linux/tools/perf/util/header.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
   4#include "string2.h"
   5#include <sys/param.h>
   6#include <sys/types.h>
   7#include <byteswap.h>
   8#include <unistd.h>
   9#include <stdio.h>
  10#include <stdlib.h>
  11#include <linux/compiler.h>
  12#include <linux/list.h>
  13#include <linux/kernel.h>
  14#include <linux/bitops.h>
  15#include <linux/string.h>
  16#include <linux/stringify.h>
  17#include <linux/zalloc.h>
  18#include <sys/stat.h>
  19#include <sys/utsname.h>
  20#include <linux/time64.h>
  21#include <dirent.h>
  22#include <bpf/libbpf.h>
  23#include <perf/cpumap.h>
  24
  25#include "dso.h"
  26#include "evlist.h"
  27#include "evsel.h"
  28#include "util/evsel_fprintf.h"
  29#include "header.h"
  30#include "memswap.h"
  31#include "trace-event.h"
  32#include "session.h"
  33#include "symbol.h"
  34#include "debug.h"
  35#include "cpumap.h"
  36#include "pmu.h"
  37#include "vdso.h"
  38#include "strbuf.h"
  39#include "build-id.h"
  40#include "data.h"
  41#include <api/fs/fs.h>
  42#include "asm/bug.h"
  43#include "tool.h"
  44#include "time-utils.h"
  45#include "units.h"
  46#include "util/util.h" // perf_exe()
  47#include "cputopo.h"
  48#include "bpf-event.h"
  49
  50#include <linux/ctype.h>
  51#include <internal/lib.h>
  52
  53/*
  54 * magic2 = "PERFILE2"
  55 * must be a numerical value to let the endianness
  56 * determine the memory layout. That way we are able
  57 * to detect endianness when reading the perf.data file
  58 * back.
  59 *
  60 * we check for legacy (PERFFILE) format.
  61 */
  62static const char *__perf_magic1 = "PERFFILE";
  63static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  64static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  65
  66#define PERF_MAGIC      __perf_magic2
  67
  68const char perf_version_string[] = PERF_VERSION;
  69
  70struct perf_file_attr {
  71        struct perf_event_attr  attr;
  72        struct perf_file_section        ids;
  73};
  74
  75void perf_header__set_feat(struct perf_header *header, int feat)
  76{
  77        set_bit(feat, header->adds_features);
  78}
  79
  80void perf_header__clear_feat(struct perf_header *header, int feat)
  81{
  82        clear_bit(feat, header->adds_features);
  83}
  84
  85bool perf_header__has_feat(const struct perf_header *header, int feat)
  86{
  87        return test_bit(feat, header->adds_features);
  88}
  89
  90static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
  91{
  92        ssize_t ret = writen(ff->fd, buf, size);
  93
  94        if (ret != (ssize_t)size)
  95                return ret < 0 ? (int)ret : -1;
  96        return 0;
  97}
  98
  99static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 100{
 101        /* struct perf_event_header::size is u16 */
 102        const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 103        size_t new_size = ff->size;
 104        void *addr;
 105
 106        if (size + ff->offset > max_size)
 107                return -E2BIG;
 108
 109        while (size > (new_size - ff->offset))
 110                new_size <<= 1;
 111        new_size = min(max_size, new_size);
 112
 113        if (ff->size < new_size) {
 114                addr = realloc(ff->buf, new_size);
 115                if (!addr)
 116                        return -ENOMEM;
 117                ff->buf = addr;
 118                ff->size = new_size;
 119        }
 120
 121        memcpy(ff->buf + ff->offset, buf, size);
 122        ff->offset += size;
 123
 124        return 0;
 125}
 126
 127/* Return: 0 if succeded, -ERR if failed. */
 128int do_write(struct feat_fd *ff, const void *buf, size_t size)
 129{
 130        if (!ff->buf)
 131                return __do_write_fd(ff, buf, size);
 132        return __do_write_buf(ff, buf, size);
 133}
 134
 135/* Return: 0 if succeded, -ERR if failed. */
 136static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 137{
 138        u64 *p = (u64 *) set;
 139        int i, ret;
 140
 141        ret = do_write(ff, &size, sizeof(size));
 142        if (ret < 0)
 143                return ret;
 144
 145        for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 146                ret = do_write(ff, p + i, sizeof(*p));
 147                if (ret < 0)
 148                        return ret;
 149        }
 150
 151        return 0;
 152}
 153
 154/* Return: 0 if succeded, -ERR if failed. */
 155int write_padded(struct feat_fd *ff, const void *bf,
 156                 size_t count, size_t count_aligned)
 157{
 158        static const char zero_buf[NAME_ALIGN];
 159        int err = do_write(ff, bf, count);
 160
 161        if (!err)
 162                err = do_write(ff, zero_buf, count_aligned - count);
 163
 164        return err;
 165}
 166
 167#define string_size(str)                                                \
 168        (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 169
 170/* Return: 0 if succeded, -ERR if failed. */
 171static int do_write_string(struct feat_fd *ff, const char *str)
 172{
 173        u32 len, olen;
 174        int ret;
 175
 176        olen = strlen(str) + 1;
 177        len = PERF_ALIGN(olen, NAME_ALIGN);
 178
 179        /* write len, incl. \0 */
 180        ret = do_write(ff, &len, sizeof(len));
 181        if (ret < 0)
 182                return ret;
 183
 184        return write_padded(ff, str, olen, len);
 185}
 186
 187static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 188{
 189        ssize_t ret = readn(ff->fd, addr, size);
 190
 191        if (ret != size)
 192                return ret < 0 ? (int)ret : -1;
 193        return 0;
 194}
 195
 196static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 197{
 198        if (size > (ssize_t)ff->size - ff->offset)
 199                return -1;
 200
 201        memcpy(addr, ff->buf + ff->offset, size);
 202        ff->offset += size;
 203
 204        return 0;
 205
 206}
 207
 208static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 209{
 210        if (!ff->buf)
 211                return __do_read_fd(ff, addr, size);
 212        return __do_read_buf(ff, addr, size);
 213}
 214
 215static int do_read_u32(struct feat_fd *ff, u32 *addr)
 216{
 217        int ret;
 218
 219        ret = __do_read(ff, addr, sizeof(*addr));
 220        if (ret)
 221                return ret;
 222
 223        if (ff->ph->needs_swap)
 224                *addr = bswap_32(*addr);
 225        return 0;
 226}
 227
 228static int do_read_u64(struct feat_fd *ff, u64 *addr)
 229{
 230        int ret;
 231
 232        ret = __do_read(ff, addr, sizeof(*addr));
 233        if (ret)
 234                return ret;
 235
 236        if (ff->ph->needs_swap)
 237                *addr = bswap_64(*addr);
 238        return 0;
 239}
 240
 241static char *do_read_string(struct feat_fd *ff)
 242{
 243        u32 len;
 244        char *buf;
 245
 246        if (do_read_u32(ff, &len))
 247                return NULL;
 248
 249        buf = malloc(len);
 250        if (!buf)
 251                return NULL;
 252
 253        if (!__do_read(ff, buf, len)) {
 254                /*
 255                 * strings are padded by zeroes
 256                 * thus the actual strlen of buf
 257                 * may be less than len
 258                 */
 259                return buf;
 260        }
 261
 262        free(buf);
 263        return NULL;
 264}
 265
 266/* Return: 0 if succeded, -ERR if failed. */
 267static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 268{
 269        unsigned long *set;
 270        u64 size, *p;
 271        int i, ret;
 272
 273        ret = do_read_u64(ff, &size);
 274        if (ret)
 275                return ret;
 276
 277        set = bitmap_alloc(size);
 278        if (!set)
 279                return -ENOMEM;
 280
 281        p = (u64 *) set;
 282
 283        for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 284                ret = do_read_u64(ff, p + i);
 285                if (ret < 0) {
 286                        free(set);
 287                        return ret;
 288                }
 289        }
 290
 291        *pset  = set;
 292        *psize = size;
 293        return 0;
 294}
 295
 296static int write_tracing_data(struct feat_fd *ff,
 297                              struct evlist *evlist)
 298{
 299        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 300                return -1;
 301
 302        return read_tracing_data(ff->fd, &evlist->core.entries);
 303}
 304
 305static int write_build_id(struct feat_fd *ff,
 306                          struct evlist *evlist __maybe_unused)
 307{
 308        struct perf_session *session;
 309        int err;
 310
 311        session = container_of(ff->ph, struct perf_session, header);
 312
 313        if (!perf_session__read_build_ids(session, true))
 314                return -1;
 315
 316        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 317                return -1;
 318
 319        err = perf_session__write_buildid_table(session, ff);
 320        if (err < 0) {
 321                pr_debug("failed to write buildid table\n");
 322                return err;
 323        }
 324        perf_session__cache_build_ids(session);
 325
 326        return 0;
 327}
 328
 329static int write_hostname(struct feat_fd *ff,
 330                          struct evlist *evlist __maybe_unused)
 331{
 332        struct utsname uts;
 333        int ret;
 334
 335        ret = uname(&uts);
 336        if (ret < 0)
 337                return -1;
 338
 339        return do_write_string(ff, uts.nodename);
 340}
 341
 342static int write_osrelease(struct feat_fd *ff,
 343                           struct evlist *evlist __maybe_unused)
 344{
 345        struct utsname uts;
 346        int ret;
 347
 348        ret = uname(&uts);
 349        if (ret < 0)
 350                return -1;
 351
 352        return do_write_string(ff, uts.release);
 353}
 354
 355static int write_arch(struct feat_fd *ff,
 356                      struct evlist *evlist __maybe_unused)
 357{
 358        struct utsname uts;
 359        int ret;
 360
 361        ret = uname(&uts);
 362        if (ret < 0)
 363                return -1;
 364
 365        return do_write_string(ff, uts.machine);
 366}
 367
 368static int write_version(struct feat_fd *ff,
 369                         struct evlist *evlist __maybe_unused)
 370{
 371        return do_write_string(ff, perf_version_string);
 372}
 373
 374static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 375{
 376        FILE *file;
 377        char *buf = NULL;
 378        char *s, *p;
 379        const char *search = cpuinfo_proc;
 380        size_t len = 0;
 381        int ret = -1;
 382
 383        if (!search)
 384                return -1;
 385
 386        file = fopen("/proc/cpuinfo", "r");
 387        if (!file)
 388                return -1;
 389
 390        while (getline(&buf, &len, file) > 0) {
 391                ret = strncmp(buf, search, strlen(search));
 392                if (!ret)
 393                        break;
 394        }
 395
 396        if (ret) {
 397                ret = -1;
 398                goto done;
 399        }
 400
 401        s = buf;
 402
 403        p = strchr(buf, ':');
 404        if (p && *(p+1) == ' ' && *(p+2))
 405                s = p + 2;
 406        p = strchr(s, '\n');
 407        if (p)
 408                *p = '\0';
 409
 410        /* squash extra space characters (branding string) */
 411        p = s;
 412        while (*p) {
 413                if (isspace(*p)) {
 414                        char *r = p + 1;
 415                        char *q = skip_spaces(r);
 416                        *p = ' ';
 417                        if (q != (p+1))
 418                                while ((*r++ = *q++));
 419                }
 420                p++;
 421        }
 422        ret = do_write_string(ff, s);
 423done:
 424        free(buf);
 425        fclose(file);
 426        return ret;
 427}
 428
 429static int write_cpudesc(struct feat_fd *ff,
 430                       struct evlist *evlist __maybe_unused)
 431{
 432#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
 433#define CPUINFO_PROC    { "cpu", }
 434#elif defined(__s390__)
 435#define CPUINFO_PROC    { "vendor_id", }
 436#elif defined(__sh__)
 437#define CPUINFO_PROC    { "cpu type", }
 438#elif defined(__alpha__) || defined(__mips__)
 439#define CPUINFO_PROC    { "cpu model", }
 440#elif defined(__arm__)
 441#define CPUINFO_PROC    { "model name", "Processor", }
 442#elif defined(__arc__)
 443#define CPUINFO_PROC    { "Processor", }
 444#elif defined(__xtensa__)
 445#define CPUINFO_PROC    { "core ID", }
 446#else
 447#define CPUINFO_PROC    { "model name", }
 448#endif
 449        const char *cpuinfo_procs[] = CPUINFO_PROC;
 450#undef CPUINFO_PROC
 451        unsigned int i;
 452
 453        for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 454                int ret;
 455                ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 456                if (ret >= 0)
 457                        return ret;
 458        }
 459        return -1;
 460}
 461
 462
 463static int write_nrcpus(struct feat_fd *ff,
 464                        struct evlist *evlist __maybe_unused)
 465{
 466        long nr;
 467        u32 nrc, nra;
 468        int ret;
 469
 470        nrc = cpu__max_present_cpu();
 471
 472        nr = sysconf(_SC_NPROCESSORS_ONLN);
 473        if (nr < 0)
 474                return -1;
 475
 476        nra = (u32)(nr & UINT_MAX);
 477
 478        ret = do_write(ff, &nrc, sizeof(nrc));
 479        if (ret < 0)
 480                return ret;
 481
 482        return do_write(ff, &nra, sizeof(nra));
 483}
 484
 485static int write_event_desc(struct feat_fd *ff,
 486                            struct evlist *evlist)
 487{
 488        struct evsel *evsel;
 489        u32 nre, nri, sz;
 490        int ret;
 491
 492        nre = evlist->core.nr_entries;
 493
 494        /*
 495         * write number of events
 496         */
 497        ret = do_write(ff, &nre, sizeof(nre));
 498        if (ret < 0)
 499                return ret;
 500
 501        /*
 502         * size of perf_event_attr struct
 503         */
 504        sz = (u32)sizeof(evsel->core.attr);
 505        ret = do_write(ff, &sz, sizeof(sz));
 506        if (ret < 0)
 507                return ret;
 508
 509        evlist__for_each_entry(evlist, evsel) {
 510                ret = do_write(ff, &evsel->core.attr, sz);
 511                if (ret < 0)
 512                        return ret;
 513                /*
 514                 * write number of unique id per event
 515                 * there is one id per instance of an event
 516                 *
 517                 * copy into an nri to be independent of the
 518                 * type of ids,
 519                 */
 520                nri = evsel->core.ids;
 521                ret = do_write(ff, &nri, sizeof(nri));
 522                if (ret < 0)
 523                        return ret;
 524
 525                /*
 526                 * write event string as passed on cmdline
 527                 */
 528                ret = do_write_string(ff, perf_evsel__name(evsel));
 529                if (ret < 0)
 530                        return ret;
 531                /*
 532                 * write unique ids for this event
 533                 */
 534                ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
 535                if (ret < 0)
 536                        return ret;
 537        }
 538        return 0;
 539}
 540
 541static int write_cmdline(struct feat_fd *ff,
 542                         struct evlist *evlist __maybe_unused)
 543{
 544        char pbuf[MAXPATHLEN], *buf;
 545        int i, ret, n;
 546
 547        /* actual path to perf binary */
 548        buf = perf_exe(pbuf, MAXPATHLEN);
 549
 550        /* account for binary path */
 551        n = perf_env.nr_cmdline + 1;
 552
 553        ret = do_write(ff, &n, sizeof(n));
 554        if (ret < 0)
 555                return ret;
 556
 557        ret = do_write_string(ff, buf);
 558        if (ret < 0)
 559                return ret;
 560
 561        for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 562                ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 563                if (ret < 0)
 564                        return ret;
 565        }
 566        return 0;
 567}
 568
 569
 570static int write_cpu_topology(struct feat_fd *ff,
 571                              struct evlist *evlist __maybe_unused)
 572{
 573        struct cpu_topology *tp;
 574        u32 i;
 575        int ret, j;
 576
 577        tp = cpu_topology__new();
 578        if (!tp)
 579                return -1;
 580
 581        ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
 582        if (ret < 0)
 583                goto done;
 584
 585        for (i = 0; i < tp->core_sib; i++) {
 586                ret = do_write_string(ff, tp->core_siblings[i]);
 587                if (ret < 0)
 588                        goto done;
 589        }
 590        ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
 591        if (ret < 0)
 592                goto done;
 593
 594        for (i = 0; i < tp->thread_sib; i++) {
 595                ret = do_write_string(ff, tp->thread_siblings[i]);
 596                if (ret < 0)
 597                        break;
 598        }
 599
 600        ret = perf_env__read_cpu_topology_map(&perf_env);
 601        if (ret < 0)
 602                goto done;
 603
 604        for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 605                ret = do_write(ff, &perf_env.cpu[j].core_id,
 606                               sizeof(perf_env.cpu[j].core_id));
 607                if (ret < 0)
 608                        return ret;
 609                ret = do_write(ff, &perf_env.cpu[j].socket_id,
 610                               sizeof(perf_env.cpu[j].socket_id));
 611                if (ret < 0)
 612                        return ret;
 613        }
 614
 615        if (!tp->die_sib)
 616                goto done;
 617
 618        ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
 619        if (ret < 0)
 620                goto done;
 621
 622        for (i = 0; i < tp->die_sib; i++) {
 623                ret = do_write_string(ff, tp->die_siblings[i]);
 624                if (ret < 0)
 625                        goto done;
 626        }
 627
 628        for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 629                ret = do_write(ff, &perf_env.cpu[j].die_id,
 630                               sizeof(perf_env.cpu[j].die_id));
 631                if (ret < 0)
 632                        return ret;
 633        }
 634
 635done:
 636        cpu_topology__delete(tp);
 637        return ret;
 638}
 639
 640
 641
 642static int write_total_mem(struct feat_fd *ff,
 643                           struct evlist *evlist __maybe_unused)
 644{
 645        char *buf = NULL;
 646        FILE *fp;
 647        size_t len = 0;
 648        int ret = -1, n;
 649        uint64_t mem;
 650
 651        fp = fopen("/proc/meminfo", "r");
 652        if (!fp)
 653                return -1;
 654
 655        while (getline(&buf, &len, fp) > 0) {
 656                ret = strncmp(buf, "MemTotal:", 9);
 657                if (!ret)
 658                        break;
 659        }
 660        if (!ret) {
 661                n = sscanf(buf, "%*s %"PRIu64, &mem);
 662                if (n == 1)
 663                        ret = do_write(ff, &mem, sizeof(mem));
 664        } else
 665                ret = -1;
 666        free(buf);
 667        fclose(fp);
 668        return ret;
 669}
 670
 671static int write_numa_topology(struct feat_fd *ff,
 672                               struct evlist *evlist __maybe_unused)
 673{
 674        struct numa_topology *tp;
 675        int ret = -1;
 676        u32 i;
 677
 678        tp = numa_topology__new();
 679        if (!tp)
 680                return -ENOMEM;
 681
 682        ret = do_write(ff, &tp->nr, sizeof(u32));
 683        if (ret < 0)
 684                goto err;
 685
 686        for (i = 0; i < tp->nr; i++) {
 687                struct numa_topology_node *n = &tp->nodes[i];
 688
 689                ret = do_write(ff, &n->node, sizeof(u32));
 690                if (ret < 0)
 691                        goto err;
 692
 693                ret = do_write(ff, &n->mem_total, sizeof(u64));
 694                if (ret)
 695                        goto err;
 696
 697                ret = do_write(ff, &n->mem_free, sizeof(u64));
 698                if (ret)
 699                        goto err;
 700
 701                ret = do_write_string(ff, n->cpus);
 702                if (ret < 0)
 703                        goto err;
 704        }
 705
 706        ret = 0;
 707
 708err:
 709        numa_topology__delete(tp);
 710        return ret;
 711}
 712
 713/*
 714 * File format:
 715 *
 716 * struct pmu_mappings {
 717 *      u32     pmu_num;
 718 *      struct pmu_map {
 719 *              u32     type;
 720 *              char    name[];
 721 *      }[pmu_num];
 722 * };
 723 */
 724
 725static int write_pmu_mappings(struct feat_fd *ff,
 726                              struct evlist *evlist __maybe_unused)
 727{
 728        struct perf_pmu *pmu = NULL;
 729        u32 pmu_num = 0;
 730        int ret;
 731
 732        /*
 733         * Do a first pass to count number of pmu to avoid lseek so this
 734         * works in pipe mode as well.
 735         */
 736        while ((pmu = perf_pmu__scan(pmu))) {
 737                if (!pmu->name)
 738                        continue;
 739                pmu_num++;
 740        }
 741
 742        ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 743        if (ret < 0)
 744                return ret;
 745
 746        while ((pmu = perf_pmu__scan(pmu))) {
 747                if (!pmu->name)
 748                        continue;
 749
 750                ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 751                if (ret < 0)
 752                        return ret;
 753
 754                ret = do_write_string(ff, pmu->name);
 755                if (ret < 0)
 756                        return ret;
 757        }
 758
 759        return 0;
 760}
 761
 762/*
 763 * File format:
 764 *
 765 * struct group_descs {
 766 *      u32     nr_groups;
 767 *      struct group_desc {
 768 *              char    name[];
 769 *              u32     leader_idx;
 770 *              u32     nr_members;
 771 *      }[nr_groups];
 772 * };
 773 */
 774static int write_group_desc(struct feat_fd *ff,
 775                            struct evlist *evlist)
 776{
 777        u32 nr_groups = evlist->nr_groups;
 778        struct evsel *evsel;
 779        int ret;
 780
 781        ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 782        if (ret < 0)
 783                return ret;
 784
 785        evlist__for_each_entry(evlist, evsel) {
 786                if (perf_evsel__is_group_leader(evsel) &&
 787                    evsel->core.nr_members > 1) {
 788                        const char *name = evsel->group_name ?: "{anon_group}";
 789                        u32 leader_idx = evsel->idx;
 790                        u32 nr_members = evsel->core.nr_members;
 791
 792                        ret = do_write_string(ff, name);
 793                        if (ret < 0)
 794                                return ret;
 795
 796                        ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 797                        if (ret < 0)
 798                                return ret;
 799
 800                        ret = do_write(ff, &nr_members, sizeof(nr_members));
 801                        if (ret < 0)
 802                                return ret;
 803                }
 804        }
 805        return 0;
 806}
 807
 808/*
 809 * Return the CPU id as a raw string.
 810 *
 811 * Each architecture should provide a more precise id string that
 812 * can be use to match the architecture's "mapfile".
 813 */
 814char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
 815{
 816        return NULL;
 817}
 818
 819/* Return zero when the cpuid from the mapfile.csv matches the
 820 * cpuid string generated on this platform.
 821 * Otherwise return non-zero.
 822 */
 823int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
 824{
 825        regex_t re;
 826        regmatch_t pmatch[1];
 827        int match;
 828
 829        if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
 830                /* Warn unable to generate match particular string. */
 831                pr_info("Invalid regular expression %s\n", mapcpuid);
 832                return 1;
 833        }
 834
 835        match = !regexec(&re, cpuid, 1, pmatch, 0);
 836        regfree(&re);
 837        if (match) {
 838                size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
 839
 840                /* Verify the entire string matched. */
 841                if (match_len == strlen(cpuid))
 842                        return 0;
 843        }
 844        return 1;
 845}
 846
 847/*
 848 * default get_cpuid(): nothing gets recorded
 849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 850 */
 851int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
 852{
 853        return ENOSYS; /* Not implemented */
 854}
 855
 856static int write_cpuid(struct feat_fd *ff,
 857                       struct evlist *evlist __maybe_unused)
 858{
 859        char buffer[64];
 860        int ret;
 861
 862        ret = get_cpuid(buffer, sizeof(buffer));
 863        if (ret)
 864                return -1;
 865
 866        return do_write_string(ff, buffer);
 867}
 868
 869static int write_branch_stack(struct feat_fd *ff __maybe_unused,
 870                              struct evlist *evlist __maybe_unused)
 871{
 872        return 0;
 873}
 874
 875static int write_auxtrace(struct feat_fd *ff,
 876                          struct evlist *evlist __maybe_unused)
 877{
 878        struct perf_session *session;
 879        int err;
 880
 881        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 882                return -1;
 883
 884        session = container_of(ff->ph, struct perf_session, header);
 885
 886        err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
 887        if (err < 0)
 888                pr_err("Failed to write auxtrace index\n");
 889        return err;
 890}
 891
 892static int write_clockid(struct feat_fd *ff,
 893                         struct evlist *evlist __maybe_unused)
 894{
 895        return do_write(ff, &ff->ph->env.clockid_res_ns,
 896                        sizeof(ff->ph->env.clockid_res_ns));
 897}
 898
 899static int write_dir_format(struct feat_fd *ff,
 900                            struct evlist *evlist __maybe_unused)
 901{
 902        struct perf_session *session;
 903        struct perf_data *data;
 904
 905        session = container_of(ff->ph, struct perf_session, header);
 906        data = session->data;
 907
 908        if (WARN_ON(!perf_data__is_dir(data)))
 909                return -1;
 910
 911        return do_write(ff, &data->dir.version, sizeof(data->dir.version));
 912}
 913
 914#ifdef HAVE_LIBBPF_SUPPORT
 915static int write_bpf_prog_info(struct feat_fd *ff,
 916                               struct evlist *evlist __maybe_unused)
 917{
 918        struct perf_env *env = &ff->ph->env;
 919        struct rb_root *root;
 920        struct rb_node *next;
 921        int ret;
 922
 923        down_read(&env->bpf_progs.lock);
 924
 925        ret = do_write(ff, &env->bpf_progs.infos_cnt,
 926                       sizeof(env->bpf_progs.infos_cnt));
 927        if (ret < 0)
 928                goto out;
 929
 930        root = &env->bpf_progs.infos;
 931        next = rb_first(root);
 932        while (next) {
 933                struct bpf_prog_info_node *node;
 934                size_t len;
 935
 936                node = rb_entry(next, struct bpf_prog_info_node, rb_node);
 937                next = rb_next(&node->rb_node);
 938                len = sizeof(struct bpf_prog_info_linear) +
 939                        node->info_linear->data_len;
 940
 941                /* before writing to file, translate address to offset */
 942                bpf_program__bpil_addr_to_offs(node->info_linear);
 943                ret = do_write(ff, node->info_linear, len);
 944                /*
 945                 * translate back to address even when do_write() fails,
 946                 * so that this function never changes the data.
 947                 */
 948                bpf_program__bpil_offs_to_addr(node->info_linear);
 949                if (ret < 0)
 950                        goto out;
 951        }
 952out:
 953        up_read(&env->bpf_progs.lock);
 954        return ret;
 955}
 956#else // HAVE_LIBBPF_SUPPORT
 957static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
 958                               struct evlist *evlist __maybe_unused)
 959{
 960        return 0;
 961}
 962#endif // HAVE_LIBBPF_SUPPORT
 963
 964static int write_bpf_btf(struct feat_fd *ff,
 965                         struct evlist *evlist __maybe_unused)
 966{
 967        struct perf_env *env = &ff->ph->env;
 968        struct rb_root *root;
 969        struct rb_node *next;
 970        int ret;
 971
 972        down_read(&env->bpf_progs.lock);
 973
 974        ret = do_write(ff, &env->bpf_progs.btfs_cnt,
 975                       sizeof(env->bpf_progs.btfs_cnt));
 976
 977        if (ret < 0)
 978                goto out;
 979
 980        root = &env->bpf_progs.btfs;
 981        next = rb_first(root);
 982        while (next) {
 983                struct btf_node *node;
 984
 985                node = rb_entry(next, struct btf_node, rb_node);
 986                next = rb_next(&node->rb_node);
 987                ret = do_write(ff, &node->id,
 988                               sizeof(u32) * 2 + node->data_size);
 989                if (ret < 0)
 990                        goto out;
 991        }
 992out:
 993        up_read(&env->bpf_progs.lock);
 994        return ret;
 995}
 996
 997static int cpu_cache_level__sort(const void *a, const void *b)
 998{
 999        struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000        struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001
1002        return cache_a->level - cache_b->level;
1003}
1004
1005static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006{
1007        if (a->level != b->level)
1008                return false;
1009
1010        if (a->line_size != b->line_size)
1011                return false;
1012
1013        if (a->sets != b->sets)
1014                return false;
1015
1016        if (a->ways != b->ways)
1017                return false;
1018
1019        if (strcmp(a->type, b->type))
1020                return false;
1021
1022        if (strcmp(a->size, b->size))
1023                return false;
1024
1025        if (strcmp(a->map, b->map))
1026                return false;
1027
1028        return true;
1029}
1030
1031static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032{
1033        char path[PATH_MAX], file[PATH_MAX];
1034        struct stat st;
1035        size_t len;
1036
1037        scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038        scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039
1040        if (stat(file, &st))
1041                return 1;
1042
1043        scnprintf(file, PATH_MAX, "%s/level", path);
1044        if (sysfs__read_int(file, (int *) &cache->level))
1045                return -1;
1046
1047        scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048        if (sysfs__read_int(file, (int *) &cache->line_size))
1049                return -1;
1050
1051        scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052        if (sysfs__read_int(file, (int *) &cache->sets))
1053                return -1;
1054
1055        scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056        if (sysfs__read_int(file, (int *) &cache->ways))
1057                return -1;
1058
1059        scnprintf(file, PATH_MAX, "%s/type", path);
1060        if (sysfs__read_str(file, &cache->type, &len))
1061                return -1;
1062
1063        cache->type[len] = 0;
1064        cache->type = strim(cache->type);
1065
1066        scnprintf(file, PATH_MAX, "%s/size", path);
1067        if (sysfs__read_str(file, &cache->size, &len)) {
1068                zfree(&cache->type);
1069                return -1;
1070        }
1071
1072        cache->size[len] = 0;
1073        cache->size = strim(cache->size);
1074
1075        scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076        if (sysfs__read_str(file, &cache->map, &len)) {
1077                zfree(&cache->size);
1078                zfree(&cache->type);
1079                return -1;
1080        }
1081
1082        cache->map[len] = 0;
1083        cache->map = strim(cache->map);
1084        return 0;
1085}
1086
1087static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088{
1089        fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090}
1091
1092#define MAX_CACHE_LVL 4
1093
1094static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1095{
1096        u32 i, cnt = 0;
1097        u32 nr, cpu;
1098        u16 level;
1099
1100        nr = cpu__max_cpu();
1101
1102        for (cpu = 0; cpu < nr; cpu++) {
1103                for (level = 0; level < MAX_CACHE_LVL; level++) {
1104                        struct cpu_cache_level c;
1105                        int err;
1106
1107                        err = cpu_cache_level__read(&c, cpu, level);
1108                        if (err < 0)
1109                                return err;
1110
1111                        if (err == 1)
1112                                break;
1113
1114                        for (i = 0; i < cnt; i++) {
1115                                if (cpu_cache_level__cmp(&c, &caches[i]))
1116                                        break;
1117                        }
1118
1119                        if (i == cnt)
1120                                caches[cnt++] = c;
1121                        else
1122                                cpu_cache_level__free(&c);
1123                }
1124        }
1125        *cntp = cnt;
1126        return 0;
1127}
1128
1129static int write_cache(struct feat_fd *ff,
1130                       struct evlist *evlist __maybe_unused)
1131{
1132        u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1133        struct cpu_cache_level caches[max_caches];
1134        u32 cnt = 0, i, version = 1;
1135        int ret;
1136
1137        ret = build_caches(caches, &cnt);
1138        if (ret)
1139                goto out;
1140
1141        qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1142
1143        ret = do_write(ff, &version, sizeof(u32));
1144        if (ret < 0)
1145                goto out;
1146
1147        ret = do_write(ff, &cnt, sizeof(u32));
1148        if (ret < 0)
1149                goto out;
1150
1151        for (i = 0; i < cnt; i++) {
1152                struct cpu_cache_level *c = &caches[i];
1153
1154                #define _W(v)                                   \
1155                        ret = do_write(ff, &c->v, sizeof(u32)); \
1156                        if (ret < 0)                            \
1157                                goto out;
1158
1159                _W(level)
1160                _W(line_size)
1161                _W(sets)
1162                _W(ways)
1163                #undef _W
1164
1165                #define _W(v)                                           \
1166                        ret = do_write_string(ff, (const char *) c->v); \
1167                        if (ret < 0)                                    \
1168                                goto out;
1169
1170                _W(type)
1171                _W(size)
1172                _W(map)
1173                #undef _W
1174        }
1175
1176out:
1177        for (i = 0; i < cnt; i++)
1178                cpu_cache_level__free(&caches[i]);
1179        return ret;
1180}
1181
1182static int write_stat(struct feat_fd *ff __maybe_unused,
1183                      struct evlist *evlist __maybe_unused)
1184{
1185        return 0;
1186}
1187
1188static int write_sample_time(struct feat_fd *ff,
1189                             struct evlist *evlist)
1190{
1191        int ret;
1192
1193        ret = do_write(ff, &evlist->first_sample_time,
1194                       sizeof(evlist->first_sample_time));
1195        if (ret < 0)
1196                return ret;
1197
1198        return do_write(ff, &evlist->last_sample_time,
1199                        sizeof(evlist->last_sample_time));
1200}
1201
1202
1203static int memory_node__read(struct memory_node *n, unsigned long idx)
1204{
1205        unsigned int phys, size = 0;
1206        char path[PATH_MAX];
1207        struct dirent *ent;
1208        DIR *dir;
1209
1210#define for_each_memory(mem, dir)                                       \
1211        while ((ent = readdir(dir)))                                    \
1212                if (strcmp(ent->d_name, ".") &&                         \
1213                    strcmp(ent->d_name, "..") &&                        \
1214                    sscanf(ent->d_name, "memory%u", &mem) == 1)
1215
1216        scnprintf(path, PATH_MAX,
1217                  "%s/devices/system/node/node%lu",
1218                  sysfs__mountpoint(), idx);
1219
1220        dir = opendir(path);
1221        if (!dir) {
1222                pr_warning("failed: cant' open memory sysfs data\n");
1223                return -1;
1224        }
1225
1226        for_each_memory(phys, dir) {
1227                size = max(phys, size);
1228        }
1229
1230        size++;
1231
1232        n->set = bitmap_alloc(size);
1233        if (!n->set) {
1234                closedir(dir);
1235                return -ENOMEM;
1236        }
1237
1238        n->node = idx;
1239        n->size = size;
1240
1241        rewinddir(dir);
1242
1243        for_each_memory(phys, dir) {
1244                set_bit(phys, n->set);
1245        }
1246
1247        closedir(dir);
1248        return 0;
1249}
1250
1251static int memory_node__sort(const void *a, const void *b)
1252{
1253        const struct memory_node *na = a;
1254        const struct memory_node *nb = b;
1255
1256        return na->node - nb->node;
1257}
1258
1259static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1260{
1261        char path[PATH_MAX];
1262        struct dirent *ent;
1263        DIR *dir;
1264        u64 cnt = 0;
1265        int ret = 0;
1266
1267        scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1268                  sysfs__mountpoint());
1269
1270        dir = opendir(path);
1271        if (!dir) {
1272                pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1273                          __func__, path);
1274                return -1;
1275        }
1276
1277        while (!ret && (ent = readdir(dir))) {
1278                unsigned int idx;
1279                int r;
1280
1281                if (!strcmp(ent->d_name, ".") ||
1282                    !strcmp(ent->d_name, ".."))
1283                        continue;
1284
1285                r = sscanf(ent->d_name, "node%u", &idx);
1286                if (r != 1)
1287                        continue;
1288
1289                if (WARN_ONCE(cnt >= size,
1290                        "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1291                        closedir(dir);
1292                        return -1;
1293                }
1294
1295                ret = memory_node__read(&nodes[cnt++], idx);
1296        }
1297
1298        *cntp = cnt;
1299        closedir(dir);
1300
1301        if (!ret)
1302                qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1303
1304        return ret;
1305}
1306
1307#define MAX_MEMORY_NODES 2000
1308
1309/*
1310 * The MEM_TOPOLOGY holds physical memory map for every
1311 * node in system. The format of data is as follows:
1312 *
1313 *  0 - version          | for future changes
1314 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1315 * 16 - count            | number of nodes
1316 *
1317 * For each node we store map of physical indexes for
1318 * each node:
1319 *
1320 * 32 - node id          | node index
1321 * 40 - size             | size of bitmap
1322 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1323 */
1324static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1325                              struct evlist *evlist __maybe_unused)
1326{
1327        static struct memory_node nodes[MAX_MEMORY_NODES];
1328        u64 bsize, version = 1, i, nr;
1329        int ret;
1330
1331        ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1332                              (unsigned long long *) &bsize);
1333        if (ret)
1334                return ret;
1335
1336        ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1337        if (ret)
1338                return ret;
1339
1340        ret = do_write(ff, &version, sizeof(version));
1341        if (ret < 0)
1342                goto out;
1343
1344        ret = do_write(ff, &bsize, sizeof(bsize));
1345        if (ret < 0)
1346                goto out;
1347
1348        ret = do_write(ff, &nr, sizeof(nr));
1349        if (ret < 0)
1350                goto out;
1351
1352        for (i = 0; i < nr; i++) {
1353                struct memory_node *n = &nodes[i];
1354
1355                #define _W(v)                                           \
1356                        ret = do_write(ff, &n->v, sizeof(n->v));        \
1357                        if (ret < 0)                                    \
1358                                goto out;
1359
1360                _W(node)
1361                _W(size)
1362
1363                #undef _W
1364
1365                ret = do_write_bitmap(ff, n->set, n->size);
1366                if (ret < 0)
1367                        goto out;
1368        }
1369
1370out:
1371        return ret;
1372}
1373
1374static int write_compressed(struct feat_fd *ff __maybe_unused,
1375                            struct evlist *evlist __maybe_unused)
1376{
1377        int ret;
1378
1379        ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1380        if (ret)
1381                return ret;
1382
1383        ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1384        if (ret)
1385                return ret;
1386
1387        ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1388        if (ret)
1389                return ret;
1390
1391        ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1392        if (ret)
1393                return ret;
1394
1395        return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1396}
1397
1398static void print_hostname(struct feat_fd *ff, FILE *fp)
1399{
1400        fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1401}
1402
1403static void print_osrelease(struct feat_fd *ff, FILE *fp)
1404{
1405        fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1406}
1407
1408static void print_arch(struct feat_fd *ff, FILE *fp)
1409{
1410        fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1411}
1412
1413static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1414{
1415        fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1416}
1417
1418static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1419{
1420        fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1421        fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1422}
1423
1424static void print_version(struct feat_fd *ff, FILE *fp)
1425{
1426        fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1427}
1428
1429static void print_cmdline(struct feat_fd *ff, FILE *fp)
1430{
1431        int nr, i;
1432
1433        nr = ff->ph->env.nr_cmdline;
1434
1435        fprintf(fp, "# cmdline : ");
1436
1437        for (i = 0; i < nr; i++) {
1438                char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1439                if (!argv_i) {
1440                        fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1441                } else {
1442                        char *mem = argv_i;
1443                        do {
1444                                char *quote = strchr(argv_i, '\'');
1445                                if (!quote)
1446                                        break;
1447                                *quote++ = '\0';
1448                                fprintf(fp, "%s\\\'", argv_i);
1449                                argv_i = quote;
1450                        } while (1);
1451                        fprintf(fp, "%s ", argv_i);
1452                        free(mem);
1453                }
1454        }
1455        fputc('\n', fp);
1456}
1457
1458static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1459{
1460        struct perf_header *ph = ff->ph;
1461        int cpu_nr = ph->env.nr_cpus_avail;
1462        int nr, i;
1463        char *str;
1464
1465        nr = ph->env.nr_sibling_cores;
1466        str = ph->env.sibling_cores;
1467
1468        for (i = 0; i < nr; i++) {
1469                fprintf(fp, "# sibling sockets : %s\n", str);
1470                str += strlen(str) + 1;
1471        }
1472
1473        if (ph->env.nr_sibling_dies) {
1474                nr = ph->env.nr_sibling_dies;
1475                str = ph->env.sibling_dies;
1476
1477                for (i = 0; i < nr; i++) {
1478                        fprintf(fp, "# sibling dies    : %s\n", str);
1479                        str += strlen(str) + 1;
1480                }
1481        }
1482
1483        nr = ph->env.nr_sibling_threads;
1484        str = ph->env.sibling_threads;
1485
1486        for (i = 0; i < nr; i++) {
1487                fprintf(fp, "# sibling threads : %s\n", str);
1488                str += strlen(str) + 1;
1489        }
1490
1491        if (ph->env.nr_sibling_dies) {
1492                if (ph->env.cpu != NULL) {
1493                        for (i = 0; i < cpu_nr; i++)
1494                                fprintf(fp, "# CPU %d: Core ID %d, "
1495                                            "Die ID %d, Socket ID %d\n",
1496                                            i, ph->env.cpu[i].core_id,
1497                                            ph->env.cpu[i].die_id,
1498                                            ph->env.cpu[i].socket_id);
1499                } else
1500                        fprintf(fp, "# Core ID, Die ID and Socket ID "
1501                                    "information is not available\n");
1502        } else {
1503                if (ph->env.cpu != NULL) {
1504                        for (i = 0; i < cpu_nr; i++)
1505                                fprintf(fp, "# CPU %d: Core ID %d, "
1506                                            "Socket ID %d\n",
1507                                            i, ph->env.cpu[i].core_id,
1508                                            ph->env.cpu[i].socket_id);
1509                } else
1510                        fprintf(fp, "# Core ID and Socket ID "
1511                                    "information is not available\n");
1512        }
1513}
1514
1515static void print_clockid(struct feat_fd *ff, FILE *fp)
1516{
1517        fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1518                ff->ph->env.clockid_res_ns * 1000);
1519}
1520
1521static void print_dir_format(struct feat_fd *ff, FILE *fp)
1522{
1523        struct perf_session *session;
1524        struct perf_data *data;
1525
1526        session = container_of(ff->ph, struct perf_session, header);
1527        data = session->data;
1528
1529        fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1530}
1531
1532static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1533{
1534        struct perf_env *env = &ff->ph->env;
1535        struct rb_root *root;
1536        struct rb_node *next;
1537
1538        down_read(&env->bpf_progs.lock);
1539
1540        root = &env->bpf_progs.infos;
1541        next = rb_first(root);
1542
1543        while (next) {
1544                struct bpf_prog_info_node *node;
1545
1546                node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1547                next = rb_next(&node->rb_node);
1548
1549                bpf_event__print_bpf_prog_info(&node->info_linear->info,
1550                                               env, fp);
1551        }
1552
1553        up_read(&env->bpf_progs.lock);
1554}
1555
1556static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1557{
1558        struct perf_env *env = &ff->ph->env;
1559        struct rb_root *root;
1560        struct rb_node *next;
1561
1562        down_read(&env->bpf_progs.lock);
1563
1564        root = &env->bpf_progs.btfs;
1565        next = rb_first(root);
1566
1567        while (next) {
1568                struct btf_node *node;
1569
1570                node = rb_entry(next, struct btf_node, rb_node);
1571                next = rb_next(&node->rb_node);
1572                fprintf(fp, "# btf info of id %u\n", node->id);
1573        }
1574
1575        up_read(&env->bpf_progs.lock);
1576}
1577
1578static void free_event_desc(struct evsel *events)
1579{
1580        struct evsel *evsel;
1581
1582        if (!events)
1583                return;
1584
1585        for (evsel = events; evsel->core.attr.size; evsel++) {
1586                zfree(&evsel->name);
1587                zfree(&evsel->core.id);
1588        }
1589
1590        free(events);
1591}
1592
1593static bool perf_attr_check(struct perf_event_attr *attr)
1594{
1595        if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1596                pr_warning("Reserved bits are set unexpectedly. "
1597                           "Please update perf tool.\n");
1598                return false;
1599        }
1600
1601        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1602                pr_warning("Unknown sample type (0x%llx) is detected. "
1603                           "Please update perf tool.\n",
1604                           attr->sample_type);
1605                return false;
1606        }
1607
1608        if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1609                pr_warning("Unknown read format (0x%llx) is detected. "
1610                           "Please update perf tool.\n",
1611                           attr->read_format);
1612                return false;
1613        }
1614
1615        if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1616            (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1617                pr_warning("Unknown branch sample type (0x%llx) is detected. "
1618                           "Please update perf tool.\n",
1619                           attr->branch_sample_type);
1620
1621                return false;
1622        }
1623
1624        return true;
1625}
1626
1627static struct evsel *read_event_desc(struct feat_fd *ff)
1628{
1629        struct evsel *evsel, *events = NULL;
1630        u64 *id;
1631        void *buf = NULL;
1632        u32 nre, sz, nr, i, j;
1633        size_t msz;
1634
1635        /* number of events */
1636        if (do_read_u32(ff, &nre))
1637                goto error;
1638
1639        if (do_read_u32(ff, &sz))
1640                goto error;
1641
1642        /* buffer to hold on file attr struct */
1643        buf = malloc(sz);
1644        if (!buf)
1645                goto error;
1646
1647        /* the last event terminates with evsel->core.attr.size == 0: */
1648        events = calloc(nre + 1, sizeof(*events));
1649        if (!events)
1650                goto error;
1651
1652        msz = sizeof(evsel->core.attr);
1653        if (sz < msz)
1654                msz = sz;
1655
1656        for (i = 0, evsel = events; i < nre; evsel++, i++) {
1657                evsel->idx = i;
1658
1659                /*
1660                 * must read entire on-file attr struct to
1661                 * sync up with layout.
1662                 */
1663                if (__do_read(ff, buf, sz))
1664                        goto error;
1665
1666                if (ff->ph->needs_swap)
1667                        perf_event__attr_swap(buf);
1668
1669                memcpy(&evsel->core.attr, buf, msz);
1670
1671                if (!perf_attr_check(&evsel->core.attr))
1672                        goto error;
1673
1674                if (do_read_u32(ff, &nr))
1675                        goto error;
1676
1677                if (ff->ph->needs_swap)
1678                        evsel->needs_swap = true;
1679
1680                evsel->name = do_read_string(ff);
1681                if (!evsel->name)
1682                        goto error;
1683
1684                if (!nr)
1685                        continue;
1686
1687                id = calloc(nr, sizeof(*id));
1688                if (!id)
1689                        goto error;
1690                evsel->core.ids = nr;
1691                evsel->core.id = id;
1692
1693                for (j = 0 ; j < nr; j++) {
1694                        if (do_read_u64(ff, id))
1695                                goto error;
1696                        id++;
1697                }
1698        }
1699out:
1700        free(buf);
1701        return events;
1702error:
1703        free_event_desc(events);
1704        events = NULL;
1705        goto out;
1706}
1707
1708static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1709                                void *priv __maybe_unused)
1710{
1711        return fprintf(fp, ", %s = %s", name, val);
1712}
1713
1714static void print_event_desc(struct feat_fd *ff, FILE *fp)
1715{
1716        struct evsel *evsel, *events;
1717        u32 j;
1718        u64 *id;
1719
1720        if (ff->events)
1721                events = ff->events;
1722        else
1723                events = read_event_desc(ff);
1724
1725        if (!events) {
1726                fprintf(fp, "# event desc: not available or unable to read\n");
1727                return;
1728        }
1729
1730        for (evsel = events; evsel->core.attr.size; evsel++) {
1731                fprintf(fp, "# event : name = %s, ", evsel->name);
1732
1733                if (evsel->core.ids) {
1734                        fprintf(fp, ", id = {");
1735                        for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1736                                if (j)
1737                                        fputc(',', fp);
1738                                fprintf(fp, " %"PRIu64, *id);
1739                        }
1740                        fprintf(fp, " }");
1741                }
1742
1743                perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1744
1745                fputc('\n', fp);
1746        }
1747
1748        free_event_desc(events);
1749        ff->events = NULL;
1750}
1751
1752static void print_total_mem(struct feat_fd *ff, FILE *fp)
1753{
1754        fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1755}
1756
1757static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1758{
1759        int i;
1760        struct numa_node *n;
1761
1762        for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1763                n = &ff->ph->env.numa_nodes[i];
1764
1765                fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1766                            " free = %"PRIu64" kB\n",
1767                        n->node, n->mem_total, n->mem_free);
1768
1769                fprintf(fp, "# node%u cpu list : ", n->node);
1770                cpu_map__fprintf(n->map, fp);
1771        }
1772}
1773
1774static void print_cpuid(struct feat_fd *ff, FILE *fp)
1775{
1776        fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1777}
1778
1779static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1780{
1781        fprintf(fp, "# contains samples with branch stack\n");
1782}
1783
1784static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1785{
1786        fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1787}
1788
1789static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1790{
1791        fprintf(fp, "# contains stat data\n");
1792}
1793
1794static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1795{
1796        int i;
1797
1798        fprintf(fp, "# CPU cache info:\n");
1799        for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1800                fprintf(fp, "#  ");
1801                cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1802        }
1803}
1804
1805static void print_compressed(struct feat_fd *ff, FILE *fp)
1806{
1807        fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1808                ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1809                ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1810}
1811
1812static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1813{
1814        const char *delimiter = "# pmu mappings: ";
1815        char *str, *tmp;
1816        u32 pmu_num;
1817        u32 type;
1818
1819        pmu_num = ff->ph->env.nr_pmu_mappings;
1820        if (!pmu_num) {
1821                fprintf(fp, "# pmu mappings: not available\n");
1822                return;
1823        }
1824
1825        str = ff->ph->env.pmu_mappings;
1826
1827        while (pmu_num) {
1828                type = strtoul(str, &tmp, 0);
1829                if (*tmp != ':')
1830                        goto error;
1831
1832                str = tmp + 1;
1833                fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1834
1835                delimiter = ", ";
1836                str += strlen(str) + 1;
1837                pmu_num--;
1838        }
1839
1840        fprintf(fp, "\n");
1841
1842        if (!pmu_num)
1843                return;
1844error:
1845        fprintf(fp, "# pmu mappings: unable to read\n");
1846}
1847
1848static void print_group_desc(struct feat_fd *ff, FILE *fp)
1849{
1850        struct perf_session *session;
1851        struct evsel *evsel;
1852        u32 nr = 0;
1853
1854        session = container_of(ff->ph, struct perf_session, header);
1855
1856        evlist__for_each_entry(session->evlist, evsel) {
1857                if (perf_evsel__is_group_leader(evsel) &&
1858                    evsel->core.nr_members > 1) {
1859                        fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1860                                perf_evsel__name(evsel));
1861
1862                        nr = evsel->core.nr_members - 1;
1863                } else if (nr) {
1864                        fprintf(fp, ",%s", perf_evsel__name(evsel));
1865
1866                        if (--nr == 0)
1867                                fprintf(fp, "}\n");
1868                }
1869        }
1870}
1871
1872static void print_sample_time(struct feat_fd *ff, FILE *fp)
1873{
1874        struct perf_session *session;
1875        char time_buf[32];
1876        double d;
1877
1878        session = container_of(ff->ph, struct perf_session, header);
1879
1880        timestamp__scnprintf_usec(session->evlist->first_sample_time,
1881                                  time_buf, sizeof(time_buf));
1882        fprintf(fp, "# time of first sample : %s\n", time_buf);
1883
1884        timestamp__scnprintf_usec(session->evlist->last_sample_time,
1885                                  time_buf, sizeof(time_buf));
1886        fprintf(fp, "# time of last sample : %s\n", time_buf);
1887
1888        d = (double)(session->evlist->last_sample_time -
1889                session->evlist->first_sample_time) / NSEC_PER_MSEC;
1890
1891        fprintf(fp, "# sample duration : %10.3f ms\n", d);
1892}
1893
1894static void memory_node__fprintf(struct memory_node *n,
1895                                 unsigned long long bsize, FILE *fp)
1896{
1897        char buf_map[100], buf_size[50];
1898        unsigned long long size;
1899
1900        size = bsize * bitmap_weight(n->set, n->size);
1901        unit_number__scnprintf(buf_size, 50, size);
1902
1903        bitmap_scnprintf(n->set, n->size, buf_map, 100);
1904        fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1905}
1906
1907static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1908{
1909        struct memory_node *nodes;
1910        int i, nr;
1911
1912        nodes = ff->ph->env.memory_nodes;
1913        nr    = ff->ph->env.nr_memory_nodes;
1914
1915        fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1916                nr, ff->ph->env.memory_bsize);
1917
1918        for (i = 0; i < nr; i++) {
1919                memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1920        }
1921}
1922
1923static int __event_process_build_id(struct perf_record_header_build_id *bev,
1924                                    char *filename,
1925                                    struct perf_session *session)
1926{
1927        int err = -1;
1928        struct machine *machine;
1929        u16 cpumode;
1930        struct dso *dso;
1931        enum dso_kernel_type dso_type;
1932
1933        machine = perf_session__findnew_machine(session, bev->pid);
1934        if (!machine)
1935                goto out;
1936
1937        cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1938
1939        switch (cpumode) {
1940        case PERF_RECORD_MISC_KERNEL:
1941                dso_type = DSO_TYPE_KERNEL;
1942                break;
1943        case PERF_RECORD_MISC_GUEST_KERNEL:
1944                dso_type = DSO_TYPE_GUEST_KERNEL;
1945                break;
1946        case PERF_RECORD_MISC_USER:
1947        case PERF_RECORD_MISC_GUEST_USER:
1948                dso_type = DSO_TYPE_USER;
1949                break;
1950        default:
1951                goto out;
1952        }
1953
1954        dso = machine__findnew_dso(machine, filename);
1955        if (dso != NULL) {
1956                char sbuild_id[SBUILD_ID_SIZE];
1957
1958                dso__set_build_id(dso, &bev->build_id);
1959
1960                if (dso_type != DSO_TYPE_USER) {
1961                        struct kmod_path m = { .name = NULL, };
1962
1963                        if (!kmod_path__parse_name(&m, filename) && m.kmod)
1964                                dso__set_module_info(dso, &m, machine);
1965                        else
1966                                dso->kernel = dso_type;
1967
1968                        free(m.name);
1969                }
1970
1971                build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1972                                  sbuild_id);
1973                pr_debug("build id event received for %s: %s\n",
1974                         dso->long_name, sbuild_id);
1975                dso__put(dso);
1976        }
1977
1978        err = 0;
1979out:
1980        return err;
1981}
1982
1983static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1984                                                 int input, u64 offset, u64 size)
1985{
1986        struct perf_session *session = container_of(header, struct perf_session, header);
1987        struct {
1988                struct perf_event_header   header;
1989                u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1990                char                       filename[0];
1991        } old_bev;
1992        struct perf_record_header_build_id bev;
1993        char filename[PATH_MAX];
1994        u64 limit = offset + size;
1995
1996        while (offset < limit) {
1997                ssize_t len;
1998
1999                if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2000                        return -1;
2001
2002                if (header->needs_swap)
2003                        perf_event_header__bswap(&old_bev.header);
2004
2005                len = old_bev.header.size - sizeof(old_bev);
2006                if (readn(input, filename, len) != len)
2007                        return -1;
2008
2009                bev.header = old_bev.header;
2010
2011                /*
2012                 * As the pid is the missing value, we need to fill
2013                 * it properly. The header.misc value give us nice hint.
2014                 */
2015                bev.pid = HOST_KERNEL_ID;
2016                if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2017                    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2018                        bev.pid = DEFAULT_GUEST_KERNEL_ID;
2019
2020                memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2021                __event_process_build_id(&bev, filename, session);
2022
2023                offset += bev.header.size;
2024        }
2025
2026        return 0;
2027}
2028
2029static int perf_header__read_build_ids(struct perf_header *header,
2030                                       int input, u64 offset, u64 size)
2031{
2032        struct perf_session *session = container_of(header, struct perf_session, header);
2033        struct perf_record_header_build_id bev;
2034        char filename[PATH_MAX];
2035        u64 limit = offset + size, orig_offset = offset;
2036        int err = -1;
2037
2038        while (offset < limit) {
2039                ssize_t len;
2040
2041                if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2042                        goto out;
2043
2044                if (header->needs_swap)
2045                        perf_event_header__bswap(&bev.header);
2046
2047                len = bev.header.size - sizeof(bev);
2048                if (readn(input, filename, len) != len)
2049                        goto out;
2050                /*
2051                 * The a1645ce1 changeset:
2052                 *
2053                 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2054                 *
2055                 * Added a field to struct perf_record_header_build_id that broke the file
2056                 * format.
2057                 *
2058                 * Since the kernel build-id is the first entry, process the
2059                 * table using the old format if the well known
2060                 * '[kernel.kallsyms]' string for the kernel build-id has the
2061                 * first 4 characters chopped off (where the pid_t sits).
2062                 */
2063                if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2064                        if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2065                                return -1;
2066                        return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2067                }
2068
2069                __event_process_build_id(&bev, filename, session);
2070
2071                offset += bev.header.size;
2072        }
2073        err = 0;
2074out:
2075        return err;
2076}
2077
2078/* Macro for features that simply need to read and store a string. */
2079#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2080static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2081{\
2082        ff->ph->env.__feat_env = do_read_string(ff); \
2083        return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2084}
2085
2086FEAT_PROCESS_STR_FUN(hostname, hostname);
2087FEAT_PROCESS_STR_FUN(osrelease, os_release);
2088FEAT_PROCESS_STR_FUN(version, version);
2089FEAT_PROCESS_STR_FUN(arch, arch);
2090FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2091FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2092
2093static int process_tracing_data(struct feat_fd *ff, void *data)
2094{
2095        ssize_t ret = trace_report(ff->fd, data, false);
2096
2097        return ret < 0 ? -1 : 0;
2098}
2099
2100static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2101{
2102        if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2103                pr_debug("Failed to read buildids, continuing...\n");
2104        return 0;
2105}
2106
2107static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2108{
2109        int ret;
2110        u32 nr_cpus_avail, nr_cpus_online;
2111
2112        ret = do_read_u32(ff, &nr_cpus_avail);
2113        if (ret)
2114                return ret;
2115
2116        ret = do_read_u32(ff, &nr_cpus_online);
2117        if (ret)
2118                return ret;
2119        ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2120        ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2121        return 0;
2122}
2123
2124static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2125{
2126        u64 total_mem;
2127        int ret;
2128
2129        ret = do_read_u64(ff, &total_mem);
2130        if (ret)
2131                return -1;
2132        ff->ph->env.total_mem = (unsigned long long)total_mem;
2133        return 0;
2134}
2135
2136static struct evsel *
2137perf_evlist__find_by_index(struct evlist *evlist, int idx)
2138{
2139        struct evsel *evsel;
2140
2141        evlist__for_each_entry(evlist, evsel) {
2142                if (evsel->idx == idx)
2143                        return evsel;
2144        }
2145
2146        return NULL;
2147}
2148
2149static void
2150perf_evlist__set_event_name(struct evlist *evlist,
2151                            struct evsel *event)
2152{
2153        struct evsel *evsel;
2154
2155        if (!event->name)
2156                return;
2157
2158        evsel = perf_evlist__find_by_index(evlist, event->idx);
2159        if (!evsel)
2160                return;
2161
2162        if (evsel->name)
2163                return;
2164
2165        evsel->name = strdup(event->name);
2166}
2167
2168static int
2169process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2170{
2171        struct perf_session *session;
2172        struct evsel *evsel, *events = read_event_desc(ff);
2173
2174        if (!events)
2175                return 0;
2176
2177        session = container_of(ff->ph, struct perf_session, header);
2178
2179        if (session->data->is_pipe) {
2180                /* Save events for reading later by print_event_desc,
2181                 * since they can't be read again in pipe mode. */
2182                ff->events = events;
2183        }
2184
2185        for (evsel = events; evsel->core.attr.size; evsel++)
2186                perf_evlist__set_event_name(session->evlist, evsel);
2187
2188        if (!session->data->is_pipe)
2189                free_event_desc(events);
2190
2191        return 0;
2192}
2193
2194static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2195{
2196        char *str, *cmdline = NULL, **argv = NULL;
2197        u32 nr, i, len = 0;
2198
2199        if (do_read_u32(ff, &nr))
2200                return -1;
2201
2202        ff->ph->env.nr_cmdline = nr;
2203
2204        cmdline = zalloc(ff->size + nr + 1);
2205        if (!cmdline)
2206                return -1;
2207
2208        argv = zalloc(sizeof(char *) * (nr + 1));
2209        if (!argv)
2210                goto error;
2211
2212        for (i = 0; i < nr; i++) {
2213                str = do_read_string(ff);
2214                if (!str)
2215                        goto error;
2216
2217                argv[i] = cmdline + len;
2218                memcpy(argv[i], str, strlen(str) + 1);
2219                len += strlen(str) + 1;
2220                free(str);
2221        }
2222        ff->ph->env.cmdline = cmdline;
2223        ff->ph->env.cmdline_argv = (const char **) argv;
2224        return 0;
2225
2226error:
2227        free(argv);
2228        free(cmdline);
2229        return -1;
2230}
2231
2232static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2233{
2234        u32 nr, i;
2235        char *str;
2236        struct strbuf sb;
2237        int cpu_nr = ff->ph->env.nr_cpus_avail;
2238        u64 size = 0;
2239        struct perf_header *ph = ff->ph;
2240        bool do_core_id_test = true;
2241
2242        ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2243        if (!ph->env.cpu)
2244                return -1;
2245
2246        if (do_read_u32(ff, &nr))
2247                goto free_cpu;
2248
2249        ph->env.nr_sibling_cores = nr;
2250        size += sizeof(u32);
2251        if (strbuf_init(&sb, 128) < 0)
2252                goto free_cpu;
2253
2254        for (i = 0; i < nr; i++) {
2255                str = do_read_string(ff);
2256                if (!str)
2257                        goto error;
2258
2259                /* include a NULL character at the end */
2260                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2261                        goto error;
2262                size += string_size(str);
2263                free(str);
2264        }
2265        ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2266
2267        if (do_read_u32(ff, &nr))
2268                return -1;
2269
2270        ph->env.nr_sibling_threads = nr;
2271        size += sizeof(u32);
2272
2273        for (i = 0; i < nr; i++) {
2274                str = do_read_string(ff);
2275                if (!str)
2276                        goto error;
2277
2278                /* include a NULL character at the end */
2279                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2280                        goto error;
2281                size += string_size(str);
2282                free(str);
2283        }
2284        ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2285
2286        /*
2287         * The header may be from old perf,
2288         * which doesn't include core id and socket id information.
2289         */
2290        if (ff->size <= size) {
2291                zfree(&ph->env.cpu);
2292                return 0;
2293        }
2294
2295        /* On s390 the socket_id number is not related to the numbers of cpus.
2296         * The socket_id number might be higher than the numbers of cpus.
2297         * This depends on the configuration.
2298         * AArch64 is the same.
2299         */
2300        if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2301                          || !strncmp(ph->env.arch, "aarch64", 7)))
2302                do_core_id_test = false;
2303
2304        for (i = 0; i < (u32)cpu_nr; i++) {
2305                if (do_read_u32(ff, &nr))
2306                        goto free_cpu;
2307
2308                ph->env.cpu[i].core_id = nr;
2309                size += sizeof(u32);
2310
2311                if (do_read_u32(ff, &nr))
2312                        goto free_cpu;
2313
2314                if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2315                        pr_debug("socket_id number is too big."
2316                                 "You may need to upgrade the perf tool.\n");
2317                        goto free_cpu;
2318                }
2319
2320                ph->env.cpu[i].socket_id = nr;
2321                size += sizeof(u32);
2322        }
2323
2324        /*
2325         * The header may be from old perf,
2326         * which doesn't include die information.
2327         */
2328        if (ff->size <= size)
2329                return 0;
2330
2331        if (do_read_u32(ff, &nr))
2332                return -1;
2333
2334        ph->env.nr_sibling_dies = nr;
2335        size += sizeof(u32);
2336
2337        for (i = 0; i < nr; i++) {
2338                str = do_read_string(ff);
2339                if (!str)
2340                        goto error;
2341
2342                /* include a NULL character at the end */
2343                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2344                        goto error;
2345                size += string_size(str);
2346                free(str);
2347        }
2348        ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2349
2350        for (i = 0; i < (u32)cpu_nr; i++) {
2351                if (do_read_u32(ff, &nr))
2352                        goto free_cpu;
2353
2354                ph->env.cpu[i].die_id = nr;
2355        }
2356
2357        return 0;
2358
2359error:
2360        strbuf_release(&sb);
2361free_cpu:
2362        zfree(&ph->env.cpu);
2363        return -1;
2364}
2365
2366static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2367{
2368        struct numa_node *nodes, *n;
2369        u32 nr, i;
2370        char *str;
2371
2372        /* nr nodes */
2373        if (do_read_u32(ff, &nr))
2374                return -1;
2375
2376        nodes = zalloc(sizeof(*nodes) * nr);
2377        if (!nodes)
2378                return -ENOMEM;
2379
2380        for (i = 0; i < nr; i++) {
2381                n = &nodes[i];
2382
2383                /* node number */
2384                if (do_read_u32(ff, &n->node))
2385                        goto error;
2386
2387                if (do_read_u64(ff, &n->mem_total))
2388                        goto error;
2389
2390                if (do_read_u64(ff, &n->mem_free))
2391                        goto error;
2392
2393                str = do_read_string(ff);
2394                if (!str)
2395                        goto error;
2396
2397                n->map = perf_cpu_map__new(str);
2398                if (!n->map)
2399                        goto error;
2400
2401                free(str);
2402        }
2403        ff->ph->env.nr_numa_nodes = nr;
2404        ff->ph->env.numa_nodes = nodes;
2405        return 0;
2406
2407error:
2408        free(nodes);
2409        return -1;
2410}
2411
2412static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2413{
2414        char *name;
2415        u32 pmu_num;
2416        u32 type;
2417        struct strbuf sb;
2418
2419        if (do_read_u32(ff, &pmu_num))
2420                return -1;
2421
2422        if (!pmu_num) {
2423                pr_debug("pmu mappings not available\n");
2424                return 0;
2425        }
2426
2427        ff->ph->env.nr_pmu_mappings = pmu_num;
2428        if (strbuf_init(&sb, 128) < 0)
2429                return -1;
2430
2431        while (pmu_num) {
2432                if (do_read_u32(ff, &type))
2433                        goto error;
2434
2435                name = do_read_string(ff);
2436                if (!name)
2437                        goto error;
2438
2439                if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2440                        goto error;
2441                /* include a NULL character at the end */
2442                if (strbuf_add(&sb, "", 1) < 0)
2443                        goto error;
2444
2445                if (!strcmp(name, "msr"))
2446                        ff->ph->env.msr_pmu_type = type;
2447
2448                free(name);
2449                pmu_num--;
2450        }
2451        ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2452        return 0;
2453
2454error:
2455        strbuf_release(&sb);
2456        return -1;
2457}
2458
2459static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2460{
2461        size_t ret = -1;
2462        u32 i, nr, nr_groups;
2463        struct perf_session *session;
2464        struct evsel *evsel, *leader = NULL;
2465        struct group_desc {
2466                char *name;
2467                u32 leader_idx;
2468                u32 nr_members;
2469        } *desc;
2470
2471        if (do_read_u32(ff, &nr_groups))
2472                return -1;
2473
2474        ff->ph->env.nr_groups = nr_groups;
2475        if (!nr_groups) {
2476                pr_debug("group desc not available\n");
2477                return 0;
2478        }
2479
2480        desc = calloc(nr_groups, sizeof(*desc));
2481        if (!desc)
2482                return -1;
2483
2484        for (i = 0; i < nr_groups; i++) {
2485                desc[i].name = do_read_string(ff);
2486                if (!desc[i].name)
2487                        goto out_free;
2488
2489                if (do_read_u32(ff, &desc[i].leader_idx))
2490                        goto out_free;
2491
2492                if (do_read_u32(ff, &desc[i].nr_members))
2493                        goto out_free;
2494        }
2495
2496        /*
2497         * Rebuild group relationship based on the group_desc
2498         */
2499        session = container_of(ff->ph, struct perf_session, header);
2500        session->evlist->nr_groups = nr_groups;
2501
2502        i = nr = 0;
2503        evlist__for_each_entry(session->evlist, evsel) {
2504                if (evsel->idx == (int) desc[i].leader_idx) {
2505                        evsel->leader = evsel;
2506                        /* {anon_group} is a dummy name */
2507                        if (strcmp(desc[i].name, "{anon_group}")) {
2508                                evsel->group_name = desc[i].name;
2509                                desc[i].name = NULL;
2510                        }
2511                        evsel->core.nr_members = desc[i].nr_members;
2512
2513                        if (i >= nr_groups || nr > 0) {
2514                                pr_debug("invalid group desc\n");
2515                                goto out_free;
2516                        }
2517
2518                        leader = evsel;
2519                        nr = evsel->core.nr_members - 1;
2520                        i++;
2521                } else if (nr) {
2522                        /* This is a group member */
2523                        evsel->leader = leader;
2524
2525                        nr--;
2526                }
2527        }
2528
2529        if (i != nr_groups || nr != 0) {
2530                pr_debug("invalid group desc\n");
2531                goto out_free;
2532        }
2533
2534        ret = 0;
2535out_free:
2536        for (i = 0; i < nr_groups; i++)
2537                zfree(&desc[i].name);
2538        free(desc);
2539
2540        return ret;
2541}
2542
2543static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2544{
2545        struct perf_session *session;
2546        int err;
2547
2548        session = container_of(ff->ph, struct perf_session, header);
2549
2550        err = auxtrace_index__process(ff->fd, ff->size, session,
2551                                      ff->ph->needs_swap);
2552        if (err < 0)
2553                pr_err("Failed to process auxtrace index\n");
2554        return err;
2555}
2556
2557static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2558{
2559        struct cpu_cache_level *caches;
2560        u32 cnt, i, version;
2561
2562        if (do_read_u32(ff, &version))
2563                return -1;
2564
2565        if (version != 1)
2566                return -1;
2567
2568        if (do_read_u32(ff, &cnt))
2569                return -1;
2570
2571        caches = zalloc(sizeof(*caches) * cnt);
2572        if (!caches)
2573                return -1;
2574
2575        for (i = 0; i < cnt; i++) {
2576                struct cpu_cache_level c;
2577
2578                #define _R(v)                                           \
2579                        if (do_read_u32(ff, &c.v))\
2580                                goto out_free_caches;                   \
2581
2582                _R(level)
2583                _R(line_size)
2584                _R(sets)
2585                _R(ways)
2586                #undef _R
2587
2588                #define _R(v)                                   \
2589                        c.v = do_read_string(ff);               \
2590                        if (!c.v)                               \
2591                                goto out_free_caches;
2592
2593                _R(type)
2594                _R(size)
2595                _R(map)
2596                #undef _R
2597
2598                caches[i] = c;
2599        }
2600
2601        ff->ph->env.caches = caches;
2602        ff->ph->env.caches_cnt = cnt;
2603        return 0;
2604out_free_caches:
2605        free(caches);
2606        return -1;
2607}
2608
2609static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2610{
2611        struct perf_session *session;
2612        u64 first_sample_time, last_sample_time;
2613        int ret;
2614
2615        session = container_of(ff->ph, struct perf_session, header);
2616
2617        ret = do_read_u64(ff, &first_sample_time);
2618        if (ret)
2619                return -1;
2620
2621        ret = do_read_u64(ff, &last_sample_time);
2622        if (ret)
2623                return -1;
2624
2625        session->evlist->first_sample_time = first_sample_time;
2626        session->evlist->last_sample_time = last_sample_time;
2627        return 0;
2628}
2629
2630static int process_mem_topology(struct feat_fd *ff,
2631                                void *data __maybe_unused)
2632{
2633        struct memory_node *nodes;
2634        u64 version, i, nr, bsize;
2635        int ret = -1;
2636
2637        if (do_read_u64(ff, &version))
2638                return -1;
2639
2640        if (version != 1)
2641                return -1;
2642
2643        if (do_read_u64(ff, &bsize))
2644                return -1;
2645
2646        if (do_read_u64(ff, &nr))
2647                return -1;
2648
2649        nodes = zalloc(sizeof(*nodes) * nr);
2650        if (!nodes)
2651                return -1;
2652
2653        for (i = 0; i < nr; i++) {
2654                struct memory_node n;
2655
2656                #define _R(v)                           \
2657                        if (do_read_u64(ff, &n.v))      \
2658                                goto out;               \
2659
2660                _R(node)
2661                _R(size)
2662
2663                #undef _R
2664
2665                if (do_read_bitmap(ff, &n.set, &n.size))
2666                        goto out;
2667
2668                nodes[i] = n;
2669        }
2670
2671        ff->ph->env.memory_bsize    = bsize;
2672        ff->ph->env.memory_nodes    = nodes;
2673        ff->ph->env.nr_memory_nodes = nr;
2674        ret = 0;
2675
2676out:
2677        if (ret)
2678                free(nodes);
2679        return ret;
2680}
2681
2682static int process_clockid(struct feat_fd *ff,
2683                           void *data __maybe_unused)
2684{
2685        if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2686                return -1;
2687
2688        return 0;
2689}
2690
2691static int process_dir_format(struct feat_fd *ff,
2692                              void *_data __maybe_unused)
2693{
2694        struct perf_session *session;
2695        struct perf_data *data;
2696
2697        session = container_of(ff->ph, struct perf_session, header);
2698        data = session->data;
2699
2700        if (WARN_ON(!perf_data__is_dir(data)))
2701                return -1;
2702
2703        return do_read_u64(ff, &data->dir.version);
2704}
2705
2706#ifdef HAVE_LIBBPF_SUPPORT
2707static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2708{
2709        struct bpf_prog_info_linear *info_linear;
2710        struct bpf_prog_info_node *info_node;
2711        struct perf_env *env = &ff->ph->env;
2712        u32 count, i;
2713        int err = -1;
2714
2715        if (ff->ph->needs_swap) {
2716                pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2717                return 0;
2718        }
2719
2720        if (do_read_u32(ff, &count))
2721                return -1;
2722
2723        down_write(&env->bpf_progs.lock);
2724
2725        for (i = 0; i < count; ++i) {
2726                u32 info_len, data_len;
2727
2728                info_linear = NULL;
2729                info_node = NULL;
2730                if (do_read_u32(ff, &info_len))
2731                        goto out;
2732                if (do_read_u32(ff, &data_len))
2733                        goto out;
2734
2735                if (info_len > sizeof(struct bpf_prog_info)) {
2736                        pr_warning("detected invalid bpf_prog_info\n");
2737                        goto out;
2738                }
2739
2740                info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2741                                     data_len);
2742                if (!info_linear)
2743                        goto out;
2744                info_linear->info_len = sizeof(struct bpf_prog_info);
2745                info_linear->data_len = data_len;
2746                if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2747                        goto out;
2748                if (__do_read(ff, &info_linear->info, info_len))
2749                        goto out;
2750                if (info_len < sizeof(struct bpf_prog_info))
2751                        memset(((void *)(&info_linear->info)) + info_len, 0,
2752                               sizeof(struct bpf_prog_info) - info_len);
2753
2754                if (__do_read(ff, info_linear->data, data_len))
2755                        goto out;
2756
2757                info_node = malloc(sizeof(struct bpf_prog_info_node));
2758                if (!info_node)
2759                        goto out;
2760
2761                /* after reading from file, translate offset to address */
2762                bpf_program__bpil_offs_to_addr(info_linear);
2763                info_node->info_linear = info_linear;
2764                perf_env__insert_bpf_prog_info(env, info_node);
2765        }
2766
2767        up_write(&env->bpf_progs.lock);
2768        return 0;
2769out:
2770        free(info_linear);
2771        free(info_node);
2772        up_write(&env->bpf_progs.lock);
2773        return err;
2774}
2775#else // HAVE_LIBBPF_SUPPORT
2776static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2777{
2778        return 0;
2779}
2780#endif // HAVE_LIBBPF_SUPPORT
2781
2782static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2783{
2784        struct perf_env *env = &ff->ph->env;
2785        struct btf_node *node = NULL;
2786        u32 count, i;
2787        int err = -1;
2788
2789        if (ff->ph->needs_swap) {
2790                pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2791                return 0;
2792        }
2793
2794        if (do_read_u32(ff, &count))
2795                return -1;
2796
2797        down_write(&env->bpf_progs.lock);
2798
2799        for (i = 0; i < count; ++i) {
2800                u32 id, data_size;
2801
2802                if (do_read_u32(ff, &id))
2803                        goto out;
2804                if (do_read_u32(ff, &data_size))
2805                        goto out;
2806
2807                node = malloc(sizeof(struct btf_node) + data_size);
2808                if (!node)
2809                        goto out;
2810
2811                node->id = id;
2812                node->data_size = data_size;
2813
2814                if (__do_read(ff, node->data, data_size))
2815                        goto out;
2816
2817                perf_env__insert_btf(env, node);
2818                node = NULL;
2819        }
2820
2821        err = 0;
2822out:
2823        up_write(&env->bpf_progs.lock);
2824        free(node);
2825        return err;
2826}
2827
2828static int process_compressed(struct feat_fd *ff,
2829                              void *data __maybe_unused)
2830{
2831        if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2832                return -1;
2833
2834        if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2835                return -1;
2836
2837        if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2838                return -1;
2839
2840        if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2841                return -1;
2842
2843        if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2844                return -1;
2845
2846        return 0;
2847}
2848
2849#define FEAT_OPR(n, func, __full_only) \
2850        [HEADER_##n] = {                                        \
2851                .name       = __stringify(n),                   \
2852                .write      = write_##func,                     \
2853                .print      = print_##func,                     \
2854                .full_only  = __full_only,                      \
2855                .process    = process_##func,                   \
2856                .synthesize = true                              \
2857        }
2858
2859#define FEAT_OPN(n, func, __full_only) \
2860        [HEADER_##n] = {                                        \
2861                .name       = __stringify(n),                   \
2862                .write      = write_##func,                     \
2863                .print      = print_##func,                     \
2864                .full_only  = __full_only,                      \
2865                .process    = process_##func                    \
2866        }
2867
2868/* feature_ops not implemented: */
2869#define print_tracing_data      NULL
2870#define print_build_id          NULL
2871
2872#define process_branch_stack    NULL
2873#define process_stat            NULL
2874
2875// Only used in util/synthetic-events.c
2876const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2877
2878const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2879        FEAT_OPN(TRACING_DATA,  tracing_data,   false),
2880        FEAT_OPN(BUILD_ID,      build_id,       false),
2881        FEAT_OPR(HOSTNAME,      hostname,       false),
2882        FEAT_OPR(OSRELEASE,     osrelease,      false),
2883        FEAT_OPR(VERSION,       version,        false),
2884        FEAT_OPR(ARCH,          arch,           false),
2885        FEAT_OPR(NRCPUS,        nrcpus,         false),
2886        FEAT_OPR(CPUDESC,       cpudesc,        false),
2887        FEAT_OPR(CPUID,         cpuid,          false),
2888        FEAT_OPR(TOTAL_MEM,     total_mem,      false),
2889        FEAT_OPR(EVENT_DESC,    event_desc,     false),
2890        FEAT_OPR(CMDLINE,       cmdline,        false),
2891        FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
2892        FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
2893        FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
2894        FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
2895        FEAT_OPR(GROUP_DESC,    group_desc,     false),
2896        FEAT_OPN(AUXTRACE,      auxtrace,       false),
2897        FEAT_OPN(STAT,          stat,           false),
2898        FEAT_OPN(CACHE,         cache,          true),
2899        FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
2900        FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
2901        FEAT_OPR(CLOCKID,       clockid,        false),
2902        FEAT_OPN(DIR_FORMAT,    dir_format,     false),
2903        FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2904        FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2905        FEAT_OPR(COMPRESSED,    compressed,     false),
2906};
2907
2908struct header_print_data {
2909        FILE *fp;
2910        bool full; /* extended list of headers */
2911};
2912
2913static int perf_file_section__fprintf_info(struct perf_file_section *section,
2914                                           struct perf_header *ph,
2915                                           int feat, int fd, void *data)
2916{
2917        struct header_print_data *hd = data;
2918        struct feat_fd ff;
2919
2920        if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2921                pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2922                                "%d, continuing...\n", section->offset, feat);
2923                return 0;
2924        }
2925        if (feat >= HEADER_LAST_FEATURE) {
2926                pr_warning("unknown feature %d\n", feat);
2927                return 0;
2928        }
2929        if (!feat_ops[feat].print)
2930                return 0;
2931
2932        ff = (struct  feat_fd) {
2933                .fd = fd,
2934                .ph = ph,
2935        };
2936
2937        if (!feat_ops[feat].full_only || hd->full)
2938                feat_ops[feat].print(&ff, hd->fp);
2939        else
2940                fprintf(hd->fp, "# %s info available, use -I to display\n",
2941                        feat_ops[feat].name);
2942
2943        return 0;
2944}
2945
2946int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2947{
2948        struct header_print_data hd;
2949        struct perf_header *header = &session->header;
2950        int fd = perf_data__fd(session->data);
2951        struct stat st;
2952        time_t stctime;
2953        int ret, bit;
2954
2955        hd.fp = fp;
2956        hd.full = full;
2957
2958        ret = fstat(fd, &st);
2959        if (ret == -1)
2960                return -1;
2961
2962        stctime = st.st_mtime;
2963        fprintf(fp, "# captured on    : %s", ctime(&stctime));
2964
2965        fprintf(fp, "# header version : %u\n", header->version);
2966        fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2967        fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2968        fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2969
2970        perf_header__process_sections(header, fd, &hd,
2971                                      perf_file_section__fprintf_info);
2972
2973        if (session->data->is_pipe)
2974                return 0;
2975
2976        fprintf(fp, "# missing features: ");
2977        for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2978                if (bit)
2979                        fprintf(fp, "%s ", feat_ops[bit].name);
2980        }
2981
2982        fprintf(fp, "\n");
2983        return 0;
2984}
2985
2986static int do_write_feat(struct feat_fd *ff, int type,
2987                         struct perf_file_section **p,
2988                         struct evlist *evlist)
2989{
2990        int err;
2991        int ret = 0;
2992
2993        if (perf_header__has_feat(ff->ph, type)) {
2994                if (!feat_ops[type].write)
2995                        return -1;
2996
2997                if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2998                        return -1;
2999
3000                (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3001
3002                err = feat_ops[type].write(ff, evlist);
3003                if (err < 0) {
3004                        pr_debug("failed to write feature %s\n", feat_ops[type].name);
3005
3006                        /* undo anything written */
3007                        lseek(ff->fd, (*p)->offset, SEEK_SET);
3008
3009                        return -1;
3010                }
3011                (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3012                (*p)++;
3013        }
3014        return ret;
3015}
3016
3017static int perf_header__adds_write(struct perf_header *header,
3018                                   struct evlist *evlist, int fd)
3019{
3020        int nr_sections;
3021        struct feat_fd ff;
3022        struct perf_file_section *feat_sec, *p;
3023        int sec_size;
3024        u64 sec_start;
3025        int feat;
3026        int err;
3027
3028        ff = (struct feat_fd){
3029                .fd  = fd,
3030                .ph = header,
3031        };
3032
3033        nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3034        if (!nr_sections)
3035                return 0;
3036
3037        feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3038        if (feat_sec == NULL)
3039                return -ENOMEM;
3040
3041        sec_size = sizeof(*feat_sec) * nr_sections;
3042
3043        sec_start = header->feat_offset;
3044        lseek(fd, sec_start + sec_size, SEEK_SET);
3045
3046        for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3047                if (do_write_feat(&ff, feat, &p, evlist))
3048                        perf_header__clear_feat(header, feat);
3049        }
3050
3051        lseek(fd, sec_start, SEEK_SET);
3052        /*
3053         * may write more than needed due to dropped feature, but
3054         * this is okay, reader will skip the missing entries
3055         */
3056        err = do_write(&ff, feat_sec, sec_size);
3057        if (err < 0)
3058                pr_debug("failed to write feature section\n");
3059        free(feat_sec);
3060        return err;
3061}
3062
3063int perf_header__write_pipe(int fd)
3064{
3065        struct perf_pipe_file_header f_header;
3066        struct feat_fd ff;
3067        int err;
3068
3069        ff = (struct feat_fd){ .fd = fd };
3070
3071        f_header = (struct perf_pipe_file_header){
3072                .magic     = PERF_MAGIC,
3073                .size      = sizeof(f_header),
3074        };
3075
3076        err = do_write(&ff, &f_header, sizeof(f_header));
3077        if (err < 0) {
3078                pr_debug("failed to write perf pipe header\n");
3079                return err;
3080        }
3081
3082        return 0;
3083}
3084
3085int perf_session__write_header(struct perf_session *session,
3086                               struct evlist *evlist,
3087                               int fd, bool at_exit)
3088{
3089        struct perf_file_header f_header;
3090        struct perf_file_attr   f_attr;
3091        struct perf_header *header = &session->header;
3092        struct evsel *evsel;
3093        struct feat_fd ff;
3094        u64 attr_offset;
3095        int err;
3096
3097        ff = (struct feat_fd){ .fd = fd};
3098        lseek(fd, sizeof(f_header), SEEK_SET);
3099
3100        evlist__for_each_entry(session->evlist, evsel) {
3101                evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3102                err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3103                if (err < 0) {
3104                        pr_debug("failed to write perf header\n");
3105                        return err;
3106                }
3107        }
3108
3109        attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3110
3111        evlist__for_each_entry(evlist, evsel) {
3112                f_attr = (struct perf_file_attr){
3113                        .attr = evsel->core.attr,
3114                        .ids  = {
3115                                .offset = evsel->id_offset,
3116                                .size   = evsel->core.ids * sizeof(u64),
3117                        }
3118                };
3119                err = do_write(&ff, &f_attr, sizeof(f_attr));
3120                if (err < 0) {
3121                        pr_debug("failed to write perf header attribute\n");
3122                        return err;
3123                }
3124        }
3125
3126        if (!header->data_offset)
3127                header->data_offset = lseek(fd, 0, SEEK_CUR);
3128        header->feat_offset = header->data_offset + header->data_size;
3129
3130        if (at_exit) {
3131                err = perf_header__adds_write(header, evlist, fd);
3132                if (err < 0)
3133                        return err;
3134        }
3135
3136        f_header = (struct perf_file_header){
3137                .magic     = PERF_MAGIC,
3138                .size      = sizeof(f_header),
3139                .attr_size = sizeof(f_attr),
3140                .attrs = {
3141                        .offset = attr_offset,
3142                        .size   = evlist->core.nr_entries * sizeof(f_attr),
3143                },
3144                .data = {
3145                        .offset = header->data_offset,
3146                        .size   = header->data_size,
3147                },
3148                /* event_types is ignored, store zeros */
3149        };
3150
3151        memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3152
3153        lseek(fd, 0, SEEK_SET);
3154        err = do_write(&ff, &f_header, sizeof(f_header));
3155        if (err < 0) {
3156                pr_debug("failed to write perf header\n");
3157                return err;
3158        }
3159        lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3160
3161        return 0;
3162}
3163
3164static int perf_header__getbuffer64(struct perf_header *header,
3165                                    int fd, void *buf, size_t size)
3166{
3167        if (readn(fd, buf, size) <= 0)
3168                return -1;
3169
3170        if (header->needs_swap)
3171                mem_bswap_64(buf, size);
3172
3173        return 0;
3174}
3175
3176int perf_header__process_sections(struct perf_header *header, int fd,
3177                                  void *data,
3178                                  int (*process)(struct perf_file_section *section,
3179                                                 struct perf_header *ph,
3180                                                 int feat, int fd, void *data))
3181{
3182        struct perf_file_section *feat_sec, *sec;
3183        int nr_sections;
3184        int sec_size;
3185        int feat;
3186        int err;
3187
3188        nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3189        if (!nr_sections)
3190                return 0;
3191
3192        feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3193        if (!feat_sec)
3194                return -1;
3195
3196        sec_size = sizeof(*feat_sec) * nr_sections;
3197
3198        lseek(fd, header->feat_offset, SEEK_SET);
3199
3200        err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3201        if (err < 0)
3202                goto out_free;
3203
3204        for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3205                err = process(sec++, header, feat, fd, data);
3206                if (err < 0)
3207                        goto out_free;
3208        }
3209        err = 0;
3210out_free:
3211        free(feat_sec);
3212        return err;
3213}
3214
3215static const int attr_file_abi_sizes[] = {
3216        [0] = PERF_ATTR_SIZE_VER0,
3217        [1] = PERF_ATTR_SIZE_VER1,
3218        [2] = PERF_ATTR_SIZE_VER2,
3219        [3] = PERF_ATTR_SIZE_VER3,
3220        [4] = PERF_ATTR_SIZE_VER4,
3221        0,
3222};
3223
3224/*
3225 * In the legacy file format, the magic number is not used to encode endianness.
3226 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3227 * on ABI revisions, we need to try all combinations for all endianness to
3228 * detect the endianness.
3229 */
3230static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3231{
3232        uint64_t ref_size, attr_size;
3233        int i;
3234
3235        for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3236                ref_size = attr_file_abi_sizes[i]
3237                         + sizeof(struct perf_file_section);
3238                if (hdr_sz != ref_size) {
3239                        attr_size = bswap_64(hdr_sz);
3240                        if (attr_size != ref_size)
3241                                continue;
3242
3243                        ph->needs_swap = true;
3244                }
3245                pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3246                         i,
3247                         ph->needs_swap);
3248                return 0;
3249        }
3250        /* could not determine endianness */
3251        return -1;
3252}
3253
3254#define PERF_PIPE_HDR_VER0      16
3255
3256static const size_t attr_pipe_abi_sizes[] = {
3257        [0] = PERF_PIPE_HDR_VER0,
3258        0,
3259};
3260
3261/*
3262 * In the legacy pipe format, there is an implicit assumption that endiannesss
3263 * between host recording the samples, and host parsing the samples is the
3264 * same. This is not always the case given that the pipe output may always be
3265 * redirected into a file and analyzed on a different machine with possibly a
3266 * different endianness and perf_event ABI revsions in the perf tool itself.
3267 */
3268static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3269{
3270        u64 attr_size;
3271        int i;
3272
3273        for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3274                if (hdr_sz != attr_pipe_abi_sizes[i]) {
3275                        attr_size = bswap_64(hdr_sz);
3276                        if (attr_size != hdr_sz)
3277                                continue;
3278
3279                        ph->needs_swap = true;
3280                }
3281                pr_debug("Pipe ABI%d perf.data file detected\n", i);
3282                return 0;
3283        }
3284        return -1;
3285}
3286
3287bool is_perf_magic(u64 magic)
3288{
3289        if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3290                || magic == __perf_magic2
3291                || magic == __perf_magic2_sw)
3292                return true;
3293
3294        return false;
3295}
3296
3297static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3298                              bool is_pipe, struct perf_header *ph)
3299{
3300        int ret;
3301
3302        /* check for legacy format */
3303        ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3304        if (ret == 0) {
3305                ph->version = PERF_HEADER_VERSION_1;
3306                pr_debug("legacy perf.data format\n");
3307                if (is_pipe)
3308                        return try_all_pipe_abis(hdr_sz, ph);
3309
3310                return try_all_file_abis(hdr_sz, ph);
3311        }
3312        /*
3313         * the new magic number serves two purposes:
3314         * - unique number to identify actual perf.data files
3315         * - encode endianness of file
3316         */
3317        ph->version = PERF_HEADER_VERSION_2;
3318
3319        /* check magic number with one endianness */
3320        if (magic == __perf_magic2)
3321                return 0;
3322
3323        /* check magic number with opposite endianness */
3324        if (magic != __perf_magic2_sw)
3325                return -1;
3326
3327        ph->needs_swap = true;
3328
3329        return 0;
3330}
3331
3332int perf_file_header__read(struct perf_file_header *header,
3333                           struct perf_header *ph, int fd)
3334{
3335        ssize_t ret;
3336
3337        lseek(fd, 0, SEEK_SET);
3338
3339        ret = readn(fd, header, sizeof(*header));
3340        if (ret <= 0)
3341                return -1;
3342
3343        if (check_magic_endian(header->magic,
3344                               header->attr_size, false, ph) < 0) {
3345                pr_debug("magic/endian check failed\n");
3346                return -1;
3347        }
3348
3349        if (ph->needs_swap) {
3350                mem_bswap_64(header, offsetof(struct perf_file_header,
3351                             adds_features));
3352        }
3353
3354        if (header->size != sizeof(*header)) {
3355                /* Support the previous format */
3356                if (header->size == offsetof(typeof(*header), adds_features))
3357                        bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3358                else
3359                        return -1;
3360        } else if (ph->needs_swap) {
3361                /*
3362                 * feature bitmap is declared as an array of unsigned longs --
3363                 * not good since its size can differ between the host that
3364                 * generated the data file and the host analyzing the file.
3365                 *
3366                 * We need to handle endianness, but we don't know the size of
3367                 * the unsigned long where the file was generated. Take a best
3368                 * guess at determining it: try 64-bit swap first (ie., file
3369                 * created on a 64-bit host), and check if the hostname feature
3370                 * bit is set (this feature bit is forced on as of fbe96f2).
3371                 * If the bit is not, undo the 64-bit swap and try a 32-bit
3372                 * swap. If the hostname bit is still not set (e.g., older data
3373                 * file), punt and fallback to the original behavior --
3374                 * clearing all feature bits and setting buildid.
3375                 */
3376                mem_bswap_64(&header->adds_features,
3377                            BITS_TO_U64(HEADER_FEAT_BITS));
3378
3379                if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3380                        /* unswap as u64 */
3381                        mem_bswap_64(&header->adds_features,
3382                                    BITS_TO_U64(HEADER_FEAT_BITS));
3383
3384                        /* unswap as u32 */
3385                        mem_bswap_32(&header->adds_features,
3386                                    BITS_TO_U32(HEADER_FEAT_BITS));
3387                }
3388
3389                if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3390                        bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3391                        set_bit(HEADER_BUILD_ID, header->adds_features);
3392                }
3393        }
3394
3395        memcpy(&ph->adds_features, &header->adds_features,
3396               sizeof(ph->adds_features));
3397
3398        ph->data_offset  = header->data.offset;
3399        ph->data_size    = header->data.size;
3400        ph->feat_offset  = header->data.offset + header->data.size;
3401        return 0;
3402}
3403
3404static int perf_file_section__process(struct perf_file_section *section,
3405                                      struct perf_header *ph,
3406                                      int feat, int fd, void *data)
3407{
3408        struct feat_fd fdd = {
3409                .fd     = fd,
3410                .ph     = ph,
3411                .size   = section->size,
3412                .offset = section->offset,
3413        };
3414
3415        if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3416                pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3417                          "%d, continuing...\n", section->offset, feat);
3418                return 0;
3419        }
3420
3421        if (feat >= HEADER_LAST_FEATURE) {
3422                pr_debug("unknown feature %d, continuing...\n", feat);
3423                return 0;
3424        }
3425
3426        if (!feat_ops[feat].process)
3427                return 0;
3428
3429        return feat_ops[feat].process(&fdd, data);
3430}
3431
3432static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3433                                       struct perf_header *ph, int fd,
3434                                       bool repipe)
3435{
3436        struct feat_fd ff = {
3437                .fd = STDOUT_FILENO,
3438                .ph = ph,
3439        };
3440        ssize_t ret;
3441
3442        ret = readn(fd, header, sizeof(*header));
3443        if (ret <= 0)
3444                return -1;
3445
3446        if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3447                pr_debug("endian/magic failed\n");
3448                return -1;
3449        }
3450
3451        if (ph->needs_swap)
3452                header->size = bswap_64(header->size);
3453
3454        if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3455                return -1;
3456
3457        return 0;
3458}
3459
3460static int perf_header__read_pipe(struct perf_session *session)
3461{
3462        struct perf_header *header = &session->header;
3463        struct perf_pipe_file_header f_header;
3464
3465        if (perf_file_header__read_pipe(&f_header, header,
3466                                        perf_data__fd(session->data),
3467                                        session->repipe) < 0) {
3468                pr_debug("incompatible file format\n");
3469                return -EINVAL;
3470        }
3471
3472        return 0;
3473}
3474
3475static int read_attr(int fd, struct perf_header *ph,
3476                     struct perf_file_attr *f_attr)
3477{
3478        struct perf_event_attr *attr = &f_attr->attr;
3479        size_t sz, left;
3480        size_t our_sz = sizeof(f_attr->attr);
3481        ssize_t ret;
3482
3483        memset(f_attr, 0, sizeof(*f_attr));
3484
3485        /* read minimal guaranteed structure */
3486        ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3487        if (ret <= 0) {
3488                pr_debug("cannot read %d bytes of header attr\n",
3489                         PERF_ATTR_SIZE_VER0);
3490                return -1;
3491        }
3492
3493        /* on file perf_event_attr size */
3494        sz = attr->size;
3495
3496        if (ph->needs_swap)
3497                sz = bswap_32(sz);
3498
3499        if (sz == 0) {
3500                /* assume ABI0 */
3501                sz =  PERF_ATTR_SIZE_VER0;
3502        } else if (sz > our_sz) {
3503                pr_debug("file uses a more recent and unsupported ABI"
3504                         " (%zu bytes extra)\n", sz - our_sz);
3505                return -1;
3506        }
3507        /* what we have not yet read and that we know about */
3508        left = sz - PERF_ATTR_SIZE_VER0;
3509        if (left) {
3510                void *ptr = attr;
3511                ptr += PERF_ATTR_SIZE_VER0;
3512
3513                ret = readn(fd, ptr, left);
3514        }
3515        /* read perf_file_section, ids are read in caller */
3516        ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3517
3518        return ret <= 0 ? -1 : 0;
3519}
3520
3521static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3522                                                struct tep_handle *pevent)
3523{
3524        struct tep_event *event;
3525        char bf[128];
3526
3527        /* already prepared */
3528        if (evsel->tp_format)
3529                return 0;
3530
3531        if (pevent == NULL) {
3532                pr_debug("broken or missing trace data\n");
3533                return -1;
3534        }
3535
3536        event = tep_find_event(pevent, evsel->core.attr.config);
3537        if (event == NULL) {
3538                pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3539                return -1;
3540        }
3541
3542        if (!evsel->name) {
3543                snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3544                evsel->name = strdup(bf);
3545                if (evsel->name == NULL)
3546                        return -1;
3547        }
3548
3549        evsel->tp_format = event;
3550        return 0;
3551}
3552
3553static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3554                                                  struct tep_handle *pevent)
3555{
3556        struct evsel *pos;
3557
3558        evlist__for_each_entry(evlist, pos) {
3559                if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3560                    perf_evsel__prepare_tracepoint_event(pos, pevent))
3561                        return -1;
3562        }
3563
3564        return 0;
3565}
3566
3567int perf_session__read_header(struct perf_session *session)
3568{
3569        struct perf_data *data = session->data;
3570        struct perf_header *header = &session->header;
3571        struct perf_file_header f_header;
3572        struct perf_file_attr   f_attr;
3573        u64                     f_id;
3574        int nr_attrs, nr_ids, i, j;
3575        int fd = perf_data__fd(data);
3576
3577        session->evlist = evlist__new();
3578        if (session->evlist == NULL)
3579                return -ENOMEM;
3580
3581        session->evlist->env = &header->env;
3582        session->machines.host.env = &header->env;
3583        if (perf_data__is_pipe(data))
3584                return perf_header__read_pipe(session);
3585
3586        if (perf_file_header__read(&f_header, header, fd) < 0)
3587                return -EINVAL;
3588
3589        /*
3590         * Sanity check that perf.data was written cleanly; data size is
3591         * initialized to 0 and updated only if the on_exit function is run.
3592         * If data size is still 0 then the file contains only partial
3593         * information.  Just warn user and process it as much as it can.
3594         */
3595        if (f_header.data.size == 0) {
3596                pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3597                           "Was the 'perf record' command properly terminated?\n",
3598                           data->file.path);
3599        }
3600
3601        if (f_header.attr_size == 0) {
3602                pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3603                       "Was the 'perf record' command properly terminated?\n",
3604                       data->file.path);
3605                return -EINVAL;
3606        }
3607
3608        nr_attrs = f_header.attrs.size / f_header.attr_size;
3609        lseek(fd, f_header.attrs.offset, SEEK_SET);
3610
3611        for (i = 0; i < nr_attrs; i++) {
3612                struct evsel *evsel;
3613                off_t tmp;
3614
3615                if (read_attr(fd, header, &f_attr) < 0)
3616                        goto out_errno;
3617
3618                if (header->needs_swap) {
3619                        f_attr.ids.size   = bswap_64(f_attr.ids.size);
3620                        f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3621                        perf_event__attr_swap(&f_attr.attr);
3622                }
3623
3624                tmp = lseek(fd, 0, SEEK_CUR);
3625                evsel = evsel__new(&f_attr.attr);
3626
3627                if (evsel == NULL)
3628                        goto out_delete_evlist;
3629
3630                evsel->needs_swap = header->needs_swap;
3631                /*
3632                 * Do it before so that if perf_evsel__alloc_id fails, this
3633                 * entry gets purged too at evlist__delete().
3634                 */
3635                evlist__add(session->evlist, evsel);
3636
3637                nr_ids = f_attr.ids.size / sizeof(u64);
3638                /*
3639                 * We don't have the cpu and thread maps on the header, so
3640                 * for allocating the perf_sample_id table we fake 1 cpu and
3641                 * hattr->ids threads.
3642                 */
3643                if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3644                        goto out_delete_evlist;
3645
3646                lseek(fd, f_attr.ids.offset, SEEK_SET);
3647
3648                for (j = 0; j < nr_ids; j++) {
3649                        if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3650                                goto out_errno;
3651
3652                        perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3653                }
3654
3655                lseek(fd, tmp, SEEK_SET);
3656        }
3657
3658        perf_header__process_sections(header, fd, &session->tevent,
3659                                      perf_file_section__process);
3660
3661        if (perf_evlist__prepare_tracepoint_events(session->evlist,
3662                                                   session->tevent.pevent))
3663                goto out_delete_evlist;
3664
3665        return 0;
3666out_errno:
3667        return -errno;
3668
3669out_delete_evlist:
3670        evlist__delete(session->evlist);
3671        session->evlist = NULL;
3672        return -ENOMEM;
3673}
3674
3675int perf_event__process_feature(struct perf_session *session,
3676                                union perf_event *event)
3677{
3678        struct perf_tool *tool = session->tool;
3679        struct feat_fd ff = { .fd = 0 };
3680        struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3681        int type = fe->header.type;
3682        u64 feat = fe->feat_id;
3683
3684        if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3685                pr_warning("invalid record type %d in pipe-mode\n", type);
3686                return 0;
3687        }
3688        if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3689                pr_warning("invalid record type %d in pipe-mode\n", type);
3690                return -1;
3691        }
3692
3693        if (!feat_ops[feat].process)
3694                return 0;
3695
3696        ff.buf  = (void *)fe->data;
3697        ff.size = event->header.size - sizeof(*fe);
3698        ff.ph = &session->header;
3699
3700        if (feat_ops[feat].process(&ff, NULL))
3701                return -1;
3702
3703        if (!feat_ops[feat].print || !tool->show_feat_hdr)
3704                return 0;
3705
3706        if (!feat_ops[feat].full_only ||
3707            tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3708                feat_ops[feat].print(&ff, stdout);
3709        } else {
3710                fprintf(stdout, "# %s info available, use -I to display\n",
3711                        feat_ops[feat].name);
3712        }
3713
3714        return 0;
3715}
3716
3717size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3718{
3719        struct perf_record_event_update *ev = &event->event_update;
3720        struct perf_record_event_update_scale *ev_scale;
3721        struct perf_record_event_update_cpus *ev_cpus;
3722        struct perf_cpu_map *map;
3723        size_t ret;
3724
3725        ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3726
3727        switch (ev->type) {
3728        case PERF_EVENT_UPDATE__SCALE:
3729                ev_scale = (struct perf_record_event_update_scale *)ev->data;
3730                ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3731                break;
3732        case PERF_EVENT_UPDATE__UNIT:
3733                ret += fprintf(fp, "... unit:  %s\n", ev->data);
3734                break;
3735        case PERF_EVENT_UPDATE__NAME:
3736                ret += fprintf(fp, "... name:  %s\n", ev->data);
3737                break;
3738        case PERF_EVENT_UPDATE__CPUS:
3739                ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3740                ret += fprintf(fp, "... ");
3741
3742                map = cpu_map__new_data(&ev_cpus->cpus);
3743                if (map)
3744                        ret += cpu_map__fprintf(map, fp);
3745                else
3746                        ret += fprintf(fp, "failed to get cpus\n");
3747                break;
3748        default:
3749                ret += fprintf(fp, "... unknown type\n");
3750                break;
3751        }
3752
3753        return ret;
3754}
3755
3756int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3757                             union perf_event *event,
3758                             struct evlist **pevlist)
3759{
3760        u32 i, ids, n_ids;
3761        struct evsel *evsel;
3762        struct evlist *evlist = *pevlist;
3763
3764        if (evlist == NULL) {
3765                *pevlist = evlist = evlist__new();
3766                if (evlist == NULL)
3767                        return -ENOMEM;
3768        }
3769
3770        evsel = evsel__new(&event->attr.attr);
3771        if (evsel == NULL)
3772                return -ENOMEM;
3773
3774        evlist__add(evlist, evsel);
3775
3776        ids = event->header.size;
3777        ids -= (void *)&event->attr.id - (void *)event;
3778        n_ids = ids / sizeof(u64);
3779        /*
3780         * We don't have the cpu and thread maps on the header, so
3781         * for allocating the perf_sample_id table we fake 1 cpu and
3782         * hattr->ids threads.
3783         */
3784        if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3785                return -ENOMEM;
3786
3787        for (i = 0; i < n_ids; i++) {
3788                perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3789        }
3790
3791        return 0;
3792}
3793
3794int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3795                                     union perf_event *event,
3796                                     struct evlist **pevlist)
3797{
3798        struct perf_record_event_update *ev = &event->event_update;
3799        struct perf_record_event_update_scale *ev_scale;
3800        struct perf_record_event_update_cpus *ev_cpus;
3801        struct evlist *evlist;
3802        struct evsel *evsel;
3803        struct perf_cpu_map *map;
3804
3805        if (!pevlist || *pevlist == NULL)
3806                return -EINVAL;
3807
3808        evlist = *pevlist;
3809
3810        evsel = perf_evlist__id2evsel(evlist, ev->id);
3811        if (evsel == NULL)
3812                return -EINVAL;
3813
3814        switch (ev->type) {
3815        case PERF_EVENT_UPDATE__UNIT:
3816                evsel->unit = strdup(ev->data);
3817                break;
3818        case PERF_EVENT_UPDATE__NAME:
3819                evsel->name = strdup(ev->data);
3820                break;
3821        case PERF_EVENT_UPDATE__SCALE:
3822                ev_scale = (struct perf_record_event_update_scale *)ev->data;
3823                evsel->scale = ev_scale->scale;
3824                break;
3825        case PERF_EVENT_UPDATE__CPUS:
3826                ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3827
3828                map = cpu_map__new_data(&ev_cpus->cpus);
3829                if (map)
3830                        evsel->core.own_cpus = map;
3831                else
3832                        pr_err("failed to get event_update cpus\n");
3833        default:
3834                break;
3835        }
3836
3837        return 0;
3838}
3839
3840int perf_event__process_tracing_data(struct perf_session *session,
3841                                     union perf_event *event)
3842{
3843        ssize_t size_read, padding, size = event->tracing_data.size;
3844        int fd = perf_data__fd(session->data);
3845        off_t offset = lseek(fd, 0, SEEK_CUR);
3846        char buf[BUFSIZ];
3847
3848        /* setup for reading amidst mmap */
3849        lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3850              SEEK_SET);
3851
3852        size_read = trace_report(fd, &session->tevent,
3853                                 session->repipe);
3854        padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3855
3856        if (readn(fd, buf, padding) < 0) {
3857                pr_err("%s: reading input file", __func__);
3858                return -1;
3859        }
3860        if (session->repipe) {
3861                int retw = write(STDOUT_FILENO, buf, padding);
3862                if (retw <= 0 || retw != padding) {
3863                        pr_err("%s: repiping tracing data padding", __func__);
3864                        return -1;
3865                }
3866        }
3867
3868        if (size_read + padding != size) {
3869                pr_err("%s: tracing data size mismatch", __func__);
3870                return -1;
3871        }
3872
3873        perf_evlist__prepare_tracepoint_events(session->evlist,
3874                                               session->tevent.pevent);
3875
3876        return size_read + padding;
3877}
3878
3879int perf_event__process_build_id(struct perf_session *session,
3880                                 union perf_event *event)
3881{
3882        __event_process_build_id(&event->build_id,
3883                                 event->build_id.filename,
3884                                 session);
3885        return 0;
3886}
3887