linux/net/wireless/util.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017       Intel Deutschland GmbH
   8 * Copyright (C) 2018-2019 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29                            u32 basic_rates, int bitrate)
  30{
  31        struct ieee80211_rate *result = &sband->bitrates[0];
  32        int i;
  33
  34        for (i = 0; i < sband->n_bitrates; i++) {
  35                if (!(basic_rates & BIT(i)))
  36                        continue;
  37                if (sband->bitrates[i].bitrate > bitrate)
  38                        continue;
  39                result = &sband->bitrates[i];
  40        }
  41
  42        return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  47                              enum nl80211_bss_scan_width scan_width)
  48{
  49        struct ieee80211_rate *bitrates;
  50        u32 mandatory_rates = 0;
  51        enum ieee80211_rate_flags mandatory_flag;
  52        int i;
  53
  54        if (WARN_ON(!sband))
  55                return 1;
  56
  57        if (sband->band == NL80211_BAND_2GHZ) {
  58                if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  59                    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  60                        mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  61                else
  62                        mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  63        } else {
  64                mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  65        }
  66
  67        bitrates = sband->bitrates;
  68        for (i = 0; i < sband->n_bitrates; i++)
  69                if (bitrates[i].flags & mandatory_flag)
  70                        mandatory_rates |= BIT(i);
  71        return mandatory_rates;
  72}
  73EXPORT_SYMBOL(ieee80211_mandatory_rates);
  74
  75int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
  76{
  77        /* see 802.11 17.3.8.3.2 and Annex J
  78         * there are overlapping channel numbers in 5GHz and 2GHz bands */
  79        if (chan <= 0)
  80                return 0; /* not supported */
  81        switch (band) {
  82        case NL80211_BAND_2GHZ:
  83                if (chan == 14)
  84                        return 2484;
  85                else if (chan < 14)
  86                        return 2407 + chan * 5;
  87                break;
  88        case NL80211_BAND_5GHZ:
  89                if (chan >= 182 && chan <= 196)
  90                        return 4000 + chan * 5;
  91                else
  92                        return 5000 + chan * 5;
  93                break;
  94        case NL80211_BAND_6GHZ:
  95                /* see 802.11ax D4.1 27.3.22.2 */
  96                if (chan <= 253)
  97                        return 5940 + chan * 5;
  98                break;
  99        case NL80211_BAND_60GHZ:
 100                if (chan < 7)
 101                        return 56160 + chan * 2160;
 102                break;
 103        default:
 104                ;
 105        }
 106        return 0; /* not supported */
 107}
 108EXPORT_SYMBOL(ieee80211_channel_to_frequency);
 109
 110int ieee80211_frequency_to_channel(int freq)
 111{
 112        /* see 802.11 17.3.8.3.2 and Annex J */
 113        if (freq == 2484)
 114                return 14;
 115        else if (freq < 2484)
 116                return (freq - 2407) / 5;
 117        else if (freq >= 4910 && freq <= 4980)
 118                return (freq - 4000) / 5;
 119        else if (freq < 5945)
 120                return (freq - 5000) / 5;
 121        else if (freq <= 45000) /* DMG band lower limit */
 122                /* see 802.11ax D4.1 27.3.22.2 */
 123                return (freq - 5940) / 5;
 124        else if (freq >= 58320 && freq <= 70200)
 125                return (freq - 56160) / 2160;
 126        else
 127                return 0;
 128}
 129EXPORT_SYMBOL(ieee80211_frequency_to_channel);
 130
 131struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
 132{
 133        enum nl80211_band band;
 134        struct ieee80211_supported_band *sband;
 135        int i;
 136
 137        for (band = 0; band < NUM_NL80211_BANDS; band++) {
 138                sband = wiphy->bands[band];
 139
 140                if (!sband)
 141                        continue;
 142
 143                for (i = 0; i < sband->n_channels; i++) {
 144                        if (sband->channels[i].center_freq == freq)
 145                                return &sband->channels[i];
 146                }
 147        }
 148
 149        return NULL;
 150}
 151EXPORT_SYMBOL(ieee80211_get_channel);
 152
 153static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 154{
 155        int i, want;
 156
 157        switch (sband->band) {
 158        case NL80211_BAND_5GHZ:
 159        case NL80211_BAND_6GHZ:
 160                want = 3;
 161                for (i = 0; i < sband->n_bitrates; i++) {
 162                        if (sband->bitrates[i].bitrate == 60 ||
 163                            sband->bitrates[i].bitrate == 120 ||
 164                            sband->bitrates[i].bitrate == 240) {
 165                                sband->bitrates[i].flags |=
 166                                        IEEE80211_RATE_MANDATORY_A;
 167                                want--;
 168                        }
 169                }
 170                WARN_ON(want);
 171                break;
 172        case NL80211_BAND_2GHZ:
 173                want = 7;
 174                for (i = 0; i < sband->n_bitrates; i++) {
 175                        switch (sband->bitrates[i].bitrate) {
 176                        case 10:
 177                        case 20:
 178                        case 55:
 179                        case 110:
 180                                sband->bitrates[i].flags |=
 181                                        IEEE80211_RATE_MANDATORY_B |
 182                                        IEEE80211_RATE_MANDATORY_G;
 183                                want--;
 184                                break;
 185                        case 60:
 186                        case 120:
 187                        case 240:
 188                                sband->bitrates[i].flags |=
 189                                        IEEE80211_RATE_MANDATORY_G;
 190                                want--;
 191                                /* fall through */
 192                        default:
 193                                sband->bitrates[i].flags |=
 194                                        IEEE80211_RATE_ERP_G;
 195                                break;
 196                        }
 197                }
 198                WARN_ON(want != 0 && want != 3);
 199                break;
 200        case NL80211_BAND_60GHZ:
 201                /* check for mandatory HT MCS 1..4 */
 202                WARN_ON(!sband->ht_cap.ht_supported);
 203                WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 204                break;
 205        case NUM_NL80211_BANDS:
 206        default:
 207                WARN_ON(1);
 208                break;
 209        }
 210}
 211
 212void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 213{
 214        enum nl80211_band band;
 215
 216        for (band = 0; band < NUM_NL80211_BANDS; band++)
 217                if (wiphy->bands[band])
 218                        set_mandatory_flags_band(wiphy->bands[band]);
 219}
 220
 221bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 222{
 223        int i;
 224        for (i = 0; i < wiphy->n_cipher_suites; i++)
 225                if (cipher == wiphy->cipher_suites[i])
 226                        return true;
 227        return false;
 228}
 229
 230int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 231                                   struct key_params *params, int key_idx,
 232                                   bool pairwise, const u8 *mac_addr)
 233{
 234        int max_key_idx = 5;
 235
 236        if (wiphy_ext_feature_isset(&rdev->wiphy,
 237                                    NL80211_EXT_FEATURE_BEACON_PROTECTION))
 238                max_key_idx = 7;
 239        if (key_idx < 0 || key_idx > max_key_idx)
 240                return -EINVAL;
 241
 242        if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 243                return -EINVAL;
 244
 245        if (pairwise && !mac_addr)
 246                return -EINVAL;
 247
 248        switch (params->cipher) {
 249        case WLAN_CIPHER_SUITE_TKIP:
 250                /* Extended Key ID can only be used with CCMP/GCMP ciphers */
 251                if ((pairwise && key_idx) ||
 252                    params->mode != NL80211_KEY_RX_TX)
 253                        return -EINVAL;
 254                break;
 255        case WLAN_CIPHER_SUITE_CCMP:
 256        case WLAN_CIPHER_SUITE_CCMP_256:
 257        case WLAN_CIPHER_SUITE_GCMP:
 258        case WLAN_CIPHER_SUITE_GCMP_256:
 259                /* IEEE802.11-2016 allows only 0 and - when supporting
 260                 * Extended Key ID - 1 as index for pairwise keys.
 261                 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 262                 * the driver supports Extended Key ID.
 263                 * @NL80211_KEY_SET_TX can't be set when installing and
 264                 * validating a key.
 265                 */
 266                if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 267                    params->mode == NL80211_KEY_SET_TX)
 268                        return -EINVAL;
 269                if (wiphy_ext_feature_isset(&rdev->wiphy,
 270                                            NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 271                        if (pairwise && (key_idx < 0 || key_idx > 1))
 272                                return -EINVAL;
 273                } else if (pairwise && key_idx) {
 274                        return -EINVAL;
 275                }
 276                break;
 277        case WLAN_CIPHER_SUITE_AES_CMAC:
 278        case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 279        case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 280        case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 281                /* Disallow BIP (group-only) cipher as pairwise cipher */
 282                if (pairwise)
 283                        return -EINVAL;
 284                if (key_idx < 4)
 285                        return -EINVAL;
 286                break;
 287        case WLAN_CIPHER_SUITE_WEP40:
 288        case WLAN_CIPHER_SUITE_WEP104:
 289                if (key_idx > 3)
 290                        return -EINVAL;
 291        default:
 292                break;
 293        }
 294
 295        switch (params->cipher) {
 296        case WLAN_CIPHER_SUITE_WEP40:
 297                if (params->key_len != WLAN_KEY_LEN_WEP40)
 298                        return -EINVAL;
 299                break;
 300        case WLAN_CIPHER_SUITE_TKIP:
 301                if (params->key_len != WLAN_KEY_LEN_TKIP)
 302                        return -EINVAL;
 303                break;
 304        case WLAN_CIPHER_SUITE_CCMP:
 305                if (params->key_len != WLAN_KEY_LEN_CCMP)
 306                        return -EINVAL;
 307                break;
 308        case WLAN_CIPHER_SUITE_CCMP_256:
 309                if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 310                        return -EINVAL;
 311                break;
 312        case WLAN_CIPHER_SUITE_GCMP:
 313                if (params->key_len != WLAN_KEY_LEN_GCMP)
 314                        return -EINVAL;
 315                break;
 316        case WLAN_CIPHER_SUITE_GCMP_256:
 317                if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 318                        return -EINVAL;
 319                break;
 320        case WLAN_CIPHER_SUITE_WEP104:
 321                if (params->key_len != WLAN_KEY_LEN_WEP104)
 322                        return -EINVAL;
 323                break;
 324        case WLAN_CIPHER_SUITE_AES_CMAC:
 325                if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 326                        return -EINVAL;
 327                break;
 328        case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 329                if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 330                        return -EINVAL;
 331                break;
 332        case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 333                if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 334                        return -EINVAL;
 335                break;
 336        case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 337                if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 338                        return -EINVAL;
 339                break;
 340        default:
 341                /*
 342                 * We don't know anything about this algorithm,
 343                 * allow using it -- but the driver must check
 344                 * all parameters! We still check below whether
 345                 * or not the driver supports this algorithm,
 346                 * of course.
 347                 */
 348                break;
 349        }
 350
 351        if (params->seq) {
 352                switch (params->cipher) {
 353                case WLAN_CIPHER_SUITE_WEP40:
 354                case WLAN_CIPHER_SUITE_WEP104:
 355                        /* These ciphers do not use key sequence */
 356                        return -EINVAL;
 357                case WLAN_CIPHER_SUITE_TKIP:
 358                case WLAN_CIPHER_SUITE_CCMP:
 359                case WLAN_CIPHER_SUITE_CCMP_256:
 360                case WLAN_CIPHER_SUITE_GCMP:
 361                case WLAN_CIPHER_SUITE_GCMP_256:
 362                case WLAN_CIPHER_SUITE_AES_CMAC:
 363                case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 364                case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 365                case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 366                        if (params->seq_len != 6)
 367                                return -EINVAL;
 368                        break;
 369                }
 370        }
 371
 372        if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 373                return -EINVAL;
 374
 375        return 0;
 376}
 377
 378unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 379{
 380        unsigned int hdrlen = 24;
 381
 382        if (ieee80211_is_data(fc)) {
 383                if (ieee80211_has_a4(fc))
 384                        hdrlen = 30;
 385                if (ieee80211_is_data_qos(fc)) {
 386                        hdrlen += IEEE80211_QOS_CTL_LEN;
 387                        if (ieee80211_has_order(fc))
 388                                hdrlen += IEEE80211_HT_CTL_LEN;
 389                }
 390                goto out;
 391        }
 392
 393        if (ieee80211_is_mgmt(fc)) {
 394                if (ieee80211_has_order(fc))
 395                        hdrlen += IEEE80211_HT_CTL_LEN;
 396                goto out;
 397        }
 398
 399        if (ieee80211_is_ctl(fc)) {
 400                /*
 401                 * ACK and CTS are 10 bytes, all others 16. To see how
 402                 * to get this condition consider
 403                 *   subtype mask:   0b0000000011110000 (0x00F0)
 404                 *   ACK subtype:    0b0000000011010000 (0x00D0)
 405                 *   CTS subtype:    0b0000000011000000 (0x00C0)
 406                 *   bits that matter:         ^^^      (0x00E0)
 407                 *   value of those: 0b0000000011000000 (0x00C0)
 408                 */
 409                if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 410                        hdrlen = 10;
 411                else
 412                        hdrlen = 16;
 413        }
 414out:
 415        return hdrlen;
 416}
 417EXPORT_SYMBOL(ieee80211_hdrlen);
 418
 419unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 420{
 421        const struct ieee80211_hdr *hdr =
 422                        (const struct ieee80211_hdr *)skb->data;
 423        unsigned int hdrlen;
 424
 425        if (unlikely(skb->len < 10))
 426                return 0;
 427        hdrlen = ieee80211_hdrlen(hdr->frame_control);
 428        if (unlikely(hdrlen > skb->len))
 429                return 0;
 430        return hdrlen;
 431}
 432EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 433
 434static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 435{
 436        int ae = flags & MESH_FLAGS_AE;
 437        /* 802.11-2012, 8.2.4.7.3 */
 438        switch (ae) {
 439        default:
 440        case 0:
 441                return 6;
 442        case MESH_FLAGS_AE_A4:
 443                return 12;
 444        case MESH_FLAGS_AE_A5_A6:
 445                return 18;
 446        }
 447}
 448
 449unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 450{
 451        return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 452}
 453EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 454
 455int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 456                                  const u8 *addr, enum nl80211_iftype iftype,
 457                                  u8 data_offset)
 458{
 459        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 460        struct {
 461                u8 hdr[ETH_ALEN] __aligned(2);
 462                __be16 proto;
 463        } payload;
 464        struct ethhdr tmp;
 465        u16 hdrlen;
 466        u8 mesh_flags = 0;
 467
 468        if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 469                return -1;
 470
 471        hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 472        if (skb->len < hdrlen + 8)
 473                return -1;
 474
 475        /* convert IEEE 802.11 header + possible LLC headers into Ethernet
 476         * header
 477         * IEEE 802.11 address fields:
 478         * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 479         *   0     0   DA    SA    BSSID n/a
 480         *   0     1   DA    BSSID SA    n/a
 481         *   1     0   BSSID SA    DA    n/a
 482         *   1     1   RA    TA    DA    SA
 483         */
 484        memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 485        memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 486
 487        if (iftype == NL80211_IFTYPE_MESH_POINT)
 488                skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 489
 490        mesh_flags &= MESH_FLAGS_AE;
 491
 492        switch (hdr->frame_control &
 493                cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 494        case cpu_to_le16(IEEE80211_FCTL_TODS):
 495                if (unlikely(iftype != NL80211_IFTYPE_AP &&
 496                             iftype != NL80211_IFTYPE_AP_VLAN &&
 497                             iftype != NL80211_IFTYPE_P2P_GO))
 498                        return -1;
 499                break;
 500        case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 501                if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 502                             iftype != NL80211_IFTYPE_MESH_POINT &&
 503                             iftype != NL80211_IFTYPE_AP_VLAN &&
 504                             iftype != NL80211_IFTYPE_STATION))
 505                        return -1;
 506                if (iftype == NL80211_IFTYPE_MESH_POINT) {
 507                        if (mesh_flags == MESH_FLAGS_AE_A4)
 508                                return -1;
 509                        if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
 510                                skb_copy_bits(skb, hdrlen +
 511                                        offsetof(struct ieee80211s_hdr, eaddr1),
 512                                        tmp.h_dest, 2 * ETH_ALEN);
 513                        }
 514                        hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 515                }
 516                break;
 517        case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 518                if ((iftype != NL80211_IFTYPE_STATION &&
 519                     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 520                     iftype != NL80211_IFTYPE_MESH_POINT) ||
 521                    (is_multicast_ether_addr(tmp.h_dest) &&
 522                     ether_addr_equal(tmp.h_source, addr)))
 523                        return -1;
 524                if (iftype == NL80211_IFTYPE_MESH_POINT) {
 525                        if (mesh_flags == MESH_FLAGS_AE_A5_A6)
 526                                return -1;
 527                        if (mesh_flags == MESH_FLAGS_AE_A4)
 528                                skb_copy_bits(skb, hdrlen +
 529                                        offsetof(struct ieee80211s_hdr, eaddr1),
 530                                        tmp.h_source, ETH_ALEN);
 531                        hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 532                }
 533                break;
 534        case cpu_to_le16(0):
 535                if (iftype != NL80211_IFTYPE_ADHOC &&
 536                    iftype != NL80211_IFTYPE_STATION &&
 537                    iftype != NL80211_IFTYPE_OCB)
 538                                return -1;
 539                break;
 540        }
 541
 542        skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 543        tmp.h_proto = payload.proto;
 544
 545        if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 546                    tmp.h_proto != htons(ETH_P_AARP) &&
 547                    tmp.h_proto != htons(ETH_P_IPX)) ||
 548                   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 549                /* remove RFC1042 or Bridge-Tunnel encapsulation and
 550                 * replace EtherType */
 551                hdrlen += ETH_ALEN + 2;
 552        else
 553                tmp.h_proto = htons(skb->len - hdrlen);
 554
 555        pskb_pull(skb, hdrlen);
 556
 557        if (!ehdr)
 558                ehdr = skb_push(skb, sizeof(struct ethhdr));
 559        memcpy(ehdr, &tmp, sizeof(tmp));
 560
 561        return 0;
 562}
 563EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 564
 565static void
 566__frame_add_frag(struct sk_buff *skb, struct page *page,
 567                 void *ptr, int len, int size)
 568{
 569        struct skb_shared_info *sh = skb_shinfo(skb);
 570        int page_offset;
 571
 572        get_page(page);
 573        page_offset = ptr - page_address(page);
 574        skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 575}
 576
 577static void
 578__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 579                            int offset, int len)
 580{
 581        struct skb_shared_info *sh = skb_shinfo(skb);
 582        const skb_frag_t *frag = &sh->frags[0];
 583        struct page *frag_page;
 584        void *frag_ptr;
 585        int frag_len, frag_size;
 586        int head_size = skb->len - skb->data_len;
 587        int cur_len;
 588
 589        frag_page = virt_to_head_page(skb->head);
 590        frag_ptr = skb->data;
 591        frag_size = head_size;
 592
 593        while (offset >= frag_size) {
 594                offset -= frag_size;
 595                frag_page = skb_frag_page(frag);
 596                frag_ptr = skb_frag_address(frag);
 597                frag_size = skb_frag_size(frag);
 598                frag++;
 599        }
 600
 601        frag_ptr += offset;
 602        frag_len = frag_size - offset;
 603
 604        cur_len = min(len, frag_len);
 605
 606        __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 607        len -= cur_len;
 608
 609        while (len > 0) {
 610                frag_len = skb_frag_size(frag);
 611                cur_len = min(len, frag_len);
 612                __frame_add_frag(frame, skb_frag_page(frag),
 613                                 skb_frag_address(frag), cur_len, frag_len);
 614                len -= cur_len;
 615                frag++;
 616        }
 617}
 618
 619static struct sk_buff *
 620__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 621                       int offset, int len, bool reuse_frag)
 622{
 623        struct sk_buff *frame;
 624        int cur_len = len;
 625
 626        if (skb->len - offset < len)
 627                return NULL;
 628
 629        /*
 630         * When reusing framents, copy some data to the head to simplify
 631         * ethernet header handling and speed up protocol header processing
 632         * in the stack later.
 633         */
 634        if (reuse_frag)
 635                cur_len = min_t(int, len, 32);
 636
 637        /*
 638         * Allocate and reserve two bytes more for payload
 639         * alignment since sizeof(struct ethhdr) is 14.
 640         */
 641        frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 642        if (!frame)
 643                return NULL;
 644
 645        skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 646        skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 647
 648        len -= cur_len;
 649        if (!len)
 650                return frame;
 651
 652        offset += cur_len;
 653        __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 654
 655        return frame;
 656}
 657
 658void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 659                              const u8 *addr, enum nl80211_iftype iftype,
 660                              const unsigned int extra_headroom,
 661                              const u8 *check_da, const u8 *check_sa)
 662{
 663        unsigned int hlen = ALIGN(extra_headroom, 4);
 664        struct sk_buff *frame = NULL;
 665        u16 ethertype;
 666        u8 *payload;
 667        int offset = 0, remaining;
 668        struct ethhdr eth;
 669        bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 670        bool reuse_skb = false;
 671        bool last = false;
 672
 673        while (!last) {
 674                unsigned int subframe_len;
 675                int len;
 676                u8 padding;
 677
 678                skb_copy_bits(skb, offset, &eth, sizeof(eth));
 679                len = ntohs(eth.h_proto);
 680                subframe_len = sizeof(struct ethhdr) + len;
 681                padding = (4 - subframe_len) & 0x3;
 682
 683                /* the last MSDU has no padding */
 684                remaining = skb->len - offset;
 685                if (subframe_len > remaining)
 686                        goto purge;
 687
 688                offset += sizeof(struct ethhdr);
 689                last = remaining <= subframe_len + padding;
 690
 691                /* FIXME: should we really accept multicast DA? */
 692                if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 693                     !ether_addr_equal(check_da, eth.h_dest)) ||
 694                    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 695                        offset += len + padding;
 696                        continue;
 697                }
 698
 699                /* reuse skb for the last subframe */
 700                if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 701                        skb_pull(skb, offset);
 702                        frame = skb;
 703                        reuse_skb = true;
 704                } else {
 705                        frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 706                                                       reuse_frag);
 707                        if (!frame)
 708                                goto purge;
 709
 710                        offset += len + padding;
 711                }
 712
 713                skb_reset_network_header(frame);
 714                frame->dev = skb->dev;
 715                frame->priority = skb->priority;
 716
 717                payload = frame->data;
 718                ethertype = (payload[6] << 8) | payload[7];
 719                if (likely((ether_addr_equal(payload, rfc1042_header) &&
 720                            ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 721                           ether_addr_equal(payload, bridge_tunnel_header))) {
 722                        eth.h_proto = htons(ethertype);
 723                        skb_pull(frame, ETH_ALEN + 2);
 724                }
 725
 726                memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 727                __skb_queue_tail(list, frame);
 728        }
 729
 730        if (!reuse_skb)
 731                dev_kfree_skb(skb);
 732
 733        return;
 734
 735 purge:
 736        __skb_queue_purge(list);
 737        dev_kfree_skb(skb);
 738}
 739EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 740
 741/* Given a data frame determine the 802.1p/1d tag to use. */
 742unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 743                                    struct cfg80211_qos_map *qos_map)
 744{
 745        unsigned int dscp;
 746        unsigned char vlan_priority;
 747        unsigned int ret;
 748
 749        /* skb->priority values from 256->263 are magic values to
 750         * directly indicate a specific 802.1d priority.  This is used
 751         * to allow 802.1d priority to be passed directly in from VLAN
 752         * tags, etc.
 753         */
 754        if (skb->priority >= 256 && skb->priority <= 263) {
 755                ret = skb->priority - 256;
 756                goto out;
 757        }
 758
 759        if (skb_vlan_tag_present(skb)) {
 760                vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 761                        >> VLAN_PRIO_SHIFT;
 762                if (vlan_priority > 0) {
 763                        ret = vlan_priority;
 764                        goto out;
 765                }
 766        }
 767
 768        switch (skb->protocol) {
 769        case htons(ETH_P_IP):
 770                dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 771                break;
 772        case htons(ETH_P_IPV6):
 773                dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 774                break;
 775        case htons(ETH_P_MPLS_UC):
 776        case htons(ETH_P_MPLS_MC): {
 777                struct mpls_label mpls_tmp, *mpls;
 778
 779                mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 780                                          sizeof(*mpls), &mpls_tmp);
 781                if (!mpls)
 782                        return 0;
 783
 784                ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 785                        >> MPLS_LS_TC_SHIFT;
 786                goto out;
 787        }
 788        case htons(ETH_P_80221):
 789                /* 802.21 is always network control traffic */
 790                return 7;
 791        default:
 792                return 0;
 793        }
 794
 795        if (qos_map) {
 796                unsigned int i, tmp_dscp = dscp >> 2;
 797
 798                for (i = 0; i < qos_map->num_des; i++) {
 799                        if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 800                                ret = qos_map->dscp_exception[i].up;
 801                                goto out;
 802                        }
 803                }
 804
 805                for (i = 0; i < 8; i++) {
 806                        if (tmp_dscp >= qos_map->up[i].low &&
 807                            tmp_dscp <= qos_map->up[i].high) {
 808                                ret = i;
 809                                goto out;
 810                        }
 811                }
 812        }
 813
 814        ret = dscp >> 5;
 815out:
 816        return array_index_nospec(ret, IEEE80211_NUM_TIDS);
 817}
 818EXPORT_SYMBOL(cfg80211_classify8021d);
 819
 820const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
 821{
 822        const struct cfg80211_bss_ies *ies;
 823
 824        ies = rcu_dereference(bss->ies);
 825        if (!ies)
 826                return NULL;
 827
 828        return cfg80211_find_elem(id, ies->data, ies->len);
 829}
 830EXPORT_SYMBOL(ieee80211_bss_get_elem);
 831
 832void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 833{
 834        struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 835        struct net_device *dev = wdev->netdev;
 836        int i;
 837
 838        if (!wdev->connect_keys)
 839                return;
 840
 841        for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 842                if (!wdev->connect_keys->params[i].cipher)
 843                        continue;
 844                if (rdev_add_key(rdev, dev, i, false, NULL,
 845                                 &wdev->connect_keys->params[i])) {
 846                        netdev_err(dev, "failed to set key %d\n", i);
 847                        continue;
 848                }
 849                if (wdev->connect_keys->def == i &&
 850                    rdev_set_default_key(rdev, dev, i, true, true)) {
 851                        netdev_err(dev, "failed to set defkey %d\n", i);
 852                        continue;
 853                }
 854        }
 855
 856        kzfree(wdev->connect_keys);
 857        wdev->connect_keys = NULL;
 858}
 859
 860void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 861{
 862        struct cfg80211_event *ev;
 863        unsigned long flags;
 864
 865        spin_lock_irqsave(&wdev->event_lock, flags);
 866        while (!list_empty(&wdev->event_list)) {
 867                ev = list_first_entry(&wdev->event_list,
 868                                      struct cfg80211_event, list);
 869                list_del(&ev->list);
 870                spin_unlock_irqrestore(&wdev->event_lock, flags);
 871
 872                wdev_lock(wdev);
 873                switch (ev->type) {
 874                case EVENT_CONNECT_RESULT:
 875                        __cfg80211_connect_result(
 876                                wdev->netdev,
 877                                &ev->cr,
 878                                ev->cr.status == WLAN_STATUS_SUCCESS);
 879                        break;
 880                case EVENT_ROAMED:
 881                        __cfg80211_roamed(wdev, &ev->rm);
 882                        break;
 883                case EVENT_DISCONNECTED:
 884                        __cfg80211_disconnected(wdev->netdev,
 885                                                ev->dc.ie, ev->dc.ie_len,
 886                                                ev->dc.reason,
 887                                                !ev->dc.locally_generated);
 888                        break;
 889                case EVENT_IBSS_JOINED:
 890                        __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 891                                               ev->ij.channel);
 892                        break;
 893                case EVENT_STOPPED:
 894                        __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 895                        break;
 896                case EVENT_PORT_AUTHORIZED:
 897                        __cfg80211_port_authorized(wdev, ev->pa.bssid);
 898                        break;
 899                }
 900                wdev_unlock(wdev);
 901
 902                kfree(ev);
 903
 904                spin_lock_irqsave(&wdev->event_lock, flags);
 905        }
 906        spin_unlock_irqrestore(&wdev->event_lock, flags);
 907}
 908
 909void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 910{
 911        struct wireless_dev *wdev;
 912
 913        ASSERT_RTNL();
 914
 915        list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
 916                cfg80211_process_wdev_events(wdev);
 917}
 918
 919int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 920                          struct net_device *dev, enum nl80211_iftype ntype,
 921                          struct vif_params *params)
 922{
 923        int err;
 924        enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
 925
 926        ASSERT_RTNL();
 927
 928        /* don't support changing VLANs, you just re-create them */
 929        if (otype == NL80211_IFTYPE_AP_VLAN)
 930                return -EOPNOTSUPP;
 931
 932        /* cannot change into P2P device or NAN */
 933        if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
 934            ntype == NL80211_IFTYPE_NAN)
 935                return -EOPNOTSUPP;
 936
 937        if (!rdev->ops->change_virtual_intf ||
 938            !(rdev->wiphy.interface_modes & (1 << ntype)))
 939                return -EOPNOTSUPP;
 940
 941        /* if it's part of a bridge, reject changing type to station/ibss */
 942        if (netif_is_bridge_port(dev) &&
 943            (ntype == NL80211_IFTYPE_ADHOC ||
 944             ntype == NL80211_IFTYPE_STATION ||
 945             ntype == NL80211_IFTYPE_P2P_CLIENT))
 946                return -EBUSY;
 947
 948        if (ntype != otype) {
 949                dev->ieee80211_ptr->use_4addr = false;
 950                dev->ieee80211_ptr->mesh_id_up_len = 0;
 951                wdev_lock(dev->ieee80211_ptr);
 952                rdev_set_qos_map(rdev, dev, NULL);
 953                wdev_unlock(dev->ieee80211_ptr);
 954
 955                switch (otype) {
 956                case NL80211_IFTYPE_AP:
 957                        cfg80211_stop_ap(rdev, dev, true);
 958                        break;
 959                case NL80211_IFTYPE_ADHOC:
 960                        cfg80211_leave_ibss(rdev, dev, false);
 961                        break;
 962                case NL80211_IFTYPE_STATION:
 963                case NL80211_IFTYPE_P2P_CLIENT:
 964                        wdev_lock(dev->ieee80211_ptr);
 965                        cfg80211_disconnect(rdev, dev,
 966                                            WLAN_REASON_DEAUTH_LEAVING, true);
 967                        wdev_unlock(dev->ieee80211_ptr);
 968                        break;
 969                case NL80211_IFTYPE_MESH_POINT:
 970                        /* mesh should be handled? */
 971                        break;
 972                default:
 973                        break;
 974                }
 975
 976                cfg80211_process_rdev_events(rdev);
 977                cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
 978        }
 979
 980        err = rdev_change_virtual_intf(rdev, dev, ntype, params);
 981
 982        WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
 983
 984        if (!err && params && params->use_4addr != -1)
 985                dev->ieee80211_ptr->use_4addr = params->use_4addr;
 986
 987        if (!err) {
 988                dev->priv_flags &= ~IFF_DONT_BRIDGE;
 989                switch (ntype) {
 990                case NL80211_IFTYPE_STATION:
 991                        if (dev->ieee80211_ptr->use_4addr)
 992                                break;
 993                        /* fall through */
 994                case NL80211_IFTYPE_OCB:
 995                case NL80211_IFTYPE_P2P_CLIENT:
 996                case NL80211_IFTYPE_ADHOC:
 997                        dev->priv_flags |= IFF_DONT_BRIDGE;
 998                        break;
 999                case NL80211_IFTYPE_P2P_GO:
1000                case NL80211_IFTYPE_AP:
1001                case NL80211_IFTYPE_AP_VLAN:
1002                case NL80211_IFTYPE_WDS:
1003                case NL80211_IFTYPE_MESH_POINT:
1004                        /* bridging OK */
1005                        break;
1006                case NL80211_IFTYPE_MONITOR:
1007                        /* monitor can't bridge anyway */
1008                        break;
1009                case NL80211_IFTYPE_UNSPECIFIED:
1010                case NUM_NL80211_IFTYPES:
1011                        /* not happening */
1012                        break;
1013                case NL80211_IFTYPE_P2P_DEVICE:
1014                case NL80211_IFTYPE_NAN:
1015                        WARN_ON(1);
1016                        break;
1017                }
1018        }
1019
1020        if (!err && ntype != otype && netif_running(dev)) {
1021                cfg80211_update_iface_num(rdev, ntype, 1);
1022                cfg80211_update_iface_num(rdev, otype, -1);
1023        }
1024
1025        return err;
1026}
1027
1028static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1029{
1030        int modulation, streams, bitrate;
1031
1032        /* the formula below does only work for MCS values smaller than 32 */
1033        if (WARN_ON_ONCE(rate->mcs >= 32))
1034                return 0;
1035
1036        modulation = rate->mcs & 7;
1037        streams = (rate->mcs >> 3) + 1;
1038
1039        bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1040
1041        if (modulation < 4)
1042                bitrate *= (modulation + 1);
1043        else if (modulation == 4)
1044                bitrate *= (modulation + 2);
1045        else
1046                bitrate *= (modulation + 3);
1047
1048        bitrate *= streams;
1049
1050        if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1051                bitrate = (bitrate / 9) * 10;
1052
1053        /* do NOT round down here */
1054        return (bitrate + 50000) / 100000;
1055}
1056
1057static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1058{
1059        static const u32 __mcs2bitrate[] = {
1060                /* control PHY */
1061                [0] =   275,
1062                /* SC PHY */
1063                [1] =  3850,
1064                [2] =  7700,
1065                [3] =  9625,
1066                [4] = 11550,
1067                [5] = 12512, /* 1251.25 mbps */
1068                [6] = 15400,
1069                [7] = 19250,
1070                [8] = 23100,
1071                [9] = 25025,
1072                [10] = 30800,
1073                [11] = 38500,
1074                [12] = 46200,
1075                /* OFDM PHY */
1076                [13] =  6930,
1077                [14] =  8662, /* 866.25 mbps */
1078                [15] = 13860,
1079                [16] = 17325,
1080                [17] = 20790,
1081                [18] = 27720,
1082                [19] = 34650,
1083                [20] = 41580,
1084                [21] = 45045,
1085                [22] = 51975,
1086                [23] = 62370,
1087                [24] = 67568, /* 6756.75 mbps */
1088                /* LP-SC PHY */
1089                [25] =  6260,
1090                [26] =  8340,
1091                [27] = 11120,
1092                [28] = 12510,
1093                [29] = 16680,
1094                [30] = 22240,
1095                [31] = 25030,
1096        };
1097
1098        if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1099                return 0;
1100
1101        return __mcs2bitrate[rate->mcs];
1102}
1103
1104static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1105{
1106        static const u32 __mcs2bitrate[] = {
1107                /* control PHY */
1108                [0] =   275,
1109                /* SC PHY */
1110                [1] =  3850,
1111                [2] =  7700,
1112                [3] =  9625,
1113                [4] = 11550,
1114                [5] = 12512, /* 1251.25 mbps */
1115                [6] = 13475,
1116                [7] = 15400,
1117                [8] = 19250,
1118                [9] = 23100,
1119                [10] = 25025,
1120                [11] = 26950,
1121                [12] = 30800,
1122                [13] = 38500,
1123                [14] = 46200,
1124                [15] = 50050,
1125                [16] = 53900,
1126                [17] = 57750,
1127                [18] = 69300,
1128                [19] = 75075,
1129                [20] = 80850,
1130        };
1131
1132        if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1133                return 0;
1134
1135        return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1136}
1137
1138static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1139{
1140        static const u32 base[4][10] = {
1141                {   6500000,
1142                   13000000,
1143                   19500000,
1144                   26000000,
1145                   39000000,
1146                   52000000,
1147                   58500000,
1148                   65000000,
1149                   78000000,
1150                /* not in the spec, but some devices use this: */
1151                   86500000,
1152                },
1153                {  13500000,
1154                   27000000,
1155                   40500000,
1156                   54000000,
1157                   81000000,
1158                  108000000,
1159                  121500000,
1160                  135000000,
1161                  162000000,
1162                  180000000,
1163                },
1164                {  29300000,
1165                   58500000,
1166                   87800000,
1167                  117000000,
1168                  175500000,
1169                  234000000,
1170                  263300000,
1171                  292500000,
1172                  351000000,
1173                  390000000,
1174                },
1175                {  58500000,
1176                  117000000,
1177                  175500000,
1178                  234000000,
1179                  351000000,
1180                  468000000,
1181                  526500000,
1182                  585000000,
1183                  702000000,
1184                  780000000,
1185                },
1186        };
1187        u32 bitrate;
1188        int idx;
1189
1190        if (rate->mcs > 9)
1191                goto warn;
1192
1193        switch (rate->bw) {
1194        case RATE_INFO_BW_160:
1195                idx = 3;
1196                break;
1197        case RATE_INFO_BW_80:
1198                idx = 2;
1199                break;
1200        case RATE_INFO_BW_40:
1201                idx = 1;
1202                break;
1203        case RATE_INFO_BW_5:
1204        case RATE_INFO_BW_10:
1205        default:
1206                goto warn;
1207        case RATE_INFO_BW_20:
1208                idx = 0;
1209        }
1210
1211        bitrate = base[idx][rate->mcs];
1212        bitrate *= rate->nss;
1213
1214        if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1215                bitrate = (bitrate / 9) * 10;
1216
1217        /* do NOT round down here */
1218        return (bitrate + 50000) / 100000;
1219 warn:
1220        WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1221                  rate->bw, rate->mcs, rate->nss);
1222        return 0;
1223}
1224
1225static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1226{
1227#define SCALE 2048
1228        u16 mcs_divisors[12] = {
1229                34133, /* 16.666666... */
1230                17067, /*  8.333333... */
1231                11378, /*  5.555555... */
1232                 8533, /*  4.166666... */
1233                 5689, /*  2.777777... */
1234                 4267, /*  2.083333... */
1235                 3923, /*  1.851851... */
1236                 3413, /*  1.666666... */
1237                 2844, /*  1.388888... */
1238                 2560, /*  1.250000... */
1239                 2276, /*  1.111111... */
1240                 2048, /*  1.000000... */
1241        };
1242        u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1243        u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1244        u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1245        u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1246        u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1247        u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1248        u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1249        u64 tmp;
1250        u32 result;
1251
1252        if (WARN_ON_ONCE(rate->mcs > 11))
1253                return 0;
1254
1255        if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1256                return 0;
1257        if (WARN_ON_ONCE(rate->he_ru_alloc >
1258                         NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1259                return 0;
1260        if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1261                return 0;
1262
1263        if (rate->bw == RATE_INFO_BW_160)
1264                result = rates_160M[rate->he_gi];
1265        else if (rate->bw == RATE_INFO_BW_80 ||
1266                 (rate->bw == RATE_INFO_BW_HE_RU &&
1267                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1268                result = rates_969[rate->he_gi];
1269        else if (rate->bw == RATE_INFO_BW_40 ||
1270                 (rate->bw == RATE_INFO_BW_HE_RU &&
1271                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1272                result = rates_484[rate->he_gi];
1273        else if (rate->bw == RATE_INFO_BW_20 ||
1274                 (rate->bw == RATE_INFO_BW_HE_RU &&
1275                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1276                result = rates_242[rate->he_gi];
1277        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1278                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1279                result = rates_106[rate->he_gi];
1280        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1281                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1282                result = rates_52[rate->he_gi];
1283        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1284                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1285                result = rates_26[rate->he_gi];
1286        else {
1287                WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1288                     rate->bw, rate->he_ru_alloc);
1289                return 0;
1290        }
1291
1292        /* now scale to the appropriate MCS */
1293        tmp = result;
1294        tmp *= SCALE;
1295        do_div(tmp, mcs_divisors[rate->mcs]);
1296        result = tmp;
1297
1298        /* and take NSS, DCM into account */
1299        result = (result * rate->nss) / 8;
1300        if (rate->he_dcm)
1301                result /= 2;
1302
1303        return result / 10000;
1304}
1305
1306u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1307{
1308        if (rate->flags & RATE_INFO_FLAGS_MCS)
1309                return cfg80211_calculate_bitrate_ht(rate);
1310        if (rate->flags & RATE_INFO_FLAGS_DMG)
1311                return cfg80211_calculate_bitrate_dmg(rate);
1312        if (rate->flags & RATE_INFO_FLAGS_EDMG)
1313                return cfg80211_calculate_bitrate_edmg(rate);
1314        if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1315                return cfg80211_calculate_bitrate_vht(rate);
1316        if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1317                return cfg80211_calculate_bitrate_he(rate);
1318
1319        return rate->legacy;
1320}
1321EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1322
1323int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1324                          enum ieee80211_p2p_attr_id attr,
1325                          u8 *buf, unsigned int bufsize)
1326{
1327        u8 *out = buf;
1328        u16 attr_remaining = 0;
1329        bool desired_attr = false;
1330        u16 desired_len = 0;
1331
1332        while (len > 0) {
1333                unsigned int iedatalen;
1334                unsigned int copy;
1335                const u8 *iedata;
1336
1337                if (len < 2)
1338                        return -EILSEQ;
1339                iedatalen = ies[1];
1340                if (iedatalen + 2 > len)
1341                        return -EILSEQ;
1342
1343                if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1344                        goto cont;
1345
1346                if (iedatalen < 4)
1347                        goto cont;
1348
1349                iedata = ies + 2;
1350
1351                /* check WFA OUI, P2P subtype */
1352                if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1353                    iedata[2] != 0x9a || iedata[3] != 0x09)
1354                        goto cont;
1355
1356                iedatalen -= 4;
1357                iedata += 4;
1358
1359                /* check attribute continuation into this IE */
1360                copy = min_t(unsigned int, attr_remaining, iedatalen);
1361                if (copy && desired_attr) {
1362                        desired_len += copy;
1363                        if (out) {
1364                                memcpy(out, iedata, min(bufsize, copy));
1365                                out += min(bufsize, copy);
1366                                bufsize -= min(bufsize, copy);
1367                        }
1368
1369
1370                        if (copy == attr_remaining)
1371                                return desired_len;
1372                }
1373
1374                attr_remaining -= copy;
1375                if (attr_remaining)
1376                        goto cont;
1377
1378                iedatalen -= copy;
1379                iedata += copy;
1380
1381                while (iedatalen > 0) {
1382                        u16 attr_len;
1383
1384                        /* P2P attribute ID & size must fit */
1385                        if (iedatalen < 3)
1386                                return -EILSEQ;
1387                        desired_attr = iedata[0] == attr;
1388                        attr_len = get_unaligned_le16(iedata + 1);
1389                        iedatalen -= 3;
1390                        iedata += 3;
1391
1392                        copy = min_t(unsigned int, attr_len, iedatalen);
1393
1394                        if (desired_attr) {
1395                                desired_len += copy;
1396                                if (out) {
1397                                        memcpy(out, iedata, min(bufsize, copy));
1398                                        out += min(bufsize, copy);
1399                                        bufsize -= min(bufsize, copy);
1400                                }
1401
1402                                if (copy == attr_len)
1403                                        return desired_len;
1404                        }
1405
1406                        iedata += copy;
1407                        iedatalen -= copy;
1408                        attr_remaining = attr_len - copy;
1409                }
1410
1411 cont:
1412                len -= ies[1] + 2;
1413                ies += ies[1] + 2;
1414        }
1415
1416        if (attr_remaining && desired_attr)
1417                return -EILSEQ;
1418
1419        return -ENOENT;
1420}
1421EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1422
1423static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1424{
1425        int i;
1426
1427        /* Make sure array values are legal */
1428        if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1429                return false;
1430
1431        i = 0;
1432        while (i < n_ids) {
1433                if (ids[i] == WLAN_EID_EXTENSION) {
1434                        if (id_ext && (ids[i + 1] == id))
1435                                return true;
1436
1437                        i += 2;
1438                        continue;
1439                }
1440
1441                if (ids[i] == id && !id_ext)
1442                        return true;
1443
1444                i++;
1445        }
1446        return false;
1447}
1448
1449static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1450{
1451        /* we assume a validly formed IEs buffer */
1452        u8 len = ies[pos + 1];
1453
1454        pos += 2 + len;
1455
1456        /* the IE itself must have 255 bytes for fragments to follow */
1457        if (len < 255)
1458                return pos;
1459
1460        while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1461                len = ies[pos + 1];
1462                pos += 2 + len;
1463        }
1464
1465        return pos;
1466}
1467
1468size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1469                              const u8 *ids, int n_ids,
1470                              const u8 *after_ric, int n_after_ric,
1471                              size_t offset)
1472{
1473        size_t pos = offset;
1474
1475        while (pos < ielen) {
1476                u8 ext = 0;
1477
1478                if (ies[pos] == WLAN_EID_EXTENSION)
1479                        ext = 2;
1480                if ((pos + ext) >= ielen)
1481                        break;
1482
1483                if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1484                                          ies[pos] == WLAN_EID_EXTENSION))
1485                        break;
1486
1487                if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1488                        pos = skip_ie(ies, ielen, pos);
1489
1490                        while (pos < ielen) {
1491                                if (ies[pos] == WLAN_EID_EXTENSION)
1492                                        ext = 2;
1493                                else
1494                                        ext = 0;
1495
1496                                if ((pos + ext) >= ielen)
1497                                        break;
1498
1499                                if (!ieee80211_id_in_list(after_ric,
1500                                                          n_after_ric,
1501                                                          ies[pos + ext],
1502                                                          ext == 2))
1503                                        pos = skip_ie(ies, ielen, pos);
1504                                else
1505                                        break;
1506                        }
1507                } else {
1508                        pos = skip_ie(ies, ielen, pos);
1509                }
1510        }
1511
1512        return pos;
1513}
1514EXPORT_SYMBOL(ieee80211_ie_split_ric);
1515
1516bool ieee80211_operating_class_to_band(u8 operating_class,
1517                                       enum nl80211_band *band)
1518{
1519        switch (operating_class) {
1520        case 112:
1521        case 115 ... 127:
1522        case 128 ... 130:
1523                *band = NL80211_BAND_5GHZ;
1524                return true;
1525        case 131 ... 135:
1526                *band = NL80211_BAND_6GHZ;
1527                return true;
1528        case 81:
1529        case 82:
1530        case 83:
1531        case 84:
1532                *band = NL80211_BAND_2GHZ;
1533                return true;
1534        case 180:
1535                *band = NL80211_BAND_60GHZ;
1536                return true;
1537        }
1538
1539        return false;
1540}
1541EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1542
1543bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1544                                          u8 *op_class)
1545{
1546        u8 vht_opclass;
1547        u32 freq = chandef->center_freq1;
1548
1549        if (freq >= 2412 && freq <= 2472) {
1550                if (chandef->width > NL80211_CHAN_WIDTH_40)
1551                        return false;
1552
1553                /* 2.407 GHz, channels 1..13 */
1554                if (chandef->width == NL80211_CHAN_WIDTH_40) {
1555                        if (freq > chandef->chan->center_freq)
1556                                *op_class = 83; /* HT40+ */
1557                        else
1558                                *op_class = 84; /* HT40- */
1559                } else {
1560                        *op_class = 81;
1561                }
1562
1563                return true;
1564        }
1565
1566        if (freq == 2484) {
1567                /* channel 14 is only for IEEE 802.11b */
1568                if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1569                        return false;
1570
1571                *op_class = 82; /* channel 14 */
1572                return true;
1573        }
1574
1575        switch (chandef->width) {
1576        case NL80211_CHAN_WIDTH_80:
1577                vht_opclass = 128;
1578                break;
1579        case NL80211_CHAN_WIDTH_160:
1580                vht_opclass = 129;
1581                break;
1582        case NL80211_CHAN_WIDTH_80P80:
1583                vht_opclass = 130;
1584                break;
1585        case NL80211_CHAN_WIDTH_10:
1586        case NL80211_CHAN_WIDTH_5:
1587                return false; /* unsupported for now */
1588        default:
1589                vht_opclass = 0;
1590                break;
1591        }
1592
1593        /* 5 GHz, channels 36..48 */
1594        if (freq >= 5180 && freq <= 5240) {
1595                if (vht_opclass) {
1596                        *op_class = vht_opclass;
1597                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1598                        if (freq > chandef->chan->center_freq)
1599                                *op_class = 116;
1600                        else
1601                                *op_class = 117;
1602                } else {
1603                        *op_class = 115;
1604                }
1605
1606                return true;
1607        }
1608
1609        /* 5 GHz, channels 52..64 */
1610        if (freq >= 5260 && freq <= 5320) {
1611                if (vht_opclass) {
1612                        *op_class = vht_opclass;
1613                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1614                        if (freq > chandef->chan->center_freq)
1615                                *op_class = 119;
1616                        else
1617                                *op_class = 120;
1618                } else {
1619                        *op_class = 118;
1620                }
1621
1622                return true;
1623        }
1624
1625        /* 5 GHz, channels 100..144 */
1626        if (freq >= 5500 && freq <= 5720) {
1627                if (vht_opclass) {
1628                        *op_class = vht_opclass;
1629                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1630                        if (freq > chandef->chan->center_freq)
1631                                *op_class = 122;
1632                        else
1633                                *op_class = 123;
1634                } else {
1635                        *op_class = 121;
1636                }
1637
1638                return true;
1639        }
1640
1641        /* 5 GHz, channels 149..169 */
1642        if (freq >= 5745 && freq <= 5845) {
1643                if (vht_opclass) {
1644                        *op_class = vht_opclass;
1645                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1646                        if (freq > chandef->chan->center_freq)
1647                                *op_class = 126;
1648                        else
1649                                *op_class = 127;
1650                } else if (freq <= 5805) {
1651                        *op_class = 124;
1652                } else {
1653                        *op_class = 125;
1654                }
1655
1656                return true;
1657        }
1658
1659        /* 56.16 GHz, channel 1..4 */
1660        if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1661                if (chandef->width >= NL80211_CHAN_WIDTH_40)
1662                        return false;
1663
1664                *op_class = 180;
1665                return true;
1666        }
1667
1668        /* not supported yet */
1669        return false;
1670}
1671EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1672
1673static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1674                                       u32 *beacon_int_gcd,
1675                                       bool *beacon_int_different)
1676{
1677        struct wireless_dev *wdev;
1678
1679        *beacon_int_gcd = 0;
1680        *beacon_int_different = false;
1681
1682        list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1683                if (!wdev->beacon_interval)
1684                        continue;
1685
1686                if (!*beacon_int_gcd) {
1687                        *beacon_int_gcd = wdev->beacon_interval;
1688                        continue;
1689                }
1690
1691                if (wdev->beacon_interval == *beacon_int_gcd)
1692                        continue;
1693
1694                *beacon_int_different = true;
1695                *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1696        }
1697
1698        if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1699                if (*beacon_int_gcd)
1700                        *beacon_int_different = true;
1701                *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1702        }
1703}
1704
1705int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1706                                 enum nl80211_iftype iftype, u32 beacon_int)
1707{
1708        /*
1709         * This is just a basic pre-condition check; if interface combinations
1710         * are possible the driver must already be checking those with a call
1711         * to cfg80211_check_combinations(), in which case we'll validate more
1712         * through the cfg80211_calculate_bi_data() call and code in
1713         * cfg80211_iter_combinations().
1714         */
1715
1716        if (beacon_int < 10 || beacon_int > 10000)
1717                return -EINVAL;
1718
1719        return 0;
1720}
1721
1722int cfg80211_iter_combinations(struct wiphy *wiphy,
1723                               struct iface_combination_params *params,
1724                               void (*iter)(const struct ieee80211_iface_combination *c,
1725                                            void *data),
1726                               void *data)
1727{
1728        const struct ieee80211_regdomain *regdom;
1729        enum nl80211_dfs_regions region = 0;
1730        int i, j, iftype;
1731        int num_interfaces = 0;
1732        u32 used_iftypes = 0;
1733        u32 beacon_int_gcd;
1734        bool beacon_int_different;
1735
1736        /*
1737         * This is a bit strange, since the iteration used to rely only on
1738         * the data given by the driver, but here it now relies on context,
1739         * in form of the currently operating interfaces.
1740         * This is OK for all current users, and saves us from having to
1741         * push the GCD calculations into all the drivers.
1742         * In the future, this should probably rely more on data that's in
1743         * cfg80211 already - the only thing not would appear to be any new
1744         * interfaces (while being brought up) and channel/radar data.
1745         */
1746        cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1747                                   &beacon_int_gcd, &beacon_int_different);
1748
1749        if (params->radar_detect) {
1750                rcu_read_lock();
1751                regdom = rcu_dereference(cfg80211_regdomain);
1752                if (regdom)
1753                        region = regdom->dfs_region;
1754                rcu_read_unlock();
1755        }
1756
1757        for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1758                num_interfaces += params->iftype_num[iftype];
1759                if (params->iftype_num[iftype] > 0 &&
1760                    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1761                        used_iftypes |= BIT(iftype);
1762        }
1763
1764        for (i = 0; i < wiphy->n_iface_combinations; i++) {
1765                const struct ieee80211_iface_combination *c;
1766                struct ieee80211_iface_limit *limits;
1767                u32 all_iftypes = 0;
1768
1769                c = &wiphy->iface_combinations[i];
1770
1771                if (num_interfaces > c->max_interfaces)
1772                        continue;
1773                if (params->num_different_channels > c->num_different_channels)
1774                        continue;
1775
1776                limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1777                                 GFP_KERNEL);
1778                if (!limits)
1779                        return -ENOMEM;
1780
1781                for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1782                        if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1783                                continue;
1784                        for (j = 0; j < c->n_limits; j++) {
1785                                all_iftypes |= limits[j].types;
1786                                if (!(limits[j].types & BIT(iftype)))
1787                                        continue;
1788                                if (limits[j].max < params->iftype_num[iftype])
1789                                        goto cont;
1790                                limits[j].max -= params->iftype_num[iftype];
1791                        }
1792                }
1793
1794                if (params->radar_detect !=
1795                        (c->radar_detect_widths & params->radar_detect))
1796                        goto cont;
1797
1798                if (params->radar_detect && c->radar_detect_regions &&
1799                    !(c->radar_detect_regions & BIT(region)))
1800                        goto cont;
1801
1802                /* Finally check that all iftypes that we're currently
1803                 * using are actually part of this combination. If they
1804                 * aren't then we can't use this combination and have
1805                 * to continue to the next.
1806                 */
1807                if ((all_iftypes & used_iftypes) != used_iftypes)
1808                        goto cont;
1809
1810                if (beacon_int_gcd) {
1811                        if (c->beacon_int_min_gcd &&
1812                            beacon_int_gcd < c->beacon_int_min_gcd)
1813                                goto cont;
1814                        if (!c->beacon_int_min_gcd && beacon_int_different)
1815                                goto cont;
1816                }
1817
1818                /* This combination covered all interface types and
1819                 * supported the requested numbers, so we're good.
1820                 */
1821
1822                (*iter)(c, data);
1823 cont:
1824                kfree(limits);
1825        }
1826
1827        return 0;
1828}
1829EXPORT_SYMBOL(cfg80211_iter_combinations);
1830
1831static void
1832cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1833                          void *data)
1834{
1835        int *num = data;
1836        (*num)++;
1837}
1838
1839int cfg80211_check_combinations(struct wiphy *wiphy,
1840                                struct iface_combination_params *params)
1841{
1842        int err, num = 0;
1843
1844        err = cfg80211_iter_combinations(wiphy, params,
1845                                         cfg80211_iter_sum_ifcombs, &num);
1846        if (err)
1847                return err;
1848        if (num == 0)
1849                return -EBUSY;
1850
1851        return 0;
1852}
1853EXPORT_SYMBOL(cfg80211_check_combinations);
1854
1855int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1856                           const u8 *rates, unsigned int n_rates,
1857                           u32 *mask)
1858{
1859        int i, j;
1860
1861        if (!sband)
1862                return -EINVAL;
1863
1864        if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1865                return -EINVAL;
1866
1867        *mask = 0;
1868
1869        for (i = 0; i < n_rates; i++) {
1870                int rate = (rates[i] & 0x7f) * 5;
1871                bool found = false;
1872
1873                for (j = 0; j < sband->n_bitrates; j++) {
1874                        if (sband->bitrates[j].bitrate == rate) {
1875                                found = true;
1876                                *mask |= BIT(j);
1877                                break;
1878                        }
1879                }
1880                if (!found)
1881                        return -EINVAL;
1882        }
1883
1884        /*
1885         * mask must have at least one bit set here since we
1886         * didn't accept a 0-length rates array nor allowed
1887         * entries in the array that didn't exist
1888         */
1889
1890        return 0;
1891}
1892
1893unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1894{
1895        enum nl80211_band band;
1896        unsigned int n_channels = 0;
1897
1898        for (band = 0; band < NUM_NL80211_BANDS; band++)
1899                if (wiphy->bands[band])
1900                        n_channels += wiphy->bands[band]->n_channels;
1901
1902        return n_channels;
1903}
1904EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1905
1906int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1907                         struct station_info *sinfo)
1908{
1909        struct cfg80211_registered_device *rdev;
1910        struct wireless_dev *wdev;
1911
1912        wdev = dev->ieee80211_ptr;
1913        if (!wdev)
1914                return -EOPNOTSUPP;
1915
1916        rdev = wiphy_to_rdev(wdev->wiphy);
1917        if (!rdev->ops->get_station)
1918                return -EOPNOTSUPP;
1919
1920        memset(sinfo, 0, sizeof(*sinfo));
1921
1922        return rdev_get_station(rdev, dev, mac_addr, sinfo);
1923}
1924EXPORT_SYMBOL(cfg80211_get_station);
1925
1926void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1927{
1928        int i;
1929
1930        if (!f)
1931                return;
1932
1933        kfree(f->serv_spec_info);
1934        kfree(f->srf_bf);
1935        kfree(f->srf_macs);
1936        for (i = 0; i < f->num_rx_filters; i++)
1937                kfree(f->rx_filters[i].filter);
1938
1939        for (i = 0; i < f->num_tx_filters; i++)
1940                kfree(f->tx_filters[i].filter);
1941
1942        kfree(f->rx_filters);
1943        kfree(f->tx_filters);
1944        kfree(f);
1945}
1946EXPORT_SYMBOL(cfg80211_free_nan_func);
1947
1948bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1949                                u32 center_freq_khz, u32 bw_khz)
1950{
1951        u32 start_freq_khz, end_freq_khz;
1952
1953        start_freq_khz = center_freq_khz - (bw_khz / 2);
1954        end_freq_khz = center_freq_khz + (bw_khz / 2);
1955
1956        if (start_freq_khz >= freq_range->start_freq_khz &&
1957            end_freq_khz <= freq_range->end_freq_khz)
1958                return true;
1959
1960        return false;
1961}
1962
1963int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1964{
1965        sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1966                                sizeof(*(sinfo->pertid)),
1967                                gfp);
1968        if (!sinfo->pertid)
1969                return -ENOMEM;
1970
1971        return 0;
1972}
1973EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1974
1975/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1976/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1977const unsigned char rfc1042_header[] __aligned(2) =
1978        { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1979EXPORT_SYMBOL(rfc1042_header);
1980
1981/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1982const unsigned char bridge_tunnel_header[] __aligned(2) =
1983        { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1984EXPORT_SYMBOL(bridge_tunnel_header);
1985
1986/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1987struct iapp_layer2_update {
1988        u8 da[ETH_ALEN];        /* broadcast */
1989        u8 sa[ETH_ALEN];        /* STA addr */
1990        __be16 len;             /* 6 */
1991        u8 dsap;                /* 0 */
1992        u8 ssap;                /* 0 */
1993        u8 control;
1994        u8 xid_info[3];
1995} __packed;
1996
1997void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1998{
1999        struct iapp_layer2_update *msg;
2000        struct sk_buff *skb;
2001
2002        /* Send Level 2 Update Frame to update forwarding tables in layer 2
2003         * bridge devices */
2004
2005        skb = dev_alloc_skb(sizeof(*msg));
2006        if (!skb)
2007                return;
2008        msg = skb_put(skb, sizeof(*msg));
2009
2010        /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2011         * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2012
2013        eth_broadcast_addr(msg->da);
2014        ether_addr_copy(msg->sa, addr);
2015        msg->len = htons(6);
2016        msg->dsap = 0;
2017        msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2018        msg->control = 0xaf;    /* XID response lsb.1111F101.
2019                                 * F=0 (no poll command; unsolicited frame) */
2020        msg->xid_info[0] = 0x81;        /* XID format identifier */
2021        msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2022        msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2023
2024        skb->dev = dev;
2025        skb->protocol = eth_type_trans(skb, dev);
2026        memset(skb->cb, 0, sizeof(skb->cb));
2027        netif_rx_ni(skb);
2028}
2029EXPORT_SYMBOL(cfg80211_send_layer2_update);
2030
2031int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2032                              enum ieee80211_vht_chanwidth bw,
2033                              int mcs, bool ext_nss_bw_capable)
2034{
2035        u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2036        int max_vht_nss = 0;
2037        int ext_nss_bw;
2038        int supp_width;
2039        int i, mcs_encoding;
2040
2041        if (map == 0xffff)
2042                return 0;
2043
2044        if (WARN_ON(mcs > 9))
2045                return 0;
2046        if (mcs <= 7)
2047                mcs_encoding = 0;
2048        else if (mcs == 8)
2049                mcs_encoding = 1;
2050        else
2051                mcs_encoding = 2;
2052
2053        /* find max_vht_nss for the given MCS */
2054        for (i = 7; i >= 0; i--) {
2055                int supp = (map >> (2 * i)) & 3;
2056
2057                if (supp == 3)
2058                        continue;
2059
2060                if (supp >= mcs_encoding) {
2061                        max_vht_nss = i + 1;
2062                        break;
2063                }
2064        }
2065
2066        if (!(cap->supp_mcs.tx_mcs_map &
2067                        cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2068                return max_vht_nss;
2069
2070        ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2071                                   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2072        supp_width = le32_get_bits(cap->vht_cap_info,
2073                                   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2074
2075        /* if not capable, treat ext_nss_bw as 0 */
2076        if (!ext_nss_bw_capable)
2077                ext_nss_bw = 0;
2078
2079        /* This is invalid */
2080        if (supp_width == 3)
2081                return 0;
2082
2083        /* This is an invalid combination so pretend nothing is supported */
2084        if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2085                return 0;
2086
2087        /*
2088         * Cover all the special cases according to IEEE 802.11-2016
2089         * Table 9-250. All other cases are either factor of 1 or not
2090         * valid/supported.
2091         */
2092        switch (bw) {
2093        case IEEE80211_VHT_CHANWIDTH_USE_HT:
2094        case IEEE80211_VHT_CHANWIDTH_80MHZ:
2095                if ((supp_width == 1 || supp_width == 2) &&
2096                    ext_nss_bw == 3)
2097                        return 2 * max_vht_nss;
2098                break;
2099        case IEEE80211_VHT_CHANWIDTH_160MHZ:
2100                if (supp_width == 0 &&
2101                    (ext_nss_bw == 1 || ext_nss_bw == 2))
2102                        return max_vht_nss / 2;
2103                if (supp_width == 0 &&
2104                    ext_nss_bw == 3)
2105                        return (3 * max_vht_nss) / 4;
2106                if (supp_width == 1 &&
2107                    ext_nss_bw == 3)
2108                        return 2 * max_vht_nss;
2109                break;
2110        case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2111                if (supp_width == 0 && ext_nss_bw == 1)
2112                        return 0; /* not possible */
2113                if (supp_width == 0 &&
2114                    ext_nss_bw == 2)
2115                        return max_vht_nss / 2;
2116                if (supp_width == 0 &&
2117                    ext_nss_bw == 3)
2118                        return (3 * max_vht_nss) / 4;
2119                if (supp_width == 1 &&
2120                    ext_nss_bw == 0)
2121                        return 0; /* not possible */
2122                if (supp_width == 1 &&
2123                    ext_nss_bw == 1)
2124                        return max_vht_nss / 2;
2125                if (supp_width == 1 &&
2126                    ext_nss_bw == 2)
2127                        return (3 * max_vht_nss) / 4;
2128                break;
2129        }
2130
2131        /* not covered or invalid combination received */
2132        return max_vht_nss;
2133}
2134EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2135
2136bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2137                             bool is_4addr, u8 check_swif)
2138
2139{
2140        bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2141
2142        switch (check_swif) {
2143        case 0:
2144                if (is_vlan && is_4addr)
2145                        return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2146                return wiphy->interface_modes & BIT(iftype);
2147        case 1:
2148                if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2149                        return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2150                return wiphy->software_iftypes & BIT(iftype);
2151        default:
2152                break;
2153        }
2154
2155        return false;
2156}
2157EXPORT_SYMBOL(cfg80211_iftype_allowed);
2158