linux/security/selinux/ss/services.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *           James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *      Support for enhanced MLS infrastructure.
  11 *      Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *      Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/vmalloc.h>
  50#include <net/netlabel.h>
  51
  52#include "flask.h"
  53#include "avc.h"
  54#include "avc_ss.h"
  55#include "security.h"
  56#include "context.h"
  57#include "policydb.h"
  58#include "sidtab.h"
  59#include "services.h"
  60#include "conditional.h"
  61#include "mls.h"
  62#include "objsec.h"
  63#include "netlabel.h"
  64#include "xfrm.h"
  65#include "ebitmap.h"
  66#include "audit.h"
  67
  68/* Policy capability names */
  69const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  70        "network_peer_controls",
  71        "open_perms",
  72        "extended_socket_class",
  73        "always_check_network",
  74        "cgroup_seclabel",
  75        "nnp_nosuid_transition",
  76        "genfs_seclabel_symlinks"
  77};
  78
  79static struct selinux_ss selinux_ss;
  80
  81void selinux_ss_init(struct selinux_ss **ss)
  82{
  83        rwlock_init(&selinux_ss.policy_rwlock);
  84        *ss = &selinux_ss;
  85}
  86
  87/* Forward declaration. */
  88static int context_struct_to_string(struct policydb *policydb,
  89                                    struct context *context,
  90                                    char **scontext,
  91                                    u32 *scontext_len);
  92
  93static int sidtab_entry_to_string(struct policydb *policydb,
  94                                  struct sidtab *sidtab,
  95                                  struct sidtab_entry *entry,
  96                                  char **scontext,
  97                                  u32 *scontext_len);
  98
  99static void context_struct_compute_av(struct policydb *policydb,
 100                                      struct context *scontext,
 101                                      struct context *tcontext,
 102                                      u16 tclass,
 103                                      struct av_decision *avd,
 104                                      struct extended_perms *xperms);
 105
 106static int selinux_set_mapping(struct policydb *pol,
 107                               struct security_class_mapping *map,
 108                               struct selinux_map *out_map)
 109{
 110        u16 i, j;
 111        unsigned k;
 112        bool print_unknown_handle = false;
 113
 114        /* Find number of classes in the input mapping */
 115        if (!map)
 116                return -EINVAL;
 117        i = 0;
 118        while (map[i].name)
 119                i++;
 120
 121        /* Allocate space for the class records, plus one for class zero */
 122        out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 123        if (!out_map->mapping)
 124                return -ENOMEM;
 125
 126        /* Store the raw class and permission values */
 127        j = 0;
 128        while (map[j].name) {
 129                struct security_class_mapping *p_in = map + (j++);
 130                struct selinux_mapping *p_out = out_map->mapping + j;
 131
 132                /* An empty class string skips ahead */
 133                if (!strcmp(p_in->name, "")) {
 134                        p_out->num_perms = 0;
 135                        continue;
 136                }
 137
 138                p_out->value = string_to_security_class(pol, p_in->name);
 139                if (!p_out->value) {
 140                        pr_info("SELinux:  Class %s not defined in policy.\n",
 141                               p_in->name);
 142                        if (pol->reject_unknown)
 143                                goto err;
 144                        p_out->num_perms = 0;
 145                        print_unknown_handle = true;
 146                        continue;
 147                }
 148
 149                k = 0;
 150                while (p_in->perms[k]) {
 151                        /* An empty permission string skips ahead */
 152                        if (!*p_in->perms[k]) {
 153                                k++;
 154                                continue;
 155                        }
 156                        p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 157                                                            p_in->perms[k]);
 158                        if (!p_out->perms[k]) {
 159                                pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 160                                       p_in->perms[k], p_in->name);
 161                                if (pol->reject_unknown)
 162                                        goto err;
 163                                print_unknown_handle = true;
 164                        }
 165
 166                        k++;
 167                }
 168                p_out->num_perms = k;
 169        }
 170
 171        if (print_unknown_handle)
 172                pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 173                       pol->allow_unknown ? "allowed" : "denied");
 174
 175        out_map->size = i;
 176        return 0;
 177err:
 178        kfree(out_map->mapping);
 179        out_map->mapping = NULL;
 180        return -EINVAL;
 181}
 182
 183/*
 184 * Get real, policy values from mapped values
 185 */
 186
 187static u16 unmap_class(struct selinux_map *map, u16 tclass)
 188{
 189        if (tclass < map->size)
 190                return map->mapping[tclass].value;
 191
 192        return tclass;
 193}
 194
 195/*
 196 * Get kernel value for class from its policy value
 197 */
 198static u16 map_class(struct selinux_map *map, u16 pol_value)
 199{
 200        u16 i;
 201
 202        for (i = 1; i < map->size; i++) {
 203                if (map->mapping[i].value == pol_value)
 204                        return i;
 205        }
 206
 207        return SECCLASS_NULL;
 208}
 209
 210static void map_decision(struct selinux_map *map,
 211                         u16 tclass, struct av_decision *avd,
 212                         int allow_unknown)
 213{
 214        if (tclass < map->size) {
 215                struct selinux_mapping *mapping = &map->mapping[tclass];
 216                unsigned int i, n = mapping->num_perms;
 217                u32 result;
 218
 219                for (i = 0, result = 0; i < n; i++) {
 220                        if (avd->allowed & mapping->perms[i])
 221                                result |= 1<<i;
 222                        if (allow_unknown && !mapping->perms[i])
 223                                result |= 1<<i;
 224                }
 225                avd->allowed = result;
 226
 227                for (i = 0, result = 0; i < n; i++)
 228                        if (avd->auditallow & mapping->perms[i])
 229                                result |= 1<<i;
 230                avd->auditallow = result;
 231
 232                for (i = 0, result = 0; i < n; i++) {
 233                        if (avd->auditdeny & mapping->perms[i])
 234                                result |= 1<<i;
 235                        if (!allow_unknown && !mapping->perms[i])
 236                                result |= 1<<i;
 237                }
 238                /*
 239                 * In case the kernel has a bug and requests a permission
 240                 * between num_perms and the maximum permission number, we
 241                 * should audit that denial
 242                 */
 243                for (; i < (sizeof(u32)*8); i++)
 244                        result |= 1<<i;
 245                avd->auditdeny = result;
 246        }
 247}
 248
 249int security_mls_enabled(struct selinux_state *state)
 250{
 251        struct policydb *p = &state->ss->policydb;
 252
 253        return p->mls_enabled;
 254}
 255
 256/*
 257 * Return the boolean value of a constraint expression
 258 * when it is applied to the specified source and target
 259 * security contexts.
 260 *
 261 * xcontext is a special beast...  It is used by the validatetrans rules
 262 * only.  For these rules, scontext is the context before the transition,
 263 * tcontext is the context after the transition, and xcontext is the context
 264 * of the process performing the transition.  All other callers of
 265 * constraint_expr_eval should pass in NULL for xcontext.
 266 */
 267static int constraint_expr_eval(struct policydb *policydb,
 268                                struct context *scontext,
 269                                struct context *tcontext,
 270                                struct context *xcontext,
 271                                struct constraint_expr *cexpr)
 272{
 273        u32 val1, val2;
 274        struct context *c;
 275        struct role_datum *r1, *r2;
 276        struct mls_level *l1, *l2;
 277        struct constraint_expr *e;
 278        int s[CEXPR_MAXDEPTH];
 279        int sp = -1;
 280
 281        for (e = cexpr; e; e = e->next) {
 282                switch (e->expr_type) {
 283                case CEXPR_NOT:
 284                        BUG_ON(sp < 0);
 285                        s[sp] = !s[sp];
 286                        break;
 287                case CEXPR_AND:
 288                        BUG_ON(sp < 1);
 289                        sp--;
 290                        s[sp] &= s[sp + 1];
 291                        break;
 292                case CEXPR_OR:
 293                        BUG_ON(sp < 1);
 294                        sp--;
 295                        s[sp] |= s[sp + 1];
 296                        break;
 297                case CEXPR_ATTR:
 298                        if (sp == (CEXPR_MAXDEPTH - 1))
 299                                return 0;
 300                        switch (e->attr) {
 301                        case CEXPR_USER:
 302                                val1 = scontext->user;
 303                                val2 = tcontext->user;
 304                                break;
 305                        case CEXPR_TYPE:
 306                                val1 = scontext->type;
 307                                val2 = tcontext->type;
 308                                break;
 309                        case CEXPR_ROLE:
 310                                val1 = scontext->role;
 311                                val2 = tcontext->role;
 312                                r1 = policydb->role_val_to_struct[val1 - 1];
 313                                r2 = policydb->role_val_to_struct[val2 - 1];
 314                                switch (e->op) {
 315                                case CEXPR_DOM:
 316                                        s[++sp] = ebitmap_get_bit(&r1->dominates,
 317                                                                  val2 - 1);
 318                                        continue;
 319                                case CEXPR_DOMBY:
 320                                        s[++sp] = ebitmap_get_bit(&r2->dominates,
 321                                                                  val1 - 1);
 322                                        continue;
 323                                case CEXPR_INCOMP:
 324                                        s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 325                                                                    val2 - 1) &&
 326                                                   !ebitmap_get_bit(&r2->dominates,
 327                                                                    val1 - 1));
 328                                        continue;
 329                                default:
 330                                        break;
 331                                }
 332                                break;
 333                        case CEXPR_L1L2:
 334                                l1 = &(scontext->range.level[0]);
 335                                l2 = &(tcontext->range.level[0]);
 336                                goto mls_ops;
 337                        case CEXPR_L1H2:
 338                                l1 = &(scontext->range.level[0]);
 339                                l2 = &(tcontext->range.level[1]);
 340                                goto mls_ops;
 341                        case CEXPR_H1L2:
 342                                l1 = &(scontext->range.level[1]);
 343                                l2 = &(tcontext->range.level[0]);
 344                                goto mls_ops;
 345                        case CEXPR_H1H2:
 346                                l1 = &(scontext->range.level[1]);
 347                                l2 = &(tcontext->range.level[1]);
 348                                goto mls_ops;
 349                        case CEXPR_L1H1:
 350                                l1 = &(scontext->range.level[0]);
 351                                l2 = &(scontext->range.level[1]);
 352                                goto mls_ops;
 353                        case CEXPR_L2H2:
 354                                l1 = &(tcontext->range.level[0]);
 355                                l2 = &(tcontext->range.level[1]);
 356                                goto mls_ops;
 357mls_ops:
 358                        switch (e->op) {
 359                        case CEXPR_EQ:
 360                                s[++sp] = mls_level_eq(l1, l2);
 361                                continue;
 362                        case CEXPR_NEQ:
 363                                s[++sp] = !mls_level_eq(l1, l2);
 364                                continue;
 365                        case CEXPR_DOM:
 366                                s[++sp] = mls_level_dom(l1, l2);
 367                                continue;
 368                        case CEXPR_DOMBY:
 369                                s[++sp] = mls_level_dom(l2, l1);
 370                                continue;
 371                        case CEXPR_INCOMP:
 372                                s[++sp] = mls_level_incomp(l2, l1);
 373                                continue;
 374                        default:
 375                                BUG();
 376                                return 0;
 377                        }
 378                        break;
 379                        default:
 380                                BUG();
 381                                return 0;
 382                        }
 383
 384                        switch (e->op) {
 385                        case CEXPR_EQ:
 386                                s[++sp] = (val1 == val2);
 387                                break;
 388                        case CEXPR_NEQ:
 389                                s[++sp] = (val1 != val2);
 390                                break;
 391                        default:
 392                                BUG();
 393                                return 0;
 394                        }
 395                        break;
 396                case CEXPR_NAMES:
 397                        if (sp == (CEXPR_MAXDEPTH-1))
 398                                return 0;
 399                        c = scontext;
 400                        if (e->attr & CEXPR_TARGET)
 401                                c = tcontext;
 402                        else if (e->attr & CEXPR_XTARGET) {
 403                                c = xcontext;
 404                                if (!c) {
 405                                        BUG();
 406                                        return 0;
 407                                }
 408                        }
 409                        if (e->attr & CEXPR_USER)
 410                                val1 = c->user;
 411                        else if (e->attr & CEXPR_ROLE)
 412                                val1 = c->role;
 413                        else if (e->attr & CEXPR_TYPE)
 414                                val1 = c->type;
 415                        else {
 416                                BUG();
 417                                return 0;
 418                        }
 419
 420                        switch (e->op) {
 421                        case CEXPR_EQ:
 422                                s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 423                                break;
 424                        case CEXPR_NEQ:
 425                                s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 426                                break;
 427                        default:
 428                                BUG();
 429                                return 0;
 430                        }
 431                        break;
 432                default:
 433                        BUG();
 434                        return 0;
 435                }
 436        }
 437
 438        BUG_ON(sp != 0);
 439        return s[0];
 440}
 441
 442/*
 443 * security_dump_masked_av - dumps masked permissions during
 444 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 445 */
 446static int dump_masked_av_helper(void *k, void *d, void *args)
 447{
 448        struct perm_datum *pdatum = d;
 449        char **permission_names = args;
 450
 451        BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 452
 453        permission_names[pdatum->value - 1] = (char *)k;
 454
 455        return 0;
 456}
 457
 458static void security_dump_masked_av(struct policydb *policydb,
 459                                    struct context *scontext,
 460                                    struct context *tcontext,
 461                                    u16 tclass,
 462                                    u32 permissions,
 463                                    const char *reason)
 464{
 465        struct common_datum *common_dat;
 466        struct class_datum *tclass_dat;
 467        struct audit_buffer *ab;
 468        char *tclass_name;
 469        char *scontext_name = NULL;
 470        char *tcontext_name = NULL;
 471        char *permission_names[32];
 472        int index;
 473        u32 length;
 474        bool need_comma = false;
 475
 476        if (!permissions)
 477                return;
 478
 479        tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 480        tclass_dat = policydb->class_val_to_struct[tclass - 1];
 481        common_dat = tclass_dat->comdatum;
 482
 483        /* init permission_names */
 484        if (common_dat &&
 485            hashtab_map(common_dat->permissions.table,
 486                        dump_masked_av_helper, permission_names) < 0)
 487                goto out;
 488
 489        if (hashtab_map(tclass_dat->permissions.table,
 490                        dump_masked_av_helper, permission_names) < 0)
 491                goto out;
 492
 493        /* get scontext/tcontext in text form */
 494        if (context_struct_to_string(policydb, scontext,
 495                                     &scontext_name, &length) < 0)
 496                goto out;
 497
 498        if (context_struct_to_string(policydb, tcontext,
 499                                     &tcontext_name, &length) < 0)
 500                goto out;
 501
 502        /* audit a message */
 503        ab = audit_log_start(audit_context(),
 504                             GFP_ATOMIC, AUDIT_SELINUX_ERR);
 505        if (!ab)
 506                goto out;
 507
 508        audit_log_format(ab, "op=security_compute_av reason=%s "
 509                         "scontext=%s tcontext=%s tclass=%s perms=",
 510                         reason, scontext_name, tcontext_name, tclass_name);
 511
 512        for (index = 0; index < 32; index++) {
 513                u32 mask = (1 << index);
 514
 515                if ((mask & permissions) == 0)
 516                        continue;
 517
 518                audit_log_format(ab, "%s%s",
 519                                 need_comma ? "," : "",
 520                                 permission_names[index]
 521                                 ? permission_names[index] : "????");
 522                need_comma = true;
 523        }
 524        audit_log_end(ab);
 525out:
 526        /* release scontext/tcontext */
 527        kfree(tcontext_name);
 528        kfree(scontext_name);
 529
 530        return;
 531}
 532
 533/*
 534 * security_boundary_permission - drops violated permissions
 535 * on boundary constraint.
 536 */
 537static void type_attribute_bounds_av(struct policydb *policydb,
 538                                     struct context *scontext,
 539                                     struct context *tcontext,
 540                                     u16 tclass,
 541                                     struct av_decision *avd)
 542{
 543        struct context lo_scontext;
 544        struct context lo_tcontext, *tcontextp = tcontext;
 545        struct av_decision lo_avd;
 546        struct type_datum *source;
 547        struct type_datum *target;
 548        u32 masked = 0;
 549
 550        source = policydb->type_val_to_struct[scontext->type - 1];
 551        BUG_ON(!source);
 552
 553        if (!source->bounds)
 554                return;
 555
 556        target = policydb->type_val_to_struct[tcontext->type - 1];
 557        BUG_ON(!target);
 558
 559        memset(&lo_avd, 0, sizeof(lo_avd));
 560
 561        memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 562        lo_scontext.type = source->bounds;
 563
 564        if (target->bounds) {
 565                memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 566                lo_tcontext.type = target->bounds;
 567                tcontextp = &lo_tcontext;
 568        }
 569
 570        context_struct_compute_av(policydb, &lo_scontext,
 571                                  tcontextp,
 572                                  tclass,
 573                                  &lo_avd,
 574                                  NULL);
 575
 576        masked = ~lo_avd.allowed & avd->allowed;
 577
 578        if (likely(!masked))
 579                return;         /* no masked permission */
 580
 581        /* mask violated permissions */
 582        avd->allowed &= ~masked;
 583
 584        /* audit masked permissions */
 585        security_dump_masked_av(policydb, scontext, tcontext,
 586                                tclass, masked, "bounds");
 587}
 588
 589/*
 590 * flag which drivers have permissions
 591 * only looking for ioctl based extended permssions
 592 */
 593void services_compute_xperms_drivers(
 594                struct extended_perms *xperms,
 595                struct avtab_node *node)
 596{
 597        unsigned int i;
 598
 599        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 600                /* if one or more driver has all permissions allowed */
 601                for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 602                        xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 603        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 604                /* if allowing permissions within a driver */
 605                security_xperm_set(xperms->drivers.p,
 606                                        node->datum.u.xperms->driver);
 607        }
 608
 609        /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 610        if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 611                xperms->len = 1;
 612}
 613
 614/*
 615 * Compute access vectors and extended permissions based on a context
 616 * structure pair for the permissions in a particular class.
 617 */
 618static void context_struct_compute_av(struct policydb *policydb,
 619                                      struct context *scontext,
 620                                      struct context *tcontext,
 621                                      u16 tclass,
 622                                      struct av_decision *avd,
 623                                      struct extended_perms *xperms)
 624{
 625        struct constraint_node *constraint;
 626        struct role_allow *ra;
 627        struct avtab_key avkey;
 628        struct avtab_node *node;
 629        struct class_datum *tclass_datum;
 630        struct ebitmap *sattr, *tattr;
 631        struct ebitmap_node *snode, *tnode;
 632        unsigned int i, j;
 633
 634        avd->allowed = 0;
 635        avd->auditallow = 0;
 636        avd->auditdeny = 0xffffffff;
 637        if (xperms) {
 638                memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 639                xperms->len = 0;
 640        }
 641
 642        if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 643                if (printk_ratelimit())
 644                        pr_warn("SELinux:  Invalid class %hu\n", tclass);
 645                return;
 646        }
 647
 648        tclass_datum = policydb->class_val_to_struct[tclass - 1];
 649
 650        /*
 651         * If a specific type enforcement rule was defined for
 652         * this permission check, then use it.
 653         */
 654        avkey.target_class = tclass;
 655        avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 656        sattr = &policydb->type_attr_map_array[scontext->type - 1];
 657        tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 658        ebitmap_for_each_positive_bit(sattr, snode, i) {
 659                ebitmap_for_each_positive_bit(tattr, tnode, j) {
 660                        avkey.source_type = i + 1;
 661                        avkey.target_type = j + 1;
 662                        for (node = avtab_search_node(&policydb->te_avtab,
 663                                                      &avkey);
 664                             node;
 665                             node = avtab_search_node_next(node, avkey.specified)) {
 666                                if (node->key.specified == AVTAB_ALLOWED)
 667                                        avd->allowed |= node->datum.u.data;
 668                                else if (node->key.specified == AVTAB_AUDITALLOW)
 669                                        avd->auditallow |= node->datum.u.data;
 670                                else if (node->key.specified == AVTAB_AUDITDENY)
 671                                        avd->auditdeny &= node->datum.u.data;
 672                                else if (xperms && (node->key.specified & AVTAB_XPERMS))
 673                                        services_compute_xperms_drivers(xperms, node);
 674                        }
 675
 676                        /* Check conditional av table for additional permissions */
 677                        cond_compute_av(&policydb->te_cond_avtab, &avkey,
 678                                        avd, xperms);
 679
 680                }
 681        }
 682
 683        /*
 684         * Remove any permissions prohibited by a constraint (this includes
 685         * the MLS policy).
 686         */
 687        constraint = tclass_datum->constraints;
 688        while (constraint) {
 689                if ((constraint->permissions & (avd->allowed)) &&
 690                    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 691                                          constraint->expr)) {
 692                        avd->allowed &= ~(constraint->permissions);
 693                }
 694                constraint = constraint->next;
 695        }
 696
 697        /*
 698         * If checking process transition permission and the
 699         * role is changing, then check the (current_role, new_role)
 700         * pair.
 701         */
 702        if (tclass == policydb->process_class &&
 703            (avd->allowed & policydb->process_trans_perms) &&
 704            scontext->role != tcontext->role) {
 705                for (ra = policydb->role_allow; ra; ra = ra->next) {
 706                        if (scontext->role == ra->role &&
 707                            tcontext->role == ra->new_role)
 708                                break;
 709                }
 710                if (!ra)
 711                        avd->allowed &= ~policydb->process_trans_perms;
 712        }
 713
 714        /*
 715         * If the given source and target types have boundary
 716         * constraint, lazy checks have to mask any violated
 717         * permission and notice it to userspace via audit.
 718         */
 719        type_attribute_bounds_av(policydb, scontext, tcontext,
 720                                 tclass, avd);
 721}
 722
 723static int security_validtrans_handle_fail(struct selinux_state *state,
 724                                           struct sidtab_entry *oentry,
 725                                           struct sidtab_entry *nentry,
 726                                           struct sidtab_entry *tentry,
 727                                           u16 tclass)
 728{
 729        struct policydb *p = &state->ss->policydb;
 730        struct sidtab *sidtab = state->ss->sidtab;
 731        char *o = NULL, *n = NULL, *t = NULL;
 732        u32 olen, nlen, tlen;
 733
 734        if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 735                goto out;
 736        if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 737                goto out;
 738        if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 739                goto out;
 740        audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 741                  "op=security_validate_transition seresult=denied"
 742                  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 743                  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 744out:
 745        kfree(o);
 746        kfree(n);
 747        kfree(t);
 748
 749        if (!enforcing_enabled(state))
 750                return 0;
 751        return -EPERM;
 752}
 753
 754static int security_compute_validatetrans(struct selinux_state *state,
 755                                          u32 oldsid, u32 newsid, u32 tasksid,
 756                                          u16 orig_tclass, bool user)
 757{
 758        struct policydb *policydb;
 759        struct sidtab *sidtab;
 760        struct sidtab_entry *oentry;
 761        struct sidtab_entry *nentry;
 762        struct sidtab_entry *tentry;
 763        struct class_datum *tclass_datum;
 764        struct constraint_node *constraint;
 765        u16 tclass;
 766        int rc = 0;
 767
 768
 769        if (!selinux_initialized(state))
 770                return 0;
 771
 772        read_lock(&state->ss->policy_rwlock);
 773
 774        policydb = &state->ss->policydb;
 775        sidtab = state->ss->sidtab;
 776
 777        if (!user)
 778                tclass = unmap_class(&state->ss->map, orig_tclass);
 779        else
 780                tclass = orig_tclass;
 781
 782        if (!tclass || tclass > policydb->p_classes.nprim) {
 783                rc = -EINVAL;
 784                goto out;
 785        }
 786        tclass_datum = policydb->class_val_to_struct[tclass - 1];
 787
 788        oentry = sidtab_search_entry(sidtab, oldsid);
 789        if (!oentry) {
 790                pr_err("SELinux: %s:  unrecognized SID %d\n",
 791                        __func__, oldsid);
 792                rc = -EINVAL;
 793                goto out;
 794        }
 795
 796        nentry = sidtab_search_entry(sidtab, newsid);
 797        if (!nentry) {
 798                pr_err("SELinux: %s:  unrecognized SID %d\n",
 799                        __func__, newsid);
 800                rc = -EINVAL;
 801                goto out;
 802        }
 803
 804        tentry = sidtab_search_entry(sidtab, tasksid);
 805        if (!tentry) {
 806                pr_err("SELinux: %s:  unrecognized SID %d\n",
 807                        __func__, tasksid);
 808                rc = -EINVAL;
 809                goto out;
 810        }
 811
 812        constraint = tclass_datum->validatetrans;
 813        while (constraint) {
 814                if (!constraint_expr_eval(policydb, &oentry->context,
 815                                          &nentry->context, &tentry->context,
 816                                          constraint->expr)) {
 817                        if (user)
 818                                rc = -EPERM;
 819                        else
 820                                rc = security_validtrans_handle_fail(state,
 821                                                                     oentry,
 822                                                                     nentry,
 823                                                                     tentry,
 824                                                                     tclass);
 825                        goto out;
 826                }
 827                constraint = constraint->next;
 828        }
 829
 830out:
 831        read_unlock(&state->ss->policy_rwlock);
 832        return rc;
 833}
 834
 835int security_validate_transition_user(struct selinux_state *state,
 836                                      u32 oldsid, u32 newsid, u32 tasksid,
 837                                      u16 tclass)
 838{
 839        return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 840                                              tclass, true);
 841}
 842
 843int security_validate_transition(struct selinux_state *state,
 844                                 u32 oldsid, u32 newsid, u32 tasksid,
 845                                 u16 orig_tclass)
 846{
 847        return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 848                                              orig_tclass, false);
 849}
 850
 851/*
 852 * security_bounded_transition - check whether the given
 853 * transition is directed to bounded, or not.
 854 * It returns 0, if @newsid is bounded by @oldsid.
 855 * Otherwise, it returns error code.
 856 *
 857 * @oldsid : current security identifier
 858 * @newsid : destinated security identifier
 859 */
 860int security_bounded_transition(struct selinux_state *state,
 861                                u32 old_sid, u32 new_sid)
 862{
 863        struct policydb *policydb;
 864        struct sidtab *sidtab;
 865        struct sidtab_entry *old_entry, *new_entry;
 866        struct type_datum *type;
 867        int index;
 868        int rc;
 869
 870        if (!selinux_initialized(state))
 871                return 0;
 872
 873        read_lock(&state->ss->policy_rwlock);
 874
 875        policydb = &state->ss->policydb;
 876        sidtab = state->ss->sidtab;
 877
 878        rc = -EINVAL;
 879        old_entry = sidtab_search_entry(sidtab, old_sid);
 880        if (!old_entry) {
 881                pr_err("SELinux: %s: unrecognized SID %u\n",
 882                       __func__, old_sid);
 883                goto out;
 884        }
 885
 886        rc = -EINVAL;
 887        new_entry = sidtab_search_entry(sidtab, new_sid);
 888        if (!new_entry) {
 889                pr_err("SELinux: %s: unrecognized SID %u\n",
 890                       __func__, new_sid);
 891                goto out;
 892        }
 893
 894        rc = 0;
 895        /* type/domain unchanged */
 896        if (old_entry->context.type == new_entry->context.type)
 897                goto out;
 898
 899        index = new_entry->context.type;
 900        while (true) {
 901                type = policydb->type_val_to_struct[index - 1];
 902                BUG_ON(!type);
 903
 904                /* not bounded anymore */
 905                rc = -EPERM;
 906                if (!type->bounds)
 907                        break;
 908
 909                /* @newsid is bounded by @oldsid */
 910                rc = 0;
 911                if (type->bounds == old_entry->context.type)
 912                        break;
 913
 914                index = type->bounds;
 915        }
 916
 917        if (rc) {
 918                char *old_name = NULL;
 919                char *new_name = NULL;
 920                u32 length;
 921
 922                if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 923                                            &old_name, &length) &&
 924                    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 925                                            &new_name, &length)) {
 926                        audit_log(audit_context(),
 927                                  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 928                                  "op=security_bounded_transition "
 929                                  "seresult=denied "
 930                                  "oldcontext=%s newcontext=%s",
 931                                  old_name, new_name);
 932                }
 933                kfree(new_name);
 934                kfree(old_name);
 935        }
 936out:
 937        read_unlock(&state->ss->policy_rwlock);
 938
 939        return rc;
 940}
 941
 942static void avd_init(struct selinux_state *state, struct av_decision *avd)
 943{
 944        avd->allowed = 0;
 945        avd->auditallow = 0;
 946        avd->auditdeny = 0xffffffff;
 947        avd->seqno = state->ss->latest_granting;
 948        avd->flags = 0;
 949}
 950
 951void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 952                                        struct avtab_node *node)
 953{
 954        unsigned int i;
 955
 956        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 957                if (xpermd->driver != node->datum.u.xperms->driver)
 958                        return;
 959        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 960                if (!security_xperm_test(node->datum.u.xperms->perms.p,
 961                                        xpermd->driver))
 962                        return;
 963        } else {
 964                BUG();
 965        }
 966
 967        if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 968                xpermd->used |= XPERMS_ALLOWED;
 969                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 970                        memset(xpermd->allowed->p, 0xff,
 971                                        sizeof(xpermd->allowed->p));
 972                }
 973                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 974                        for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 975                                xpermd->allowed->p[i] |=
 976                                        node->datum.u.xperms->perms.p[i];
 977                }
 978        } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 979                xpermd->used |= XPERMS_AUDITALLOW;
 980                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 981                        memset(xpermd->auditallow->p, 0xff,
 982                                        sizeof(xpermd->auditallow->p));
 983                }
 984                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 985                        for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 986                                xpermd->auditallow->p[i] |=
 987                                        node->datum.u.xperms->perms.p[i];
 988                }
 989        } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 990                xpermd->used |= XPERMS_DONTAUDIT;
 991                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 992                        memset(xpermd->dontaudit->p, 0xff,
 993                                        sizeof(xpermd->dontaudit->p));
 994                }
 995                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 996                        for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 997                                xpermd->dontaudit->p[i] |=
 998                                        node->datum.u.xperms->perms.p[i];
 999                }
1000        } else {
1001                BUG();
1002        }
1003}
1004
1005void security_compute_xperms_decision(struct selinux_state *state,
1006                                      u32 ssid,
1007                                      u32 tsid,
1008                                      u16 orig_tclass,
1009                                      u8 driver,
1010                                      struct extended_perms_decision *xpermd)
1011{
1012        struct policydb *policydb;
1013        struct sidtab *sidtab;
1014        u16 tclass;
1015        struct context *scontext, *tcontext;
1016        struct avtab_key avkey;
1017        struct avtab_node *node;
1018        struct ebitmap *sattr, *tattr;
1019        struct ebitmap_node *snode, *tnode;
1020        unsigned int i, j;
1021
1022        xpermd->driver = driver;
1023        xpermd->used = 0;
1024        memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1025        memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1026        memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1027
1028        read_lock(&state->ss->policy_rwlock);
1029        if (!selinux_initialized(state))
1030                goto allow;
1031
1032        policydb = &state->ss->policydb;
1033        sidtab = state->ss->sidtab;
1034
1035        scontext = sidtab_search(sidtab, ssid);
1036        if (!scontext) {
1037                pr_err("SELinux: %s:  unrecognized SID %d\n",
1038                       __func__, ssid);
1039                goto out;
1040        }
1041
1042        tcontext = sidtab_search(sidtab, tsid);
1043        if (!tcontext) {
1044                pr_err("SELinux: %s:  unrecognized SID %d\n",
1045                       __func__, tsid);
1046                goto out;
1047        }
1048
1049        tclass = unmap_class(&state->ss->map, orig_tclass);
1050        if (unlikely(orig_tclass && !tclass)) {
1051                if (policydb->allow_unknown)
1052                        goto allow;
1053                goto out;
1054        }
1055
1056
1057        if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1058                pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1059                goto out;
1060        }
1061
1062        avkey.target_class = tclass;
1063        avkey.specified = AVTAB_XPERMS;
1064        sattr = &policydb->type_attr_map_array[scontext->type - 1];
1065        tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1066        ebitmap_for_each_positive_bit(sattr, snode, i) {
1067                ebitmap_for_each_positive_bit(tattr, tnode, j) {
1068                        avkey.source_type = i + 1;
1069                        avkey.target_type = j + 1;
1070                        for (node = avtab_search_node(&policydb->te_avtab,
1071                                                      &avkey);
1072                             node;
1073                             node = avtab_search_node_next(node, avkey.specified))
1074                                services_compute_xperms_decision(xpermd, node);
1075
1076                        cond_compute_xperms(&policydb->te_cond_avtab,
1077                                                &avkey, xpermd);
1078                }
1079        }
1080out:
1081        read_unlock(&state->ss->policy_rwlock);
1082        return;
1083allow:
1084        memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1085        goto out;
1086}
1087
1088/**
1089 * security_compute_av - Compute access vector decisions.
1090 * @ssid: source security identifier
1091 * @tsid: target security identifier
1092 * @tclass: target security class
1093 * @avd: access vector decisions
1094 * @xperms: extended permissions
1095 *
1096 * Compute a set of access vector decisions based on the
1097 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1098 */
1099void security_compute_av(struct selinux_state *state,
1100                         u32 ssid,
1101                         u32 tsid,
1102                         u16 orig_tclass,
1103                         struct av_decision *avd,
1104                         struct extended_perms *xperms)
1105{
1106        struct policydb *policydb;
1107        struct sidtab *sidtab;
1108        u16 tclass;
1109        struct context *scontext = NULL, *tcontext = NULL;
1110
1111        read_lock(&state->ss->policy_rwlock);
1112        avd_init(state, avd);
1113        xperms->len = 0;
1114        if (!selinux_initialized(state))
1115                goto allow;
1116
1117        policydb = &state->ss->policydb;
1118        sidtab = state->ss->sidtab;
1119
1120        scontext = sidtab_search(sidtab, ssid);
1121        if (!scontext) {
1122                pr_err("SELinux: %s:  unrecognized SID %d\n",
1123                       __func__, ssid);
1124                goto out;
1125        }
1126
1127        /* permissive domain? */
1128        if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1129                avd->flags |= AVD_FLAGS_PERMISSIVE;
1130
1131        tcontext = sidtab_search(sidtab, tsid);
1132        if (!tcontext) {
1133                pr_err("SELinux: %s:  unrecognized SID %d\n",
1134                       __func__, tsid);
1135                goto out;
1136        }
1137
1138        tclass = unmap_class(&state->ss->map, orig_tclass);
1139        if (unlikely(orig_tclass && !tclass)) {
1140                if (policydb->allow_unknown)
1141                        goto allow;
1142                goto out;
1143        }
1144        context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1145                                  xperms);
1146        map_decision(&state->ss->map, orig_tclass, avd,
1147                     policydb->allow_unknown);
1148out:
1149        read_unlock(&state->ss->policy_rwlock);
1150        return;
1151allow:
1152        avd->allowed = 0xffffffff;
1153        goto out;
1154}
1155
1156void security_compute_av_user(struct selinux_state *state,
1157                              u32 ssid,
1158                              u32 tsid,
1159                              u16 tclass,
1160                              struct av_decision *avd)
1161{
1162        struct policydb *policydb;
1163        struct sidtab *sidtab;
1164        struct context *scontext = NULL, *tcontext = NULL;
1165
1166        read_lock(&state->ss->policy_rwlock);
1167        avd_init(state, avd);
1168        if (!selinux_initialized(state))
1169                goto allow;
1170
1171        policydb = &state->ss->policydb;
1172        sidtab = state->ss->sidtab;
1173
1174        scontext = sidtab_search(sidtab, ssid);
1175        if (!scontext) {
1176                pr_err("SELinux: %s:  unrecognized SID %d\n",
1177                       __func__, ssid);
1178                goto out;
1179        }
1180
1181        /* permissive domain? */
1182        if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1183                avd->flags |= AVD_FLAGS_PERMISSIVE;
1184
1185        tcontext = sidtab_search(sidtab, tsid);
1186        if (!tcontext) {
1187                pr_err("SELinux: %s:  unrecognized SID %d\n",
1188                       __func__, tsid);
1189                goto out;
1190        }
1191
1192        if (unlikely(!tclass)) {
1193                if (policydb->allow_unknown)
1194                        goto allow;
1195                goto out;
1196        }
1197
1198        context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1199                                  NULL);
1200 out:
1201        read_unlock(&state->ss->policy_rwlock);
1202        return;
1203allow:
1204        avd->allowed = 0xffffffff;
1205        goto out;
1206}
1207
1208/*
1209 * Write the security context string representation of
1210 * the context structure `context' into a dynamically
1211 * allocated string of the correct size.  Set `*scontext'
1212 * to point to this string and set `*scontext_len' to
1213 * the length of the string.
1214 */
1215static int context_struct_to_string(struct policydb *p,
1216                                    struct context *context,
1217                                    char **scontext, u32 *scontext_len)
1218{
1219        char *scontextp;
1220
1221        if (scontext)
1222                *scontext = NULL;
1223        *scontext_len = 0;
1224
1225        if (context->len) {
1226                *scontext_len = context->len;
1227                if (scontext) {
1228                        *scontext = kstrdup(context->str, GFP_ATOMIC);
1229                        if (!(*scontext))
1230                                return -ENOMEM;
1231                }
1232                return 0;
1233        }
1234
1235        /* Compute the size of the context. */
1236        *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1237        *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1238        *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1239        *scontext_len += mls_compute_context_len(p, context);
1240
1241        if (!scontext)
1242                return 0;
1243
1244        /* Allocate space for the context; caller must free this space. */
1245        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1246        if (!scontextp)
1247                return -ENOMEM;
1248        *scontext = scontextp;
1249
1250        /*
1251         * Copy the user name, role name and type name into the context.
1252         */
1253        scontextp += sprintf(scontextp, "%s:%s:%s",
1254                sym_name(p, SYM_USERS, context->user - 1),
1255                sym_name(p, SYM_ROLES, context->role - 1),
1256                sym_name(p, SYM_TYPES, context->type - 1));
1257
1258        mls_sid_to_context(p, context, &scontextp);
1259
1260        *scontextp = 0;
1261
1262        return 0;
1263}
1264
1265static int sidtab_entry_to_string(struct policydb *p,
1266                                  struct sidtab *sidtab,
1267                                  struct sidtab_entry *entry,
1268                                  char **scontext, u32 *scontext_len)
1269{
1270        int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1271
1272        if (rc != -ENOENT)
1273                return rc;
1274
1275        rc = context_struct_to_string(p, &entry->context, scontext,
1276                                      scontext_len);
1277        if (!rc && scontext)
1278                sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1279        return rc;
1280}
1281
1282#include "initial_sid_to_string.h"
1283
1284int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1285{
1286        int rc;
1287
1288        if (!selinux_initialized(state)) {
1289                pr_err("SELinux: %s:  called before initial load_policy\n",
1290                       __func__);
1291                return -EINVAL;
1292        }
1293
1294        read_lock(&state->ss->policy_rwlock);
1295        rc = sidtab_hash_stats(state->ss->sidtab, page);
1296        read_unlock(&state->ss->policy_rwlock);
1297
1298        return rc;
1299}
1300
1301const char *security_get_initial_sid_context(u32 sid)
1302{
1303        if (unlikely(sid > SECINITSID_NUM))
1304                return NULL;
1305        return initial_sid_to_string[sid];
1306}
1307
1308static int security_sid_to_context_core(struct selinux_state *state,
1309                                        u32 sid, char **scontext,
1310                                        u32 *scontext_len, int force,
1311                                        int only_invalid)
1312{
1313        struct policydb *policydb;
1314        struct sidtab *sidtab;
1315        struct sidtab_entry *entry;
1316        int rc = 0;
1317
1318        if (scontext)
1319                *scontext = NULL;
1320        *scontext_len  = 0;
1321
1322        if (!selinux_initialized(state)) {
1323                if (sid <= SECINITSID_NUM) {
1324                        char *scontextp;
1325                        const char *s = initial_sid_to_string[sid];
1326
1327                        if (!s)
1328                                return -EINVAL;
1329                        *scontext_len = strlen(s) + 1;
1330                        if (!scontext)
1331                                return 0;
1332                        scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1333                        if (!scontextp)
1334                                return -ENOMEM;
1335                        *scontext = scontextp;
1336                        return 0;
1337                }
1338                pr_err("SELinux: %s:  called before initial "
1339                       "load_policy on unknown SID %d\n", __func__, sid);
1340                return -EINVAL;
1341        }
1342        read_lock(&state->ss->policy_rwlock);
1343        policydb = &state->ss->policydb;
1344        sidtab = state->ss->sidtab;
1345
1346        if (force)
1347                entry = sidtab_search_entry_force(sidtab, sid);
1348        else
1349                entry = sidtab_search_entry(sidtab, sid);
1350        if (!entry) {
1351                pr_err("SELinux: %s:  unrecognized SID %d\n",
1352                        __func__, sid);
1353                rc = -EINVAL;
1354                goto out_unlock;
1355        }
1356        if (only_invalid && !entry->context.len)
1357                goto out_unlock;
1358
1359        rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1360                                    scontext_len);
1361
1362out_unlock:
1363        read_unlock(&state->ss->policy_rwlock);
1364        return rc;
1365
1366}
1367
1368/**
1369 * security_sid_to_context - Obtain a context for a given SID.
1370 * @sid: security identifier, SID
1371 * @scontext: security context
1372 * @scontext_len: length in bytes
1373 *
1374 * Write the string representation of the context associated with @sid
1375 * into a dynamically allocated string of the correct size.  Set @scontext
1376 * to point to this string and set @scontext_len to the length of the string.
1377 */
1378int security_sid_to_context(struct selinux_state *state,
1379                            u32 sid, char **scontext, u32 *scontext_len)
1380{
1381        return security_sid_to_context_core(state, sid, scontext,
1382                                            scontext_len, 0, 0);
1383}
1384
1385int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1386                                  char **scontext, u32 *scontext_len)
1387{
1388        return security_sid_to_context_core(state, sid, scontext,
1389                                            scontext_len, 1, 0);
1390}
1391
1392/**
1393 * security_sid_to_context_inval - Obtain a context for a given SID if it
1394 *                                 is invalid.
1395 * @sid: security identifier, SID
1396 * @scontext: security context
1397 * @scontext_len: length in bytes
1398 *
1399 * Write the string representation of the context associated with @sid
1400 * into a dynamically allocated string of the correct size, but only if the
1401 * context is invalid in the current policy.  Set @scontext to point to
1402 * this string (or NULL if the context is valid) and set @scontext_len to
1403 * the length of the string (or 0 if the context is valid).
1404 */
1405int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1406                                  char **scontext, u32 *scontext_len)
1407{
1408        return security_sid_to_context_core(state, sid, scontext,
1409                                            scontext_len, 1, 1);
1410}
1411
1412/*
1413 * Caveat:  Mutates scontext.
1414 */
1415static int string_to_context_struct(struct policydb *pol,
1416                                    struct sidtab *sidtabp,
1417                                    char *scontext,
1418                                    struct context *ctx,
1419                                    u32 def_sid)
1420{
1421        struct role_datum *role;
1422        struct type_datum *typdatum;
1423        struct user_datum *usrdatum;
1424        char *scontextp, *p, oldc;
1425        int rc = 0;
1426
1427        context_init(ctx);
1428
1429        /* Parse the security context. */
1430
1431        rc = -EINVAL;
1432        scontextp = (char *) scontext;
1433
1434        /* Extract the user. */
1435        p = scontextp;
1436        while (*p && *p != ':')
1437                p++;
1438
1439        if (*p == 0)
1440                goto out;
1441
1442        *p++ = 0;
1443
1444        usrdatum = hashtab_search(pol->p_users.table, scontextp);
1445        if (!usrdatum)
1446                goto out;
1447
1448        ctx->user = usrdatum->value;
1449
1450        /* Extract role. */
1451        scontextp = p;
1452        while (*p && *p != ':')
1453                p++;
1454
1455        if (*p == 0)
1456                goto out;
1457
1458        *p++ = 0;
1459
1460        role = hashtab_search(pol->p_roles.table, scontextp);
1461        if (!role)
1462                goto out;
1463        ctx->role = role->value;
1464
1465        /* Extract type. */
1466        scontextp = p;
1467        while (*p && *p != ':')
1468                p++;
1469        oldc = *p;
1470        *p++ = 0;
1471
1472        typdatum = hashtab_search(pol->p_types.table, scontextp);
1473        if (!typdatum || typdatum->attribute)
1474                goto out;
1475
1476        ctx->type = typdatum->value;
1477
1478        rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1479        if (rc)
1480                goto out;
1481
1482        /* Check the validity of the new context. */
1483        rc = -EINVAL;
1484        if (!policydb_context_isvalid(pol, ctx))
1485                goto out;
1486        rc = 0;
1487out:
1488        if (rc)
1489                context_destroy(ctx);
1490        return rc;
1491}
1492
1493int context_add_hash(struct policydb *policydb,
1494                     struct context *context)
1495{
1496        int rc;
1497        char *str;
1498        int len;
1499
1500        if (context->str) {
1501                context->hash = context_compute_hash(context->str);
1502        } else {
1503                rc = context_struct_to_string(policydb, context,
1504                                              &str, &len);
1505                if (rc)
1506                        return rc;
1507                context->hash = context_compute_hash(str);
1508                kfree(str);
1509        }
1510        return 0;
1511}
1512
1513static int context_struct_to_sid(struct selinux_state *state,
1514                                 struct context *context, u32 *sid)
1515{
1516        int rc;
1517        struct sidtab *sidtab = state->ss->sidtab;
1518        struct policydb *policydb = &state->ss->policydb;
1519
1520        if (!context->hash) {
1521                rc = context_add_hash(policydb, context);
1522                if (rc)
1523                        return rc;
1524        }
1525
1526        return sidtab_context_to_sid(sidtab, context, sid);
1527}
1528
1529static int security_context_to_sid_core(struct selinux_state *state,
1530                                        const char *scontext, u32 scontext_len,
1531                                        u32 *sid, u32 def_sid, gfp_t gfp_flags,
1532                                        int force)
1533{
1534        struct policydb *policydb;
1535        struct sidtab *sidtab;
1536        char *scontext2, *str = NULL;
1537        struct context context;
1538        int rc = 0;
1539
1540        /* An empty security context is never valid. */
1541        if (!scontext_len)
1542                return -EINVAL;
1543
1544        /* Copy the string to allow changes and ensure a NUL terminator */
1545        scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1546        if (!scontext2)
1547                return -ENOMEM;
1548
1549        if (!selinux_initialized(state)) {
1550                int i;
1551
1552                for (i = 1; i < SECINITSID_NUM; i++) {
1553                        const char *s = initial_sid_to_string[i];
1554
1555                        if (s && !strcmp(s, scontext2)) {
1556                                *sid = i;
1557                                goto out;
1558                        }
1559                }
1560                *sid = SECINITSID_KERNEL;
1561                goto out;
1562        }
1563        *sid = SECSID_NULL;
1564
1565        if (force) {
1566                /* Save another copy for storing in uninterpreted form */
1567                rc = -ENOMEM;
1568                str = kstrdup(scontext2, gfp_flags);
1569                if (!str)
1570                        goto out;
1571        }
1572        read_lock(&state->ss->policy_rwlock);
1573        policydb = &state->ss->policydb;
1574        sidtab = state->ss->sidtab;
1575        rc = string_to_context_struct(policydb, sidtab, scontext2,
1576                                      &context, def_sid);
1577        if (rc == -EINVAL && force) {
1578                context.str = str;
1579                context.len = strlen(str) + 1;
1580                str = NULL;
1581        } else if (rc)
1582                goto out_unlock;
1583        rc = context_struct_to_sid(state, &context, sid);
1584        context_destroy(&context);
1585out_unlock:
1586        read_unlock(&state->ss->policy_rwlock);
1587out:
1588        kfree(scontext2);
1589        kfree(str);
1590        return rc;
1591}
1592
1593/**
1594 * security_context_to_sid - Obtain a SID for a given security context.
1595 * @scontext: security context
1596 * @scontext_len: length in bytes
1597 * @sid: security identifier, SID
1598 * @gfp: context for the allocation
1599 *
1600 * Obtains a SID associated with the security context that
1601 * has the string representation specified by @scontext.
1602 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1603 * memory is available, or 0 on success.
1604 */
1605int security_context_to_sid(struct selinux_state *state,
1606                            const char *scontext, u32 scontext_len, u32 *sid,
1607                            gfp_t gfp)
1608{
1609        return security_context_to_sid_core(state, scontext, scontext_len,
1610                                            sid, SECSID_NULL, gfp, 0);
1611}
1612
1613int security_context_str_to_sid(struct selinux_state *state,
1614                                const char *scontext, u32 *sid, gfp_t gfp)
1615{
1616        return security_context_to_sid(state, scontext, strlen(scontext),
1617                                       sid, gfp);
1618}
1619
1620/**
1621 * security_context_to_sid_default - Obtain a SID for a given security context,
1622 * falling back to specified default if needed.
1623 *
1624 * @scontext: security context
1625 * @scontext_len: length in bytes
1626 * @sid: security identifier, SID
1627 * @def_sid: default SID to assign on error
1628 *
1629 * Obtains a SID associated with the security context that
1630 * has the string representation specified by @scontext.
1631 * The default SID is passed to the MLS layer to be used to allow
1632 * kernel labeling of the MLS field if the MLS field is not present
1633 * (for upgrading to MLS without full relabel).
1634 * Implicitly forces adding of the context even if it cannot be mapped yet.
1635 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1636 * memory is available, or 0 on success.
1637 */
1638int security_context_to_sid_default(struct selinux_state *state,
1639                                    const char *scontext, u32 scontext_len,
1640                                    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1641{
1642        return security_context_to_sid_core(state, scontext, scontext_len,
1643                                            sid, def_sid, gfp_flags, 1);
1644}
1645
1646int security_context_to_sid_force(struct selinux_state *state,
1647                                  const char *scontext, u32 scontext_len,
1648                                  u32 *sid)
1649{
1650        return security_context_to_sid_core(state, scontext, scontext_len,
1651                                            sid, SECSID_NULL, GFP_KERNEL, 1);
1652}
1653
1654static int compute_sid_handle_invalid_context(
1655        struct selinux_state *state,
1656        struct sidtab_entry *sentry,
1657        struct sidtab_entry *tentry,
1658        u16 tclass,
1659        struct context *newcontext)
1660{
1661        struct policydb *policydb = &state->ss->policydb;
1662        struct sidtab *sidtab = state->ss->sidtab;
1663        char *s = NULL, *t = NULL, *n = NULL;
1664        u32 slen, tlen, nlen;
1665        struct audit_buffer *ab;
1666
1667        if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1668                goto out;
1669        if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1670                goto out;
1671        if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1672                goto out;
1673        ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1674        audit_log_format(ab,
1675                         "op=security_compute_sid invalid_context=");
1676        /* no need to record the NUL with untrusted strings */
1677        audit_log_n_untrustedstring(ab, n, nlen - 1);
1678        audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1679                         s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1680        audit_log_end(ab);
1681out:
1682        kfree(s);
1683        kfree(t);
1684        kfree(n);
1685        if (!enforcing_enabled(state))
1686                return 0;
1687        return -EACCES;
1688}
1689
1690static void filename_compute_type(struct policydb *policydb,
1691                                  struct context *newcontext,
1692                                  u32 stype, u32 ttype, u16 tclass,
1693                                  const char *objname)
1694{
1695        struct filename_trans_key ft;
1696        struct filename_trans_datum *datum;
1697
1698        /*
1699         * Most filename trans rules are going to live in specific directories
1700         * like /dev or /var/run.  This bitmap will quickly skip rule searches
1701         * if the ttype does not contain any rules.
1702         */
1703        if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1704                return;
1705
1706        ft.ttype = ttype;
1707        ft.tclass = tclass;
1708        ft.name = objname;
1709
1710        datum = hashtab_search(policydb->filename_trans, &ft);
1711        while (datum) {
1712                if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1713                        newcontext->type = datum->otype;
1714                        return;
1715                }
1716                datum = datum->next;
1717        }
1718}
1719
1720static int security_compute_sid(struct selinux_state *state,
1721                                u32 ssid,
1722                                u32 tsid,
1723                                u16 orig_tclass,
1724                                u32 specified,
1725                                const char *objname,
1726                                u32 *out_sid,
1727                                bool kern)
1728{
1729        struct policydb *policydb;
1730        struct sidtab *sidtab;
1731        struct class_datum *cladatum = NULL;
1732        struct context *scontext, *tcontext, newcontext;
1733        struct sidtab_entry *sentry, *tentry;
1734        struct role_trans *roletr = NULL;
1735        struct avtab_key avkey;
1736        struct avtab_datum *avdatum;
1737        struct avtab_node *node;
1738        u16 tclass;
1739        int rc = 0;
1740        bool sock;
1741
1742        if (!selinux_initialized(state)) {
1743                switch (orig_tclass) {
1744                case SECCLASS_PROCESS: /* kernel value */
1745                        *out_sid = ssid;
1746                        break;
1747                default:
1748                        *out_sid = tsid;
1749                        break;
1750                }
1751                goto out;
1752        }
1753
1754        context_init(&newcontext);
1755
1756        read_lock(&state->ss->policy_rwlock);
1757
1758        if (kern) {
1759                tclass = unmap_class(&state->ss->map, orig_tclass);
1760                sock = security_is_socket_class(orig_tclass);
1761        } else {
1762                tclass = orig_tclass;
1763                sock = security_is_socket_class(map_class(&state->ss->map,
1764                                                          tclass));
1765        }
1766
1767        policydb = &state->ss->policydb;
1768        sidtab = state->ss->sidtab;
1769
1770        sentry = sidtab_search_entry(sidtab, ssid);
1771        if (!sentry) {
1772                pr_err("SELinux: %s:  unrecognized SID %d\n",
1773                       __func__, ssid);
1774                rc = -EINVAL;
1775                goto out_unlock;
1776        }
1777        tentry = sidtab_search_entry(sidtab, tsid);
1778        if (!tentry) {
1779                pr_err("SELinux: %s:  unrecognized SID %d\n",
1780                       __func__, tsid);
1781                rc = -EINVAL;
1782                goto out_unlock;
1783        }
1784
1785        scontext = &sentry->context;
1786        tcontext = &tentry->context;
1787
1788        if (tclass && tclass <= policydb->p_classes.nprim)
1789                cladatum = policydb->class_val_to_struct[tclass - 1];
1790
1791        /* Set the user identity. */
1792        switch (specified) {
1793        case AVTAB_TRANSITION:
1794        case AVTAB_CHANGE:
1795                if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1796                        newcontext.user = tcontext->user;
1797                } else {
1798                        /* notice this gets both DEFAULT_SOURCE and unset */
1799                        /* Use the process user identity. */
1800                        newcontext.user = scontext->user;
1801                }
1802                break;
1803        case AVTAB_MEMBER:
1804                /* Use the related object owner. */
1805                newcontext.user = tcontext->user;
1806                break;
1807        }
1808
1809        /* Set the role to default values. */
1810        if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1811                newcontext.role = scontext->role;
1812        } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1813                newcontext.role = tcontext->role;
1814        } else {
1815                if ((tclass == policydb->process_class) || (sock == true))
1816                        newcontext.role = scontext->role;
1817                else
1818                        newcontext.role = OBJECT_R_VAL;
1819        }
1820
1821        /* Set the type to default values. */
1822        if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1823                newcontext.type = scontext->type;
1824        } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1825                newcontext.type = tcontext->type;
1826        } else {
1827                if ((tclass == policydb->process_class) || (sock == true)) {
1828                        /* Use the type of process. */
1829                        newcontext.type = scontext->type;
1830                } else {
1831                        /* Use the type of the related object. */
1832                        newcontext.type = tcontext->type;
1833                }
1834        }
1835
1836        /* Look for a type transition/member/change rule. */
1837        avkey.source_type = scontext->type;
1838        avkey.target_type = tcontext->type;
1839        avkey.target_class = tclass;
1840        avkey.specified = specified;
1841        avdatum = avtab_search(&policydb->te_avtab, &avkey);
1842
1843        /* If no permanent rule, also check for enabled conditional rules */
1844        if (!avdatum) {
1845                node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1846                for (; node; node = avtab_search_node_next(node, specified)) {
1847                        if (node->key.specified & AVTAB_ENABLED) {
1848                                avdatum = &node->datum;
1849                                break;
1850                        }
1851                }
1852        }
1853
1854        if (avdatum) {
1855                /* Use the type from the type transition/member/change rule. */
1856                newcontext.type = avdatum->u.data;
1857        }
1858
1859        /* if we have a objname this is a file trans check so check those rules */
1860        if (objname)
1861                filename_compute_type(policydb, &newcontext, scontext->type,
1862                                      tcontext->type, tclass, objname);
1863
1864        /* Check for class-specific changes. */
1865        if (specified & AVTAB_TRANSITION) {
1866                /* Look for a role transition rule. */
1867                for (roletr = policydb->role_tr; roletr;
1868                     roletr = roletr->next) {
1869                        if ((roletr->role == scontext->role) &&
1870                            (roletr->type == tcontext->type) &&
1871                            (roletr->tclass == tclass)) {
1872                                /* Use the role transition rule. */
1873                                newcontext.role = roletr->new_role;
1874                                break;
1875                        }
1876                }
1877        }
1878
1879        /* Set the MLS attributes.
1880           This is done last because it may allocate memory. */
1881        rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1882                             &newcontext, sock);
1883        if (rc)
1884                goto out_unlock;
1885
1886        /* Check the validity of the context. */
1887        if (!policydb_context_isvalid(policydb, &newcontext)) {
1888                rc = compute_sid_handle_invalid_context(state, sentry, tentry,
1889                                                        tclass, &newcontext);
1890                if (rc)
1891                        goto out_unlock;
1892        }
1893        /* Obtain the sid for the context. */
1894        rc = context_struct_to_sid(state, &newcontext, out_sid);
1895out_unlock:
1896        read_unlock(&state->ss->policy_rwlock);
1897        context_destroy(&newcontext);
1898out:
1899        return rc;
1900}
1901
1902/**
1903 * security_transition_sid - Compute the SID for a new subject/object.
1904 * @ssid: source security identifier
1905 * @tsid: target security identifier
1906 * @tclass: target security class
1907 * @out_sid: security identifier for new subject/object
1908 *
1909 * Compute a SID to use for labeling a new subject or object in the
1910 * class @tclass based on a SID pair (@ssid, @tsid).
1911 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1912 * if insufficient memory is available, or %0 if the new SID was
1913 * computed successfully.
1914 */
1915int security_transition_sid(struct selinux_state *state,
1916                            u32 ssid, u32 tsid, u16 tclass,
1917                            const struct qstr *qstr, u32 *out_sid)
1918{
1919        return security_compute_sid(state, ssid, tsid, tclass,
1920                                    AVTAB_TRANSITION,
1921                                    qstr ? qstr->name : NULL, out_sid, true);
1922}
1923
1924int security_transition_sid_user(struct selinux_state *state,
1925                                 u32 ssid, u32 tsid, u16 tclass,
1926                                 const char *objname, u32 *out_sid)
1927{
1928        return security_compute_sid(state, ssid, tsid, tclass,
1929                                    AVTAB_TRANSITION,
1930                                    objname, out_sid, false);
1931}
1932
1933/**
1934 * security_member_sid - Compute the SID for member selection.
1935 * @ssid: source security identifier
1936 * @tsid: target security identifier
1937 * @tclass: target security class
1938 * @out_sid: security identifier for selected member
1939 *
1940 * Compute a SID to use when selecting a member of a polyinstantiated
1941 * object of class @tclass based on a SID pair (@ssid, @tsid).
1942 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1943 * if insufficient memory is available, or %0 if the SID was
1944 * computed successfully.
1945 */
1946int security_member_sid(struct selinux_state *state,
1947                        u32 ssid,
1948                        u32 tsid,
1949                        u16 tclass,
1950                        u32 *out_sid)
1951{
1952        return security_compute_sid(state, ssid, tsid, tclass,
1953                                    AVTAB_MEMBER, NULL,
1954                                    out_sid, false);
1955}
1956
1957/**
1958 * security_change_sid - Compute the SID for object relabeling.
1959 * @ssid: source security identifier
1960 * @tsid: target security identifier
1961 * @tclass: target security class
1962 * @out_sid: security identifier for selected member
1963 *
1964 * Compute a SID to use for relabeling an object of class @tclass
1965 * based on a SID pair (@ssid, @tsid).
1966 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1967 * if insufficient memory is available, or %0 if the SID was
1968 * computed successfully.
1969 */
1970int security_change_sid(struct selinux_state *state,
1971                        u32 ssid,
1972                        u32 tsid,
1973                        u16 tclass,
1974                        u32 *out_sid)
1975{
1976        return security_compute_sid(state,
1977                                    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1978                                    out_sid, false);
1979}
1980
1981static inline int convert_context_handle_invalid_context(
1982        struct selinux_state *state,
1983        struct context *context)
1984{
1985        struct policydb *policydb = &state->ss->policydb;
1986        char *s;
1987        u32 len;
1988
1989        if (enforcing_enabled(state))
1990                return -EINVAL;
1991
1992        if (!context_struct_to_string(policydb, context, &s, &len)) {
1993                pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1994                        s);
1995                kfree(s);
1996        }
1997        return 0;
1998}
1999
2000struct convert_context_args {
2001        struct selinux_state *state;
2002        struct policydb *oldp;
2003        struct policydb *newp;
2004};
2005
2006/*
2007 * Convert the values in the security context
2008 * structure `oldc' from the values specified
2009 * in the policy `p->oldp' to the values specified
2010 * in the policy `p->newp', storing the new context
2011 * in `newc'.  Verify that the context is valid
2012 * under the new policy.
2013 */
2014static int convert_context(struct context *oldc, struct context *newc, void *p)
2015{
2016        struct convert_context_args *args;
2017        struct ocontext *oc;
2018        struct role_datum *role;
2019        struct type_datum *typdatum;
2020        struct user_datum *usrdatum;
2021        char *s;
2022        u32 len;
2023        int rc;
2024
2025        args = p;
2026
2027        if (oldc->str) {
2028                s = kstrdup(oldc->str, GFP_KERNEL);
2029                if (!s)
2030                        return -ENOMEM;
2031
2032                rc = string_to_context_struct(args->newp, NULL, s,
2033                                              newc, SECSID_NULL);
2034                if (rc == -EINVAL) {
2035                        /*
2036                         * Retain string representation for later mapping.
2037                         *
2038                         * IMPORTANT: We need to copy the contents of oldc->str
2039                         * back into s again because string_to_context_struct()
2040                         * may have garbled it.
2041                         */
2042                        memcpy(s, oldc->str, oldc->len);
2043                        context_init(newc);
2044                        newc->str = s;
2045                        newc->len = oldc->len;
2046                        newc->hash = oldc->hash;
2047                        return 0;
2048                }
2049                kfree(s);
2050                if (rc) {
2051                        /* Other error condition, e.g. ENOMEM. */
2052                        pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2053                               oldc->str, -rc);
2054                        return rc;
2055                }
2056                pr_info("SELinux:  Context %s became valid (mapped).\n",
2057                        oldc->str);
2058                return 0;
2059        }
2060
2061        context_init(newc);
2062
2063        /* Convert the user. */
2064        rc = -EINVAL;
2065        usrdatum = hashtab_search(args->newp->p_users.table,
2066                                  sym_name(args->oldp,
2067                                           SYM_USERS, oldc->user - 1));
2068        if (!usrdatum)
2069                goto bad;
2070        newc->user = usrdatum->value;
2071
2072        /* Convert the role. */
2073        rc = -EINVAL;
2074        role = hashtab_search(args->newp->p_roles.table,
2075                              sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2076        if (!role)
2077                goto bad;
2078        newc->role = role->value;
2079
2080        /* Convert the type. */
2081        rc = -EINVAL;
2082        typdatum = hashtab_search(args->newp->p_types.table,
2083                                  sym_name(args->oldp,
2084                                           SYM_TYPES, oldc->type - 1));
2085        if (!typdatum)
2086                goto bad;
2087        newc->type = typdatum->value;
2088
2089        /* Convert the MLS fields if dealing with MLS policies */
2090        if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2091                rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2092                if (rc)
2093                        goto bad;
2094        } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2095                /*
2096                 * Switching between non-MLS and MLS policy:
2097                 * ensure that the MLS fields of the context for all
2098                 * existing entries in the sidtab are filled in with a
2099                 * suitable default value, likely taken from one of the
2100                 * initial SIDs.
2101                 */
2102                oc = args->newp->ocontexts[OCON_ISID];
2103                while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2104                        oc = oc->next;
2105                rc = -EINVAL;
2106                if (!oc) {
2107                        pr_err("SELinux:  unable to look up"
2108                                " the initial SIDs list\n");
2109                        goto bad;
2110                }
2111                rc = mls_range_set(newc, &oc->context[0].range);
2112                if (rc)
2113                        goto bad;
2114        }
2115
2116        /* Check the validity of the new context. */
2117        if (!policydb_context_isvalid(args->newp, newc)) {
2118                rc = convert_context_handle_invalid_context(args->state, oldc);
2119                if (rc)
2120                        goto bad;
2121        }
2122
2123        rc = context_add_hash(args->newp, newc);
2124        if (rc)
2125                goto bad;
2126
2127        return 0;
2128bad:
2129        /* Map old representation to string and save it. */
2130        rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2131        if (rc)
2132                return rc;
2133        context_destroy(newc);
2134        newc->str = s;
2135        newc->len = len;
2136        newc->hash = context_compute_hash(s);
2137        pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2138                newc->str);
2139        return 0;
2140}
2141
2142static void security_load_policycaps(struct selinux_state *state)
2143{
2144        struct policydb *p = &state->ss->policydb;
2145        unsigned int i;
2146        struct ebitmap_node *node;
2147
2148        for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2149                state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2150
2151        for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2152                pr_info("SELinux:  policy capability %s=%d\n",
2153                        selinux_policycap_names[i],
2154                        ebitmap_get_bit(&p->policycaps, i));
2155
2156        ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2157                if (i >= ARRAY_SIZE(selinux_policycap_names))
2158                        pr_info("SELinux:  unknown policy capability %u\n",
2159                                i);
2160        }
2161}
2162
2163static int security_preserve_bools(struct selinux_state *state,
2164                                   struct policydb *newpolicydb);
2165
2166/**
2167 * security_load_policy - Load a security policy configuration.
2168 * @data: binary policy data
2169 * @len: length of data in bytes
2170 *
2171 * Load a new set of security policy configuration data,
2172 * validate it and convert the SID table as necessary.
2173 * This function will flush the access vector cache after
2174 * loading the new policy.
2175 */
2176int security_load_policy(struct selinux_state *state, void *data, size_t len)
2177{
2178        struct policydb *policydb;
2179        struct sidtab *oldsidtab, *newsidtab;
2180        struct policydb *oldpolicydb, *newpolicydb;
2181        struct selinux_mapping *oldmapping;
2182        struct selinux_map newmap;
2183        struct sidtab_convert_params convert_params;
2184        struct convert_context_args args;
2185        u32 seqno;
2186        int rc = 0;
2187        struct policy_file file = { data, len }, *fp = &file;
2188
2189        policydb = &state->ss->policydb;
2190
2191        newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2192        if (!newsidtab)
2193                return -ENOMEM;
2194
2195        if (!selinux_initialized(state)) {
2196                rc = policydb_read(policydb, fp);
2197                if (rc) {
2198                        kfree(newsidtab);
2199                        return rc;
2200                }
2201
2202                policydb->len = len;
2203                rc = selinux_set_mapping(policydb, secclass_map,
2204                                         &state->ss->map);
2205                if (rc) {
2206                        kfree(newsidtab);
2207                        policydb_destroy(policydb);
2208                        return rc;
2209                }
2210
2211                rc = policydb_load_isids(policydb, newsidtab);
2212                if (rc) {
2213                        kfree(newsidtab);
2214                        policydb_destroy(policydb);
2215                        return rc;
2216                }
2217
2218                state->ss->sidtab = newsidtab;
2219                security_load_policycaps(state);
2220                selinux_mark_initialized(state);
2221                seqno = ++state->ss->latest_granting;
2222                selinux_complete_init();
2223                avc_ss_reset(state->avc, seqno);
2224                selnl_notify_policyload(seqno);
2225                selinux_status_update_policyload(state, seqno);
2226                selinux_netlbl_cache_invalidate();
2227                selinux_xfrm_notify_policyload();
2228                return 0;
2229        }
2230
2231        oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2232        if (!oldpolicydb) {
2233                kfree(newsidtab);
2234                return -ENOMEM;
2235        }
2236        newpolicydb = oldpolicydb + 1;
2237
2238        rc = policydb_read(newpolicydb, fp);
2239        if (rc) {
2240                kfree(newsidtab);
2241                goto out;
2242        }
2243
2244        newpolicydb->len = len;
2245        /* If switching between different policy types, log MLS status */
2246        if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2247                pr_info("SELinux: Disabling MLS support...\n");
2248        else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2249                pr_info("SELinux: Enabling MLS support...\n");
2250
2251        rc = policydb_load_isids(newpolicydb, newsidtab);
2252        if (rc) {
2253                pr_err("SELinux:  unable to load the initial SIDs\n");
2254                policydb_destroy(newpolicydb);
2255                kfree(newsidtab);
2256                goto out;
2257        }
2258
2259        rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2260        if (rc)
2261                goto err;
2262
2263        rc = security_preserve_bools(state, newpolicydb);
2264        if (rc) {
2265                pr_err("SELinux:  unable to preserve booleans\n");
2266                goto err;
2267        }
2268
2269        oldsidtab = state->ss->sidtab;
2270
2271        /*
2272         * Convert the internal representations of contexts
2273         * in the new SID table.
2274         */
2275        args.state = state;
2276        args.oldp = policydb;
2277        args.newp = newpolicydb;
2278
2279        convert_params.func = convert_context;
2280        convert_params.args = &args;
2281        convert_params.target = newsidtab;
2282
2283        rc = sidtab_convert(oldsidtab, &convert_params);
2284        if (rc) {
2285                pr_err("SELinux:  unable to convert the internal"
2286                        " representation of contexts in the new SID"
2287                        " table\n");
2288                goto err;
2289        }
2290
2291        /* Save the old policydb and SID table to free later. */
2292        memcpy(oldpolicydb, policydb, sizeof(*policydb));
2293
2294        /* Install the new policydb and SID table. */
2295        write_lock_irq(&state->ss->policy_rwlock);
2296        memcpy(policydb, newpolicydb, sizeof(*policydb));
2297        state->ss->sidtab = newsidtab;
2298        security_load_policycaps(state);
2299        oldmapping = state->ss->map.mapping;
2300        state->ss->map.mapping = newmap.mapping;
2301        state->ss->map.size = newmap.size;
2302        seqno = ++state->ss->latest_granting;
2303        write_unlock_irq(&state->ss->policy_rwlock);
2304
2305        /* Free the old policydb and SID table. */
2306        policydb_destroy(oldpolicydb);
2307        sidtab_destroy(oldsidtab);
2308        kfree(oldsidtab);
2309        kfree(oldmapping);
2310
2311        avc_ss_reset(state->avc, seqno);
2312        selnl_notify_policyload(seqno);
2313        selinux_status_update_policyload(state, seqno);
2314        selinux_netlbl_cache_invalidate();
2315        selinux_xfrm_notify_policyload();
2316
2317        rc = 0;
2318        goto out;
2319
2320err:
2321        kfree(newmap.mapping);
2322        sidtab_destroy(newsidtab);
2323        kfree(newsidtab);
2324        policydb_destroy(newpolicydb);
2325
2326out:
2327        kfree(oldpolicydb);
2328        return rc;
2329}
2330
2331size_t security_policydb_len(struct selinux_state *state)
2332{
2333        struct policydb *p = &state->ss->policydb;
2334        size_t len;
2335
2336        read_lock(&state->ss->policy_rwlock);
2337        len = p->len;
2338        read_unlock(&state->ss->policy_rwlock);
2339
2340        return len;
2341}
2342
2343/**
2344 * security_port_sid - Obtain the SID for a port.
2345 * @protocol: protocol number
2346 * @port: port number
2347 * @out_sid: security identifier
2348 */
2349int security_port_sid(struct selinux_state *state,
2350                      u8 protocol, u16 port, u32 *out_sid)
2351{
2352        struct policydb *policydb;
2353        struct ocontext *c;
2354        int rc = 0;
2355
2356        read_lock(&state->ss->policy_rwlock);
2357
2358        policydb = &state->ss->policydb;
2359
2360        c = policydb->ocontexts[OCON_PORT];
2361        while (c) {
2362                if (c->u.port.protocol == protocol &&
2363                    c->u.port.low_port <= port &&
2364                    c->u.port.high_port >= port)
2365                        break;
2366                c = c->next;
2367        }
2368
2369        if (c) {
2370                if (!c->sid[0]) {
2371                        rc = context_struct_to_sid(state, &c->context[0],
2372                                                   &c->sid[0]);
2373                        if (rc)
2374                                goto out;
2375                }
2376                *out_sid = c->sid[0];
2377        } else {
2378                *out_sid = SECINITSID_PORT;
2379        }
2380
2381out:
2382        read_unlock(&state->ss->policy_rwlock);
2383        return rc;
2384}
2385
2386/**
2387 * security_pkey_sid - Obtain the SID for a pkey.
2388 * @subnet_prefix: Subnet Prefix
2389 * @pkey_num: pkey number
2390 * @out_sid: security identifier
2391 */
2392int security_ib_pkey_sid(struct selinux_state *state,
2393                         u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2394{
2395        struct policydb *policydb;
2396        struct ocontext *c;
2397        int rc = 0;
2398
2399        read_lock(&state->ss->policy_rwlock);
2400
2401        policydb = &state->ss->policydb;
2402
2403        c = policydb->ocontexts[OCON_IBPKEY];
2404        while (c) {
2405                if (c->u.ibpkey.low_pkey <= pkey_num &&
2406                    c->u.ibpkey.high_pkey >= pkey_num &&
2407                    c->u.ibpkey.subnet_prefix == subnet_prefix)
2408                        break;
2409
2410                c = c->next;
2411        }
2412
2413        if (c) {
2414                if (!c->sid[0]) {
2415                        rc = context_struct_to_sid(state,
2416                                                   &c->context[0],
2417                                                   &c->sid[0]);
2418                        if (rc)
2419                                goto out;
2420                }
2421                *out_sid = c->sid[0];
2422        } else
2423                *out_sid = SECINITSID_UNLABELED;
2424
2425out:
2426        read_unlock(&state->ss->policy_rwlock);
2427        return rc;
2428}
2429
2430/**
2431 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2432 * @dev_name: device name
2433 * @port: port number
2434 * @out_sid: security identifier
2435 */
2436int security_ib_endport_sid(struct selinux_state *state,
2437                            const char *dev_name, u8 port_num, u32 *out_sid)
2438{
2439        struct policydb *policydb;
2440        struct ocontext *c;
2441        int rc = 0;
2442
2443        read_lock(&state->ss->policy_rwlock);
2444
2445        policydb = &state->ss->policydb;
2446
2447        c = policydb->ocontexts[OCON_IBENDPORT];
2448        while (c) {
2449                if (c->u.ibendport.port == port_num &&
2450                    !strncmp(c->u.ibendport.dev_name,
2451                             dev_name,
2452                             IB_DEVICE_NAME_MAX))
2453                        break;
2454
2455                c = c->next;
2456        }
2457
2458        if (c) {
2459                if (!c->sid[0]) {
2460                        rc = context_struct_to_sid(state, &c->context[0],
2461                                                   &c->sid[0]);
2462                        if (rc)
2463                                goto out;
2464                }
2465                *out_sid = c->sid[0];
2466        } else
2467                *out_sid = SECINITSID_UNLABELED;
2468
2469out:
2470        read_unlock(&state->ss->policy_rwlock);
2471        return rc;
2472}
2473
2474/**
2475 * security_netif_sid - Obtain the SID for a network interface.
2476 * @name: interface name
2477 * @if_sid: interface SID
2478 */
2479int security_netif_sid(struct selinux_state *state,
2480                       char *name, u32 *if_sid)
2481{
2482        struct policydb *policydb;
2483        int rc = 0;
2484        struct ocontext *c;
2485
2486        read_lock(&state->ss->policy_rwlock);
2487
2488        policydb = &state->ss->policydb;
2489
2490        c = policydb->ocontexts[OCON_NETIF];
2491        while (c) {
2492                if (strcmp(name, c->u.name) == 0)
2493                        break;
2494                c = c->next;
2495        }
2496
2497        if (c) {
2498                if (!c->sid[0] || !c->sid[1]) {
2499                        rc = context_struct_to_sid(state, &c->context[0],
2500                                                   &c->sid[0]);
2501                        if (rc)
2502                                goto out;
2503                        rc = context_struct_to_sid(state, &c->context[1],
2504                                                   &c->sid[1]);
2505                        if (rc)
2506                                goto out;
2507                }
2508                *if_sid = c->sid[0];
2509        } else
2510                *if_sid = SECINITSID_NETIF;
2511
2512out:
2513        read_unlock(&state->ss->policy_rwlock);
2514        return rc;
2515}
2516
2517static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2518{
2519        int i, fail = 0;
2520
2521        for (i = 0; i < 4; i++)
2522                if (addr[i] != (input[i] & mask[i])) {
2523                        fail = 1;
2524                        break;
2525                }
2526
2527        return !fail;
2528}
2529
2530/**
2531 * security_node_sid - Obtain the SID for a node (host).
2532 * @domain: communication domain aka address family
2533 * @addrp: address
2534 * @addrlen: address length in bytes
2535 * @out_sid: security identifier
2536 */
2537int security_node_sid(struct selinux_state *state,
2538                      u16 domain,
2539                      void *addrp,
2540                      u32 addrlen,
2541                      u32 *out_sid)
2542{
2543        struct policydb *policydb;
2544        int rc;
2545        struct ocontext *c;
2546
2547        read_lock(&state->ss->policy_rwlock);
2548
2549        policydb = &state->ss->policydb;
2550
2551        switch (domain) {
2552        case AF_INET: {
2553                u32 addr;
2554
2555                rc = -EINVAL;
2556                if (addrlen != sizeof(u32))
2557                        goto out;
2558
2559                addr = *((u32 *)addrp);
2560
2561                c = policydb->ocontexts[OCON_NODE];
2562                while (c) {
2563                        if (c->u.node.addr == (addr & c->u.node.mask))
2564                                break;
2565                        c = c->next;
2566                }
2567                break;
2568        }
2569
2570        case AF_INET6:
2571                rc = -EINVAL;
2572                if (addrlen != sizeof(u64) * 2)
2573                        goto out;
2574                c = policydb->ocontexts[OCON_NODE6];
2575                while (c) {
2576                        if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2577                                                c->u.node6.mask))
2578                                break;
2579                        c = c->next;
2580                }
2581                break;
2582
2583        default:
2584                rc = 0;
2585                *out_sid = SECINITSID_NODE;
2586                goto out;
2587        }
2588
2589        if (c) {
2590                if (!c->sid[0]) {
2591                        rc = context_struct_to_sid(state,
2592                                                   &c->context[0],
2593                                                   &c->sid[0]);
2594                        if (rc)
2595                                goto out;
2596                }
2597                *out_sid = c->sid[0];
2598        } else {
2599                *out_sid = SECINITSID_NODE;
2600        }
2601
2602        rc = 0;
2603out:
2604        read_unlock(&state->ss->policy_rwlock);
2605        return rc;
2606}
2607
2608#define SIDS_NEL 25
2609
2610/**
2611 * security_get_user_sids - Obtain reachable SIDs for a user.
2612 * @fromsid: starting SID
2613 * @username: username
2614 * @sids: array of reachable SIDs for user
2615 * @nel: number of elements in @sids
2616 *
2617 * Generate the set of SIDs for legal security contexts
2618 * for a given user that can be reached by @fromsid.
2619 * Set *@sids to point to a dynamically allocated
2620 * array containing the set of SIDs.  Set *@nel to the
2621 * number of elements in the array.
2622 */
2623
2624int security_get_user_sids(struct selinux_state *state,
2625                           u32 fromsid,
2626                           char *username,
2627                           u32 **sids,
2628                           u32 *nel)
2629{
2630        struct policydb *policydb;
2631        struct sidtab *sidtab;
2632        struct context *fromcon, usercon;
2633        u32 *mysids = NULL, *mysids2, sid;
2634        u32 mynel = 0, maxnel = SIDS_NEL;
2635        struct user_datum *user;
2636        struct role_datum *role;
2637        struct ebitmap_node *rnode, *tnode;
2638        int rc = 0, i, j;
2639
2640        *sids = NULL;
2641        *nel = 0;
2642
2643        if (!selinux_initialized(state))
2644                goto out;
2645
2646        read_lock(&state->ss->policy_rwlock);
2647
2648        policydb = &state->ss->policydb;
2649        sidtab = state->ss->sidtab;
2650
2651        context_init(&usercon);
2652
2653        rc = -EINVAL;
2654        fromcon = sidtab_search(sidtab, fromsid);
2655        if (!fromcon)
2656                goto out_unlock;
2657
2658        rc = -EINVAL;
2659        user = hashtab_search(policydb->p_users.table, username);
2660        if (!user)
2661                goto out_unlock;
2662
2663        usercon.user = user->value;
2664
2665        rc = -ENOMEM;
2666        mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2667        if (!mysids)
2668                goto out_unlock;
2669
2670        ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2671                role = policydb->role_val_to_struct[i];
2672                usercon.role = i + 1;
2673                ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2674                        usercon.type = j + 1;
2675                        /*
2676                         * The same context struct is reused here so the hash
2677                         * must be reset.
2678                         */
2679                        usercon.hash = 0;
2680
2681                        if (mls_setup_user_range(policydb, fromcon, user,
2682                                                 &usercon))
2683                                continue;
2684
2685                        rc = context_struct_to_sid(state, &usercon, &sid);
2686                        if (rc)
2687                                goto out_unlock;
2688                        if (mynel < maxnel) {
2689                                mysids[mynel++] = sid;
2690                        } else {
2691                                rc = -ENOMEM;
2692                                maxnel += SIDS_NEL;
2693                                mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2694                                if (!mysids2)
2695                                        goto out_unlock;
2696                                memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2697                                kfree(mysids);
2698                                mysids = mysids2;
2699                                mysids[mynel++] = sid;
2700                        }
2701                }
2702        }
2703        rc = 0;
2704out_unlock:
2705        read_unlock(&state->ss->policy_rwlock);
2706        if (rc || !mynel) {
2707                kfree(mysids);
2708                goto out;
2709        }
2710
2711        rc = -ENOMEM;
2712        mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2713        if (!mysids2) {
2714                kfree(mysids);
2715                goto out;
2716        }
2717        for (i = 0, j = 0; i < mynel; i++) {
2718                struct av_decision dummy_avd;
2719                rc = avc_has_perm_noaudit(state,
2720                                          fromsid, mysids[i],
2721                                          SECCLASS_PROCESS, /* kernel value */
2722                                          PROCESS__TRANSITION, AVC_STRICT,
2723                                          &dummy_avd);
2724                if (!rc)
2725                        mysids2[j++] = mysids[i];
2726                cond_resched();
2727        }
2728        rc = 0;
2729        kfree(mysids);
2730        *sids = mysids2;
2731        *nel = j;
2732out:
2733        return rc;
2734}
2735
2736/**
2737 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2738 * @fstype: filesystem type
2739 * @path: path from root of mount
2740 * @sclass: file security class
2741 * @sid: SID for path
2742 *
2743 * Obtain a SID to use for a file in a filesystem that
2744 * cannot support xattr or use a fixed labeling behavior like
2745 * transition SIDs or task SIDs.
2746 *
2747 * The caller must acquire the policy_rwlock before calling this function.
2748 */
2749static inline int __security_genfs_sid(struct selinux_state *state,
2750                                       const char *fstype,
2751                                       char *path,
2752                                       u16 orig_sclass,
2753                                       u32 *sid)
2754{
2755        struct policydb *policydb = &state->ss->policydb;
2756        int len;
2757        u16 sclass;
2758        struct genfs *genfs;
2759        struct ocontext *c;
2760        int rc, cmp = 0;
2761
2762        while (path[0] == '/' && path[1] == '/')
2763                path++;
2764
2765        sclass = unmap_class(&state->ss->map, orig_sclass);
2766        *sid = SECINITSID_UNLABELED;
2767
2768        for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2769                cmp = strcmp(fstype, genfs->fstype);
2770                if (cmp <= 0)
2771                        break;
2772        }
2773
2774        rc = -ENOENT;
2775        if (!genfs || cmp)
2776                goto out;
2777
2778        for (c = genfs->head; c; c = c->next) {
2779                len = strlen(c->u.name);
2780                if ((!c->v.sclass || sclass == c->v.sclass) &&
2781                    (strncmp(c->u.name, path, len) == 0))
2782                        break;
2783        }
2784
2785        rc = -ENOENT;
2786        if (!c)
2787                goto out;
2788
2789        if (!c->sid[0]) {
2790                rc = context_struct_to_sid(state, &c->context[0], &c->sid[0]);
2791                if (rc)
2792                        goto out;
2793        }
2794
2795        *sid = c->sid[0];
2796        rc = 0;
2797out:
2798        return rc;
2799}
2800
2801/**
2802 * security_genfs_sid - Obtain a SID for a file in a filesystem
2803 * @fstype: filesystem type
2804 * @path: path from root of mount
2805 * @sclass: file security class
2806 * @sid: SID for path
2807 *
2808 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2809 * it afterward.
2810 */
2811int security_genfs_sid(struct selinux_state *state,
2812                       const char *fstype,
2813                       char *path,
2814                       u16 orig_sclass,
2815                       u32 *sid)
2816{
2817        int retval;
2818
2819        read_lock(&state->ss->policy_rwlock);
2820        retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2821        read_unlock(&state->ss->policy_rwlock);
2822        return retval;
2823}
2824
2825/**
2826 * security_fs_use - Determine how to handle labeling for a filesystem.
2827 * @sb: superblock in question
2828 */
2829int security_fs_use(struct selinux_state *state, struct super_block *sb)
2830{
2831        struct policydb *policydb;
2832        int rc = 0;
2833        struct ocontext *c;
2834        struct superblock_security_struct *sbsec = sb->s_security;
2835        const char *fstype = sb->s_type->name;
2836
2837        read_lock(&state->ss->policy_rwlock);
2838
2839        policydb = &state->ss->policydb;
2840
2841        c = policydb->ocontexts[OCON_FSUSE];
2842        while (c) {
2843                if (strcmp(fstype, c->u.name) == 0)
2844                        break;
2845                c = c->next;
2846        }
2847
2848        if (c) {
2849                sbsec->behavior = c->v.behavior;
2850                if (!c->sid[0]) {
2851                        rc = context_struct_to_sid(state, &c->context[0],
2852                                                   &c->sid[0]);
2853                        if (rc)
2854                                goto out;
2855                }
2856                sbsec->sid = c->sid[0];
2857        } else {
2858                rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2859                                          &sbsec->sid);
2860                if (rc) {
2861                        sbsec->behavior = SECURITY_FS_USE_NONE;
2862                        rc = 0;
2863                } else {
2864                        sbsec->behavior = SECURITY_FS_USE_GENFS;
2865                }
2866        }
2867
2868out:
2869        read_unlock(&state->ss->policy_rwlock);
2870        return rc;
2871}
2872
2873int security_get_bools(struct selinux_state *state,
2874                       u32 *len, char ***names, int **values)
2875{
2876        struct policydb *policydb;
2877        u32 i;
2878        int rc;
2879
2880        if (!selinux_initialized(state)) {
2881                *len = 0;
2882                *names = NULL;
2883                *values = NULL;
2884                return 0;
2885        }
2886
2887        read_lock(&state->ss->policy_rwlock);
2888
2889        policydb = &state->ss->policydb;
2890
2891        *names = NULL;
2892        *values = NULL;
2893
2894        rc = 0;
2895        *len = policydb->p_bools.nprim;
2896        if (!*len)
2897                goto out;
2898
2899        rc = -ENOMEM;
2900        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2901        if (!*names)
2902                goto err;
2903
2904        rc = -ENOMEM;
2905        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2906        if (!*values)
2907                goto err;
2908
2909        for (i = 0; i < *len; i++) {
2910                (*values)[i] = policydb->bool_val_to_struct[i]->state;
2911
2912                rc = -ENOMEM;
2913                (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2914                                      GFP_ATOMIC);
2915                if (!(*names)[i])
2916                        goto err;
2917        }
2918        rc = 0;
2919out:
2920        read_unlock(&state->ss->policy_rwlock);
2921        return rc;
2922err:
2923        if (*names) {
2924                for (i = 0; i < *len; i++)
2925                        kfree((*names)[i]);
2926        }
2927        kfree(*values);
2928        goto out;
2929}
2930
2931
2932int security_set_bools(struct selinux_state *state, u32 len, int *values)
2933{
2934        struct policydb *policydb;
2935        int rc;
2936        u32 i, lenp, seqno = 0;
2937
2938        write_lock_irq(&state->ss->policy_rwlock);
2939
2940        policydb = &state->ss->policydb;
2941
2942        rc = -EFAULT;
2943        lenp = policydb->p_bools.nprim;
2944        if (len != lenp)
2945                goto out;
2946
2947        for (i = 0; i < len; i++) {
2948                if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2949                        audit_log(audit_context(), GFP_ATOMIC,
2950                                AUDIT_MAC_CONFIG_CHANGE,
2951                                "bool=%s val=%d old_val=%d auid=%u ses=%u",
2952                                sym_name(policydb, SYM_BOOLS, i),
2953                                !!values[i],
2954                                policydb->bool_val_to_struct[i]->state,
2955                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
2956                                audit_get_sessionid(current));
2957                }
2958                if (values[i])
2959                        policydb->bool_val_to_struct[i]->state = 1;
2960                else
2961                        policydb->bool_val_to_struct[i]->state = 0;
2962        }
2963
2964        evaluate_cond_nodes(policydb);
2965
2966        seqno = ++state->ss->latest_granting;
2967        rc = 0;
2968out:
2969        write_unlock_irq(&state->ss->policy_rwlock);
2970        if (!rc) {
2971                avc_ss_reset(state->avc, seqno);
2972                selnl_notify_policyload(seqno);
2973                selinux_status_update_policyload(state, seqno);
2974                selinux_xfrm_notify_policyload();
2975        }
2976        return rc;
2977}
2978
2979int security_get_bool_value(struct selinux_state *state,
2980                            u32 index)
2981{
2982        struct policydb *policydb;
2983        int rc;
2984        u32 len;
2985
2986        read_lock(&state->ss->policy_rwlock);
2987
2988        policydb = &state->ss->policydb;
2989
2990        rc = -EFAULT;
2991        len = policydb->p_bools.nprim;
2992        if (index >= len)
2993                goto out;
2994
2995        rc = policydb->bool_val_to_struct[index]->state;
2996out:
2997        read_unlock(&state->ss->policy_rwlock);
2998        return rc;
2999}
3000
3001static int security_preserve_bools(struct selinux_state *state,
3002                                   struct policydb *policydb)
3003{
3004        int rc, *bvalues = NULL;
3005        char **bnames = NULL;
3006        struct cond_bool_datum *booldatum;
3007        u32 i, nbools = 0;
3008
3009        rc = security_get_bools(state, &nbools, &bnames, &bvalues);
3010        if (rc)
3011                goto out;
3012        for (i = 0; i < nbools; i++) {
3013                booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
3014                if (booldatum)
3015                        booldatum->state = bvalues[i];
3016        }
3017        evaluate_cond_nodes(policydb);
3018
3019out:
3020        if (bnames) {
3021                for (i = 0; i < nbools; i++)
3022                        kfree(bnames[i]);
3023        }
3024        kfree(bnames);
3025        kfree(bvalues);
3026        return rc;
3027}
3028
3029/*
3030 * security_sid_mls_copy() - computes a new sid based on the given
3031 * sid and the mls portion of mls_sid.
3032 */
3033int security_sid_mls_copy(struct selinux_state *state,
3034                          u32 sid, u32 mls_sid, u32 *new_sid)
3035{
3036        struct policydb *policydb = &state->ss->policydb;
3037        struct sidtab *sidtab = state->ss->sidtab;
3038        struct context *context1;
3039        struct context *context2;
3040        struct context newcon;
3041        char *s;
3042        u32 len;
3043        int rc;
3044
3045        rc = 0;
3046        if (!selinux_initialized(state) || !policydb->mls_enabled) {
3047                *new_sid = sid;
3048                goto out;
3049        }
3050
3051        context_init(&newcon);
3052
3053        read_lock(&state->ss->policy_rwlock);
3054
3055        rc = -EINVAL;
3056        context1 = sidtab_search(sidtab, sid);
3057        if (!context1) {
3058                pr_err("SELinux: %s:  unrecognized SID %d\n",
3059                        __func__, sid);
3060                goto out_unlock;
3061        }
3062
3063        rc = -EINVAL;
3064        context2 = sidtab_search(sidtab, mls_sid);
3065        if (!context2) {
3066                pr_err("SELinux: %s:  unrecognized SID %d\n",
3067                        __func__, mls_sid);
3068                goto out_unlock;
3069        }
3070
3071        newcon.user = context1->user;
3072        newcon.role = context1->role;
3073        newcon.type = context1->type;
3074        rc = mls_context_cpy(&newcon, context2);
3075        if (rc)
3076                goto out_unlock;
3077
3078        /* Check the validity of the new context. */
3079        if (!policydb_context_isvalid(policydb, &newcon)) {
3080                rc = convert_context_handle_invalid_context(state, &newcon);
3081                if (rc) {
3082                        if (!context_struct_to_string(policydb, &newcon, &s,
3083                                                      &len)) {
3084                                struct audit_buffer *ab;
3085
3086                                ab = audit_log_start(audit_context(),
3087                                                     GFP_ATOMIC,
3088                                                     AUDIT_SELINUX_ERR);
3089                                audit_log_format(ab,
3090                                                 "op=security_sid_mls_copy invalid_context=");
3091                                /* don't record NUL with untrusted strings */
3092                                audit_log_n_untrustedstring(ab, s, len - 1);
3093                                audit_log_end(ab);
3094                                kfree(s);
3095                        }
3096                        goto out_unlock;
3097                }
3098        }
3099        rc = context_struct_to_sid(state, &newcon, new_sid);
3100out_unlock:
3101        read_unlock(&state->ss->policy_rwlock);
3102        context_destroy(&newcon);
3103out:
3104        return rc;
3105}
3106
3107/**
3108 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3109 * @nlbl_sid: NetLabel SID
3110 * @nlbl_type: NetLabel labeling protocol type
3111 * @xfrm_sid: XFRM SID
3112 *
3113 * Description:
3114 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3115 * resolved into a single SID it is returned via @peer_sid and the function
3116 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3117 * returns a negative value.  A table summarizing the behavior is below:
3118 *
3119 *                                 | function return |      @sid
3120 *   ------------------------------+-----------------+-----------------
3121 *   no peer labels                |        0        |    SECSID_NULL
3122 *   single peer label             |        0        |    <peer_label>
3123 *   multiple, consistent labels   |        0        |    <peer_label>
3124 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3125 *
3126 */
3127int security_net_peersid_resolve(struct selinux_state *state,
3128                                 u32 nlbl_sid, u32 nlbl_type,
3129                                 u32 xfrm_sid,
3130                                 u32 *peer_sid)
3131{
3132        struct policydb *policydb = &state->ss->policydb;
3133        struct sidtab *sidtab = state->ss->sidtab;
3134        int rc;
3135        struct context *nlbl_ctx;
3136        struct context *xfrm_ctx;
3137
3138        *peer_sid = SECSID_NULL;
3139
3140        /* handle the common (which also happens to be the set of easy) cases
3141         * right away, these two if statements catch everything involving a
3142         * single or absent peer SID/label */
3143        if (xfrm_sid == SECSID_NULL) {
3144                *peer_sid = nlbl_sid;
3145                return 0;
3146        }
3147        /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3148         * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3149         * is present */
3150        if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3151                *peer_sid = xfrm_sid;
3152                return 0;
3153        }
3154
3155        /*
3156         * We don't need to check initialized here since the only way both
3157         * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3158         * security server was initialized and state->initialized was true.
3159         */
3160        if (!policydb->mls_enabled)
3161                return 0;
3162
3163        read_lock(&state->ss->policy_rwlock);
3164
3165        rc = -EINVAL;
3166        nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3167        if (!nlbl_ctx) {
3168                pr_err("SELinux: %s:  unrecognized SID %d\n",
3169                       __func__, nlbl_sid);
3170                goto out;
3171        }
3172        rc = -EINVAL;
3173        xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3174        if (!xfrm_ctx) {
3175                pr_err("SELinux: %s:  unrecognized SID %d\n",
3176                       __func__, xfrm_sid);
3177                goto out;
3178        }
3179        rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3180        if (rc)
3181                goto out;
3182
3183        /* at present NetLabel SIDs/labels really only carry MLS
3184         * information so if the MLS portion of the NetLabel SID
3185         * matches the MLS portion of the labeled XFRM SID/label
3186         * then pass along the XFRM SID as it is the most
3187         * expressive */
3188        *peer_sid = xfrm_sid;
3189out:
3190        read_unlock(&state->ss->policy_rwlock);
3191        return rc;
3192}
3193
3194static int get_classes_callback(void *k, void *d, void *args)
3195{
3196        struct class_datum *datum = d;
3197        char *name = k, **classes = args;
3198        int value = datum->value - 1;
3199
3200        classes[value] = kstrdup(name, GFP_ATOMIC);
3201        if (!classes[value])
3202                return -ENOMEM;
3203
3204        return 0;
3205}
3206
3207int security_get_classes(struct selinux_state *state,
3208                         char ***classes, int *nclasses)
3209{
3210        struct policydb *policydb = &state->ss->policydb;
3211        int rc;
3212
3213        if (!selinux_initialized(state)) {
3214                *nclasses = 0;
3215                *classes = NULL;
3216                return 0;
3217        }
3218
3219        read_lock(&state->ss->policy_rwlock);
3220
3221        rc = -ENOMEM;
3222        *nclasses = policydb->p_classes.nprim;
3223        *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3224        if (!*classes)
3225                goto out;
3226
3227        rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3228                        *classes);
3229        if (rc) {
3230                int i;
3231                for (i = 0; i < *nclasses; i++)
3232                        kfree((*classes)[i]);
3233                kfree(*classes);
3234        }
3235
3236out:
3237        read_unlock(&state->ss->policy_rwlock);
3238        return rc;
3239}
3240
3241static int get_permissions_callback(void *k, void *d, void *args)
3242{
3243        struct perm_datum *datum = d;
3244        char *name = k, **perms = args;
3245        int value = datum->value - 1;
3246
3247        perms[value] = kstrdup(name, GFP_ATOMIC);
3248        if (!perms[value])
3249                return -ENOMEM;
3250
3251        return 0;
3252}
3253
3254int security_get_permissions(struct selinux_state *state,
3255                             char *class, char ***perms, int *nperms)
3256{
3257        struct policydb *policydb = &state->ss->policydb;
3258        int rc, i;
3259        struct class_datum *match;
3260
3261        read_lock(&state->ss->policy_rwlock);
3262
3263        rc = -EINVAL;
3264        match = hashtab_search(policydb->p_classes.table, class);
3265        if (!match) {
3266                pr_err("SELinux: %s:  unrecognized class %s\n",
3267                        __func__, class);
3268                goto out;
3269        }
3270
3271        rc = -ENOMEM;
3272        *nperms = match->permissions.nprim;
3273        *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3274        if (!*perms)
3275                goto out;
3276
3277        if (match->comdatum) {
3278                rc = hashtab_map(match->comdatum->permissions.table,
3279                                get_permissions_callback, *perms);
3280                if (rc)
3281                        goto err;
3282        }
3283
3284        rc = hashtab_map(match->permissions.table, get_permissions_callback,
3285                        *perms);
3286        if (rc)
3287                goto err;
3288
3289out:
3290        read_unlock(&state->ss->policy_rwlock);
3291        return rc;
3292
3293err:
3294        read_unlock(&state->ss->policy_rwlock);
3295        for (i = 0; i < *nperms; i++)
3296                kfree((*perms)[i]);
3297        kfree(*perms);
3298        return rc;
3299}
3300
3301int security_get_reject_unknown(struct selinux_state *state)
3302{
3303        return state->ss->policydb.reject_unknown;
3304}
3305
3306int security_get_allow_unknown(struct selinux_state *state)
3307{
3308        return state->ss->policydb.allow_unknown;
3309}
3310
3311/**
3312 * security_policycap_supported - Check for a specific policy capability
3313 * @req_cap: capability
3314 *
3315 * Description:
3316 * This function queries the currently loaded policy to see if it supports the
3317 * capability specified by @req_cap.  Returns true (1) if the capability is
3318 * supported, false (0) if it isn't supported.
3319 *
3320 */
3321int security_policycap_supported(struct selinux_state *state,
3322                                 unsigned int req_cap)
3323{
3324        struct policydb *policydb = &state->ss->policydb;
3325        int rc;
3326
3327        read_lock(&state->ss->policy_rwlock);
3328        rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3329        read_unlock(&state->ss->policy_rwlock);
3330
3331        return rc;
3332}
3333
3334struct selinux_audit_rule {
3335        u32 au_seqno;
3336        struct context au_ctxt;
3337};
3338
3339void selinux_audit_rule_free(void *vrule)
3340{
3341        struct selinux_audit_rule *rule = vrule;
3342
3343        if (rule) {
3344                context_destroy(&rule->au_ctxt);
3345                kfree(rule);
3346        }
3347}
3348
3349int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3350{
3351        struct selinux_state *state = &selinux_state;
3352        struct policydb *policydb = &state->ss->policydb;
3353        struct selinux_audit_rule *tmprule;
3354        struct role_datum *roledatum;
3355        struct type_datum *typedatum;
3356        struct user_datum *userdatum;
3357        struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3358        int rc = 0;
3359
3360        *rule = NULL;
3361
3362        if (!selinux_initialized(state))
3363                return -EOPNOTSUPP;
3364
3365        switch (field) {
3366        case AUDIT_SUBJ_USER:
3367        case AUDIT_SUBJ_ROLE:
3368        case AUDIT_SUBJ_TYPE:
3369        case AUDIT_OBJ_USER:
3370        case AUDIT_OBJ_ROLE:
3371        case AUDIT_OBJ_TYPE:
3372                /* only 'equals' and 'not equals' fit user, role, and type */
3373                if (op != Audit_equal && op != Audit_not_equal)
3374                        return -EINVAL;
3375                break;
3376        case AUDIT_SUBJ_SEN:
3377        case AUDIT_SUBJ_CLR:
3378        case AUDIT_OBJ_LEV_LOW:
3379        case AUDIT_OBJ_LEV_HIGH:
3380                /* we do not allow a range, indicated by the presence of '-' */
3381                if (strchr(rulestr, '-'))
3382                        return -EINVAL;
3383                break;
3384        default:
3385                /* only the above fields are valid */
3386                return -EINVAL;
3387        }
3388
3389        tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3390        if (!tmprule)
3391                return -ENOMEM;
3392
3393        context_init(&tmprule->au_ctxt);
3394
3395        read_lock(&state->ss->policy_rwlock);
3396
3397        tmprule->au_seqno = state->ss->latest_granting;
3398
3399        switch (field) {
3400        case AUDIT_SUBJ_USER:
3401        case AUDIT_OBJ_USER:
3402                rc = -EINVAL;
3403                userdatum = hashtab_search(policydb->p_users.table, rulestr);
3404                if (!userdatum)
3405                        goto out;
3406                tmprule->au_ctxt.user = userdatum->value;
3407                break;
3408        case AUDIT_SUBJ_ROLE:
3409        case AUDIT_OBJ_ROLE:
3410                rc = -EINVAL;
3411                roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3412                if (!roledatum)
3413                        goto out;
3414                tmprule->au_ctxt.role = roledatum->value;
3415                break;
3416        case AUDIT_SUBJ_TYPE:
3417        case AUDIT_OBJ_TYPE:
3418                rc = -EINVAL;
3419                typedatum = hashtab_search(policydb->p_types.table, rulestr);
3420                if (!typedatum)
3421                        goto out;
3422                tmprule->au_ctxt.type = typedatum->value;
3423                break;
3424        case AUDIT_SUBJ_SEN:
3425        case AUDIT_SUBJ_CLR:
3426        case AUDIT_OBJ_LEV_LOW:
3427        case AUDIT_OBJ_LEV_HIGH:
3428                rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3429                                     GFP_ATOMIC);
3430                if (rc)
3431                        goto out;
3432                break;
3433        }
3434        rc = 0;
3435out:
3436        read_unlock(&state->ss->policy_rwlock);
3437
3438        if (rc) {
3439                selinux_audit_rule_free(tmprule);
3440                tmprule = NULL;
3441        }
3442
3443        *rule = tmprule;
3444
3445        return rc;
3446}
3447
3448/* Check to see if the rule contains any selinux fields */
3449int selinux_audit_rule_known(struct audit_krule *rule)
3450{
3451        int i;
3452
3453        for (i = 0; i < rule->field_count; i++) {
3454                struct audit_field *f = &rule->fields[i];
3455                switch (f->type) {
3456                case AUDIT_SUBJ_USER:
3457                case AUDIT_SUBJ_ROLE:
3458                case AUDIT_SUBJ_TYPE:
3459                case AUDIT_SUBJ_SEN:
3460                case AUDIT_SUBJ_CLR:
3461                case AUDIT_OBJ_USER:
3462                case AUDIT_OBJ_ROLE:
3463                case AUDIT_OBJ_TYPE:
3464                case AUDIT_OBJ_LEV_LOW:
3465                case AUDIT_OBJ_LEV_HIGH:
3466                        return 1;
3467                }
3468        }
3469
3470        return 0;
3471}
3472
3473int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3474{
3475        struct selinux_state *state = &selinux_state;
3476        struct context *ctxt;
3477        struct mls_level *level;
3478        struct selinux_audit_rule *rule = vrule;
3479        int match = 0;
3480
3481        if (unlikely(!rule)) {
3482                WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3483                return -ENOENT;
3484        }
3485
3486        read_lock(&state->ss->policy_rwlock);
3487
3488        if (rule->au_seqno < state->ss->latest_granting) {
3489                match = -ESTALE;
3490                goto out;
3491        }
3492
3493        ctxt = sidtab_search(state->ss->sidtab, sid);
3494        if (unlikely(!ctxt)) {
3495                WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3496                          sid);
3497                match = -ENOENT;
3498                goto out;
3499        }
3500
3501        /* a field/op pair that is not caught here will simply fall through
3502           without a match */
3503        switch (field) {
3504        case AUDIT_SUBJ_USER:
3505        case AUDIT_OBJ_USER:
3506                switch (op) {
3507                case Audit_equal:
3508                        match = (ctxt->user == rule->au_ctxt.user);
3509                        break;
3510                case Audit_not_equal:
3511                        match = (ctxt->user != rule->au_ctxt.user);
3512                        break;
3513                }
3514                break;
3515        case AUDIT_SUBJ_ROLE:
3516        case AUDIT_OBJ_ROLE:
3517                switch (op) {
3518                case Audit_equal:
3519                        match = (ctxt->role == rule->au_ctxt.role);
3520                        break;
3521                case Audit_not_equal:
3522                        match = (ctxt->role != rule->au_ctxt.role);
3523                        break;
3524                }
3525                break;
3526        case AUDIT_SUBJ_TYPE:
3527        case AUDIT_OBJ_TYPE:
3528                switch (op) {
3529                case Audit_equal:
3530                        match = (ctxt->type == rule->au_ctxt.type);
3531                        break;
3532                case Audit_not_equal:
3533                        match = (ctxt->type != rule->au_ctxt.type);
3534                        break;
3535                }
3536                break;
3537        case AUDIT_SUBJ_SEN:
3538        case AUDIT_SUBJ_CLR:
3539        case AUDIT_OBJ_LEV_LOW:
3540        case AUDIT_OBJ_LEV_HIGH:
3541                level = ((field == AUDIT_SUBJ_SEN ||
3542                          field == AUDIT_OBJ_LEV_LOW) ?
3543                         &ctxt->range.level[0] : &ctxt->range.level[1]);
3544                switch (op) {
3545                case Audit_equal:
3546                        match = mls_level_eq(&rule->au_ctxt.range.level[0],
3547                                             level);
3548                        break;
3549                case Audit_not_equal:
3550                        match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3551                                              level);
3552                        break;
3553                case Audit_lt:
3554                        match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3555                                               level) &&
3556                                 !mls_level_eq(&rule->au_ctxt.range.level[0],
3557                                               level));
3558                        break;
3559                case Audit_le:
3560                        match = mls_level_dom(&rule->au_ctxt.range.level[0],
3561                                              level);
3562                        break;
3563                case Audit_gt:
3564                        match = (mls_level_dom(level,
3565                                              &rule->au_ctxt.range.level[0]) &&
3566                                 !mls_level_eq(level,
3567                                               &rule->au_ctxt.range.level[0]));
3568                        break;
3569                case Audit_ge:
3570                        match = mls_level_dom(level,
3571                                              &rule->au_ctxt.range.level[0]);
3572                        break;
3573                }
3574        }
3575
3576out:
3577        read_unlock(&state->ss->policy_rwlock);
3578        return match;
3579}
3580
3581static int (*aurule_callback)(void) = audit_update_lsm_rules;
3582
3583static int aurule_avc_callback(u32 event)
3584{
3585        int err = 0;
3586
3587        if (event == AVC_CALLBACK_RESET && aurule_callback)
3588                err = aurule_callback();
3589        return err;
3590}
3591
3592static int __init aurule_init(void)
3593{
3594        int err;
3595
3596        err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3597        if (err)
3598                panic("avc_add_callback() failed, error %d\n", err);
3599
3600        return err;
3601}
3602__initcall(aurule_init);
3603
3604#ifdef CONFIG_NETLABEL
3605/**
3606 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3607 * @secattr: the NetLabel packet security attributes
3608 * @sid: the SELinux SID
3609 *
3610 * Description:
3611 * Attempt to cache the context in @ctx, which was derived from the packet in
3612 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3613 * already been initialized.
3614 *
3615 */
3616static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3617                                      u32 sid)
3618{
3619        u32 *sid_cache;
3620
3621        sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3622        if (sid_cache == NULL)
3623                return;
3624        secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3625        if (secattr->cache == NULL) {
3626                kfree(sid_cache);
3627                return;
3628        }
3629
3630        *sid_cache = sid;
3631        secattr->cache->free = kfree;
3632        secattr->cache->data = sid_cache;
3633        secattr->flags |= NETLBL_SECATTR_CACHE;
3634}
3635
3636/**
3637 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3638 * @secattr: the NetLabel packet security attributes
3639 * @sid: the SELinux SID
3640 *
3641 * Description:
3642 * Convert the given NetLabel security attributes in @secattr into a
3643 * SELinux SID.  If the @secattr field does not contain a full SELinux
3644 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3645 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3646 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3647 * conversion for future lookups.  Returns zero on success, negative values on
3648 * failure.
3649 *
3650 */
3651int security_netlbl_secattr_to_sid(struct selinux_state *state,
3652                                   struct netlbl_lsm_secattr *secattr,
3653                                   u32 *sid)
3654{
3655        struct policydb *policydb = &state->ss->policydb;
3656        struct sidtab *sidtab = state->ss->sidtab;
3657        int rc;
3658        struct context *ctx;
3659        struct context ctx_new;
3660
3661        if (!selinux_initialized(state)) {
3662                *sid = SECSID_NULL;
3663                return 0;
3664        }
3665
3666        read_lock(&state->ss->policy_rwlock);
3667
3668        if (secattr->flags & NETLBL_SECATTR_CACHE)
3669                *sid = *(u32 *)secattr->cache->data;
3670        else if (secattr->flags & NETLBL_SECATTR_SECID)
3671                *sid = secattr->attr.secid;
3672        else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3673                rc = -EIDRM;
3674                ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3675                if (ctx == NULL)
3676                        goto out;
3677
3678                context_init(&ctx_new);
3679                ctx_new.user = ctx->user;
3680                ctx_new.role = ctx->role;
3681                ctx_new.type = ctx->type;
3682                mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3683                if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3684                        rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3685                        if (rc)
3686                                goto out;
3687                }
3688                rc = -EIDRM;
3689                if (!mls_context_isvalid(policydb, &ctx_new))
3690                        goto out_free;
3691
3692                rc = context_struct_to_sid(state, &ctx_new, sid);
3693                if (rc)
3694                        goto out_free;
3695
3696                security_netlbl_cache_add(secattr, *sid);
3697
3698                ebitmap_destroy(&ctx_new.range.level[0].cat);
3699        } else
3700                *sid = SECSID_NULL;
3701
3702        read_unlock(&state->ss->policy_rwlock);
3703        return 0;
3704out_free:
3705        ebitmap_destroy(&ctx_new.range.level[0].cat);
3706out:
3707        read_unlock(&state->ss->policy_rwlock);
3708        return rc;
3709}
3710
3711/**
3712 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3713 * @sid: the SELinux SID
3714 * @secattr: the NetLabel packet security attributes
3715 *
3716 * Description:
3717 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3718 * Returns zero on success, negative values on failure.
3719 *
3720 */
3721int security_netlbl_sid_to_secattr(struct selinux_state *state,
3722                                   u32 sid, struct netlbl_lsm_secattr *secattr)
3723{
3724        struct policydb *policydb = &state->ss->policydb;
3725        int rc;
3726        struct context *ctx;
3727
3728        if (!selinux_initialized(state))
3729                return 0;
3730
3731        read_lock(&state->ss->policy_rwlock);
3732
3733        rc = -ENOENT;
3734        ctx = sidtab_search(state->ss->sidtab, sid);
3735        if (ctx == NULL)
3736                goto out;
3737
3738        rc = -ENOMEM;
3739        secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3740                                  GFP_ATOMIC);
3741        if (secattr->domain == NULL)
3742                goto out;
3743
3744        secattr->attr.secid = sid;
3745        secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3746        mls_export_netlbl_lvl(policydb, ctx, secattr);
3747        rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3748out:
3749        read_unlock(&state->ss->policy_rwlock);
3750        return rc;
3751}
3752#endif /* CONFIG_NETLABEL */
3753
3754/**
3755 * security_read_policy - read the policy.
3756 * @data: binary policy data
3757 * @len: length of data in bytes
3758 *
3759 */
3760int security_read_policy(struct selinux_state *state,
3761                         void **data, size_t *len)
3762{
3763        struct policydb *policydb = &state->ss->policydb;
3764        int rc;
3765        struct policy_file fp;
3766
3767        if (!selinux_initialized(state))
3768                return -EINVAL;
3769
3770        *len = security_policydb_len(state);
3771
3772        *data = vmalloc_user(*len);
3773        if (!*data)
3774                return -ENOMEM;
3775
3776        fp.data = *data;
3777        fp.len = *len;
3778
3779        read_lock(&state->ss->policy_rwlock);
3780        rc = policydb_write(policydb, &fp);
3781        read_unlock(&state->ss->policy_rwlock);
3782
3783        if (rc)
3784                return rc;
3785
3786        *len = (unsigned long)fp.data - (unsigned long)*data;
3787        return 0;
3788
3789}
3790