion);
 214        spin_unlock_bh(&ctx->decrypt_compl_lock);
 215}
 216
 217static int tls_do_decryption(struct sock *sk,
 218                             struct sk_buff *skb,
 219                             struct scatterlist *sgin,
 220                             struct scatterlist *sgout,
 221                             char *iv_recv,
 222                             size_t data_len,
 223                             struct aead_request *aead_req,
 224                             bool async)
 225{
 226        struct tls_context *tls_ctx = tls_get_ctx(sk);
 227        struct tls_prot_info *prot = &tls_ctx->prot_info;
 228        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
 229        int ret;
 230
 231        aead_request_set_tfm(aead_req, ctx->aead_recv);
 232        aead_request_set_ad(aead_req, prot->aad_size);
 233        aead_request_set_crypt(aead_req, sgin, sgout,
 234                               data_len + prot->tag_size,
 235                               (u8 *)iv_recv);
 236
 237        if (async) {
 238                /* Using skb->sk to push sk through to crypto async callback
 239                 * handler. This allows propagating errors up to the socket
 240                 * if needed. It _must_ be cleared in the async handler
 241                 * before consume_skb is called. We _know_ skb->sk is NULL
 242                 * because it is a clone from strparser.
 243                 */
 244                skb->sk = sk;
 245                aead_request_set_callback(aead_req,
 246                                          CRYPTO_TFM_REQ_MAY_BACKLOG,
 247                                          tls_decrypt_done, skb);
 248                atomic_inc(&ctx->decrypt_pending);
 249        } else {
 250                aead_request_set_callback(aead_req,
 251                                          CRYPTO_TFM_REQ_MAY_BACKLOG,
 252                                          crypto_req_done, &ctx->async_wait);
 253        }
 254
 255        ret = crypto_aead_decrypt(aead_req);
 256        if (ret == -EINPROGRESS) {
 257                if (async)
 258                        return ret;
 259
 260                ret = crypto_wait_req(ret, &ctx->async_wait);
 261        }
 262
 263        if (async)
 264                atomic_dec(&ctx->decrypt_pending);
 265
 266        return ret;
 267}
 268
 269static void tls_trim_both_msgs(struct sock *sk, int target_size)
 270{
 271        struct tls_context *tls_ctx = tls_get_ctx(sk);
 272        struct tls_prot_info *prot = &tls_ctx->prot_info;
 273        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 274        struct tls_rec *rec = ctx->open_rec;
 275
 276        sk_msg_trim(sk, &rec->msg_plaintext, target_size);
 277        if (target_size > 0)
 278                target_size += prot->overhead_size;
 279        sk_msg_trim(sk, &rec->msg_encrypted, target_size);
 280}
 281
 282static int tls_alloc_encrypted_msg(struct sock *sk, int len)
 283{
 284        struct tls_context *tls_ctx = tls_get_ctx(sk);
 285        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 286        struct tls_rec *rec = ctx->open_rec;
 287        struct sk_msg *msg_en = &rec->msg_encrypted;
 288
 289        return sk_msg_alloc(sk, msg_en, len, 0);
 290}
 291
 292static int tls_clone_plaintext_msg(struct sock *sk, int required)
 293{
 294        struct tls_context *tls_ctx = tls_get_ctx(sk);
 295        struct tls_prot_info *prot = &tls_ctx->prot_info;
 296        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 297        struct tls_rec *rec = ctx->open_rec;
 298        struct sk_msg *msg_pl = &rec->msg_plaintext;
 299        struct sk_msg *msg_en = &rec->msg_encrypted;
 300        int skip, len;
 301
 302        /* We add page references worth len bytes from encrypted sg
 303         * at the end of plaintext sg. It is guaranteed that msg_en
 304         * has enough required room (ensured by caller).
 305         */
 306        len = required - msg_pl->sg.size;
 307
 308        /* Skip initial bytes in msg_en's data to be able to use
 309         * same offset of both plain and encrypted data.
 310         */
 311        skip = prot->prepend_size + msg_pl->sg.size;
 312
 313        return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
 314}
 315
 316static struct tls_rec *tls_get_rec(struct sock *sk)
 317{
 318        struct tls_context *tls_ctx = tls_get_ctx(sk);
 319        struct tls_prot_info *prot = &tls_ctx->prot_info;
 320        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 321        struct sk_msg *msg_pl, *msg_en;
 322        struct tls_rec *rec;
 323        int mem_size;
 324
 325        mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
 326
 327        rec = kzalloc(mem_size, sk->sk_allocation);
 328        if (!rec)
 329                return NULL;
 330
 331        msg_pl = &rec->msg_plaintext;
 332        msg_en = &rec->msg_encrypted;
 333
 334        sk_msg_init(msg_pl);
 335        sk_msg_init(msg_en);
 336
 337        sg_init_table(rec->sg_aead_in, 2);
 338        sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
 339        sg_unmark_end(&rec->sg_aead_in[1]);
 340
 341        sg_init_table(rec->sg_aead_out, 2);
 342        sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
 343        sg_unmark_end(&rec->sg_aead_out[1]);
 344
 345        return rec;
 346}
 347
 348static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
 349{
 350        sk_msg_free(sk, &rec->msg_encrypted);
 351        sk_msg_free(sk, &rec->msg_plaintext);
 352        kfree(rec);
 353}
 354
 355static void tls_free_open_rec(struct sock *sk)
 356{
 357        struct tls_context *tls_ctx = tls_get_ctx(sk);
 358        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 359        struct tls_rec *rec = ctx->open_rec;
 360
 361        if (rec) {
 362                tls_free_rec(sk, rec);
 363                ctx->open_rec = NULL;
 364        }
 365}
 366
 367int tls_tx_records(struct sock *sk, int flags)
 368{
 369        struct tls_context *tls_ctx = tls_get_ctx(sk);
 370        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 371        struct tls_rec *rec, *tmp;
 372        struct sk_msg *msg_en;
 373        int tx_flags, rc = 0;
 374
 375        if (tls_is_partially_sent_record(tls_ctx)) {
 376                rec = list_first_entry(&ctx->tx_list,
 377                                       struct tls_rec, list);
 378
 379                if (flags == -1)
 380                        tx_flags = rec->tx_flags;
 381                else
 382                        tx_flags = flags;
 383
 384                rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
 385                if (rc)
 386                        goto tx_err;
 387
 388                /* Full record has been transmitted.
 389                 * Remove the head of tx_list
 390                 */
 391                list_del(&rec->list);
 392                sk_msg_free(sk, &rec->msg_plaintext);
 393                kfree(rec);
 394        }
 395
 396        /* Tx all ready records */
 397        list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
 398                if (READ_ONCE(rec->tx_ready)) {
 399                        if (flags == -1)
 400                                tx_flags = rec->tx_flags;
 401                        else
 402                                tx_flags = flags;
 403
 404                        msg_en = &rec->msg_encrypted;
 405                        rc = tls_push_sg(sk, tls_ctx,
 406                                         &msg_en->sg.data[msg_en->sg.curr],
 407                                         0, tx_flags);
 408                        if (rc)
 409                                goto tx_err;
 410
 411                        list_del(&rec->list);
 412                        sk_msg_free(sk, &rec->msg_plaintext);
 413                        kfree(rec);
 414                } else {
 415                        break;
 416                }
 417        }
 418
 419tx_err:
 420        if (rc < 0 && rc != -EAGAIN)
 421                tls_err_abort(sk, EBADMSG);
 422
 423        return rc;
 424}
 425
 426static void tls_encrypt_done(struct crypto_async_request *req, int err)
 427{
 428        struct aead_request *aead_req = (struct aead_request *)req;
 429        struct sock *sk = req->data;
 430        struct tls_context *tls_ctx = tls_get_ctx(sk);
 431        struct tls_prot_info *prot = &tls_ctx->prot_info;
 432        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 433        struct scatterlist *sge;
 434        struct sk_msg *msg_en;
 435        struct tls_rec *rec;
 436        bool ready = false;
 437        int pending;
 438
 439        rec = container_of(aead_req, struct tls_rec, aead_req);
 440        msg_en = &rec->msg_encrypted;
 441
 442        sge = sk_msg_elem(msg_en, msg_en->sg.curr);
 443        sge->offset -= prot->prepend_size;
 444        sge->length += prot->prepend_size;
 445
 446        /* Check if error is previously set on socket */
 447        if (err || sk->sk_err) {
 448                rec = NULL;
 449
 450                /* If err is already set on socket, return the same code */
 451                if (sk->sk_err) {
 452                        ctx->async_wait.err = sk->sk_err;
 453                } else {
 454                        ctx->async_wait.err = err;
 455                        tls_err_abort(sk, err);
 456                }
 457        }
 458
 459        if (rec) {
 460                struct tls_rec *first_rec;
 461
 462                /* Mark the record as ready for transmission */
 463                smp_store_mb(rec->tx_ready, true);
 464
 465                /* If received record is at head of tx_list, schedule tx */
 466                first_rec = list_first_entry(&ctx->tx_list,
 467                                             struct tls_rec, list);
 468                if (rec == first_rec)
 469                        ready = true;
 470        }
 471
 472        spin_lock_bh(&ctx->encrypt_compl_lock);
 473        pending = atomic_dec_return(&ctx->encrypt_pending);
 474
 475        if (!pending && ctx->async_notify)
 476                complete(&ctx->async_wait.completion);
 477        spin_unlock_bh(&ctx->encrypt_compl_lock);
 478
 479        if (!ready)
 480                return;
 481
 482        /* Schedule the transmission */
 483        if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
 484                schedule_delayed_work(&ctx->tx_work.work, 1);
 485}
 486
 487static int tls_do_encryption(struct sock *sk,
 488                             struct tls_context *tls_ctx,
 489                             struct tls_sw_context_tx *ctx,
 490                             struct aead_request *aead_req,
 491                             size_t data_len, u32 start)
 492{
 493        struct tls_prot_info *prot = &tls_ctx->prot_info;
 494        struct tls_rec *rec = ctx->open_rec;
 495        struct sk_msg *msg_en = &rec->msg_encrypted;
 496        struct scatterlist *sge = sk_msg_elem(msg_en, start);
 497        int rc, iv_offset = 0;
 498
 499        /* For CCM based ciphers, first byte of IV is a constant */
 500        if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
 501                rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
 502                iv_offset = 1;
 503        }
 504
 505        memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
 506               prot->iv_size + prot->salt_size);
 507
 508        xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
 509
 510        sge->offset += prot->prepend_size;
 511        sge->length -= prot->prepend_size;
 512
 513        msg_en->sg.curr = start;
 514
 515        aead_request_set_tfm(aead_req, ctx->aead_send);
 516        aead_request_set_ad(aead_req, prot->aad_size);
 517        aead_request_set_crypt(aead_req, rec->sg_aead_in,
 518                               rec->sg_aead_out,
 519                               data_len, rec->iv_data);
 520
 521        aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 522                                  tls_encrypt_done, sk);
 523
 524        /* Add the record in tx_list */
 525        list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
 526        atomic_inc(&ctx->encrypt_pending);
 527
 528        rc = crypto_aead_encrypt(aead_req);
 529        if (!rc || rc != -EINPROGRESS) {
 530                atomic_dec(&ctx->encrypt_pending);
 531                sge->offset -= prot->prepend_size;
 532                sge->length += prot->prepend_size;
 533        }
 534
 535        if (!rc) {
 536                WRITE_ONCE(rec->tx_ready, true);
 537        } else if (rc != -EINPROGRESS) {
 538                list_del(&rec->list);
 539                return rc;
 540        }
 541
 542        /* Unhook the record from context if encryption is not failure */
 543        ctx->open_rec = NULL;
 544        tls_advance_record_sn(sk, prot, &tls_ctx->tx);
 545        return rc;
 546}
 547
 548static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
 549                                 struct tls_rec **to, struct sk_msg *msg_opl,
 550                                 struct sk_msg *msg_oen, u32 split_point,
 551                                 u32 tx_overhead_size, u32 *orig_end)
 552{
 553        u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
 554        struct scatterlist *sge, *osge, *nsge;
 555        u32 orig_size = msg_opl->sg.size;
 556        struct scatterlist tmp = { };
 557        struct sk_msg *msg_npl;
 558        struct tls_rec *new;
 559        int ret;
 560
 561        new = tls_get_rec(sk);
 562        if (!new)
 563                return -ENOMEM;
 564        ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
 565                           tx_overhead_size, 0);
 566        if (ret < 0) {
 567                tls_free_rec(sk, new);
 568                return ret;
 569        }
 570
 571        *orig_end = msg_opl->sg.end;
 572        i = msg_opl->sg.start;
 573        sge = sk_msg_elem(msg_opl, i);
 574        while (apply && sge->length) {
 575                if (sge->length > apply) {
 576                        u32 len = sge->length - apply;
 577
 578                        get_page(sg_page(sge));
 579                        sg_set_page(&tmp, sg_page(sge), len,
 580                                    sge->offset + apply);
 581                        sge->length = apply;
 582                        bytes += apply;
 583                        apply = 0;
 584                } else {
 585                        apply -= sge->length;
 586                        bytes += sge->length;
 587                }
 588
 589                sk_msg_iter_var_next(i);
 590                if (i == msg_opl->sg.end)
 591                        break;
 592                sge = sk_msg_elem(msg_opl, i);
 593        }
 594
 595        msg_opl->sg.end = i;
 596        msg_opl->sg.curr = i;
 597        msg_opl->sg.copybreak = 0;
 598        msg_opl->apply_bytes = 0;
 599        msg_opl->sg.size = bytes;
 600
 601        msg_npl = &new->msg_plaintext;
 602        msg_npl->apply_bytes = apply;
 603        msg_npl->sg.size = orig_size - bytes;
 604
 605        j = msg_npl->sg.start;
 606        nsge = sk_msg_elem(msg_npl, j);
 607        if (tmp.length) {
 608                memcpy(nsge, &tmp, sizeof(*nsge));
 609                sk_msg_iter_var_next(j);
 610                nsge = sk_msg_elem(msg_npl, j);
 611        }
 612
 613        osge = sk_msg_elem(msg_opl, i);
 614        while (osge->length) {
 615                memcpy(nsge, osge, sizeof(*nsge));
 616                sg_unmark_end(nsge);
 617                sk_msg_iter_var_next(i);
 618                sk_msg_iter_var_next(j);
 619                if (i == *orig_end)
 620                        break;
 621                osge = sk_msg_elem(msg_opl, i);
 622                nsge = sk_msg_elem(msg_npl, j);
 623        }
 624
 625        msg_npl->sg.end = j;
 626        msg_npl->sg.curr = j;
 627        msg_npl->sg.copybreak = 0;
 628
 629        *to = new;
 630        return 0;
 631}
 632
 633static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
 634                                  struct tls_rec *from, u32 orig_end)
 635{
 636        struct sk_msg *msg_npl = &from->msg_plaintext;
 637        struct sk_msg *msg_opl = &to->msg_plaintext;
 638        struct scatterlist *osge, *nsge;
 639        u32 i, j;
 640
 641        i = msg_opl->sg.end;
 642        sk_msg_iter_var_prev(i);
 643        j = msg_npl->sg.start;
 644
 645        osge = sk_msg_elem(msg_opl, i);
 646        nsge = sk_msg_elem(msg_npl, j);
 647
 648        if (sg_page(osge) == sg_page(nsge) &&
 649            osge->offset + osge->length == nsge->offset) {
 650                osge->length += nsge->length;
 651                put_page(sg_page(nsge));
 652        }
 653
 654        msg_opl->sg.end = orig_end;
 655        msg_opl->sg.curr = orig_end;
 656        msg_opl->sg.copybreak = 0;
 657        msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
 658        msg_opl->sg.size += msg_npl->sg.size;
 659
 660        sk_msg_free(sk, &to->msg_encrypted);
 661        sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
 662
 663        kfree(from);
 664}
 665
 666static int tls_push_record(struct sock *sk, int flags,
 667                           unsigned char record_type)
 668{
 669        struct tls_context *tls_ctx = tls_get_ctx(sk);
 670        struct tls_prot_info *prot = &tls_ctx->prot_info;
 671        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 672        struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
 673        u32 i, split_point, uninitialized_var(orig_end);
 674        struct sk_msg *msg_pl, *msg_en;
 675        struct aead_request *req;
 676        bool split;
 677        int rc;
 678
 679        if (!rec)
 680                return 0;
 681
 682        msg_pl = &rec->msg_plaintext;
 683        msg_en = &rec->msg_encrypted;
 684
 685        split_point = msg_pl->apply_bytes;
 686        split = split_point && split_point < msg_pl->sg.size;
 687        if (unlikely((!split &&
 688                      msg_pl->sg.size +
 689                      prot->overhead_size > msg_en->sg.size) ||
 690                     (split &&
 691                      split_point +
 692                      prot->overhead_size > msg_en->sg.size))) {
 693                split = true;
 694                split_point = msg_en->sg.size;
 695        }
 696        if (split) {
 697                rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
 698                                           split_point, prot->overhead_size,
 699                                           &orig_end);
 700                if (rc < 0)
 701                        return rc;
 702                /* This can happen if above tls_split_open_record allocates
 703                 * a single large encryption buffer instead of two smaller
 704                 * ones. In this case adjust pointers and continue without
 705                 * split.
 706                 */
 707                if (!msg_pl->sg.size) {
 708                        tls_merge_open_record(sk, rec, tmp, orig_end);
 709                        msg_pl = &rec->msg_plaintext;
 710                        msg_en = &rec->msg_encrypted;
 711                        split = false;
 712                }
 713                sk_msg_trim(sk, msg_en, msg_pl->sg.size +
 714                            prot->overhead_size);
 715        }
 716
 717        rec->tx_flags = flags;
 718        req = &rec->aead_req;
 719
 720        i = msg_pl->sg.end;
 721        sk_msg_iter_var_prev(i);
 722
 723        rec->content_type = record_type;
 724        if (prot->version == TLS_1_3_VERSION) {
 725                /* Add content type to end of message.  No padding added */
 726                sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
 727                sg_mark_end(&rec->sg_content_type);
 728                sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
 729                         &rec->sg_content_type);
 730        } else {
 731                sg_mark_end(sk_msg_elem(msg_pl, i));
 732        }
 733
 734        if (msg_pl->sg.end < msg_pl->sg.start) {
 735                sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
 736                         MAX_SKB_FRAGS - msg_pl->sg.start + 1,
 737                         msg_pl->sg.data);
 738        }
 739
 740        i = msg_pl->sg.start;
 741        sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
 742
 743        i = msg_en->sg.end;
 744        sk_msg_iter_var_prev(i);
 745        sg_mark_end(sk_msg_elem(msg_en, i));
 746
 747        i = msg_en->sg.start;
 748        sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
 749
 750        tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
 751                     tls_ctx->tx.rec_seq, prot->rec_seq_size,
 752                     record_type, prot->version);
 753
 754        tls_fill_prepend(tls_ctx,
 755                         page_address(sg_page(&msg_en->sg.data[i])) +
 756                         msg_en->sg.data[i].offset,
 757                         msg_pl->sg.size + prot->tail_size,
 758                         record_type, prot->version);
 759
 760        tls_ctx->pending_open_record_frags = false;
 761
 762        rc = tls_do_encryption(sk, tls_ctx, ctx, req,
 763                               msg_pl->sg.size + prot->tail_size, i);
 764        if (rc < 0) {
 765                if (rc != -EINPROGRESS) {
 766                        tls_err_abort(sk, EBADMSG);
 767                        if (split) {
 768                                tls_ctx->pending_open_record_frags = true;
 769                                tls_merge_open_record(sk, rec, tmp, orig_end);
 770                        }
 771                }
 772                ctx->async_capable = 1;
 773                return rc;
 774        } else if (split) {
 775                msg_pl = &tmp->msg_plaintext;
 776                msg_en = &tmp->msg_encrypted;
 777                sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
 778                tls_ctx->pending_open_record_frags = true;
 779                ctx->open_rec = tmp;
 780        }
 781
 782        return tls_tx_records(sk, flags);
 783}
 784
 785static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
 786                               bool full_record, u8 record_type,
 787                               ssize_t *copied, int flags)
 788{
 789        struct tls_context *tls_ctx = tls_get_ctx(sk);
 790        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 791        struct sk_msg msg_redir = { };
 792        struct sk_psock *psock;
 793        struct sock *sk_redir;
 794        struct tls_rec *rec;
 795        bool enospc, policy;
 796        int err = 0, send;
 797        u32 delta = 0;
 798
 799        policy = !(flags & MSG_SENDPAGE_NOPOLICY);
 800        psock = sk_psock_get(sk);
 801        if (!psock || !policy) {
 802                err = tls_push_record(sk, flags, record_type);
 803                if (err && sk->sk_err == EBADMSG) {
 804                        *copied -= sk_msg_free(sk, msg);
 805                        tls_free_open_rec(sk);
 806                        err = -sk->sk_err;
 807                }
 808                if (psock)
 809                        sk_psock_put(sk, psock);
 810                return err;
 811        }
 812more_data:
 813        enospc = sk_msg_full(msg);
 814        if (psock->eval == __SK_NONE) {
 815                delta = msg->sg.size;
 816                psock->eval = sk_psock_msg_verdict(sk, psock, msg);
 817                delta -= msg->sg.size;
 818        }
 819        if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
 820            !enospc && !full_record) {
 821                err = -ENOSPC;
 822                goto out_err;
 823        }
 824        msg->cork_bytes = 0;
 825        send = msg->sg.size;
 826        if (msg->apply_bytes && msg->apply_bytes < send)
 827                send = msg->apply_bytes;
 828
 829        switch (psock->eval) {
 830        case __SK_PASS:
 831                err = tls_push_record(sk, flags, record_type);
 832                if (err && sk->sk_err == EBADMSG) {
 833                        *copied -= sk_msg_free(sk, msg);
 834                        tls_free_open_rec(sk);
 835                        err = -sk->sk_err;
 836                        goto out_err;
 837                }
 838                break;
 839        case __SK_REDIRECT:
 840                sk_redir = psock->sk_redir;
 841                memcpy(&msg_redir, msg, sizeof(*msg));
 842                if (msg->apply_bytes < send)
 843                        msg->apply_bytes = 0;
 844                else
 845                        msg->apply_bytes -= send;
 846                sk_msg_return_zero(sk, msg, send);
 847                msg->sg.size -= send;
 848                release_sock(sk);
 849                err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
 850                lock_sock(sk);
 851                if (err < 0) {
 852                        *copied -= sk_msg_free_nocharge(sk, &msg_redir);
 853                        msg->sg.size = 0;
 854                }
 855                if (msg->sg.size == 0)
 856                        tls_free_open_rec(sk);
 857                break;
 858        case __SK_DROP:
 859        default:
 860                sk_msg_free_partial(sk, msg, send);
 861                if (msg->apply_bytes < send)
 862                        msg->apply_bytes = 0;
 863                else
 864                        msg->apply_bytes -= send;
 865                if (msg->sg.size == 0)
 866                        tls_free_open_rec(sk);
 867                *copied -= (send + delta);
 868                err = -EACCES;
 869        }
 870
 871        if (likely(!err)) {
 872                bool reset_eval = !ctx->open_rec;
 873
 874                rec = ctx->open_rec;
 875                if (rec) {
 876                        msg = &rec->msg_plaintext;
 877                        if (!msg->apply_bytes)
 878                                reset_eval = true;
 879                }
 880                if (reset_eval) {
 881                        psock->eval = __SK_NONE;
 882                        if (psock->sk_redir) {
 883                                sock_put(psock->sk_redir);
 884                                psock->sk_redir = NULL;
 885                        }
 886                }
 887                if (rec)
 888                        goto more_data;
 889        }
 890 out_err:
 891        sk_psock_put(sk, psock);
 892        return err;
 893}
 894
 895static int tls_sw_push_pending_record(struct sock *sk, int flags)
 896{
 897        struct tls_context *tls_ctx = tls_get_ctx(sk);
 898        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 899        struct tls_rec *rec = ctx->open_rec;
 900        struct sk_msg *msg_pl;
 901        size_t copied;
 902
 903        if (!rec)
 904                return 0;
 905
 906        msg_pl = &rec->msg_plaintext;
 907        copied = msg_pl->sg.size;
 908        if (!copied)
 909                return 0;
 910
 911        return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
 912                                   &copied, flags);
 913}
 914
 915int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
 916{
 917        long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
 918        struct tls_context *tls_ctx = tls_get_ctx(sk);
 919        struct tls_prot_info *prot = &tls_ctx->prot_info;
 920        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 921        bool async_capable = ctx->async_capable;
 922        unsigned char record_type = TLS_RECORD_TYPE_DATA;
 923        bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
 924        bool eor = !(msg->msg_flags & MSG_MORE);
 925        size_t try_to_copy;
 926        ssize_t copied = 0;
 927        struct sk_msg *msg_pl, *msg_en;
 928        struct tls_rec *rec;
 929        int required_size;
 930        int num_async = 0;
 931        bool full_record;
 932        int record_room;
 933        int num_zc = 0;
 934        int orig_size;
 935        int ret = 0;
 936        int pending;
 937
 938        if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
 939                return -EOPNOTSUPP;
 940
 941        mutex_lock(&tls_ctx->tx_lock);
 942        lock_sock(sk);
 943
 944        if (unlikely(msg->msg_controllen)) {
 945                ret = tls_proccess_cmsg(sk, msg, &record_type);
 946                if (ret) {
 947                        if (ret == -EINPROGRESS)
 948                                num_async++;
 949                        else if (ret != -EAGAIN)
 950                                goto send_end;
 951                }
 952        }
 953
 954        while (msg_data_left(msg)) {
 955                if (sk->sk_err) {
 956                        ret = -sk->sk_err;
 957                        goto send_end;
 958                }
 959
 960                if (ctx->open_rec)
 961                        rec = ctx->open_rec;
 962                else
 963                        rec = ctx->open_rec = tls_get_rec(sk);
 964                if (!rec) {
 965                        ret = -ENOMEM;
 966                        goto send_end;
 967                }
 968
 969                msg_pl = &rec->msg_plaintext;
 970                msg_en = &rec->msg_encrypted;
 971
 972                orig_size = msg_pl->sg.size;
 973                full_record = false;
 974                try_to_copy = msg_data_left(msg);
 975                record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
 976                if (try_to_copy >= record_room) {
 977                        try_to_copy = record_room;
 978                        full_record = true;
 979                }
 980
 981                required_size = msg_pl->sg.size + try_to_copy +
 982                                prot->overhead_size;
 983
 984                if (!sk_stream_memory_free(sk))
 985                        goto wait_for_sndbuf;
 986
 987alloc_encrypted:
 988                ret = tls_alloc_encrypted_msg(sk, required_size);
 989                if (ret) {
 990                        if (ret != -ENOSPC)
 991                                goto wait_for_memory;
 992
 993                        /* Adjust try_to_copy according to the amount that was
 994                         * actually allocated. The difference is due
 995                         * to max sg elements limit
 996                         */
 997                        try_to_copy -= required_size - msg_en->sg.size;
 998                        full_record = true;
 999                }
1000
1001                if (!is_kvec && (full_record || eor) && !async_capable) {
1002                        u32 first = msg_pl->sg.end;
1003
1004                        ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1005                                                        msg_pl, try_to_copy);
1006                        if (ret)
1007                                goto fallback_to_reg_send;
1008
1009                        num_zc++;
1010                        copied += try_to_copy;
1011
1012                        sk_msg_sg_copy_set(msg_pl, first);
1013                        ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1014                                                  record_type, &copied,
1015                                                  msg->msg_flags);
1016                        if (ret) {
1017                                if (ret == -EINPROGRESS)
1018                                        num_async++;
1019                                else if (ret == -ENOMEM)
1020                                        goto wait_for_memory;
1021                                else if (ctx->open_rec && ret == -ENOSPC)
1022                                        goto rollback_iter;
1023                                else if (ret != -EAGAIN)
1024                                        goto send_end;
1025                        }
1026                        continue;
1027rollback_iter:
1028                        copied -= try_to_copy;
1029                        sk_msg_sg_copy_clear(msg_pl, first);
1030                        iov_iter_revert(&msg->msg_iter,
1031                                        msg_pl->sg.size - orig_size);
1032fallback_to_reg_send:
1033                        sk_msg_trim(sk, msg_pl, orig_size);
1034                }
1035
1036                required_size = msg_pl->sg.size + try_to_copy;
1037
1038                ret = tls_clone_plaintext_msg(sk, required_size);
1039                if (ret) {
1040                        if (ret != -ENOSPC)
1041                                goto send_end;
1042
1043                        /* Adjust try_to_copy according to the amount that was
1044                         * actually allocated. The difference is due
1045                         * to max sg elements limit
1046                         */
1047                        try_to_copy -= required_size - msg_pl->sg.size;
1048                        full_record = true;
1049                        sk_msg_trim(sk, msg_en,
1050                                    msg_pl->sg.size + prot->overhead_size);
1051                }
1052
1053                if (try_to_copy) {
1054                        ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1055                                                       msg_pl, try_to_copy);
1056                        if (ret < 0)
1057                                goto trim_sgl;
1058                }
1059
1060                /* Open records defined only if successfully copied, otherwise
1061                 * we would trim the sg but not reset the open record frags.
1062                 */
1063                tls_ctx->pending_open_record_frags = true;
1064                copied += try_to_copy;
1065                if (full_record || eor) {
1066                        ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1067                                                  record_type, &copied,
1068                                                  msg->msg_flags);
1069                        if (ret) {
1070                                if (ret == -EINPROGRESS)
1071                                        num_async++;
1072                                else if (ret == -ENOMEM)
1073                                        goto wait_for_memory;
1074                                else if (ret != -EAGAIN) {
1075                                        if (ret == -ENOSPC)
1076                                                ret = 0;
1077                                        goto send_end;
1078                                }
1079                        }
1080                }
1081
1082                continue;
1083
1084wait_for_sndbuf:
1085                set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1086wait_for_memory:
1087                ret = sk_stream_wait_memory(sk, &timeo);
1088                if (ret) {
1089trim_sgl:
1090                        if (ctx->open_rec)
1091                                tls_trim_both_msgs(sk, orig_size);
1092                        goto send_end;
1093                }
1094
1095                if (ctx->open_rec && msg_en->sg.size < required_size)
1096                        goto alloc_encrypted;
1097        }
1098
1099        if (!num_async) {
1100                goto send_end;
1101        } else if (num_zc) {
1102                /* Wait for pending encryptions to get completed */
1103                spin_lock_bh(&ctx->encrypt_compl_lock);
1104                ctx->async_notify = true;
1105
1106                pending = atomic_read(&ctx->encrypt_pending);
1107                spin_unlock_bh(&ctx->encrypt_compl_lock);
1108                if (pending)
1109                        crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1110                else
1111                        reinit_completion(&ctx->async_wait.completion);
1112
1113                /* There can be no concurrent accesses, since we have no
1114                 * pending encrypt operations
1115                 */
1116                WRITE_ONCE(ctx->async_notify, false);
1117
1118                if (ctx->async_wait.err) {
1119                        ret = ctx->async_wait.err;
1120                        copied = 0;
1121                }
1122        }
1123
1124        /* Transmit if any encryptions have completed */
1125        if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1126                cancel_delayed_work(&ctx->tx_work.work);
1127                tls_tx_records(sk, msg->msg_flags);
1128        }
1129
1130send_end:
1131        ret = sk_stream_error(sk, msg->msg_flags, ret);
1132
1133        release_sock(sk);
1134        mutex_unlock(&tls_ctx->tx_lock);
1135        return copied > 0 ? copied : ret;
1136}
1137
1138static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1139                              int offset, size_t size, int flags)
1140{
1141        long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1142        struct tls_context *tls_ctx = tls_get_ctx(sk);
1143        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1144        struct tls_prot_info *prot = &tls_ctx->prot_info;
1145        unsigned char record_type = TLS_RECORD_TYPE_DATA;
1146        struct sk_msg *msg_pl;
1147        struct tls_rec *rec;
1148        int num_async = 0;
1149        ssize_t copied = 0;
1150        bool full_record;
1151        int record_room;
1152        int ret = 0;
1153        bool eor;
1154
1155        eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1156        sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1157
1158        /* Call the sk_stream functions to manage the sndbuf mem. */
1159        while (size > 0) {
1160                size_t copy, required_size;
1161
1162                if (sk->sk_err) {
1163                        ret = -sk->sk_err;
1164                        goto sendpage_end;
1165                }
1166
1167                if (ctx->open_rec)
1168                        rec = ctx->open_rec;
1169                else
1170                        rec = ctx->open_rec = tls_get_rec(sk);
1171                if (!rec) {
1172                        ret = -ENOMEM;
1173                        goto sendpage_end;
1174                }
1175
1176                msg_pl = &rec->msg_plaintext;
1177
1178                full_record = false;
1179                record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1180                copy = size;
1181                if (copy >= record_room) {
1182                        copy = record_room;
1183                        full_record = true;
1184                }
1185
1186                required_size = msg_pl->sg.size + copy + prot->overhead_size;
1187
1188                if (!sk_stream_memory_free(sk))
1189                        goto wait_for_sndbuf;
1190alloc_payload:
1191                ret = tls_alloc_encrypted_msg(sk, required_size);
1192                if (ret) {
1193                        if (ret != -ENOSPC)
1194                                goto wait_for_memory;
1195
1196                        /* Adjust copy according to the amount that was
1197                         * actually allocated. The difference is due
1198                         * to max sg elements limit
1199                         */
1200                        copy -= required_size - msg_pl->sg.size;
1201                        full_record = true;
1202                }
1203
1204                sk_msg_page_add(msg_pl, page, copy, offset);
1205                sk_mem_charge(sk, copy);
1206
1207                offset += copy;
1208                size -= copy;
1209                copied += copy;
1210
1211                tls_ctx->pending_open_record_frags = true;
1212                if (full_record || eor || sk_msg_full(msg_pl)) {
1213                        ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1214                                                  record_type, &copied, flags);
1215                        if (ret) {
1216                                if (ret == -EINPROGRESS)
1217                                        num_async++;
1218                                else if (ret == -ENOMEM)
1219                                        goto wait_for_memory;
1220                                else if (ret != -EAGAIN) {
1221                                        if (ret == -ENOSPC)
1222                                                ret = 0;
1223                                        goto sendpage_end;
1224                                }
1225                        }
1226                }
1227                continue;
1228wait_for_sndbuf:
1229                set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1230wait_for_memory:
1231                ret = sk_stream_wait_memory(sk, &timeo);
1232                if (ret) {
1233                        if (ctx->open_rec)
1234                                tls_trim_both_msgs(sk, msg_pl->sg.size);
1235                        goto sendpage_end;
1236                }
1237
1238                if (ctx->open_rec)
1239                        goto alloc_payload;
1240        }
1241
1242        if (num_async) {
1243                /* Transmit if any encryptions have completed */
1244                if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1245                        cancel_delayed_work(&ctx->tx_work.work);
1246                        tls_tx_records(sk, flags);
1247                }
1248        }
1249sendpage_end:
1250        ret = sk_stream_error(sk, flags, ret);
1251        return copied > 0 ? copied : ret;
1252}
1253
1254int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1255                           int offset, size_t size, int flags)
1256{
1257        if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1258                      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1259                      MSG_NO_SHARED_FRAGS))
1260                return -EOPNOTSUPP;
1261
1262        return tls_sw_do_sendpage(sk, page, offset, size, flags);
1263}
1264
1265int tls_sw_sendpage(struct sock *sk, struct page *page,
1266                    int offset, size_t size, int flags)
1267{
1268        struct tls_context *tls_ctx = tls_get_ctx(sk);
1269        int ret;
1270
1271        if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1272                      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1273                return -EOPNOTSUPP;
1274
1275        mutex_lock(&tls_ctx->tx_lock);
1276        lock_sock(sk);
1277        ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1278        release_sock(sk);
1279        mutex_unlock(&tls_ctx->tx_lock);
1280        return ret;
1281}
1282
1283static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1284                                     int flags, long timeo, int *err)
1285{
1286        struct tls_context *tls_ctx = tls_get_ctx(sk);
1287        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1288        struct sk_buff *skb;
1289        DEFINE_WAIT_FUNC(wait, woken_wake_function);
1290
1291        while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1292                if (sk->sk_err) {
1293                        *err = sock_error(sk);
1294                        return NULL;
1295                }
1296
1297                if (sk->sk_shutdown & RCV_SHUTDOWN)
1298                        return NULL;
1299
1300                if (sock_flag(sk, SOCK_DONE))
1301                        return NULL;
1302
1303                if ((flags & MSG_DONTWAIT) || !timeo) {
1304                        *err = -EAGAIN;
1305                        return NULL;
1306                }
1307
1308                add_wait_queue(sk_sleep(sk), &wait);
1309                sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1310                sk_wait_event(sk, &timeo,
1311                              ctx->recv_pkt != skb ||
1312                              !sk_psock_queue_empty(psock),
1313                              &wait);
1314                sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1315                remove_wait_queue(sk_sleep(sk), &wait);
1316
1317                /* Handle signals */
1318                if (signal_pending(current)) {
1319                        *err = sock_intr_errno(timeo);
1320                        return NULL;
1321                }
1322        }
1323
1324        return skb;
1325}
1326
1327static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1328                               int length, int *pages_used,
1329                               unsigned int *size_used,
1330                               struct scatterlist *to,
1331                               int to_max_pages)
1332{
1333        int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1334        struct page *pages[MAX_SKB_FRAGS];
1335        unsigned int size = *size_used;
1336        ssize_t copied, use;
1337        size_t offset;
1338
1339        while (length > 0) {
1340                i = 0;
1341                maxpages = to_max_pages - num_elem;
1342                if (maxpages == 0) {
1343                        rc = -EFAULT;
1344                        goto out;
1345                }
1346                copied = iov_iter_get_pages(from, pages,
1347                                            length,
1348                                            maxpages, &offset);
1349                if (copied <= 0) {
1350                        rc = -EFAULT;
1351                        goto out;
1352                }
1353
1354                iov_iter_advance(from, copied);
1355
1356                length -= copied;
1357                size += copied;
1358                while (copied) {
1359                        use = min_t(int, copied, PAGE_SIZE - offset);
1360
1361                        sg_set_page(&to[num_elem],
1362                                    pages[i], use, offset);
1363                        sg_unmark_end(&to[num_elem]);
1364                        /* We do not uncharge memory from this API */
1365
1366                        offset = 0;
1367                        copied -= use;
1368
1369                        i++;
1370                        num_elem++;
1371                }
1372        }
1373        /* Mark the end in the last sg entry if newly added */
1374        if (num_elem > *pages_used)
1375                sg_mark_end(&to[num_elem - 1]);
1376out:
1377        if (rc)
1378                iov_iter_revert(from, size - *size_used);
1379        *size_used = size;
1380        *pages_used = num_elem;
1381
1382        return rc;
1383}
1384
1385/* This function decrypts the input skb into either out_iov or in out_sg
1386 * or in skb buffers itself. The input parameter 'zc' indicates if
1387 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1388 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1389 * NULL, then the decryption happens inside skb buffers itself, i.e.
1390 * zero-copy gets disabled and 'zc' is updated.
1391 */
1392
1393static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1394                            struct iov_iter *out_iov,
1395                            struct scatterlist *out_sg,
1396                            int *chunk, bool *zc, bool async)
1397{
1398        struct tls_context *tls_ctx = tls_get_ctx(sk);
1399        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1400        struct tls_prot_info *prot = &tls_ctx->prot_info;
1401        struct strp_msg *rxm = strp_msg(skb);
1402        int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1403        struct aead_request *aead_req;
1404        struct sk_buff *unused;
1405        u8 *aad, *iv, *mem = NULL;
1406        struct scatterlist *sgin = NULL;
1407        struct scatterlist *sgout = NULL;
1408        const int data_len = rxm->full_len - prot->overhead_size +
1409                             prot->tail_size;
1410        int iv_offset = 0;
1411
1412        if (*zc && (out_iov || out_sg)) {
1413                if (out_iov)
1414                        n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1415                else
1416                        n_sgout = sg_nents(out_sg);
1417                n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1418                                 rxm->full_len - prot->prepend_size);
1419        } else {
1420                n_sgout = 0;
1421                *zc = false;
1422                n_sgin = skb_cow_data(skb, 0, &unused);
1423        }
1424
1425        if (n_sgin < 1)
1426                return -EBADMSG;
1427
1428        /* Increment to accommodate AAD */
1429        n_sgin = n_sgin + 1;
1430
1431        nsg = n_sgin + n_sgout;
1432
1433        aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1434        mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1435        mem_size = mem_size + prot->aad_size;
1436        mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1437
1438        /* Allocate a single block of memory which contains
1439         * aead_req || sgin[] || sgout[] || aad || iv.
1440         * This order achieves correct alignment for aead_req, sgin, sgout.
1441         */
1442        mem = kmalloc(mem_size, sk->sk_allocation);
1443        if (!mem)
1444                return -ENOMEM;
1445
1446        /* Segment the allocated memory */
1447        aead_req = (struct aead_request *)mem;
1448        sgin = (struct scatterlist *)(mem + aead_size);
1449        sgout = sgin + n_sgin;
1450        aad = (u8 *)(sgout + n_sgout);
1451        iv = aad + prot->aad_size;
1452
1453        /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1454        if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1455                iv[0] = 2;
1456                iv_offset = 1;
1457        }
1458
1459        /* Prepare IV */
1460        err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1461                            iv + iv_offset + prot->salt_size,
1462                            prot->iv_size);
1463        if (err < 0) {
1464                kfree(mem);
1465                return err;
1466        }
1467        if (prot->version == TLS_1_3_VERSION)
1468                memcpy(iv + iv_offset, tls_ctx->rx.iv,
1469                       crypto_aead_ivsize(ctx->aead_recv));
1470        else
1471                memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1472
1473        xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1474
1475        /* Prepare AAD */
1476        tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1477                     prot->tail_size,
1478                     tls_ctx->rx.rec_seq, prot->rec_seq_size,
1479                     ctx->control, prot->version);
1480
1481        /* Prepare sgin */
1482        sg_init_table(sgin, n_sgin);
1483        sg_set_buf(&sgin[0], aad, prot->aad_size);
1484        err = skb_to_sgvec(skb, &sgin[1],
1485                           rxm->offset + prot->prepend_size,
1486                           rxm->full_len - prot->prepend_size);
1487        if (err < 0) {
1488                kfree(mem);
1489                return err;
1490        }
1491
1492        if (n_sgout) {
1493                if (out_iov) {
1494                        sg_init_table(sgout, n_sgout);
1495                        sg_set_buf(&sgout[0], aad, prot->aad_size);
1496
1497                        *chunk = 0;
1498                        err = tls_setup_from_iter(sk, out_iov, data_len,
1499                                                  &pages, chunk, &sgout[1],
1500                                                  (n_sgout - 1));
1501                        if (err < 0)
1502                                goto fallback_to_reg_recv;
1503                } else if (out_sg) {
1504                        memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1505                } else {
1506                        goto fallback_to_reg_recv;
1507                }
1508        } else {
1509fallback_to_reg_recv:
1510                sgout = sgin;
1511                pages = 0;
1512                *chunk = data_len;
1513                *zc = false;
1514        }
1515
1516        /* Prepare and submit AEAD request */
1517        err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1518                                data_len, aead_req, async);
1519        if (err == -EINPROGRESS)
1520                return err;
1521
1522        /* Release the pages in case iov was mapped to pages */
1523        for (; pages > 0; pages--)
1524                put_page(sg_page(&sgout[pages]));
1525
1526        kfree(mem);
1527        return err;
1528}
1529
1530static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1531                              struct iov_iter *dest, int *chunk, bool *zc,
1532                              bool async)
1533{
1534        struct tls_context *tls_ctx = tls_get_ctx(sk);
1535        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1536        struct tls_prot_info *prot = &tls_ctx->prot_info;
1537        struct strp_msg *rxm = strp_msg(skb);
1538        int pad, err = 0;
1539
1540        if (!ctx->decrypted) {
1541                if (tls_ctx->rx_conf == TLS_HW) {
1542                        err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1543                        if (err < 0)
1544                                return err;
1545                }
1546
1547                /* Still not decrypted after tls_device */
1548                if (!ctx->decrypted) {
1549                        err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1550                                               async);
1551                        if (err < 0) {
1552                                if (err == -EINPROGRESS)
1553                                        tls_advance_record_sn(sk, prot,
1554                                                              &tls_ctx->rx);
1555                                else if (err == -EBADMSG)
1556                                        TLS_INC_STATS(sock_net(sk),
1557                                                      LINUX_MIB_TLSDECRYPTERROR);
1558                                return err;
1559                        }
1560                } else {
1561                        *zc = false;
1562                }
1563
1564                pad = padding_length(ctx, prot, skb);
1565                if (pad < 0)
1566                        return pad;
1567
1568                rxm->full_len -= pad;
1569                rxm->offset += prot->prepend_size;
1570                rxm->full_len -= prot->overhead_size;
1571                tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1572                ctx->decrypted = 1;
1573                ctx->saved_data_ready(sk);
1574        } else {
1575                *zc = false;
1576        }
1577
1578        return err;
1579}
1580
1581int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1582                struct scatterlist *sgout)
1583{
1584        bool zc = true;
1585        int chunk;
1586
1587        return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1588}
1589
1590static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1591                               unsigned int len)
1592{
1593        struct tls_context *tls_ctx = tls_get_ctx(sk);
1594        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1595
1596        if (skb) {
1597                struct strp_msg *rxm = strp_msg(skb);
1598
1599                if (len < rxm->full_len) {
1600                        rxm->offset += len;
1601                        rxm->full_len -= len;
1602                        return false;
1603                }
1604                consume_skb(skb);
1605        }
1606
1607        /* Finished with message */
1608        ctx->recv_pkt = NULL;
1609        __strp_unpause(&ctx->strp);
1610
1611        return true;
1612}
1613
1614/* This function traverses the rx_list in tls receive context to copies the
1615 * decrypted records into the buffer provided by caller zero copy is not
1616 * true. Further, the records are removed from the rx_list if it is not a peek
1617 * case and the record has been consumed completely.
1618 */
1619static int process_rx_list(struct tls_sw_context_rx *ctx,
1620                           struct msghdr *msg,
1621                           u8 *control,
1622                           bool *cmsg,
1623                           size_t skip,
1624                           size_t len,
1625                           bool zc,
1626                           bool is_peek)
1627{
1628        struct sk_buff *skb = skb_peek(&ctx->rx_list);
1629        u8 ctrl = *control;
1630        u8 msgc = *cmsg;
1631        struct tls_msg *tlm;
1632        ssize_t copied = 0;
1633
1634        /* Set the record type in 'control' if caller didn't pass it */
1635        if (!ctrl && skb) {
1636                tlm = tls_msg(skb);
1637                ctrl = tlm->control;
1638        }
1639
1640        while (skip && skb) {
1641                struct strp_msg *rxm = strp_msg(skb);
1642                tlm = tls_msg(skb);
1643
1644                /* Cannot process a record of different type */
1645                if (ctrl != tlm->control)
1646                        return 0;
1647
1648                if (skip < rxm->full_len)
1649                        break;
1650
1651                skip = skip - rxm->full_len;
1652                skb = skb_peek_next(skb, &ctx->rx_list);
1653        }
1654
1655        while (len && skb) {
1656                struct sk_buff *next_skb;
1657                struct strp_msg *rxm = strp_msg(skb);
1658                int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1659
1660                tlm = tls_msg(skb);
1661
1662                /* Cannot process a record of different type */
1663                if (ctrl != tlm->control)
1664                        return 0;
1665
1666                /* Set record type if not already done. For a non-data record,
1667                 * do not proceed if record type could not be copied.
1668                 */
1669                if (!msgc) {
1670                        int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1671                                            sizeof(ctrl), &ctrl);
1672                        msgc = true;
1673                        if (ctrl != TLS_RECORD_TYPE_DATA) {
1674                                if (cerr || msg->msg_flags & MSG_CTRUNC)
1675                                        return -EIO;
1676
1677                                *cmsg = msgc;
1678                        }
1679                }
1680
1681                if (!zc || (rxm->full_len - skip) > len) {
1682                        int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1683                                                    msg, chunk);
1684                        if (err < 0)
1685                                return err;
1686                }
1687
1688                len = len - chunk;
1689                copied = copied + chunk;
1690
1691                /* Consume the data from record if it is non-peek case*/
1692                if (!is_peek) {
1693                        rxm->offset = rxm->offset + chunk;
1694                        rxm->full_len = rxm->full_len - chunk;
1695
1696                        /* Return if there is unconsumed data in the record */
1697                        if (rxm->full_len - skip)
1698                                break;
1699                }
1700
1701                /* The remaining skip-bytes must lie in 1st record in rx_list.
1702                 * So from the 2nd record, 'skip' should be 0.
1703                 */
1704                skip = 0;
1705
1706                if (msg)
1707                        msg->msg_flags |= MSG_EOR;
1708
1709                next_skb = skb_peek_next(skb, &ctx->rx_list);
1710
1711                if (!is_peek) {
1712                        skb_unlink(skb, &ctx->rx_list);
1713                        consume_skb(skb);
1714                }
1715
1716                skb = next_skb;
1717        }
1718
1719        *control = ctrl;
1720        return copied;
1721}
1722
1723int tls_sw_recvmsg(struct sock *sk,
1724                   struct msghdr *msg,
1725                   size_t len,
1726                   int nonblock,
1727                   int flags,
1728                   int *addr_len)
1729{
1730        struct tls_context *tls_ctx = tls_get_ctx(sk);
1731        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1732        struct tls_prot_info *prot = &tls_ctx->prot_info;
1733        struct sk_psock *psock;
1734        unsigned char control = 0;
1735        ssize_t decrypted = 0;
1736        struct strp_msg *rxm;
1737        struct tls_msg *tlm;
1738        struct sk_buff *skb;
1739        ssize_t copied = 0;
1740        bool cmsg = false;
1741        int target, err = 0;
1742        long timeo;
1743        bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1744        bool is_peek = flags & MSG_PEEK;
1745        int num_async = 0;
1746        int pending;
1747
1748        flags |= nonblock;
1749
1750        if (unlikely(flags & MSG_ERRQUEUE))
1751                return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1752
1753        psock = sk_psock_get(sk);
1754        lock_sock(sk);
1755
1756        /* Process pending decrypted records. It must be non-zero-copy */
1757        err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1758                              is_peek);
1759        if (err < 0) {
1760                tls_err_abort(sk, err);
1761                goto end;
1762        } else {
1763                copied = err;
1764        }
1765
1766        if (len <= copied)
1767                goto recv_end;
1768
1769        target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1770        len = len - copied;
1771        timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1772
1773        while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1774                bool retain_skb = false;
1775                bool zc = false;
1776                int to_decrypt;
1777                int chunk = 0;
1778                bool async_capable;
1779                bool async = false;
1780
1781                skb = tls_wait_data(sk, psock, flags, timeo, &err);
1782                if (!skb) {
1783                        if (psock) {
1784                                int ret = __tcp_bpf_recvmsg(sk, psock,
1785                                                            msg, len, flags);
1786
1787                                if (ret > 0) {
1788                                        decrypted += ret;
1789                                        len -= ret;
1790                                        continue;
1791                                }
1792                        }
1793                        goto recv_end;
1794                } else {
1795                        tlm = tls_msg(skb);
1796                        if (prot->version == TLS_1_3_VERSION)
1797                                tlm->control = 0;
1798                        else
1799                                tlm->control = ctx->control;
1800                }
1801
1802                rxm = strp_msg(skb);
1803
1804                to_decrypt = rxm->full_len - prot->overhead_size;
1805
1806                if (to_decrypt <= len && !is_kvec && !is_peek &&
1807                    ctx->control == TLS_RECORD_TYPE_DATA &&
1808                    prot->version != TLS_1_3_VERSION)
1809                        zc = true;
1810
1811                /* Do not use async mode if record is non-data */
1812                if (ctx->control == TLS_RECORD_TYPE_DATA)
1813                        async_capable = ctx->async_capable;
1814                else
1815                        async_capable = false;
1816
1817                err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1818                                         &chunk, &zc, async_capable);
1819                if (err < 0 && err != -EINPROGRESS) {
1820                        tls_err_abort(sk, EBADMSG);
1821                        goto recv_end;
1822                }
1823
1824                if (err == -EINPROGRESS) {
1825                        async = true;
1826                        num_async++;
1827                } else if (prot->version == TLS_1_3_VERSION) {
1828                        tlm->control = ctx->control;
1829                }
1830
1831                /* If the type of records being processed is not known yet,
1832                 * set it to record type just dequeued. If it is already known,
1833                 * but does not match the record type just dequeued, go to end.
1834                 * We always get record type here since for tls1.2, record type
1835                 * is known just after record is dequeued from stream parser.
1836                 * For tls1.3, we disable async.
1837                 */
1838
1839                if (!control)
1840                        control = tlm->control;
1841                else if (control != tlm->control)
1842                        goto recv_end;
1843
1844                if (!cmsg) {
1845                        int cerr;
1846
1847                        cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1848                                        sizeof(control), &control);
1849                        cmsg = true;
1850                        if (control != TLS_RECORD_TYPE_DATA) {
1851                                if (cerr || msg->msg_flags & MSG_CTRUNC) {
1852                                        err = -EIO;
1853                                        goto recv_end;
1854                                }
1855                        }
1856                }
1857
1858                if (async)
1859                        goto pick_next_record;
1860
1861                if (!zc) {
1862                        if (rxm->full_len > len) {
1863                                retain_skb = true;
1864                                chunk = len;
1865                        } else {
1866                                chunk = rxm->full_len;
1867                        }
1868
1869                        err = skb_copy_datagram_msg(skb, rxm->offset,
1870                                                    msg, chunk);
1871                        if (err < 0)
1872                                goto recv_end;
1873
1874                        if (!is_peek) {
1875                                rxm->offset = rxm->offset + chunk;
1876                                rxm->full_len = rxm->full_len - chunk;
1877                        }
1878                }
1879
1880pick_next_record:
1881                if (chunk > len)
1882                        chunk = len;
1883
1884                decrypted += chunk;
1885                len -= chunk;
1886
1887                /* For async or peek case, queue the current skb */
1888                if (async || is_peek || retain_skb) {
1889                        skb_queue_tail(&ctx->rx_list, skb);
1890                        skb = NULL;
1891                }
1892
1893                if (tls_sw_advance_skb(sk, skb, chunk)) {
1894                        /* Return full control message to
1895                         * userspace before trying to parse
1896                         * another message type
1897                         */
1898                        msg->msg_flags |= MSG_EOR;
1899                        if (ctx->control != TLS_RECORD_TYPE_DATA)
1900                                goto recv_end;
1901                } else {
1902                        break;
1903                }
1904        }
1905
1906recv_end:
1907        if (num_async) {
1908                /* Wait for all previously submitted records to be decrypted */
1909                spin_lock_bh(&ctx->decrypt_compl_lock);
1910                ctx->async_notify = true;
1911                pending = atomic_read(&ctx->decrypt_pending);
1912                spin_unlock_bh(&ctx->decrypt_compl_lock);
1913                if (pending) {
1914                        err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1915                        if (err) {
1916                                /* one of async decrypt failed */
1917                                tls_err_abort(sk, err);
1918                                copied = 0;
1919                                decrypted = 0;
1920                                goto end;
1921                        }
1922                } else {
1923                        reinit_completion(&ctx->async_wait.completion);
1924                }
1925
1926                /* There can be no concurrent accesses, since we have no
1927                 * pending decrypt operations
1928                 */
1929                WRITE_ONCE(ctx->async_notify, false);
1930
1931                /* Drain records from the rx_list & copy if required */
1932                if (is_peek || is_kvec)
1933                        err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1934                                              decrypted, false, is_peek);
1935                else
1936                        err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1937                                              decrypted, true, is_peek);
1938                if (err < 0) {
1939                        tls_err_abort(sk, err);
1940                        copied = 0;
1941                        goto end;
1942                }
1943        }
1944
1945        copied += decrypted;
1946
1947end:
1948        release_sock(sk);
1949        if (psock)
1950                sk_psock_put(sk, psock);
1951        return copied ? : err;
1952}
1953
1954ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1955                           struct pipe_inode_info *pipe,
1956                           size_t len, unsigned int flags)
1957{
1958        struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1959        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1960        struct strp_msg *rxm = NULL;
1961        struct sock *sk = sock->sk;
1962        struct sk_buff *skb;
1963        ssize_t copied = 0;
1964        int err = 0;
1965        long timeo;
1966        int chunk;
1967        bool zc = false;
1968
1969        lock_sock(sk);
1970
1971        timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1972
1973        skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1974        if (!skb)
1975                goto splice_read_end;
1976
1977        if (!ctx->decrypted) {
1978                err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1979
1980                /* splice does not support reading control messages */
1981                if (ctx->control != TLS_RECORD_TYPE_DATA) {
1982                        err = -EINVAL;
1983                        goto splice_read_end;
1984                }
1985
1986                if (err < 0) {
1987                        tls_err_abort(sk, EBADMSG);
1988                        goto splice_read_end;
1989                }
1990                ctx->decrypted = 1;
1991        }
1992        rxm = strp_msg(skb);
1993
1994        chunk = min_t(unsigned int, rxm->full_len, len);
1995        copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1996        if (copied < 0)
1997                goto splice_read_end;
1998
1999        if (likely(!(flags & MSG_PEEK)))
2000                tls_sw_advance_skb(sk, skb, copied);
2001
2002splice_read_end:
2003        release_sock(sk);
2004        return copied ? : err;
2005}
2006
2007bool tls_sw_stream_read(const struct sock *sk)
2008{
2009        struct tls_context *tls_ctx = tls_get_ctx(sk);
2010        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2011        bool ingress_empty = true;
2012        struct sk_psock *psock;
2013
2014        rcu_read_lock();
2015        psock = sk_psock(sk);
2016        if (psock)
2017                ingress_empty = list_empty(&psock->ingress_msg);
2018        rcu_read_unlock();
2019
2020        return !ingress_empty || ctx->recv_pkt ||
2021                !skb_queue_empty(&ctx->rx_list);
2022}
2023
2024static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2025{
2026        struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2027        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2028        struct tls_prot_info *prot = &tls_ctx->prot_info;
2029        char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2030        struct strp_msg *rxm = strp_msg(skb);
2031        size_t cipher_overhead;
2032        size_t data_len = 0;
2033        int ret;
2034
2035        /* Verify that we have a full TLS header, or wait for more data */
2036        if (rxm->offset + prot->prepend_size > skb->len)
2037                return 0;
2038
2039        /* Sanity-check size of on-stack buffer. */
2040        if (WARN_ON(prot->prepend_size > sizeof(header))) {
2041                ret = -EINVAL;
2042                goto read_failure;
2043        }
2044
2045        /* Linearize header to local buffer */
2046        ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2047
2048        if (ret < 0)
2049                goto read_failure;
2050
2051        ctx->control = header[0];
2052
2053        data_len = ((header[4] & 0xFF) | (header[3] << 8));
2054
2055        cipher_overhead = prot->tag_size;
2056        if (prot->version != TLS_1_3_VERSION)
2057                cipher_overhead += prot->iv_size;
2058
2059        if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2060            prot->tail_size) {
2061                ret = -EMSGSIZE;
2062                goto read_failure;
2063        }
2064        if (data_len < cipher_overhead) {
2065                ret = -EBADMSG;
2066                goto read_failure;
2067        }
2068
2069        /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2070        if (header[1] != TLS_1_2_VERSION_MINOR ||
2071            header[2] != TLS_1_2_VERSION_MAJOR) {
2072                ret = -EINVAL;
2073                goto read_failure;
2074        }
2075
2076        tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2077                                     TCP_SKB_CB(skb)->seq + rxm->offset);
2078        return data_len + TLS_HEADER_SIZE;
2079
2080read_failure:
2081        tls_err_abort(strp->sk, ret);
2082
2083        return ret;
2084}
2085
2086static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2087{
2088        struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2089        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2090
2091        ctx->decrypted = 0;
2092
2093        ctx->recv_pkt = skb;
2094        strp_pause(strp);
2095
2096        ctx->saved_data_ready(strp->sk);
2097}
2098
2099static void tls_data_ready(struct sock *sk)
2100{
2101        struct tls_context *tls_ctx = tls_get_ctx(sk);
2102        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2103        struct sk_psock *psock;
2104
2105        strp_data_ready(&ctx->strp);
2106
2107        psock = sk_psock_get(sk);
2108        if (psock) {
2109                if (!list_empty(&psock->ingress_msg))
2110                        ctx->saved_data_ready(sk);
2111                sk_psock_put(sk, psock);
2112        }
2113}
2114
2115void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2116{
2117        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2118
2119        set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2120        set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2121        cancel_delayed_work_sync(&ctx->tx_work.work);
2122}
2123
2124void tls_sw_release_resources_tx(struct sock *sk)
2125{
2126        struct tls_context *tls_ctx = tls_get_ctx(sk);
2127        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2128        struct tls_rec *rec, *tmp;
2129
2130        /* Wait for any pending async encryptions to complete */
2131        smp_store_mb(ctx->async_notify, true);
2132        if (atomic_read(&ctx->encrypt_pending))
2133                crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2134
2135        tls_tx_records(sk, -1);
2136
2137        /* Free up un-sent records in tx_list. First, free
2138         * the partially sent record if any at head of tx_list.
2139         */
2140        if (tls_ctx->partially_sent_record) {
2141                tls_free_partial_record(sk, tls_ctx);
2142                rec = list_first_entry(&ctx->tx_list,
2143                                       struct tls_rec, list);
2144                list_del(&rec->list);
2145                sk_msg_free(sk, &rec->msg_plaintext);
2146                kfree(rec);
2147        }
2148
2149        list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2150                list_del(&rec->list);
2151                sk_msg_free(sk, &rec->msg_encrypted);
2152                sk_msg_free(sk, &rec->msg_plaintext);
2153                kfree(rec);
2154        }
2155
2156        crypto_free_aead(ctx->aead_send);
2157        tls_free_open_rec(sk);
2158}
2159
2160void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2161{
2162        struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2163
2164        kfree(ctx);
2165}
2166
2167void tls_sw_release_resources_rx(struct sock *sk)
2168{
2169        struct tls_context *tls_ctx = tls_get_ctx(sk);
2170        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2171
2172        kfree(tls_ctx->rx.rec_seq);
2173        kfree(tls_ctx->rx.iv);
2174
2175        if (ctx->aead_recv) {
2176                kfree_skb(ctx->recv_pkt);
2177                ctx->recv_pkt = NULL;
2178                skb_queue_purge(&ctx->rx_list);
2179                crypto_free_aead(ctx->aead_recv);
2180                strp_stop(&ctx->strp);
2181                /* If tls_sw_strparser_arm() was not called (cleanup paths)
2182                 * we still want to strp_stop(), but sk->sk_data_ready was
2183                 * never swapped.
2184                 */
2185                if (ctx->saved_data_ready) {
2186                        write_lock_bh(&sk->sk_callback_lock);
2187                        sk->sk_data_ready = ctx->saved_data_ready;
2188                        write_unlock_bh(&sk->sk_callback_lock);
2189                }
2190        }
2191}
2192
2193void tls_sw_strparser_done(struct tls_context *tls_ctx)
2194{
2195        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2196
2197        strp_done(&ctx->strp);
2198}
2199
2200void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2201{
2202        struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2203
2204        kfree(ctx);
2205}
2206
2207void tls_sw_free_resources_rx(struct sock *sk)
2208{
2209        struct tls_context *tls_ctx = tls_get_ctx(sk);
2210
2211        tls_sw_release_resources_rx(sk);
2212        tls_sw_free_ctx_rx(tls_ctx);
2213}
2214
2215/* The work handler to transmitt the encrypted records in tx_list */
2216static void tx_work_handler(struct work_struct *work)
2217{
2218        struct delayed_work *delayed_work = to_delayed_work(work);
2219        struct tx_work *tx_work = container_of(delayed_work,
2220                                               struct tx_work, work);
2221        struct sock *sk = tx_work->sk;
2222        struct tls_context *tls_ctx = tls_get_ctx(sk);
2223        struct tls_sw_context_tx *ctx;
2224
2225        if (unlikely(!tls_ctx))
2226                return;
2227
2228        ctx = tls_sw_ctx_tx(tls_ctx);
2229        if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2230                return;
2231
2232        if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2233                return;
2234        mutex_lock(&tls_ctx->tx_lock);
2235        lock_sock(sk);
2236        tls_tx_records(sk, -1);
2237        release_sock(sk);
2238        mutex_unlock(&tls_ctx->tx_lock);
2239}
2240
2241void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2242{
2243        struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2244
2245        /* Schedule the transmission if tx list is ready */
2246        if (is_tx_ready(tx_ctx) &&
2247            !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2248                schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2249}
2250
2251void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2252{
2253        struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2254
2255        write_lock_bh(&sk->sk_callback_lock);
2256        rx_ctx->saved_data_ready = sk->sk_data_ready;
2257        sk->sk_data_ready = tls_data_ready;
2258        write_unlock_bh(&sk->sk_callback_lock);
2259
2260        strp_check_rcv(&rx_ctx->strp);
2261}
2262
2263int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2264{
2265        struct tls_context *tls_ctx = tls_get_ctx(sk);
2266        struct tls_prot_info *prot = &tls_ctx->prot_info;
2267        struct tls_crypto_info *crypto_info;
2268        struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2269        struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2270        struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2271        struct tls_sw_context_tx *sw_ctx_tx = NULL;
2272        struct tls_sw_context_rx *sw_ctx_rx = NULL;
2273        struct cipher_context *cctx;
2274        struct crypto_aead **aead;
2275        struct strp_callbacks cb;
2276        u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2277        struct crypto_tfm *tfm;
2278        char *iv, *rec_seq, *key, *salt, *cipher_name;
2279        size_t keysize;
2280        int rc = 0;
2281
2282        if (!ctx) {
2283                rc = -EINVAL;
2284                goto out;
2285        }
2286
2287        if (tx) {
2288                if (!ctx->priv_ctx_tx) {
2289                        sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2290                        if (!sw_ctx_tx) {
2291                                rc = -ENOMEM;
2292                                goto out;
2293                        }
2294                        ctx->priv_ctx_tx = sw_ctx_tx;
2295                } else {
2296                        sw_ctx_tx =
2297                                (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2298                }
2299        } else {
2300                if (!ctx->priv_ctx_rx) {
2301                        sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2302                        if (!sw_ctx_rx) {
2303                                rc = -ENOMEM;
2304                                goto out;
2305                        }
2306                        ctx->priv_ctx_rx = sw_ctx_rx;
2307                } else {
2308                        sw_ctx_rx =
2309                                (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2310                }
2311        }
2312
2313        if (tx) {
2314                crypto_init_wait(&sw_ctx_tx->async_wait);
2315                spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2316                crypto_info = &ctx->crypto_send.info;
2317                cctx = &ctx->tx;
2318                aead = &sw_ctx_tx->aead_send;
2319                INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2320                INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2321                sw_ctx_tx->tx_work.sk = sk;
2322        } else {
2323                crypto_init_wait(&sw_ctx_rx->async_wait);
2324                spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2325                crypto_info = &ctx->crypto_recv.info;
2326                cctx = &ctx->rx;
2327                skb_queue_head_init(&sw_ctx_rx->rx_list);
2328                aead = &sw_ctx_rx->aead_recv;
2329        }
2330
2331        switch (crypto_info->cipher_type) {
2332        case TLS_CIPHER_AES_GCM_128: {
2333                nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2334                tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2335                iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2336                iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2337                rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2338                rec_seq =
2339                 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2340                gcm_128_info =
2341                        (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2342                keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2343                key = gcm_128_info->key;
2344                salt = gcm_128_info->salt;
2345                salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2346                cipher_name = "gcm(aes)";
2347                break;
2348        }
2349        case TLS_CIPHER_AES_GCM_256: {
2350                nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2351                tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2352                iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2353                iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2354                rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2355                rec_seq =
2356                 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2357                gcm_256_info =
2358                        (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2359                keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2360                key = gcm_256_info->key;
2361                salt = gcm_256_info->salt;
2362                salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2363                cipher_name = "gcm(aes)";
2364                break;
2365        }
2366        case TLS_CIPHER_AES_CCM_128: {
2367                nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2368                tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2369                iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2370                iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2371                rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2372                rec_seq =
2373                ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2374                ccm_128_info =
2375                (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2376                keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2377                key = ccm_128_info->key;
2378                salt = ccm_128_info->salt;
2379                salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2380                cipher_name = "ccm(aes)";
2381                break;
2382        }
2383        default:
2384                rc = -EINVAL;
2385                goto free_priv;
2386        }
2387
2388        /* Sanity-check the sizes for stack allocations. */
2389        if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2390            rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2391                rc = -EINVAL;
2392                goto free_priv;
2393        }
2394
2395        if (crypto_info->version == TLS_1_3_VERSION) {
2396                nonce_size = 0;
2397                prot->aad_size = TLS_HEADER_SIZE;
2398                prot->tail_size = 1;
2399        } else {
2400                prot->aad_size = TLS_AAD_SPACE_SIZE;
2401                prot->tail_size = 0;
2402        }
2403
2404        prot->version = crypto_info->version;
2405        prot->cipher_type = crypto_info->cipher_type;
2406        prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2407        prot->tag_size = tag_size;
2408        prot->overhead_size = prot->prepend_size +
2409                              prot->tag_size + prot->tail_size;
2410        prot->iv_size = iv_size;
2411        prot->salt_size = salt_size;
2412        cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2413        if (!cctx->iv) {
2414                rc = -ENOMEM;
2415                goto free_priv;
2416        }
2417        /* Note: 128 & 256 bit salt are the same size */
2418        prot->rec_seq_size = rec_seq_size;
2419        memcpy(cctx->iv, salt, salt_size);
2420        memcpy(cctx->iv + salt_size, iv, iv_size);
2421        cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2422        if (!cctx->rec_seq) {
2423                rc = -ENOMEM;
2424                goto free_iv;
2425        }
2426
2427        if (!*aead) {
2428                *aead = crypto_alloc_aead(cipher_name, 0, 0);
2429                if (IS_ERR(*aead)) {
2430                        rc = PTR_ERR(*aead);
2431                        *aead = NULL;
2432                        goto free_rec_seq;
2433                }
2434        }
2435
2436        ctx->push_pending_record = tls_sw_push_pending_record;
2437
2438        rc = crypto_aead_setkey(*aead, key, keysize);
2439
2440        if (rc)
2441                goto free_aead;
2442
2443        rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2444        if (rc)
2445                goto free_aead;
2446
2447        if (sw_ctx_rx) {
2448                tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2449
2450                if (crypto_info->version == TLS_1_3_VERSION)
2451                        sw_ctx_rx->async_capable = 0;
2452                else
2453                        sw_ctx_rx->async_capable =
2454                                !!(tfm->__crt_alg->cra_flags &
2455                                   CRYPTO_ALG_ASYNC);
2456
2457                /* Set up strparser */
2458                memset(&cb, 0, sizeof(cb));
2459                cb.rcv_msg = tls_queue;
2460                cb.parse_msg = tls_read_size;
2461
2462                strp_init(&sw_ctx_rx->strp, sk, &cb);
2463        }
2464
2465        goto out;
2466
2467free_aead:
2468        crypto_free_aead(*aead);
2469        *aead = NULL;
2470free_rec_seq:
2471        kfree(cctx->rec_seq);
2472        cctx->rec_seq = NULL;
2473free_iv:
2474        kfree(cctx->iv);
2475        cctx->iv = NULL;
2476free_priv:
2477        if (tx) {
2478                kfree(ctx->priv_ctx_tx);
2479                ctx->priv_ctx_tx = NULL;
2480        } else {
2481                kfree(ctx->priv_ctx_rx);
2482                ctx->priv_ctx_rx = NULL;
2483        }
2484out:
2485        return rc;
2486}
2487