linux/tools/lib/bpf/btf_dump.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2
   3/*
   4 * BTF-to-C type converter.
   5 *
   6 * Copyright (c) 2019 Facebook
   7 */
   8
   9#include <stdbool.h>
  10#include <stddef.h>
  11#include <stdlib.h>
  12#include <string.h>
  13#include <errno.h>
  14#include <linux/err.h>
  15#include <linux/btf.h>
  16#include "btf.h"
  17#include "hashmap.h"
  18#include "libbpf.h"
  19#include "libbpf_internal.h"
  20
  21/* make sure libbpf doesn't use kernel-only integer typedefs */
  22#pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64
  23
  24static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
  25static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
  26
  27static const char *pfx(int lvl)
  28{
  29        return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
  30}
  31
  32enum btf_dump_type_order_state {
  33        NOT_ORDERED,
  34        ORDERING,
  35        ORDERED,
  36};
  37
  38enum btf_dump_type_emit_state {
  39        NOT_EMITTED,
  40        EMITTING,
  41        EMITTED,
  42};
  43
  44/* per-type auxiliary state */
  45struct btf_dump_type_aux_state {
  46        /* topological sorting state */
  47        enum btf_dump_type_order_state order_state: 2;
  48        /* emitting state used to determine the need for forward declaration */
  49        enum btf_dump_type_emit_state emit_state: 2;
  50        /* whether forward declaration was already emitted */
  51        __u8 fwd_emitted: 1;
  52        /* whether unique non-duplicate name was already assigned */
  53        __u8 name_resolved: 1;
  54        /* whether type is referenced from any other type */
  55        __u8 referenced: 1;
  56};
  57
  58struct btf_dump {
  59        const struct btf *btf;
  60        const struct btf_ext *btf_ext;
  61        btf_dump_printf_fn_t printf_fn;
  62        struct btf_dump_opts opts;
  63
  64        /* per-type auxiliary state */
  65        struct btf_dump_type_aux_state *type_states;
  66        /* per-type optional cached unique name, must be freed, if present */
  67        const char **cached_names;
  68
  69        /* topo-sorted list of dependent type definitions */
  70        __u32 *emit_queue;
  71        int emit_queue_cap;
  72        int emit_queue_cnt;
  73
  74        /*
  75         * stack of type declarations (e.g., chain of modifiers, arrays,
  76         * funcs, etc)
  77         */
  78        __u32 *decl_stack;
  79        int decl_stack_cap;
  80        int decl_stack_cnt;
  81
  82        /* maps struct/union/enum name to a number of name occurrences */
  83        struct hashmap *type_names;
  84        /*
  85         * maps typedef identifiers and enum value names to a number of such
  86         * name occurrences
  87         */
  88        struct hashmap *ident_names;
  89};
  90
  91static size_t str_hash_fn(const void *key, void *ctx)
  92{
  93        const char *s = key;
  94        size_t h = 0;
  95
  96        while (*s) {
  97                h = h * 31 + *s;
  98                s++;
  99        }
 100        return h;
 101}
 102
 103static bool str_equal_fn(const void *a, const void *b, void *ctx)
 104{
 105        return strcmp(a, b) == 0;
 106}
 107
 108static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
 109{
 110        return btf__name_by_offset(d->btf, name_off);
 111}
 112
 113static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
 114{
 115        va_list args;
 116
 117        va_start(args, fmt);
 118        d->printf_fn(d->opts.ctx, fmt, args);
 119        va_end(args);
 120}
 121
 122static int btf_dump_mark_referenced(struct btf_dump *d);
 123
 124struct btf_dump *btf_dump__new(const struct btf *btf,
 125                               const struct btf_ext *btf_ext,
 126                               const struct btf_dump_opts *opts,
 127                               btf_dump_printf_fn_t printf_fn)
 128{
 129        struct btf_dump *d;
 130        int err;
 131
 132        d = calloc(1, sizeof(struct btf_dump));
 133        if (!d)
 134                return ERR_PTR(-ENOMEM);
 135
 136        d->btf = btf;
 137        d->btf_ext = btf_ext;
 138        d->printf_fn = printf_fn;
 139        d->opts.ctx = opts ? opts->ctx : NULL;
 140
 141        d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 142        if (IS_ERR(d->type_names)) {
 143                err = PTR_ERR(d->type_names);
 144                d->type_names = NULL;
 145                goto err;
 146        }
 147        d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 148        if (IS_ERR(d->ident_names)) {
 149                err = PTR_ERR(d->ident_names);
 150                d->ident_names = NULL;
 151                goto err;
 152        }
 153        d->type_states = calloc(1 + btf__get_nr_types(d->btf),
 154                                sizeof(d->type_states[0]));
 155        if (!d->type_states) {
 156                err = -ENOMEM;
 157                goto err;
 158        }
 159        d->cached_names = calloc(1 + btf__get_nr_types(d->btf),
 160                                 sizeof(d->cached_names[0]));
 161        if (!d->cached_names) {
 162                err = -ENOMEM;
 163                goto err;
 164        }
 165
 166        /* VOID is special */
 167        d->type_states[0].order_state = ORDERED;
 168        d->type_states[0].emit_state = EMITTED;
 169
 170        /* eagerly determine referenced types for anon enums */
 171        err = btf_dump_mark_referenced(d);
 172        if (err)
 173                goto err;
 174
 175        return d;
 176err:
 177        btf_dump__free(d);
 178        return ERR_PTR(err);
 179}
 180
 181void btf_dump__free(struct btf_dump *d)
 182{
 183        int i, cnt;
 184
 185        if (!d)
 186                return;
 187
 188        free(d->type_states);
 189        if (d->cached_names) {
 190                /* any set cached name is owned by us and should be freed */
 191                for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) {
 192                        if (d->cached_names[i])
 193                                free((void *)d->cached_names[i]);
 194                }
 195        }
 196        free(d->cached_names);
 197        free(d->emit_queue);
 198        free(d->decl_stack);
 199        hashmap__free(d->type_names);
 200        hashmap__free(d->ident_names);
 201
 202        free(d);
 203}
 204
 205static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
 206static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
 207
 208/*
 209 * Dump BTF type in a compilable C syntax, including all the necessary
 210 * dependent types, necessary for compilation. If some of the dependent types
 211 * were already emitted as part of previous btf_dump__dump_type() invocation
 212 * for another type, they won't be emitted again. This API allows callers to
 213 * filter out BTF types according to user-defined criterias and emitted only
 214 * minimal subset of types, necessary to compile everything. Full struct/union
 215 * definitions will still be emitted, even if the only usage is through
 216 * pointer and could be satisfied with just a forward declaration.
 217 *
 218 * Dumping is done in two high-level passes:
 219 *   1. Topologically sort type definitions to satisfy C rules of compilation.
 220 *   2. Emit type definitions in C syntax.
 221 *
 222 * Returns 0 on success; <0, otherwise.
 223 */
 224int btf_dump__dump_type(struct btf_dump *d, __u32 id)
 225{
 226        int err, i;
 227
 228        if (id > btf__get_nr_types(d->btf))
 229                return -EINVAL;
 230
 231        d->emit_queue_cnt = 0;
 232        err = btf_dump_order_type(d, id, false);
 233        if (err < 0)
 234                return err;
 235
 236        for (i = 0; i < d->emit_queue_cnt; i++)
 237                btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
 238
 239        return 0;
 240}
 241
 242/*
 243 * Mark all types that are referenced from any other type. This is used to
 244 * determine top-level anonymous enums that need to be emitted as an
 245 * independent type declarations.
 246 * Anonymous enums come in two flavors: either embedded in a struct's field
 247 * definition, in which case they have to be declared inline as part of field
 248 * type declaration; or as a top-level anonymous enum, typically used for
 249 * declaring global constants. It's impossible to distinguish between two
 250 * without knowning whether given enum type was referenced from other type:
 251 * top-level anonymous enum won't be referenced by anything, while embedded
 252 * one will.
 253 */
 254static int btf_dump_mark_referenced(struct btf_dump *d)
 255{
 256        int i, j, n = btf__get_nr_types(d->btf);
 257        const struct btf_type *t;
 258        __u16 vlen;
 259
 260        for (i = 1; i <= n; i++) {
 261                t = btf__type_by_id(d->btf, i);
 262                vlen = btf_vlen(t);
 263
 264                switch (btf_kind(t)) {
 265                case BTF_KIND_INT:
 266                case BTF_KIND_ENUM:
 267                case BTF_KIND_FWD:
 268                        break;
 269
 270                case BTF_KIND_VOLATILE:
 271                case BTF_KIND_CONST:
 272                case BTF_KIND_RESTRICT:
 273                case BTF_KIND_PTR:
 274                case BTF_KIND_TYPEDEF:
 275                case BTF_KIND_FUNC:
 276                case BTF_KIND_VAR:
 277                        d->type_states[t->type].referenced = 1;
 278                        break;
 279
 280                case BTF_KIND_ARRAY: {
 281                        const struct btf_array *a = btf_array(t);
 282
 283                        d->type_states[a->index_type].referenced = 1;
 284                        d->type_states[a->type].referenced = 1;
 285                        break;
 286                }
 287                case BTF_KIND_STRUCT:
 288                case BTF_KIND_UNION: {
 289                        const struct btf_member *m = btf_members(t);
 290
 291                        for (j = 0; j < vlen; j++, m++)
 292                                d->type_states[m->type].referenced = 1;
 293                        break;
 294                }
 295                case BTF_KIND_FUNC_PROTO: {
 296                        const struct btf_param *p = btf_params(t);
 297
 298                        for (j = 0; j < vlen; j++, p++)
 299                                d->type_states[p->type].referenced = 1;
 300                        break;
 301                }
 302                case BTF_KIND_DATASEC: {
 303                        const struct btf_var_secinfo *v = btf_var_secinfos(t);
 304
 305                        for (j = 0; j < vlen; j++, v++)
 306                                d->type_states[v->type].referenced = 1;
 307                        break;
 308                }
 309                default:
 310                        return -EINVAL;
 311                }
 312        }
 313        return 0;
 314}
 315static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
 316{
 317        __u32 *new_queue;
 318        size_t new_cap;
 319
 320        if (d->emit_queue_cnt >= d->emit_queue_cap) {
 321                new_cap = max(16, d->emit_queue_cap * 3 / 2);
 322                new_queue = realloc(d->emit_queue,
 323                                    new_cap * sizeof(new_queue[0]));
 324                if (!new_queue)
 325                        return -ENOMEM;
 326                d->emit_queue = new_queue;
 327                d->emit_queue_cap = new_cap;
 328        }
 329
 330        d->emit_queue[d->emit_queue_cnt++] = id;
 331        return 0;
 332}
 333
 334/*
 335 * Determine order of emitting dependent types and specified type to satisfy
 336 * C compilation rules.  This is done through topological sorting with an
 337 * additional complication which comes from C rules. The main idea for C is
 338 * that if some type is "embedded" into a struct/union, it's size needs to be
 339 * known at the time of definition of containing type. E.g., for:
 340 *
 341 *      struct A {};
 342 *      struct B { struct A x; }
 343 *
 344 * struct A *HAS* to be defined before struct B, because it's "embedded",
 345 * i.e., it is part of struct B layout. But in the following case:
 346 *
 347 *      struct A;
 348 *      struct B { struct A *x; }
 349 *      struct A {};
 350 *
 351 * it's enough to just have a forward declaration of struct A at the time of
 352 * struct B definition, as struct B has a pointer to struct A, so the size of
 353 * field x is known without knowing struct A size: it's sizeof(void *).
 354 *
 355 * Unfortunately, there are some trickier cases we need to handle, e.g.:
 356 *
 357 *      struct A {}; // if this was forward-declaration: compilation error
 358 *      struct B {
 359 *              struct { // anonymous struct
 360 *                      struct A y;
 361 *              } *x;
 362 *      };
 363 *
 364 * In this case, struct B's field x is a pointer, so it's size is known
 365 * regardless of the size of (anonymous) struct it points to. But because this
 366 * struct is anonymous and thus defined inline inside struct B, *and* it
 367 * embeds struct A, compiler requires full definition of struct A to be known
 368 * before struct B can be defined. This creates a transitive dependency
 369 * between struct A and struct B. If struct A was forward-declared before
 370 * struct B definition and fully defined after struct B definition, that would
 371 * trigger compilation error.
 372 *
 373 * All this means that while we are doing topological sorting on BTF type
 374 * graph, we need to determine relationships between different types (graph
 375 * nodes):
 376 *   - weak link (relationship) between X and Y, if Y *CAN* be
 377 *   forward-declared at the point of X definition;
 378 *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
 379 *
 380 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
 381 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
 382 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
 383 * Weak/strong relationship is determined recursively during DFS traversal and
 384 * is returned as a result from btf_dump_order_type().
 385 *
 386 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
 387 * but it is not guaranteeing that no extraneous forward declarations will be
 388 * emitted.
 389 *
 390 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
 391 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
 392 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
 393 * entire graph path, so depending where from one came to that BTF type, it
 394 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
 395 * once they are processed, there is no need to do it again, so they are
 396 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
 397 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
 398 * in any case, once those are processed, no need to do it again, as the
 399 * result won't change.
 400 *
 401 * Returns:
 402 *   - 1, if type is part of strong link (so there is strong topological
 403 *   ordering requirements);
 404 *   - 0, if type is part of weak link (so can be satisfied through forward
 405 *   declaration);
 406 *   - <0, on error (e.g., unsatisfiable type loop detected).
 407 */
 408static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
 409{
 410        /*
 411         * Order state is used to detect strong link cycles, but only for BTF
 412         * kinds that are or could be an independent definition (i.e.,
 413         * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
 414         * func_protos, modifiers are just means to get to these definitions.
 415         * Int/void don't need definitions, they are assumed to be always
 416         * properly defined.  We also ignore datasec, var, and funcs for now.
 417         * So for all non-defining kinds, we never even set ordering state,
 418         * for defining kinds we set ORDERING and subsequently ORDERED if it
 419         * forms a strong link.
 420         */
 421        struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 422        const struct btf_type *t;
 423        __u16 vlen;
 424        int err, i;
 425
 426        /* return true, letting typedefs know that it's ok to be emitted */
 427        if (tstate->order_state == ORDERED)
 428                return 1;
 429
 430        t = btf__type_by_id(d->btf, id);
 431
 432        if (tstate->order_state == ORDERING) {
 433                /* type loop, but resolvable through fwd declaration */
 434                if (btf_is_composite(t) && through_ptr && t->name_off != 0)
 435                        return 0;
 436                pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
 437                return -ELOOP;
 438        }
 439
 440        switch (btf_kind(t)) {
 441        case BTF_KIND_INT:
 442                tstate->order_state = ORDERED;
 443                return 0;
 444
 445        case BTF_KIND_PTR:
 446                err = btf_dump_order_type(d, t->type, true);
 447                tstate->order_state = ORDERED;
 448                return err;
 449
 450        case BTF_KIND_ARRAY:
 451                return btf_dump_order_type(d, btf_array(t)->type, through_ptr);
 452
 453        case BTF_KIND_STRUCT:
 454        case BTF_KIND_UNION: {
 455                const struct btf_member *m = btf_members(t);
 456                /*
 457                 * struct/union is part of strong link, only if it's embedded
 458                 * (so no ptr in a path) or it's anonymous (so has to be
 459                 * defined inline, even if declared through ptr)
 460                 */
 461                if (through_ptr && t->name_off != 0)
 462                        return 0;
 463
 464                tstate->order_state = ORDERING;
 465
 466                vlen = btf_vlen(t);
 467                for (i = 0; i < vlen; i++, m++) {
 468                        err = btf_dump_order_type(d, m->type, false);
 469                        if (err < 0)
 470                                return err;
 471                }
 472
 473                if (t->name_off != 0) {
 474                        err = btf_dump_add_emit_queue_id(d, id);
 475                        if (err < 0)
 476                                return err;
 477                }
 478
 479                tstate->order_state = ORDERED;
 480                return 1;
 481        }
 482        case BTF_KIND_ENUM:
 483        case BTF_KIND_FWD:
 484                /*
 485                 * non-anonymous or non-referenced enums are top-level
 486                 * declarations and should be emitted. Same logic can be
 487                 * applied to FWDs, it won't hurt anyways.
 488                 */
 489                if (t->name_off != 0 || !tstate->referenced) {
 490                        err = btf_dump_add_emit_queue_id(d, id);
 491                        if (err)
 492                                return err;
 493                }
 494                tstate->order_state = ORDERED;
 495                return 1;
 496
 497        case BTF_KIND_TYPEDEF: {
 498                int is_strong;
 499
 500                is_strong = btf_dump_order_type(d, t->type, through_ptr);
 501                if (is_strong < 0)
 502                        return is_strong;
 503
 504                /* typedef is similar to struct/union w.r.t. fwd-decls */
 505                if (through_ptr && !is_strong)
 506                        return 0;
 507
 508                /* typedef is always a named definition */
 509                err = btf_dump_add_emit_queue_id(d, id);
 510                if (err)
 511                        return err;
 512
 513                d->type_states[id].order_state = ORDERED;
 514                return 1;
 515        }
 516        case BTF_KIND_VOLATILE:
 517        case BTF_KIND_CONST:
 518        case BTF_KIND_RESTRICT:
 519                return btf_dump_order_type(d, t->type, through_ptr);
 520
 521        case BTF_KIND_FUNC_PROTO: {
 522                const struct btf_param *p = btf_params(t);
 523                bool is_strong;
 524
 525                err = btf_dump_order_type(d, t->type, through_ptr);
 526                if (err < 0)
 527                        return err;
 528                is_strong = err > 0;
 529
 530                vlen = btf_vlen(t);
 531                for (i = 0; i < vlen; i++, p++) {
 532                        err = btf_dump_order_type(d, p->type, through_ptr);
 533                        if (err < 0)
 534                                return err;
 535                        if (err > 0)
 536                                is_strong = true;
 537                }
 538                return is_strong;
 539        }
 540        case BTF_KIND_FUNC:
 541        case BTF_KIND_VAR:
 542        case BTF_KIND_DATASEC:
 543                d->type_states[id].order_state = ORDERED;
 544                return 0;
 545
 546        default:
 547                return -EINVAL;
 548        }
 549}
 550
 551static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 552                                     const struct btf_type *t);
 553static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
 554                                     const struct btf_type *t, int lvl);
 555
 556static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 557                                   const struct btf_type *t);
 558static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 559                                   const struct btf_type *t, int lvl);
 560
 561static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 562                                  const struct btf_type *t);
 563
 564static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 565                                      const struct btf_type *t, int lvl);
 566
 567/* a local view into a shared stack */
 568struct id_stack {
 569        const __u32 *ids;
 570        int cnt;
 571};
 572
 573static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
 574                                    const char *fname, int lvl);
 575static void btf_dump_emit_type_chain(struct btf_dump *d,
 576                                     struct id_stack *decl_stack,
 577                                     const char *fname, int lvl);
 578
 579static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
 580static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
 581static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
 582                                 const char *orig_name);
 583
 584static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
 585{
 586        const struct btf_type *t = btf__type_by_id(d->btf, id);
 587
 588        /* __builtin_va_list is a compiler built-in, which causes compilation
 589         * errors, when compiling w/ different compiler, then used to compile
 590         * original code (e.g., GCC to compile kernel, Clang to use generated
 591         * C header from BTF). As it is built-in, it should be already defined
 592         * properly internally in compiler.
 593         */
 594        if (t->name_off == 0)
 595                return false;
 596        return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
 597}
 598
 599/*
 600 * Emit C-syntax definitions of types from chains of BTF types.
 601 *
 602 * High-level handling of determining necessary forward declarations are handled
 603 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
 604 * declarations/definitions in C syntax  are handled by a combo of
 605 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
 606 * corresponding btf_dump_emit_*_{def,fwd}() functions.
 607 *
 608 * We also keep track of "containing struct/union type ID" to determine when
 609 * we reference it from inside and thus can avoid emitting unnecessary forward
 610 * declaration.
 611 *
 612 * This algorithm is designed in such a way, that even if some error occurs
 613 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
 614 * that doesn't comply to C rules completely), algorithm will try to proceed
 615 * and produce as much meaningful output as possible.
 616 */
 617static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
 618{
 619        struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 620        bool top_level_def = cont_id == 0;
 621        const struct btf_type *t;
 622        __u16 kind;
 623
 624        if (tstate->emit_state == EMITTED)
 625                return;
 626
 627        t = btf__type_by_id(d->btf, id);
 628        kind = btf_kind(t);
 629
 630        if (tstate->emit_state == EMITTING) {
 631                if (tstate->fwd_emitted)
 632                        return;
 633
 634                switch (kind) {
 635                case BTF_KIND_STRUCT:
 636                case BTF_KIND_UNION:
 637                        /*
 638                         * if we are referencing a struct/union that we are
 639                         * part of - then no need for fwd declaration
 640                         */
 641                        if (id == cont_id)
 642                                return;
 643                        if (t->name_off == 0) {
 644                                pr_warn("anonymous struct/union loop, id:[%u]\n",
 645                                        id);
 646                                return;
 647                        }
 648                        btf_dump_emit_struct_fwd(d, id, t);
 649                        btf_dump_printf(d, ";\n\n");
 650                        tstate->fwd_emitted = 1;
 651                        break;
 652                case BTF_KIND_TYPEDEF:
 653                        /*
 654                         * for typedef fwd_emitted means typedef definition
 655                         * was emitted, but it can be used only for "weak"
 656                         * references through pointer only, not for embedding
 657                         */
 658                        if (!btf_dump_is_blacklisted(d, id)) {
 659                                btf_dump_emit_typedef_def(d, id, t, 0);
 660                                btf_dump_printf(d, ";\n\n");
 661                        };
 662                        tstate->fwd_emitted = 1;
 663                        break;
 664                default:
 665                        break;
 666                }
 667
 668                return;
 669        }
 670
 671        switch (kind) {
 672        case BTF_KIND_INT:
 673                tstate->emit_state = EMITTED;
 674                break;
 675        case BTF_KIND_ENUM:
 676                if (top_level_def) {
 677                        btf_dump_emit_enum_def(d, id, t, 0);
 678                        btf_dump_printf(d, ";\n\n");
 679                }
 680                tstate->emit_state = EMITTED;
 681                break;
 682        case BTF_KIND_PTR:
 683        case BTF_KIND_VOLATILE:
 684        case BTF_KIND_CONST:
 685        case BTF_KIND_RESTRICT:
 686                btf_dump_emit_type(d, t->type, cont_id);
 687                break;
 688        case BTF_KIND_ARRAY:
 689                btf_dump_emit_type(d, btf_array(t)->type, cont_id);
 690                break;
 691        case BTF_KIND_FWD:
 692                btf_dump_emit_fwd_def(d, id, t);
 693                btf_dump_printf(d, ";\n\n");
 694                tstate->emit_state = EMITTED;
 695                break;
 696        case BTF_KIND_TYPEDEF:
 697                tstate->emit_state = EMITTING;
 698                btf_dump_emit_type(d, t->type, id);
 699                /*
 700                 * typedef can server as both definition and forward
 701                 * declaration; at this stage someone depends on
 702                 * typedef as a forward declaration (refers to it
 703                 * through pointer), so unless we already did it,
 704                 * emit typedef as a forward declaration
 705                 */
 706                if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
 707                        btf_dump_emit_typedef_def(d, id, t, 0);
 708                        btf_dump_printf(d, ";\n\n");
 709                }
 710                tstate->emit_state = EMITTED;
 711                break;
 712        case BTF_KIND_STRUCT:
 713        case BTF_KIND_UNION:
 714                tstate->emit_state = EMITTING;
 715                /* if it's a top-level struct/union definition or struct/union
 716                 * is anonymous, then in C we'll be emitting all fields and
 717                 * their types (as opposed to just `struct X`), so we need to
 718                 * make sure that all types, referenced from struct/union
 719                 * members have necessary forward-declarations, where
 720                 * applicable
 721                 */
 722                if (top_level_def || t->name_off == 0) {
 723                        const struct btf_member *m = btf_members(t);
 724                        __u16 vlen = btf_vlen(t);
 725                        int i, new_cont_id;
 726
 727                        new_cont_id = t->name_off == 0 ? cont_id : id;
 728                        for (i = 0; i < vlen; i++, m++)
 729                                btf_dump_emit_type(d, m->type, new_cont_id);
 730                } else if (!tstate->fwd_emitted && id != cont_id) {
 731                        btf_dump_emit_struct_fwd(d, id, t);
 732                        btf_dump_printf(d, ";\n\n");
 733                        tstate->fwd_emitted = 1;
 734                }
 735
 736                if (top_level_def) {
 737                        btf_dump_emit_struct_def(d, id, t, 0);
 738                        btf_dump_printf(d, ";\n\n");
 739                        tstate->emit_state = EMITTED;
 740                } else {
 741                        tstate->emit_state = NOT_EMITTED;
 742                }
 743                break;
 744        case BTF_KIND_FUNC_PROTO: {
 745                const struct btf_param *p = btf_params(t);
 746                __u16 vlen = btf_vlen(t);
 747                int i;
 748
 749                btf_dump_emit_type(d, t->type, cont_id);
 750                for (i = 0; i < vlen; i++, p++)
 751                        btf_dump_emit_type(d, p->type, cont_id);
 752
 753                break;
 754        }
 755        default:
 756                break;
 757        }
 758}
 759
 760static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
 761                                 const struct btf_type *t)
 762{
 763        const struct btf_member *m;
 764        int align, i, bit_sz;
 765        __u16 vlen;
 766
 767        align = btf__align_of(btf, id);
 768        /* size of a non-packed struct has to be a multiple of its alignment*/
 769        if (align && t->size % align)
 770                return true;
 771
 772        m = btf_members(t);
 773        vlen = btf_vlen(t);
 774        /* all non-bitfield fields have to be naturally aligned */
 775        for (i = 0; i < vlen; i++, m++) {
 776                align = btf__align_of(btf, m->type);
 777                bit_sz = btf_member_bitfield_size(t, i);
 778                if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
 779                        return true;
 780        }
 781
 782        /*
 783         * if original struct was marked as packed, but its layout is
 784         * naturally aligned, we'll detect that it's not packed
 785         */
 786        return false;
 787}
 788
 789static int chip_away_bits(int total, int at_most)
 790{
 791        return total % at_most ? : at_most;
 792}
 793
 794static void btf_dump_emit_bit_padding(const struct btf_dump *d,
 795                                      int cur_off, int m_off, int m_bit_sz,
 796                                      int align, int lvl)
 797{
 798        int off_diff = m_off - cur_off;
 799        int ptr_bits = sizeof(void *) * 8;
 800
 801        if (off_diff <= 0)
 802                /* no gap */
 803                return;
 804        if (m_bit_sz == 0 && off_diff < align * 8)
 805                /* natural padding will take care of a gap */
 806                return;
 807
 808        while (off_diff > 0) {
 809                const char *pad_type;
 810                int pad_bits;
 811
 812                if (ptr_bits > 32 && off_diff > 32) {
 813                        pad_type = "long";
 814                        pad_bits = chip_away_bits(off_diff, ptr_bits);
 815                } else if (off_diff > 16) {
 816                        pad_type = "int";
 817                        pad_bits = chip_away_bits(off_diff, 32);
 818                } else if (off_diff > 8) {
 819                        pad_type = "short";
 820                        pad_bits = chip_away_bits(off_diff, 16);
 821                } else {
 822                        pad_type = "char";
 823                        pad_bits = chip_away_bits(off_diff, 8);
 824                }
 825                btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
 826                off_diff -= pad_bits;
 827        }
 828}
 829
 830static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 831                                     const struct btf_type *t)
 832{
 833        btf_dump_printf(d, "%s %s",
 834                        btf_is_struct(t) ? "struct" : "union",
 835                        btf_dump_type_name(d, id));
 836}
 837
 838static void btf_dump_emit_struct_def(struct btf_dump *d,
 839                                     __u32 id,
 840                                     const struct btf_type *t,
 841                                     int lvl)
 842{
 843        const struct btf_member *m = btf_members(t);
 844        bool is_struct = btf_is_struct(t);
 845        int align, i, packed, off = 0;
 846        __u16 vlen = btf_vlen(t);
 847
 848        packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
 849
 850        btf_dump_printf(d, "%s%s%s {",
 851                        is_struct ? "struct" : "union",
 852                        t->name_off ? " " : "",
 853                        btf_dump_type_name(d, id));
 854
 855        for (i = 0; i < vlen; i++, m++) {
 856                const char *fname;
 857                int m_off, m_sz;
 858
 859                fname = btf_name_of(d, m->name_off);
 860                m_sz = btf_member_bitfield_size(t, i);
 861                m_off = btf_member_bit_offset(t, i);
 862                align = packed ? 1 : btf__align_of(d->btf, m->type);
 863
 864                btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
 865                btf_dump_printf(d, "\n%s", pfx(lvl + 1));
 866                btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
 867
 868                if (m_sz) {
 869                        btf_dump_printf(d, ": %d", m_sz);
 870                        off = m_off + m_sz;
 871                } else {
 872                        m_sz = max(0, btf__resolve_size(d->btf, m->type));
 873                        off = m_off + m_sz * 8;
 874                }
 875                btf_dump_printf(d, ";");
 876        }
 877
 878        /* pad at the end, if necessary */
 879        if (is_struct) {
 880                align = packed ? 1 : btf__align_of(d->btf, id);
 881                btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
 882                                          lvl + 1);
 883        }
 884
 885        if (vlen)
 886                btf_dump_printf(d, "\n");
 887        btf_dump_printf(d, "%s}", pfx(lvl));
 888        if (packed)
 889                btf_dump_printf(d, " __attribute__((packed))");
 890}
 891
 892static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 893                                   const struct btf_type *t)
 894{
 895        btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
 896}
 897
 898static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 899                                   const struct btf_type *t,
 900                                   int lvl)
 901{
 902        const struct btf_enum *v = btf_enum(t);
 903        __u16 vlen = btf_vlen(t);
 904        const char *name;
 905        size_t dup_cnt;
 906        int i;
 907
 908        btf_dump_printf(d, "enum%s%s",
 909                        t->name_off ? " " : "",
 910                        btf_dump_type_name(d, id));
 911
 912        if (vlen) {
 913                btf_dump_printf(d, " {");
 914                for (i = 0; i < vlen; i++, v++) {
 915                        name = btf_name_of(d, v->name_off);
 916                        /* enumerators share namespace with typedef idents */
 917                        dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
 918                        if (dup_cnt > 1) {
 919                                btf_dump_printf(d, "\n%s%s___%zu = %u,",
 920                                                pfx(lvl + 1), name, dup_cnt,
 921                                                (__u32)v->val);
 922                        } else {
 923                                btf_dump_printf(d, "\n%s%s = %u,",
 924                                                pfx(lvl + 1), name,
 925                                                (__u32)v->val);
 926                        }
 927                }
 928                btf_dump_printf(d, "\n%s}", pfx(lvl));
 929        }
 930}
 931
 932static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 933                                  const struct btf_type *t)
 934{
 935        const char *name = btf_dump_type_name(d, id);
 936
 937        if (btf_kflag(t))
 938                btf_dump_printf(d, "union %s", name);
 939        else
 940                btf_dump_printf(d, "struct %s", name);
 941}
 942
 943static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 944                                     const struct btf_type *t, int lvl)
 945{
 946        const char *name = btf_dump_ident_name(d, id);
 947
 948        /*
 949         * Old GCC versions are emitting invalid typedef for __gnuc_va_list
 950         * pointing to VOID. This generates warnings from btf_dump() and
 951         * results in uncompilable header file, so we are fixing it up here
 952         * with valid typedef into __builtin_va_list.
 953         */
 954        if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
 955                btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
 956                return;
 957        }
 958
 959        btf_dump_printf(d, "typedef ");
 960        btf_dump_emit_type_decl(d, t->type, name, lvl);
 961}
 962
 963static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
 964{
 965        __u32 *new_stack;
 966        size_t new_cap;
 967
 968        if (d->decl_stack_cnt >= d->decl_stack_cap) {
 969                new_cap = max(16, d->decl_stack_cap * 3 / 2);
 970                new_stack = realloc(d->decl_stack,
 971                                    new_cap * sizeof(new_stack[0]));
 972                if (!new_stack)
 973                        return -ENOMEM;
 974                d->decl_stack = new_stack;
 975                d->decl_stack_cap = new_cap;
 976        }
 977
 978        d->decl_stack[d->decl_stack_cnt++] = id;
 979
 980        return 0;
 981}
 982
 983/*
 984 * Emit type declaration (e.g., field type declaration in a struct or argument
 985 * declaration in function prototype) in correct C syntax.
 986 *
 987 * For most types it's trivial, but there are few quirky type declaration
 988 * cases worth mentioning:
 989 *   - function prototypes (especially nesting of function prototypes);
 990 *   - arrays;
 991 *   - const/volatile/restrict for pointers vs other types.
 992 *
 993 * For a good discussion of *PARSING* C syntax (as a human), see
 994 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
 995 * Ch.3 "Unscrambling Declarations in C".
 996 *
 997 * It won't help with BTF to C conversion much, though, as it's an opposite
 998 * problem. So we came up with this algorithm in reverse to van der Linden's
 999 * parsing algorithm. It goes from structured BTF representation of type
1000 * declaration to a valid compilable C syntax.
1001 *
1002 * For instance, consider this C typedef:
1003 *      typedef const int * const * arr[10] arr_t;
1004 * It will be represented in BTF with this chain of BTF types:
1005 *      [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1006 *
1007 * Notice how [const] modifier always goes before type it modifies in BTF type
1008 * graph, but in C syntax, const/volatile/restrict modifiers are written to
1009 * the right of pointers, but to the left of other types. There are also other
1010 * quirks, like function pointers, arrays of them, functions returning other
1011 * functions, etc.
1012 *
1013 * We handle that by pushing all the types to a stack, until we hit "terminal"
1014 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1015 * top of a stack, modifiers are handled differently. Array/function pointers
1016 * have also wildly different syntax and how nesting of them are done. See
1017 * code for authoritative definition.
1018 *
1019 * To avoid allocating new stack for each independent chain of BTF types, we
1020 * share one bigger stack, with each chain working only on its own local view
1021 * of a stack frame. Some care is required to "pop" stack frames after
1022 * processing type declaration chain.
1023 */
1024int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1025                             const struct btf_dump_emit_type_decl_opts *opts)
1026{
1027        const char *fname;
1028        int lvl;
1029
1030        if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1031                return -EINVAL;
1032
1033        fname = OPTS_GET(opts, field_name, "");
1034        lvl = OPTS_GET(opts, indent_level, 0);
1035        btf_dump_emit_type_decl(d, id, fname, lvl);
1036        return 0;
1037}
1038
1039static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1040                                    const char *fname, int lvl)
1041{
1042        struct id_stack decl_stack;
1043        const struct btf_type *t;
1044        int err, stack_start;
1045
1046        stack_start = d->decl_stack_cnt;
1047        for (;;) {
1048                err = btf_dump_push_decl_stack_id(d, id);
1049                if (err < 0) {
1050                        /*
1051                         * if we don't have enough memory for entire type decl
1052                         * chain, restore stack, emit warning, and try to
1053                         * proceed nevertheless
1054                         */
1055                        pr_warn("not enough memory for decl stack:%d", err);
1056                        d->decl_stack_cnt = stack_start;
1057                        return;
1058                }
1059
1060                /* VOID */
1061                if (id == 0)
1062                        break;
1063
1064                t = btf__type_by_id(d->btf, id);
1065                switch (btf_kind(t)) {
1066                case BTF_KIND_PTR:
1067                case BTF_KIND_VOLATILE:
1068                case BTF_KIND_CONST:
1069                case BTF_KIND_RESTRICT:
1070                case BTF_KIND_FUNC_PROTO:
1071                        id = t->type;
1072                        break;
1073                case BTF_KIND_ARRAY:
1074                        id = btf_array(t)->type;
1075                        break;
1076                case BTF_KIND_INT:
1077                case BTF_KIND_ENUM:
1078                case BTF_KIND_FWD:
1079                case BTF_KIND_STRUCT:
1080                case BTF_KIND_UNION:
1081                case BTF_KIND_TYPEDEF:
1082                        goto done;
1083                default:
1084                        pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1085                                btf_kind(t), id);
1086                        goto done;
1087                }
1088        }
1089done:
1090        /*
1091         * We might be inside a chain of declarations (e.g., array of function
1092         * pointers returning anonymous (so inlined) structs, having another
1093         * array field). Each of those needs its own "stack frame" to handle
1094         * emitting of declarations. Those stack frames are non-overlapping
1095         * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1096         * handle this set of nested stacks, we create a view corresponding to
1097         * our own "stack frame" and work with it as an independent stack.
1098         * We'll need to clean up after emit_type_chain() returns, though.
1099         */
1100        decl_stack.ids = d->decl_stack + stack_start;
1101        decl_stack.cnt = d->decl_stack_cnt - stack_start;
1102        btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1103        /*
1104         * emit_type_chain() guarantees that it will pop its entire decl_stack
1105         * frame before returning. But it works with a read-only view into
1106         * decl_stack, so it doesn't actually pop anything from the
1107         * perspective of shared btf_dump->decl_stack, per se. We need to
1108         * reset decl_stack state to how it was before us to avoid it growing
1109         * all the time.
1110         */
1111        d->decl_stack_cnt = stack_start;
1112}
1113
1114static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1115{
1116        const struct btf_type *t;
1117        __u32 id;
1118
1119        while (decl_stack->cnt) {
1120                id = decl_stack->ids[decl_stack->cnt - 1];
1121                t = btf__type_by_id(d->btf, id);
1122
1123                switch (btf_kind(t)) {
1124                case BTF_KIND_VOLATILE:
1125                        btf_dump_printf(d, "volatile ");
1126                        break;
1127                case BTF_KIND_CONST:
1128                        btf_dump_printf(d, "const ");
1129                        break;
1130                case BTF_KIND_RESTRICT:
1131                        btf_dump_printf(d, "restrict ");
1132                        break;
1133                default:
1134                        return;
1135                }
1136                decl_stack->cnt--;
1137        }
1138}
1139
1140static void btf_dump_emit_name(const struct btf_dump *d,
1141                               const char *name, bool last_was_ptr)
1142{
1143        bool separate = name[0] && !last_was_ptr;
1144
1145        btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1146}
1147
1148static void btf_dump_emit_type_chain(struct btf_dump *d,
1149                                     struct id_stack *decls,
1150                                     const char *fname, int lvl)
1151{
1152        /*
1153         * last_was_ptr is used to determine if we need to separate pointer
1154         * asterisk (*) from previous part of type signature with space, so
1155         * that we get `int ***`, instead of `int * * *`. We default to true
1156         * for cases where we have single pointer in a chain. E.g., in ptr ->
1157         * func_proto case. func_proto will start a new emit_type_chain call
1158         * with just ptr, which should be emitted as (*) or (*<fname>), so we
1159         * don't want to prepend space for that last pointer.
1160         */
1161        bool last_was_ptr = true;
1162        const struct btf_type *t;
1163        const char *name;
1164        __u16 kind;
1165        __u32 id;
1166
1167        while (decls->cnt) {
1168                id = decls->ids[--decls->cnt];
1169                if (id == 0) {
1170                        /* VOID is a special snowflake */
1171                        btf_dump_emit_mods(d, decls);
1172                        btf_dump_printf(d, "void");
1173                        last_was_ptr = false;
1174                        continue;
1175                }
1176
1177                t = btf__type_by_id(d->btf, id);
1178                kind = btf_kind(t);
1179
1180                switch (kind) {
1181                case BTF_KIND_INT:
1182                        btf_dump_emit_mods(d, decls);
1183                        name = btf_name_of(d, t->name_off);
1184                        btf_dump_printf(d, "%s", name);
1185                        break;
1186                case BTF_KIND_STRUCT:
1187                case BTF_KIND_UNION:
1188                        btf_dump_emit_mods(d, decls);
1189                        /* inline anonymous struct/union */
1190                        if (t->name_off == 0)
1191                                btf_dump_emit_struct_def(d, id, t, lvl);
1192                        else
1193                                btf_dump_emit_struct_fwd(d, id, t);
1194                        break;
1195                case BTF_KIND_ENUM:
1196                        btf_dump_emit_mods(d, decls);
1197                        /* inline anonymous enum */
1198                        if (t->name_off == 0)
1199                                btf_dump_emit_enum_def(d, id, t, lvl);
1200                        else
1201                                btf_dump_emit_enum_fwd(d, id, t);
1202                        break;
1203                case BTF_KIND_FWD:
1204                        btf_dump_emit_mods(d, decls);
1205                        btf_dump_emit_fwd_def(d, id, t);
1206                        break;
1207                case BTF_KIND_TYPEDEF:
1208                        btf_dump_emit_mods(d, decls);
1209                        btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1210                        break;
1211                case BTF_KIND_PTR:
1212                        btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1213                        break;
1214                case BTF_KIND_VOLATILE:
1215                        btf_dump_printf(d, " volatile");
1216                        break;
1217                case BTF_KIND_CONST:
1218                        btf_dump_printf(d, " const");
1219                        break;
1220                case BTF_KIND_RESTRICT:
1221                        btf_dump_printf(d, " restrict");
1222                        break;
1223                case BTF_KIND_ARRAY: {
1224                        const struct btf_array *a = btf_array(t);
1225                        const struct btf_type *next_t;
1226                        __u32 next_id;
1227                        bool multidim;
1228                        /*
1229                         * GCC has a bug
1230                         * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1231                         * which causes it to emit extra const/volatile
1232                         * modifiers for an array, if array's element type has
1233                         * const/volatile modifiers. Clang doesn't do that.
1234                         * In general, it doesn't seem very meaningful to have
1235                         * a const/volatile modifier for array, so we are
1236                         * going to silently skip them here.
1237                         */
1238                        while (decls->cnt) {
1239                                next_id = decls->ids[decls->cnt - 1];
1240                                next_t = btf__type_by_id(d->btf, next_id);
1241                                if (btf_is_mod(next_t))
1242                                        decls->cnt--;
1243                                else
1244                                        break;
1245                        }
1246
1247                        if (decls->cnt == 0) {
1248                                btf_dump_emit_name(d, fname, last_was_ptr);
1249                                btf_dump_printf(d, "[%u]", a->nelems);
1250                                return;
1251                        }
1252
1253                        next_id = decls->ids[decls->cnt - 1];
1254                        next_t = btf__type_by_id(d->btf, next_id);
1255                        multidim = btf_is_array(next_t);
1256                        /* we need space if we have named non-pointer */
1257                        if (fname[0] && !last_was_ptr)
1258                                btf_dump_printf(d, " ");
1259                        /* no parentheses for multi-dimensional array */
1260                        if (!multidim)
1261                                btf_dump_printf(d, "(");
1262                        btf_dump_emit_type_chain(d, decls, fname, lvl);
1263                        if (!multidim)
1264                                btf_dump_printf(d, ")");
1265                        btf_dump_printf(d, "[%u]", a->nelems);
1266                        return;
1267                }
1268                case BTF_KIND_FUNC_PROTO: {
1269                        const struct btf_param *p = btf_params(t);
1270                        __u16 vlen = btf_vlen(t);
1271                        int i;
1272
1273                        btf_dump_emit_mods(d, decls);
1274                        if (decls->cnt) {
1275                                btf_dump_printf(d, " (");
1276                                btf_dump_emit_type_chain(d, decls, fname, lvl);
1277                                btf_dump_printf(d, ")");
1278                        } else {
1279                                btf_dump_emit_name(d, fname, last_was_ptr);
1280                        }
1281                        btf_dump_printf(d, "(");
1282                        /*
1283                         * Clang for BPF target generates func_proto with no
1284                         * args as a func_proto with a single void arg (e.g.,
1285                         * `int (*f)(void)` vs just `int (*f)()`). We are
1286                         * going to pretend there are no args for such case.
1287                         */
1288                        if (vlen == 1 && p->type == 0) {
1289                                btf_dump_printf(d, ")");
1290                                return;
1291                        }
1292
1293                        for (i = 0; i < vlen; i++, p++) {
1294                                if (i > 0)
1295                                        btf_dump_printf(d, ", ");
1296
1297                                /* last arg of type void is vararg */
1298                                if (i == vlen - 1 && p->type == 0) {
1299                                        btf_dump_printf(d, "...");
1300                                        break;
1301                                }
1302
1303                                name = btf_name_of(d, p->name_off);
1304                                btf_dump_emit_type_decl(d, p->type, name, lvl);
1305                        }
1306
1307                        btf_dump_printf(d, ")");
1308                        return;
1309                }
1310                default:
1311                        pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1312                                kind, id);
1313                        return;
1314                }
1315
1316                last_was_ptr = kind == BTF_KIND_PTR;
1317        }
1318
1319        btf_dump_emit_name(d, fname, last_was_ptr);
1320}
1321
1322/* return number of duplicates (occurrences) of a given name */
1323static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1324                                 const char *orig_name)
1325{
1326        size_t dup_cnt = 0;
1327
1328        hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1329        dup_cnt++;
1330        hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1331
1332        return dup_cnt;
1333}
1334
1335static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1336                                         struct hashmap *name_map)
1337{
1338        struct btf_dump_type_aux_state *s = &d->type_states[id];
1339        const struct btf_type *t = btf__type_by_id(d->btf, id);
1340        const char *orig_name = btf_name_of(d, t->name_off);
1341        const char **cached_name = &d->cached_names[id];
1342        size_t dup_cnt;
1343
1344        if (t->name_off == 0)
1345                return "";
1346
1347        if (s->name_resolved)
1348                return *cached_name ? *cached_name : orig_name;
1349
1350        dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1351        if (dup_cnt > 1) {
1352                const size_t max_len = 256;
1353                char new_name[max_len];
1354
1355                snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1356                *cached_name = strdup(new_name);
1357        }
1358
1359        s->name_resolved = 1;
1360        return *cached_name ? *cached_name : orig_name;
1361}
1362
1363static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1364{
1365        return btf_dump_resolve_name(d, id, d->type_names);
1366}
1367
1368static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1369{
1370        return btf_dump_resolve_name(d, id, d->ident_names);
1371}
1372