linux/virt/kvm/arm/mmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   5 */
   6
   7#include <linux/mman.h>
   8#include <linux/kvm_host.h>
   9#include <linux/io.h>
  10#include <linux/hugetlb.h>
  11#include <linux/sched/signal.h>
  12#include <trace/events/kvm.h>
  13#include <asm/pgalloc.h>
  14#include <asm/cacheflush.h>
  15#include <asm/kvm_arm.h>
  16#include <asm/kvm_mmu.h>
  17#include <asm/kvm_ras.h>
  18#include <asm/kvm_asm.h>
  19#include <asm/kvm_emulate.h>
  20#include <asm/virt.h>
  21
  22#include "trace.h"
  23
  24static pgd_t *boot_hyp_pgd;
  25static pgd_t *hyp_pgd;
  26static pgd_t *merged_hyp_pgd;
  27static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
  28
  29static unsigned long hyp_idmap_start;
  30static unsigned long hyp_idmap_end;
  31static phys_addr_t hyp_idmap_vector;
  32
  33static unsigned long io_map_base;
  34
  35#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
  36
  37#define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
  38#define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
  39
  40static bool is_iomap(unsigned long flags)
  41{
  42        return flags & KVM_S2PTE_FLAG_IS_IOMAP;
  43}
  44
  45static bool memslot_is_logging(struct kvm_memory_slot *memslot)
  46{
  47        return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
  48}
  49
  50/**
  51 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
  52 * @kvm:        pointer to kvm structure.
  53 *
  54 * Interface to HYP function to flush all VM TLB entries
  55 */
  56void kvm_flush_remote_tlbs(struct kvm *kvm)
  57{
  58        kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
  59}
  60
  61static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
  62{
  63        kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
  64}
  65
  66/*
  67 * D-Cache management functions. They take the page table entries by
  68 * value, as they are flushing the cache using the kernel mapping (or
  69 * kmap on 32bit).
  70 */
  71static void kvm_flush_dcache_pte(pte_t pte)
  72{
  73        __kvm_flush_dcache_pte(pte);
  74}
  75
  76static void kvm_flush_dcache_pmd(pmd_t pmd)
  77{
  78        __kvm_flush_dcache_pmd(pmd);
  79}
  80
  81static void kvm_flush_dcache_pud(pud_t pud)
  82{
  83        __kvm_flush_dcache_pud(pud);
  84}
  85
  86static bool kvm_is_device_pfn(unsigned long pfn)
  87{
  88        return !pfn_valid(pfn);
  89}
  90
  91/**
  92 * stage2_dissolve_pmd() - clear and flush huge PMD entry
  93 * @kvm:        pointer to kvm structure.
  94 * @addr:       IPA
  95 * @pmd:        pmd pointer for IPA
  96 *
  97 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
  98 */
  99static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
 100{
 101        if (!pmd_thp_or_huge(*pmd))
 102                return;
 103
 104        pmd_clear(pmd);
 105        kvm_tlb_flush_vmid_ipa(kvm, addr);
 106        put_page(virt_to_page(pmd));
 107}
 108
 109/**
 110 * stage2_dissolve_pud() - clear and flush huge PUD entry
 111 * @kvm:        pointer to kvm structure.
 112 * @addr:       IPA
 113 * @pud:        pud pointer for IPA
 114 *
 115 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
 116 */
 117static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
 118{
 119        if (!stage2_pud_huge(kvm, *pudp))
 120                return;
 121
 122        stage2_pud_clear(kvm, pudp);
 123        kvm_tlb_flush_vmid_ipa(kvm, addr);
 124        put_page(virt_to_page(pudp));
 125}
 126
 127static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 128                                  int min, int max)
 129{
 130        void *page;
 131
 132        BUG_ON(max > KVM_NR_MEM_OBJS);
 133        if (cache->nobjs >= min)
 134                return 0;
 135        while (cache->nobjs < max) {
 136                page = (void *)__get_free_page(GFP_PGTABLE_USER);
 137                if (!page)
 138                        return -ENOMEM;
 139                cache->objects[cache->nobjs++] = page;
 140        }
 141        return 0;
 142}
 143
 144static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 145{
 146        while (mc->nobjs)
 147                free_page((unsigned long)mc->objects[--mc->nobjs]);
 148}
 149
 150static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 151{
 152        void *p;
 153
 154        BUG_ON(!mc || !mc->nobjs);
 155        p = mc->objects[--mc->nobjs];
 156        return p;
 157}
 158
 159static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
 160{
 161        pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL);
 162        stage2_pgd_clear(kvm, pgd);
 163        kvm_tlb_flush_vmid_ipa(kvm, addr);
 164        stage2_pud_free(kvm, pud_table);
 165        put_page(virt_to_page(pgd));
 166}
 167
 168static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
 169{
 170        pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
 171        VM_BUG_ON(stage2_pud_huge(kvm, *pud));
 172        stage2_pud_clear(kvm, pud);
 173        kvm_tlb_flush_vmid_ipa(kvm, addr);
 174        stage2_pmd_free(kvm, pmd_table);
 175        put_page(virt_to_page(pud));
 176}
 177
 178static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
 179{
 180        pte_t *pte_table = pte_offset_kernel(pmd, 0);
 181        VM_BUG_ON(pmd_thp_or_huge(*pmd));
 182        pmd_clear(pmd);
 183        kvm_tlb_flush_vmid_ipa(kvm, addr);
 184        free_page((unsigned long)pte_table);
 185        put_page(virt_to_page(pmd));
 186}
 187
 188static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
 189{
 190        WRITE_ONCE(*ptep, new_pte);
 191        dsb(ishst);
 192}
 193
 194static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
 195{
 196        WRITE_ONCE(*pmdp, new_pmd);
 197        dsb(ishst);
 198}
 199
 200static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
 201{
 202        kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
 203}
 204
 205static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
 206{
 207        WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
 208        dsb(ishst);
 209}
 210
 211static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
 212{
 213        WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
 214        dsb(ishst);
 215}
 216
 217/*
 218 * Unmapping vs dcache management:
 219 *
 220 * If a guest maps certain memory pages as uncached, all writes will
 221 * bypass the data cache and go directly to RAM.  However, the CPUs
 222 * can still speculate reads (not writes) and fill cache lines with
 223 * data.
 224 *
 225 * Those cache lines will be *clean* cache lines though, so a
 226 * clean+invalidate operation is equivalent to an invalidate
 227 * operation, because no cache lines are marked dirty.
 228 *
 229 * Those clean cache lines could be filled prior to an uncached write
 230 * by the guest, and the cache coherent IO subsystem would therefore
 231 * end up writing old data to disk.
 232 *
 233 * This is why right after unmapping a page/section and invalidating
 234 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 235 * the IO subsystem will never hit in the cache.
 236 *
 237 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 238 * we then fully enforce cacheability of RAM, no matter what the guest
 239 * does.
 240 */
 241static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
 242                       phys_addr_t addr, phys_addr_t end)
 243{
 244        phys_addr_t start_addr = addr;
 245        pte_t *pte, *start_pte;
 246
 247        start_pte = pte = pte_offset_kernel(pmd, addr);
 248        do {
 249                if (!pte_none(*pte)) {
 250                        pte_t old_pte = *pte;
 251
 252                        kvm_set_pte(pte, __pte(0));
 253                        kvm_tlb_flush_vmid_ipa(kvm, addr);
 254
 255                        /* No need to invalidate the cache for device mappings */
 256                        if (!kvm_is_device_pfn(pte_pfn(old_pte)))
 257                                kvm_flush_dcache_pte(old_pte);
 258
 259                        put_page(virt_to_page(pte));
 260                }
 261        } while (pte++, addr += PAGE_SIZE, addr != end);
 262
 263        if (stage2_pte_table_empty(kvm, start_pte))
 264                clear_stage2_pmd_entry(kvm, pmd, start_addr);
 265}
 266
 267static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
 268                       phys_addr_t addr, phys_addr_t end)
 269{
 270        phys_addr_t next, start_addr = addr;
 271        pmd_t *pmd, *start_pmd;
 272
 273        start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
 274        do {
 275                next = stage2_pmd_addr_end(kvm, addr, end);
 276                if (!pmd_none(*pmd)) {
 277                        if (pmd_thp_or_huge(*pmd)) {
 278                                pmd_t old_pmd = *pmd;
 279
 280                                pmd_clear(pmd);
 281                                kvm_tlb_flush_vmid_ipa(kvm, addr);
 282
 283                                kvm_flush_dcache_pmd(old_pmd);
 284
 285                                put_page(virt_to_page(pmd));
 286                        } else {
 287                                unmap_stage2_ptes(kvm, pmd, addr, next);
 288                        }
 289                }
 290        } while (pmd++, addr = next, addr != end);
 291
 292        if (stage2_pmd_table_empty(kvm, start_pmd))
 293                clear_stage2_pud_entry(kvm, pud, start_addr);
 294}
 295
 296static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
 297                       phys_addr_t addr, phys_addr_t end)
 298{
 299        phys_addr_t next, start_addr = addr;
 300        pud_t *pud, *start_pud;
 301
 302        start_pud = pud = stage2_pud_offset(kvm, pgd, addr);
 303        do {
 304                next = stage2_pud_addr_end(kvm, addr, end);
 305                if (!stage2_pud_none(kvm, *pud)) {
 306                        if (stage2_pud_huge(kvm, *pud)) {
 307                                pud_t old_pud = *pud;
 308
 309                                stage2_pud_clear(kvm, pud);
 310                                kvm_tlb_flush_vmid_ipa(kvm, addr);
 311                                kvm_flush_dcache_pud(old_pud);
 312                                put_page(virt_to_page(pud));
 313                        } else {
 314                                unmap_stage2_pmds(kvm, pud, addr, next);
 315                        }
 316                }
 317        } while (pud++, addr = next, addr != end);
 318
 319        if (stage2_pud_table_empty(kvm, start_pud))
 320                clear_stage2_pgd_entry(kvm, pgd, start_addr);
 321}
 322
 323/**
 324 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 325 * @kvm:   The VM pointer
 326 * @start: The intermediate physical base address of the range to unmap
 327 * @size:  The size of the area to unmap
 328 *
 329 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 330 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 331 * destroying the VM), otherwise another faulting VCPU may come in and mess
 332 * with things behind our backs.
 333 */
 334static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
 335{
 336        pgd_t *pgd;
 337        phys_addr_t addr = start, end = start + size;
 338        phys_addr_t next;
 339
 340        assert_spin_locked(&kvm->mmu_lock);
 341        WARN_ON(size & ~PAGE_MASK);
 342
 343        pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
 344        do {
 345                /*
 346                 * Make sure the page table is still active, as another thread
 347                 * could have possibly freed the page table, while we released
 348                 * the lock.
 349                 */
 350                if (!READ_ONCE(kvm->arch.pgd))
 351                        break;
 352                next = stage2_pgd_addr_end(kvm, addr, end);
 353                if (!stage2_pgd_none(kvm, *pgd))
 354                        unmap_stage2_puds(kvm, pgd, addr, next);
 355                /*
 356                 * If the range is too large, release the kvm->mmu_lock
 357                 * to prevent starvation and lockup detector warnings.
 358                 */
 359                if (next != end)
 360                        cond_resched_lock(&kvm->mmu_lock);
 361        } while (pgd++, addr = next, addr != end);
 362}
 363
 364static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
 365                              phys_addr_t addr, phys_addr_t end)
 366{
 367        pte_t *pte;
 368
 369        pte = pte_offset_kernel(pmd, addr);
 370        do {
 371                if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
 372                        kvm_flush_dcache_pte(*pte);
 373        } while (pte++, addr += PAGE_SIZE, addr != end);
 374}
 375
 376static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
 377                              phys_addr_t addr, phys_addr_t end)
 378{
 379        pmd_t *pmd;
 380        phys_addr_t next;
 381
 382        pmd = stage2_pmd_offset(kvm, pud, addr);
 383        do {
 384                next = stage2_pmd_addr_end(kvm, addr, end);
 385                if (!pmd_none(*pmd)) {
 386                        if (pmd_thp_or_huge(*pmd))
 387                                kvm_flush_dcache_pmd(*pmd);
 388                        else
 389                                stage2_flush_ptes(kvm, pmd, addr, next);
 390                }
 391        } while (pmd++, addr = next, addr != end);
 392}
 393
 394static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
 395                              phys_addr_t addr, phys_addr_t end)
 396{
 397        pud_t *pud;
 398        phys_addr_t next;
 399
 400        pud = stage2_pud_offset(kvm, pgd, addr);
 401        do {
 402                next = stage2_pud_addr_end(kvm, addr, end);
 403                if (!stage2_pud_none(kvm, *pud)) {
 404                        if (stage2_pud_huge(kvm, *pud))
 405                                kvm_flush_dcache_pud(*pud);
 406                        else
 407                                stage2_flush_pmds(kvm, pud, addr, next);
 408                }
 409        } while (pud++, addr = next, addr != end);
 410}
 411
 412static void stage2_flush_memslot(struct kvm *kvm,
 413                                 struct kvm_memory_slot *memslot)
 414{
 415        phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 416        phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
 417        phys_addr_t next;
 418        pgd_t *pgd;
 419
 420        pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
 421        do {
 422                next = stage2_pgd_addr_end(kvm, addr, end);
 423                if (!stage2_pgd_none(kvm, *pgd))
 424                        stage2_flush_puds(kvm, pgd, addr, next);
 425        } while (pgd++, addr = next, addr != end);
 426}
 427
 428/**
 429 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 430 * @kvm: The struct kvm pointer
 431 *
 432 * Go through the stage 2 page tables and invalidate any cache lines
 433 * backing memory already mapped to the VM.
 434 */
 435static void stage2_flush_vm(struct kvm *kvm)
 436{
 437        struct kvm_memslots *slots;
 438        struct kvm_memory_slot *memslot;
 439        int idx;
 440
 441        idx = srcu_read_lock(&kvm->srcu);
 442        spin_lock(&kvm->mmu_lock);
 443
 444        slots = kvm_memslots(kvm);
 445        kvm_for_each_memslot(memslot, slots)
 446                stage2_flush_memslot(kvm, memslot);
 447
 448        spin_unlock(&kvm->mmu_lock);
 449        srcu_read_unlock(&kvm->srcu, idx);
 450}
 451
 452static void clear_hyp_pgd_entry(pgd_t *pgd)
 453{
 454        pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
 455        pgd_clear(pgd);
 456        pud_free(NULL, pud_table);
 457        put_page(virt_to_page(pgd));
 458}
 459
 460static void clear_hyp_pud_entry(pud_t *pud)
 461{
 462        pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
 463        VM_BUG_ON(pud_huge(*pud));
 464        pud_clear(pud);
 465        pmd_free(NULL, pmd_table);
 466        put_page(virt_to_page(pud));
 467}
 468
 469static void clear_hyp_pmd_entry(pmd_t *pmd)
 470{
 471        pte_t *pte_table = pte_offset_kernel(pmd, 0);
 472        VM_BUG_ON(pmd_thp_or_huge(*pmd));
 473        pmd_clear(pmd);
 474        pte_free_kernel(NULL, pte_table);
 475        put_page(virt_to_page(pmd));
 476}
 477
 478static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
 479{
 480        pte_t *pte, *start_pte;
 481
 482        start_pte = pte = pte_offset_kernel(pmd, addr);
 483        do {
 484                if (!pte_none(*pte)) {
 485                        kvm_set_pte(pte, __pte(0));
 486                        put_page(virt_to_page(pte));
 487                }
 488        } while (pte++, addr += PAGE_SIZE, addr != end);
 489
 490        if (hyp_pte_table_empty(start_pte))
 491                clear_hyp_pmd_entry(pmd);
 492}
 493
 494static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
 495{
 496        phys_addr_t next;
 497        pmd_t *pmd, *start_pmd;
 498
 499        start_pmd = pmd = pmd_offset(pud, addr);
 500        do {
 501                next = pmd_addr_end(addr, end);
 502                /* Hyp doesn't use huge pmds */
 503                if (!pmd_none(*pmd))
 504                        unmap_hyp_ptes(pmd, addr, next);
 505        } while (pmd++, addr = next, addr != end);
 506
 507        if (hyp_pmd_table_empty(start_pmd))
 508                clear_hyp_pud_entry(pud);
 509}
 510
 511static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
 512{
 513        phys_addr_t next;
 514        pud_t *pud, *start_pud;
 515
 516        start_pud = pud = pud_offset(pgd, addr);
 517        do {
 518                next = pud_addr_end(addr, end);
 519                /* Hyp doesn't use huge puds */
 520                if (!pud_none(*pud))
 521                        unmap_hyp_pmds(pud, addr, next);
 522        } while (pud++, addr = next, addr != end);
 523
 524        if (hyp_pud_table_empty(start_pud))
 525                clear_hyp_pgd_entry(pgd);
 526}
 527
 528static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
 529{
 530        return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
 531}
 532
 533static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
 534                              phys_addr_t start, u64 size)
 535{
 536        pgd_t *pgd;
 537        phys_addr_t addr = start, end = start + size;
 538        phys_addr_t next;
 539
 540        /*
 541         * We don't unmap anything from HYP, except at the hyp tear down.
 542         * Hence, we don't have to invalidate the TLBs here.
 543         */
 544        pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
 545        do {
 546                next = pgd_addr_end(addr, end);
 547                if (!pgd_none(*pgd))
 548                        unmap_hyp_puds(pgd, addr, next);
 549        } while (pgd++, addr = next, addr != end);
 550}
 551
 552static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
 553{
 554        __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
 555}
 556
 557static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
 558{
 559        __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
 560}
 561
 562/**
 563 * free_hyp_pgds - free Hyp-mode page tables
 564 *
 565 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 566 * therefore contains either mappings in the kernel memory area (above
 567 * PAGE_OFFSET), or device mappings in the idmap range.
 568 *
 569 * boot_hyp_pgd should only map the idmap range, and is only used in
 570 * the extended idmap case.
 571 */
 572void free_hyp_pgds(void)
 573{
 574        pgd_t *id_pgd;
 575
 576        mutex_lock(&kvm_hyp_pgd_mutex);
 577
 578        id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
 579
 580        if (id_pgd) {
 581                /* In case we never called hyp_mmu_init() */
 582                if (!io_map_base)
 583                        io_map_base = hyp_idmap_start;
 584                unmap_hyp_idmap_range(id_pgd, io_map_base,
 585                                      hyp_idmap_start + PAGE_SIZE - io_map_base);
 586        }
 587
 588        if (boot_hyp_pgd) {
 589                free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
 590                boot_hyp_pgd = NULL;
 591        }
 592
 593        if (hyp_pgd) {
 594                unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
 595                                (uintptr_t)high_memory - PAGE_OFFSET);
 596
 597                free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
 598                hyp_pgd = NULL;
 599        }
 600        if (merged_hyp_pgd) {
 601                clear_page(merged_hyp_pgd);
 602                free_page((unsigned long)merged_hyp_pgd);
 603                merged_hyp_pgd = NULL;
 604        }
 605
 606        mutex_unlock(&kvm_hyp_pgd_mutex);
 607}
 608
 609static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
 610                                    unsigned long end, unsigned long pfn,
 611                                    pgprot_t prot)
 612{
 613        pte_t *pte;
 614        unsigned long addr;
 615
 616        addr = start;
 617        do {
 618                pte = pte_offset_kernel(pmd, addr);
 619                kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
 620                get_page(virt_to_page(pte));
 621                pfn++;
 622        } while (addr += PAGE_SIZE, addr != end);
 623}
 624
 625static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
 626                                   unsigned long end, unsigned long pfn,
 627                                   pgprot_t prot)
 628{
 629        pmd_t *pmd;
 630        pte_t *pte;
 631        unsigned long addr, next;
 632
 633        addr = start;
 634        do {
 635                pmd = pmd_offset(pud, addr);
 636
 637                BUG_ON(pmd_sect(*pmd));
 638
 639                if (pmd_none(*pmd)) {
 640                        pte = pte_alloc_one_kernel(NULL);
 641                        if (!pte) {
 642                                kvm_err("Cannot allocate Hyp pte\n");
 643                                return -ENOMEM;
 644                        }
 645                        kvm_pmd_populate(pmd, pte);
 646                        get_page(virt_to_page(pmd));
 647                }
 648
 649                next = pmd_addr_end(addr, end);
 650
 651                create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
 652                pfn += (next - addr) >> PAGE_SHIFT;
 653        } while (addr = next, addr != end);
 654
 655        return 0;
 656}
 657
 658static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
 659                                   unsigned long end, unsigned long pfn,
 660                                   pgprot_t prot)
 661{
 662        pud_t *pud;
 663        pmd_t *pmd;
 664        unsigned long addr, next;
 665        int ret;
 666
 667        addr = start;
 668        do {
 669                pud = pud_offset(pgd, addr);
 670
 671                if (pud_none_or_clear_bad(pud)) {
 672                        pmd = pmd_alloc_one(NULL, addr);
 673                        if (!pmd) {
 674                                kvm_err("Cannot allocate Hyp pmd\n");
 675                                return -ENOMEM;
 676                        }
 677                        kvm_pud_populate(pud, pmd);
 678                        get_page(virt_to_page(pud));
 679                }
 680
 681                next = pud_addr_end(addr, end);
 682                ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
 683                if (ret)
 684                        return ret;
 685                pfn += (next - addr) >> PAGE_SHIFT;
 686        } while (addr = next, addr != end);
 687
 688        return 0;
 689}
 690
 691static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
 692                                 unsigned long start, unsigned long end,
 693                                 unsigned long pfn, pgprot_t prot)
 694{
 695        pgd_t *pgd;
 696        pud_t *pud;
 697        unsigned long addr, next;
 698        int err = 0;
 699
 700        mutex_lock(&kvm_hyp_pgd_mutex);
 701        addr = start & PAGE_MASK;
 702        end = PAGE_ALIGN(end);
 703        do {
 704                pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
 705
 706                if (pgd_none(*pgd)) {
 707                        pud = pud_alloc_one(NULL, addr);
 708                        if (!pud) {
 709                                kvm_err("Cannot allocate Hyp pud\n");
 710                                err = -ENOMEM;
 711                                goto out;
 712                        }
 713                        kvm_pgd_populate(pgd, pud);
 714                        get_page(virt_to_page(pgd));
 715                }
 716
 717                next = pgd_addr_end(addr, end);
 718                err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
 719                if (err)
 720                        goto out;
 721                pfn += (next - addr) >> PAGE_SHIFT;
 722        } while (addr = next, addr != end);
 723out:
 724        mutex_unlock(&kvm_hyp_pgd_mutex);
 725        return err;
 726}
 727
 728static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
 729{
 730        if (!is_vmalloc_addr(kaddr)) {
 731                BUG_ON(!virt_addr_valid(kaddr));
 732                return __pa(kaddr);
 733        } else {
 734                return page_to_phys(vmalloc_to_page(kaddr)) +
 735                       offset_in_page(kaddr);
 736        }
 737}
 738
 739/**
 740 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
 741 * @from:       The virtual kernel start address of the range
 742 * @to:         The virtual kernel end address of the range (exclusive)
 743 * @prot:       The protection to be applied to this range
 744 *
 745 * The same virtual address as the kernel virtual address is also used
 746 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 747 * physical pages.
 748 */
 749int create_hyp_mappings(void *from, void *to, pgprot_t prot)
 750{
 751        phys_addr_t phys_addr;
 752        unsigned long virt_addr;
 753        unsigned long start = kern_hyp_va((unsigned long)from);
 754        unsigned long end = kern_hyp_va((unsigned long)to);
 755
 756        if (is_kernel_in_hyp_mode())
 757                return 0;
 758
 759        start = start & PAGE_MASK;
 760        end = PAGE_ALIGN(end);
 761
 762        for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
 763                int err;
 764
 765                phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
 766                err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
 767                                            virt_addr, virt_addr + PAGE_SIZE,
 768                                            __phys_to_pfn(phys_addr),
 769                                            prot);
 770                if (err)
 771                        return err;
 772        }
 773
 774        return 0;
 775}
 776
 777static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
 778                                        unsigned long *haddr, pgprot_t prot)
 779{
 780        pgd_t *pgd = hyp_pgd;
 781        unsigned long base;
 782        int ret = 0;
 783
 784        mutex_lock(&kvm_hyp_pgd_mutex);
 785
 786        /*
 787         * This assumes that we we have enough space below the idmap
 788         * page to allocate our VAs. If not, the check below will
 789         * kick. A potential alternative would be to detect that
 790         * overflow and switch to an allocation above the idmap.
 791         *
 792         * The allocated size is always a multiple of PAGE_SIZE.
 793         */
 794        size = PAGE_ALIGN(size + offset_in_page(phys_addr));
 795        base = io_map_base - size;
 796
 797        /*
 798         * Verify that BIT(VA_BITS - 1) hasn't been flipped by
 799         * allocating the new area, as it would indicate we've
 800         * overflowed the idmap/IO address range.
 801         */
 802        if ((base ^ io_map_base) & BIT(VA_BITS - 1))
 803                ret = -ENOMEM;
 804        else
 805                io_map_base = base;
 806
 807        mutex_unlock(&kvm_hyp_pgd_mutex);
 808
 809        if (ret)
 810                goto out;
 811
 812        if (__kvm_cpu_uses_extended_idmap())
 813                pgd = boot_hyp_pgd;
 814
 815        ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
 816                                    base, base + size,
 817                                    __phys_to_pfn(phys_addr), prot);
 818        if (ret)
 819                goto out;
 820
 821        *haddr = base + offset_in_page(phys_addr);
 822
 823out:
 824        return ret;
 825}
 826
 827/**
 828 * create_hyp_io_mappings - Map IO into both kernel and HYP
 829 * @phys_addr:  The physical start address which gets mapped
 830 * @size:       Size of the region being mapped
 831 * @kaddr:      Kernel VA for this mapping
 832 * @haddr:      HYP VA for this mapping
 833 */
 834int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
 835                           void __iomem **kaddr,
 836                           void __iomem **haddr)
 837{
 838        unsigned long addr;
 839        int ret;
 840
 841        *kaddr = ioremap(phys_addr, size);
 842        if (!*kaddr)
 843                return -ENOMEM;
 844
 845        if (is_kernel_in_hyp_mode()) {
 846                *haddr = *kaddr;
 847                return 0;
 848        }
 849
 850        ret = __create_hyp_private_mapping(phys_addr, size,
 851                                           &addr, PAGE_HYP_DEVICE);
 852        if (ret) {
 853                iounmap(*kaddr);
 854                *kaddr = NULL;
 855                *haddr = NULL;
 856                return ret;
 857        }
 858
 859        *haddr = (void __iomem *)addr;
 860        return 0;
 861}
 862
 863/**
 864 * create_hyp_exec_mappings - Map an executable range into HYP
 865 * @phys_addr:  The physical start address which gets mapped
 866 * @size:       Size of the region being mapped
 867 * @haddr:      HYP VA for this mapping
 868 */
 869int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
 870                             void **haddr)
 871{
 872        unsigned long addr;
 873        int ret;
 874
 875        BUG_ON(is_kernel_in_hyp_mode());
 876
 877        ret = __create_hyp_private_mapping(phys_addr, size,
 878                                           &addr, PAGE_HYP_EXEC);
 879        if (ret) {
 880                *haddr = NULL;
 881                return ret;
 882        }
 883
 884        *haddr = (void *)addr;
 885        return 0;
 886}
 887
 888/**
 889 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 890 * @kvm:        The KVM struct pointer for the VM.
 891 *
 892 * Allocates only the stage-2 HW PGD level table(s) of size defined by
 893 * stage2_pgd_size(kvm).
 894 *
 895 * Note we don't need locking here as this is only called when the VM is
 896 * created, which can only be done once.
 897 */
 898int kvm_alloc_stage2_pgd(struct kvm *kvm)
 899{
 900        phys_addr_t pgd_phys;
 901        pgd_t *pgd;
 902
 903        if (kvm->arch.pgd != NULL) {
 904                kvm_err("kvm_arch already initialized?\n");
 905                return -EINVAL;
 906        }
 907
 908        /* Allocate the HW PGD, making sure that each page gets its own refcount */
 909        pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
 910        if (!pgd)
 911                return -ENOMEM;
 912
 913        pgd_phys = virt_to_phys(pgd);
 914        if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
 915                return -EINVAL;
 916
 917        kvm->arch.pgd = pgd;
 918        kvm->arch.pgd_phys = pgd_phys;
 919        return 0;
 920}
 921
 922static void stage2_unmap_memslot(struct kvm *kvm,
 923                                 struct kvm_memory_slot *memslot)
 924{
 925        hva_t hva = memslot->userspace_addr;
 926        phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 927        phys_addr_t size = PAGE_SIZE * memslot->npages;
 928        hva_t reg_end = hva + size;
 929
 930        /*
 931         * A memory region could potentially cover multiple VMAs, and any holes
 932         * between them, so iterate over all of them to find out if we should
 933         * unmap any of them.
 934         *
 935         *     +--------------------------------------------+
 936         * +---------------+----------------+   +----------------+
 937         * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
 938         * +---------------+----------------+   +----------------+
 939         *     |               memory region                |
 940         *     +--------------------------------------------+
 941         */
 942        do {
 943                struct vm_area_struct *vma = find_vma(current->mm, hva);
 944                hva_t vm_start, vm_end;
 945
 946                if (!vma || vma->vm_start >= reg_end)
 947                        break;
 948
 949                /*
 950                 * Take the intersection of this VMA with the memory region
 951                 */
 952                vm_start = max(hva, vma->vm_start);
 953                vm_end = min(reg_end, vma->vm_end);
 954
 955                if (!(vma->vm_flags & VM_PFNMAP)) {
 956                        gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
 957                        unmap_stage2_range(kvm, gpa, vm_end - vm_start);
 958                }
 959                hva = vm_end;
 960        } while (hva < reg_end);
 961}
 962
 963/**
 964 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 965 * @kvm: The struct kvm pointer
 966 *
 967 * Go through the memregions and unmap any reguler RAM
 968 * backing memory already mapped to the VM.
 969 */
 970void stage2_unmap_vm(struct kvm *kvm)
 971{
 972        struct kvm_memslots *slots;
 973        struct kvm_memory_slot *memslot;
 974        int idx;
 975
 976        idx = srcu_read_lock(&kvm->srcu);
 977        down_read(&current->mm->mmap_sem);
 978        spin_lock(&kvm->mmu_lock);
 979
 980        slots = kvm_memslots(kvm);
 981        kvm_for_each_memslot(memslot, slots)
 982                stage2_unmap_memslot(kvm, memslot);
 983
 984        spin_unlock(&kvm->mmu_lock);
 985        up_read(&current->mm->mmap_sem);
 986        srcu_read_unlock(&kvm->srcu, idx);
 987}
 988
 989/**
 990 * kvm_free_stage2_pgd - free all stage-2 tables
 991 * @kvm:        The KVM struct pointer for the VM.
 992 *
 993 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 994 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 995 * and setting the struct pointer to NULL.
 996 */
 997void kvm_free_stage2_pgd(struct kvm *kvm)
 998{
 999        void *pgd = NULL;
1000
1001        spin_lock(&kvm->mmu_lock);
1002        if (kvm->arch.pgd) {
1003                unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
1004                pgd = READ_ONCE(kvm->arch.pgd);
1005                kvm->arch.pgd = NULL;
1006                kvm->arch.pgd_phys = 0;
1007        }
1008        spin_unlock(&kvm->mmu_lock);
1009
1010        /* Free the HW pgd, one page at a time */
1011        if (pgd)
1012                free_pages_exact(pgd, stage2_pgd_size(kvm));
1013}
1014
1015static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1016                             phys_addr_t addr)
1017{
1018        pgd_t *pgd;
1019        pud_t *pud;
1020
1021        pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1022        if (stage2_pgd_none(kvm, *pgd)) {
1023                if (!cache)
1024                        return NULL;
1025                pud = mmu_memory_cache_alloc(cache);
1026                stage2_pgd_populate(kvm, pgd, pud);
1027                get_page(virt_to_page(pgd));
1028        }
1029
1030        return stage2_pud_offset(kvm, pgd, addr);
1031}
1032
1033static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1034                             phys_addr_t addr)
1035{
1036        pud_t *pud;
1037        pmd_t *pmd;
1038
1039        pud = stage2_get_pud(kvm, cache, addr);
1040        if (!pud || stage2_pud_huge(kvm, *pud))
1041                return NULL;
1042
1043        if (stage2_pud_none(kvm, *pud)) {
1044                if (!cache)
1045                        return NULL;
1046                pmd = mmu_memory_cache_alloc(cache);
1047                stage2_pud_populate(kvm, pud, pmd);
1048                get_page(virt_to_page(pud));
1049        }
1050
1051        return stage2_pmd_offset(kvm, pud, addr);
1052}
1053
1054static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1055                               *cache, phys_addr_t addr, const pmd_t *new_pmd)
1056{
1057        pmd_t *pmd, old_pmd;
1058
1059retry:
1060        pmd = stage2_get_pmd(kvm, cache, addr);
1061        VM_BUG_ON(!pmd);
1062
1063        old_pmd = *pmd;
1064        /*
1065         * Multiple vcpus faulting on the same PMD entry, can
1066         * lead to them sequentially updating the PMD with the
1067         * same value. Following the break-before-make
1068         * (pmd_clear() followed by tlb_flush()) process can
1069         * hinder forward progress due to refaults generated
1070         * on missing translations.
1071         *
1072         * Skip updating the page table if the entry is
1073         * unchanged.
1074         */
1075        if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1076                return 0;
1077
1078        if (pmd_present(old_pmd)) {
1079                /*
1080                 * If we already have PTE level mapping for this block,
1081                 * we must unmap it to avoid inconsistent TLB state and
1082                 * leaking the table page. We could end up in this situation
1083                 * if the memory slot was marked for dirty logging and was
1084                 * reverted, leaving PTE level mappings for the pages accessed
1085                 * during the period. So, unmap the PTE level mapping for this
1086                 * block and retry, as we could have released the upper level
1087                 * table in the process.
1088                 *
1089                 * Normal THP split/merge follows mmu_notifier callbacks and do
1090                 * get handled accordingly.
1091                 */
1092                if (!pmd_thp_or_huge(old_pmd)) {
1093                        unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
1094                        goto retry;
1095                }
1096                /*
1097                 * Mapping in huge pages should only happen through a
1098                 * fault.  If a page is merged into a transparent huge
1099                 * page, the individual subpages of that huge page
1100                 * should be unmapped through MMU notifiers before we
1101                 * get here.
1102                 *
1103                 * Merging of CompoundPages is not supported; they
1104                 * should become splitting first, unmapped, merged,
1105                 * and mapped back in on-demand.
1106                 */
1107                WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1108                pmd_clear(pmd);
1109                kvm_tlb_flush_vmid_ipa(kvm, addr);
1110        } else {
1111                get_page(virt_to_page(pmd));
1112        }
1113
1114        kvm_set_pmd(pmd, *new_pmd);
1115        return 0;
1116}
1117
1118static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1119                               phys_addr_t addr, const pud_t *new_pudp)
1120{
1121        pud_t *pudp, old_pud;
1122
1123retry:
1124        pudp = stage2_get_pud(kvm, cache, addr);
1125        VM_BUG_ON(!pudp);
1126
1127        old_pud = *pudp;
1128
1129        /*
1130         * A large number of vcpus faulting on the same stage 2 entry,
1131         * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
1132         * Skip updating the page tables if there is no change.
1133         */
1134        if (pud_val(old_pud) == pud_val(*new_pudp))
1135                return 0;
1136
1137        if (stage2_pud_present(kvm, old_pud)) {
1138                /*
1139                 * If we already have table level mapping for this block, unmap
1140                 * the range for this block and retry.
1141                 */
1142                if (!stage2_pud_huge(kvm, old_pud)) {
1143                        unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
1144                        goto retry;
1145                }
1146
1147                WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1148                stage2_pud_clear(kvm, pudp);
1149                kvm_tlb_flush_vmid_ipa(kvm, addr);
1150        } else {
1151                get_page(virt_to_page(pudp));
1152        }
1153
1154        kvm_set_pud(pudp, *new_pudp);
1155        return 0;
1156}
1157
1158/*
1159 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1160 * true if a valid and present leaf-entry is found. A pointer to the
1161 * leaf-entry is returned in the appropriate level variable - pudpp,
1162 * pmdpp, ptepp.
1163 */
1164static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
1165                                  pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1166{
1167        pud_t *pudp;
1168        pmd_t *pmdp;
1169        pte_t *ptep;
1170
1171        *pudpp = NULL;
1172        *pmdpp = NULL;
1173        *ptepp = NULL;
1174
1175        pudp = stage2_get_pud(kvm, NULL, addr);
1176        if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
1177                return false;
1178
1179        if (stage2_pud_huge(kvm, *pudp)) {
1180                *pudpp = pudp;
1181                return true;
1182        }
1183
1184        pmdp = stage2_pmd_offset(kvm, pudp, addr);
1185        if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1186                return false;
1187
1188        if (pmd_thp_or_huge(*pmdp)) {
1189                *pmdpp = pmdp;
1190                return true;
1191        }
1192
1193        ptep = pte_offset_kernel(pmdp, addr);
1194        if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1195                return false;
1196
1197        *ptepp = ptep;
1198        return true;
1199}
1200
1201static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
1202{
1203        pud_t *pudp;
1204        pmd_t *pmdp;
1205        pte_t *ptep;
1206        bool found;
1207
1208        found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
1209        if (!found)
1210                return false;
1211
1212        if (pudp)
1213                return kvm_s2pud_exec(pudp);
1214        else if (pmdp)
1215                return kvm_s2pmd_exec(pmdp);
1216        else
1217                return kvm_s2pte_exec(ptep);
1218}
1219
1220static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1221                          phys_addr_t addr, const pte_t *new_pte,
1222                          unsigned long flags)
1223{
1224        pud_t *pud;
1225        pmd_t *pmd;
1226        pte_t *pte, old_pte;
1227        bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1228        bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1229
1230        VM_BUG_ON(logging_active && !cache);
1231
1232        /* Create stage-2 page table mapping - Levels 0 and 1 */
1233        pud = stage2_get_pud(kvm, cache, addr);
1234        if (!pud) {
1235                /*
1236                 * Ignore calls from kvm_set_spte_hva for unallocated
1237                 * address ranges.
1238                 */
1239                return 0;
1240        }
1241
1242        /*
1243         * While dirty page logging - dissolve huge PUD, then continue
1244         * on to allocate page.
1245         */
1246        if (logging_active)
1247                stage2_dissolve_pud(kvm, addr, pud);
1248
1249        if (stage2_pud_none(kvm, *pud)) {
1250                if (!cache)
1251                        return 0; /* ignore calls from kvm_set_spte_hva */
1252                pmd = mmu_memory_cache_alloc(cache);
1253                stage2_pud_populate(kvm, pud, pmd);
1254                get_page(virt_to_page(pud));
1255        }
1256
1257        pmd = stage2_pmd_offset(kvm, pud, addr);
1258        if (!pmd) {
1259                /*
1260                 * Ignore calls from kvm_set_spte_hva for unallocated
1261                 * address ranges.
1262                 */
1263                return 0;
1264        }
1265
1266        /*
1267         * While dirty page logging - dissolve huge PMD, then continue on to
1268         * allocate page.
1269         */
1270        if (logging_active)
1271                stage2_dissolve_pmd(kvm, addr, pmd);
1272
1273        /* Create stage-2 page mappings - Level 2 */
1274        if (pmd_none(*pmd)) {
1275                if (!cache)
1276                        return 0; /* ignore calls from kvm_set_spte_hva */
1277                pte = mmu_memory_cache_alloc(cache);
1278                kvm_pmd_populate(pmd, pte);
1279                get_page(virt_to_page(pmd));
1280        }
1281
1282        pte = pte_offset_kernel(pmd, addr);
1283
1284        if (iomap && pte_present(*pte))
1285                return -EFAULT;
1286
1287        /* Create 2nd stage page table mapping - Level 3 */
1288        old_pte = *pte;
1289        if (pte_present(old_pte)) {
1290                /* Skip page table update if there is no change */
1291                if (pte_val(old_pte) == pte_val(*new_pte))
1292                        return 0;
1293
1294                kvm_set_pte(pte, __pte(0));
1295                kvm_tlb_flush_vmid_ipa(kvm, addr);
1296        } else {
1297                get_page(virt_to_page(pte));
1298        }
1299
1300        kvm_set_pte(pte, *new_pte);
1301        return 0;
1302}
1303
1304#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1305static int stage2_ptep_test_and_clear_young(pte_t *pte)
1306{
1307        if (pte_young(*pte)) {
1308                *pte = pte_mkold(*pte);
1309                return 1;
1310        }
1311        return 0;
1312}
1313#else
1314static int stage2_ptep_test_and_clear_young(pte_t *pte)
1315{
1316        return __ptep_test_and_clear_young(pte);
1317}
1318#endif
1319
1320static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1321{
1322        return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1323}
1324
1325static int stage2_pudp_test_and_clear_young(pud_t *pud)
1326{
1327        return stage2_ptep_test_and_clear_young((pte_t *)pud);
1328}
1329
1330/**
1331 * kvm_phys_addr_ioremap - map a device range to guest IPA
1332 *
1333 * @kvm:        The KVM pointer
1334 * @guest_ipa:  The IPA at which to insert the mapping
1335 * @pa:         The physical address of the device
1336 * @size:       The size of the mapping
1337 */
1338int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1339                          phys_addr_t pa, unsigned long size, bool writable)
1340{
1341        phys_addr_t addr, end;
1342        int ret = 0;
1343        unsigned long pfn;
1344        struct kvm_mmu_memory_cache cache = { 0, };
1345
1346        end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1347        pfn = __phys_to_pfn(pa);
1348
1349        for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1350                pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1351
1352                if (writable)
1353                        pte = kvm_s2pte_mkwrite(pte);
1354
1355                ret = mmu_topup_memory_cache(&cache,
1356                                             kvm_mmu_cache_min_pages(kvm),
1357                                             KVM_NR_MEM_OBJS);
1358                if (ret)
1359                        goto out;
1360                spin_lock(&kvm->mmu_lock);
1361                ret = stage2_set_pte(kvm, &cache, addr, &pte,
1362                                                KVM_S2PTE_FLAG_IS_IOMAP);
1363                spin_unlock(&kvm->mmu_lock);
1364                if (ret)
1365                        goto out;
1366
1367                pfn++;
1368        }
1369
1370out:
1371        mmu_free_memory_cache(&cache);
1372        return ret;
1373}
1374
1375static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1376{
1377        kvm_pfn_t pfn = *pfnp;
1378        gfn_t gfn = *ipap >> PAGE_SHIFT;
1379
1380        if (kvm_is_transparent_hugepage(pfn)) {
1381                unsigned long mask;
1382                /*
1383                 * The address we faulted on is backed by a transparent huge
1384                 * page.  However, because we map the compound huge page and
1385                 * not the individual tail page, we need to transfer the
1386                 * refcount to the head page.  We have to be careful that the
1387                 * THP doesn't start to split while we are adjusting the
1388                 * refcounts.
1389                 *
1390                 * We are sure this doesn't happen, because mmu_notifier_retry
1391                 * was successful and we are holding the mmu_lock, so if this
1392                 * THP is trying to split, it will be blocked in the mmu
1393                 * notifier before touching any of the pages, specifically
1394                 * before being able to call __split_huge_page_refcount().
1395                 *
1396                 * We can therefore safely transfer the refcount from PG_tail
1397                 * to PG_head and switch the pfn from a tail page to the head
1398                 * page accordingly.
1399                 */
1400                mask = PTRS_PER_PMD - 1;
1401                VM_BUG_ON((gfn & mask) != (pfn & mask));
1402                if (pfn & mask) {
1403                        *ipap &= PMD_MASK;
1404                        kvm_release_pfn_clean(pfn);
1405                        pfn &= ~mask;
1406                        kvm_get_pfn(pfn);
1407                        *pfnp = pfn;
1408                }
1409
1410                return true;
1411        }
1412
1413        return false;
1414}
1415
1416/**
1417 * stage2_wp_ptes - write protect PMD range
1418 * @pmd:        pointer to pmd entry
1419 * @addr:       range start address
1420 * @end:        range end address
1421 */
1422static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1423{
1424        pte_t *pte;
1425
1426        pte = pte_offset_kernel(pmd, addr);
1427        do {
1428                if (!pte_none(*pte)) {
1429                        if (!kvm_s2pte_readonly(pte))
1430                                kvm_set_s2pte_readonly(pte);
1431                }
1432        } while (pte++, addr += PAGE_SIZE, addr != end);
1433}
1434
1435/**
1436 * stage2_wp_pmds - write protect PUD range
1437 * kvm:         kvm instance for the VM
1438 * @pud:        pointer to pud entry
1439 * @addr:       range start address
1440 * @end:        range end address
1441 */
1442static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
1443                           phys_addr_t addr, phys_addr_t end)
1444{
1445        pmd_t *pmd;
1446        phys_addr_t next;
1447
1448        pmd = stage2_pmd_offset(kvm, pud, addr);
1449
1450        do {
1451                next = stage2_pmd_addr_end(kvm, addr, end);
1452                if (!pmd_none(*pmd)) {
1453                        if (pmd_thp_or_huge(*pmd)) {
1454                                if (!kvm_s2pmd_readonly(pmd))
1455                                        kvm_set_s2pmd_readonly(pmd);
1456                        } else {
1457                                stage2_wp_ptes(pmd, addr, next);
1458                        }
1459                }
1460        } while (pmd++, addr = next, addr != end);
1461}
1462
1463/**
1464 * stage2_wp_puds - write protect PGD range
1465 * @pgd:        pointer to pgd entry
1466 * @addr:       range start address
1467 * @end:        range end address
1468 */
1469static void  stage2_wp_puds(struct kvm *kvm, pgd_t *pgd,
1470                            phys_addr_t addr, phys_addr_t end)
1471{
1472        pud_t *pud;
1473        phys_addr_t next;
1474
1475        pud = stage2_pud_offset(kvm, pgd, addr);
1476        do {
1477                next = stage2_pud_addr_end(kvm, addr, end);
1478                if (!stage2_pud_none(kvm, *pud)) {
1479                        if (stage2_pud_huge(kvm, *pud)) {
1480                                if (!kvm_s2pud_readonly(pud))
1481                                        kvm_set_s2pud_readonly(pud);
1482                        } else {
1483                                stage2_wp_pmds(kvm, pud, addr, next);
1484                        }
1485                }
1486        } while (pud++, addr = next, addr != end);
1487}
1488
1489/**
1490 * stage2_wp_range() - write protect stage2 memory region range
1491 * @kvm:        The KVM pointer
1492 * @addr:       Start address of range
1493 * @end:        End address of range
1494 */
1495static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1496{
1497        pgd_t *pgd;
1498        phys_addr_t next;
1499
1500        pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
1501        do {
1502                /*
1503                 * Release kvm_mmu_lock periodically if the memory region is
1504                 * large. Otherwise, we may see kernel panics with
1505                 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1506                 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1507                 * will also starve other vCPUs. We have to also make sure
1508                 * that the page tables are not freed while we released
1509                 * the lock.
1510                 */
1511                cond_resched_lock(&kvm->mmu_lock);
1512                if (!READ_ONCE(kvm->arch.pgd))
1513                        break;
1514                next = stage2_pgd_addr_end(kvm, addr, end);
1515                if (stage2_pgd_present(kvm, *pgd))
1516                        stage2_wp_puds(kvm, pgd, addr, next);
1517        } while (pgd++, addr = next, addr != end);
1518}
1519
1520/**
1521 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1522 * @kvm:        The KVM pointer
1523 * @slot:       The memory slot to write protect
1524 *
1525 * Called to start logging dirty pages after memory region
1526 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1527 * all present PUD, PMD and PTEs are write protected in the memory region.
1528 * Afterwards read of dirty page log can be called.
1529 *
1530 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1531 * serializing operations for VM memory regions.
1532 */
1533void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1534{
1535        struct kvm_memslots *slots = kvm_memslots(kvm);
1536        struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1537        phys_addr_t start, end;
1538
1539        if (WARN_ON_ONCE(!memslot))
1540                return;
1541
1542        start = memslot->base_gfn << PAGE_SHIFT;
1543        end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1544
1545        spin_lock(&kvm->mmu_lock);
1546        stage2_wp_range(kvm, start, end);
1547        spin_unlock(&kvm->mmu_lock);
1548        kvm_flush_remote_tlbs(kvm);
1549}
1550
1551/**
1552 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1553 * @kvm:        The KVM pointer
1554 * @slot:       The memory slot associated with mask
1555 * @gfn_offset: The gfn offset in memory slot
1556 * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1557 *              slot to be write protected
1558 *
1559 * Walks bits set in mask write protects the associated pte's. Caller must
1560 * acquire kvm_mmu_lock.
1561 */
1562static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1563                struct kvm_memory_slot *slot,
1564                gfn_t gfn_offset, unsigned long mask)
1565{
1566        phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1567        phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1568        phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1569
1570        stage2_wp_range(kvm, start, end);
1571}
1572
1573/*
1574 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1575 * dirty pages.
1576 *
1577 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1578 * enable dirty logging for them.
1579 */
1580void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1581                struct kvm_memory_slot *slot,
1582                gfn_t gfn_offset, unsigned long mask)
1583{
1584        kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1585}
1586
1587static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1588{
1589        __clean_dcache_guest_page(pfn, size);
1590}
1591
1592static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1593{
1594        __invalidate_icache_guest_page(pfn, size);
1595}
1596
1597static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1598{
1599        send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1600}
1601
1602static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1603                                               unsigned long hva,
1604                                               unsigned long map_size)
1605{
1606        gpa_t gpa_start;
1607        hva_t uaddr_start, uaddr_end;
1608        size_t size;
1609
1610        size = memslot->npages * PAGE_SIZE;
1611
1612        gpa_start = memslot->base_gfn << PAGE_SHIFT;
1613
1614        uaddr_start = memslot->userspace_addr;
1615        uaddr_end = uaddr_start + size;
1616
1617        /*
1618         * Pages belonging to memslots that don't have the same alignment
1619         * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1620         * PMD/PUD entries, because we'll end up mapping the wrong pages.
1621         *
1622         * Consider a layout like the following:
1623         *
1624         *    memslot->userspace_addr:
1625         *    +-----+--------------------+--------------------+---+
1626         *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1627         *    +-----+--------------------+--------------------+---+
1628         *
1629         *    memslot->base_gfn << PAGE_SIZE:
1630         *      +---+--------------------+--------------------+-----+
1631         *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1632         *      +---+--------------------+--------------------+-----+
1633         *
1634         * If we create those stage-2 blocks, we'll end up with this incorrect
1635         * mapping:
1636         *   d -> f
1637         *   e -> g
1638         *   f -> h
1639         */
1640        if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1641                return false;
1642
1643        /*
1644         * Next, let's make sure we're not trying to map anything not covered
1645         * by the memslot. This means we have to prohibit block size mappings
1646         * for the beginning and end of a non-block aligned and non-block sized
1647         * memory slot (illustrated by the head and tail parts of the
1648         * userspace view above containing pages 'abcde' and 'xyz',
1649         * respectively).
1650         *
1651         * Note that it doesn't matter if we do the check using the
1652         * userspace_addr or the base_gfn, as both are equally aligned (per
1653         * the check above) and equally sized.
1654         */
1655        return (hva & ~(map_size - 1)) >= uaddr_start &&
1656               (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1657}
1658
1659static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1660                          struct kvm_memory_slot *memslot, unsigned long hva,
1661                          unsigned long fault_status)
1662{
1663        int ret;
1664        bool write_fault, writable, force_pte = false;
1665        bool exec_fault, needs_exec;
1666        unsigned long mmu_seq;
1667        gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1668        struct kvm *kvm = vcpu->kvm;
1669        struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1670        struct vm_area_struct *vma;
1671        short vma_shift;
1672        kvm_pfn_t pfn;
1673        pgprot_t mem_type = PAGE_S2;
1674        bool logging_active = memslot_is_logging(memslot);
1675        unsigned long vma_pagesize, flags = 0;
1676
1677        write_fault = kvm_is_write_fault(vcpu);
1678        exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1679        VM_BUG_ON(write_fault && exec_fault);
1680
1681        if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1682                kvm_err("Unexpected L2 read permission error\n");
1683                return -EFAULT;
1684        }
1685
1686        /* Let's check if we will get back a huge page backed by hugetlbfs */
1687        down_read(&current->mm->mmap_sem);
1688        vma = find_vma_intersection(current->mm, hva, hva + 1);
1689        if (unlikely(!vma)) {
1690                kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1691                up_read(&current->mm->mmap_sem);
1692                return -EFAULT;
1693        }
1694
1695        if (is_vm_hugetlb_page(vma))
1696                vma_shift = huge_page_shift(hstate_vma(vma));
1697        else
1698                vma_shift = PAGE_SHIFT;
1699
1700        vma_pagesize = 1ULL << vma_shift;
1701        if (logging_active ||
1702            (vma->vm_flags & VM_PFNMAP) ||
1703            !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
1704                force_pte = true;
1705                vma_pagesize = PAGE_SIZE;
1706        }
1707
1708        /*
1709         * The stage2 has a minimum of 2 level table (For arm64 see
1710         * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1711         * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1712         * As for PUD huge maps, we must make sure that we have at least
1713         * 3 levels, i.e, PMD is not folded.
1714         */
1715        if (vma_pagesize == PMD_SIZE ||
1716            (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1717                gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1718        up_read(&current->mm->mmap_sem);
1719
1720        /* We need minimum second+third level pages */
1721        ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm),
1722                                     KVM_NR_MEM_OBJS);
1723        if (ret)
1724                return ret;
1725
1726        mmu_seq = vcpu->kvm->mmu_notifier_seq;
1727        /*
1728         * Ensure the read of mmu_notifier_seq happens before we call
1729         * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1730         * the page we just got a reference to gets unmapped before we have a
1731         * chance to grab the mmu_lock, which ensure that if the page gets
1732         * unmapped afterwards, the call to kvm_unmap_hva will take it away
1733         * from us again properly. This smp_rmb() interacts with the smp_wmb()
1734         * in kvm_mmu_notifier_invalidate_<page|range_end>.
1735         */
1736        smp_rmb();
1737
1738        pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1739        if (pfn == KVM_PFN_ERR_HWPOISON) {
1740                kvm_send_hwpoison_signal(hva, vma_shift);
1741                return 0;
1742        }
1743        if (is_error_noslot_pfn(pfn))
1744                return -EFAULT;
1745
1746        if (kvm_is_device_pfn(pfn)) {
1747                mem_type = PAGE_S2_DEVICE;
1748                flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1749        } else if (logging_active) {
1750                /*
1751                 * Faults on pages in a memslot with logging enabled
1752                 * should not be mapped with huge pages (it introduces churn
1753                 * and performance degradation), so force a pte mapping.
1754                 */
1755                flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1756
1757                /*
1758                 * Only actually map the page as writable if this was a write
1759                 * fault.
1760                 */
1761                if (!write_fault)
1762                        writable = false;
1763        }
1764
1765        if (exec_fault && is_iomap(flags))
1766                return -ENOEXEC;
1767
1768        spin_lock(&kvm->mmu_lock);
1769        if (mmu_notifier_retry(kvm, mmu_seq))
1770                goto out_unlock;
1771
1772        if (vma_pagesize == PAGE_SIZE && !force_pte) {
1773                /*
1774                 * Only PMD_SIZE transparent hugepages(THP) are
1775                 * currently supported. This code will need to be
1776                 * updated to support other THP sizes.
1777                 *
1778                 * Make sure the host VA and the guest IPA are sufficiently
1779                 * aligned and that the block is contained within the memslot.
1780                 */
1781                if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
1782                    transparent_hugepage_adjust(&pfn, &fault_ipa))
1783                        vma_pagesize = PMD_SIZE;
1784        }
1785
1786        if (writable)
1787                kvm_set_pfn_dirty(pfn);
1788
1789        if (fault_status != FSC_PERM && !is_iomap(flags))
1790                clean_dcache_guest_page(pfn, vma_pagesize);
1791
1792        if (exec_fault)
1793                invalidate_icache_guest_page(pfn, vma_pagesize);
1794
1795        /*
1796         * If we took an execution fault we have made the
1797         * icache/dcache coherent above and should now let the s2
1798         * mapping be executable.
1799         *
1800         * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1801         * execute permissions, and we preserve whatever we have.
1802         */
1803        needs_exec = exec_fault ||
1804                (fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));
1805
1806        if (vma_pagesize == PUD_SIZE) {
1807                pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1808
1809                new_pud = kvm_pud_mkhuge(new_pud);
1810                if (writable)
1811                        new_pud = kvm_s2pud_mkwrite(new_pud);
1812
1813                if (needs_exec)
1814                        new_pud = kvm_s2pud_mkexec(new_pud);
1815
1816                ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
1817        } else if (vma_pagesize == PMD_SIZE) {
1818                pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1819
1820                new_pmd = kvm_pmd_mkhuge(new_pmd);
1821
1822                if (writable)
1823                        new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1824
1825                if (needs_exec)
1826                        new_pmd = kvm_s2pmd_mkexec(new_pmd);
1827
1828                ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1829        } else {
1830                pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1831
1832                if (writable) {
1833                        new_pte = kvm_s2pte_mkwrite(new_pte);
1834                        mark_page_dirty(kvm, gfn);
1835                }
1836
1837                if (needs_exec)
1838                        new_pte = kvm_s2pte_mkexec(new_pte);
1839
1840                ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1841        }
1842
1843out_unlock:
1844        spin_unlock(&kvm->mmu_lock);
1845        kvm_set_pfn_accessed(pfn);
1846        kvm_release_pfn_clean(pfn);
1847        return ret;
1848}
1849
1850/*
1851 * Resolve the access fault by making the page young again.
1852 * Note that because the faulting entry is guaranteed not to be
1853 * cached in the TLB, we don't need to invalidate anything.
1854 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1855 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1856 */
1857static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1858{
1859        pud_t *pud;
1860        pmd_t *pmd;
1861        pte_t *pte;
1862        kvm_pfn_t pfn;
1863        bool pfn_valid = false;
1864
1865        trace_kvm_access_fault(fault_ipa);
1866
1867        spin_lock(&vcpu->kvm->mmu_lock);
1868
1869        if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
1870                goto out;
1871
1872        if (pud) {              /* HugeTLB */
1873                *pud = kvm_s2pud_mkyoung(*pud);
1874                pfn = kvm_pud_pfn(*pud);
1875                pfn_valid = true;
1876        } else  if (pmd) {      /* THP, HugeTLB */
1877                *pmd = pmd_mkyoung(*pmd);
1878                pfn = pmd_pfn(*pmd);
1879                pfn_valid = true;
1880        } else {
1881                *pte = pte_mkyoung(*pte);       /* Just a page... */
1882                pfn = pte_pfn(*pte);
1883                pfn_valid = true;
1884        }
1885
1886out:
1887        spin_unlock(&vcpu->kvm->mmu_lock);
1888        if (pfn_valid)
1889                kvm_set_pfn_accessed(pfn);
1890}
1891
1892/**
1893 * kvm_handle_guest_abort - handles all 2nd stage aborts
1894 * @vcpu:       the VCPU pointer
1895 * @run:        the kvm_run structure
1896 *
1897 * Any abort that gets to the host is almost guaranteed to be caused by a
1898 * missing second stage translation table entry, which can mean that either the
1899 * guest simply needs more memory and we must allocate an appropriate page or it
1900 * can mean that the guest tried to access I/O memory, which is emulated by user
1901 * space. The distinction is based on the IPA causing the fault and whether this
1902 * memory region has been registered as standard RAM by user space.
1903 */
1904int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1905{
1906        unsigned long fault_status;
1907        phys_addr_t fault_ipa;
1908        struct kvm_memory_slot *memslot;
1909        unsigned long hva;
1910        bool is_iabt, write_fault, writable;
1911        gfn_t gfn;
1912        int ret, idx;
1913
1914        fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1915
1916        fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1917        is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1918
1919        /* Synchronous External Abort? */
1920        if (kvm_vcpu_dabt_isextabt(vcpu)) {
1921                /*
1922                 * For RAS the host kernel may handle this abort.
1923                 * There is no need to pass the error into the guest.
1924                 */
1925                if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1926                        return 1;
1927
1928                if (unlikely(!is_iabt)) {
1929                        kvm_inject_vabt(vcpu);
1930                        return 1;
1931                }
1932        }
1933
1934        trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1935                              kvm_vcpu_get_hfar(vcpu), fault_ipa);
1936
1937        /* Check the stage-2 fault is trans. fault or write fault */
1938        if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1939            fault_status != FSC_ACCESS) {
1940                kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1941                        kvm_vcpu_trap_get_class(vcpu),
1942                        (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1943                        (unsigned long)kvm_vcpu_get_hsr(vcpu));
1944                return -EFAULT;
1945        }
1946
1947        idx = srcu_read_lock(&vcpu->kvm->srcu);
1948
1949        gfn = fault_ipa >> PAGE_SHIFT;
1950        memslot = gfn_to_memslot(vcpu->kvm, gfn);
1951        hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1952        write_fault = kvm_is_write_fault(vcpu);
1953        if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1954                if (is_iabt) {
1955                        /* Prefetch Abort on I/O address */
1956                        ret = -ENOEXEC;
1957                        goto out;
1958                }
1959
1960                /*
1961                 * Check for a cache maintenance operation. Since we
1962                 * ended-up here, we know it is outside of any memory
1963                 * slot. But we can't find out if that is for a device,
1964                 * or if the guest is just being stupid. The only thing
1965                 * we know for sure is that this range cannot be cached.
1966                 *
1967                 * So let's assume that the guest is just being
1968                 * cautious, and skip the instruction.
1969                 */
1970                if (kvm_vcpu_dabt_is_cm(vcpu)) {
1971                        kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1972                        ret = 1;
1973                        goto out_unlock;
1974                }
1975
1976                /*
1977                 * The IPA is reported as [MAX:12], so we need to
1978                 * complement it with the bottom 12 bits from the
1979                 * faulting VA. This is always 12 bits, irrespective
1980                 * of the page size.
1981                 */
1982                fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1983                ret = io_mem_abort(vcpu, run, fault_ipa);
1984                goto out_unlock;
1985        }
1986
1987        /* Userspace should not be able to register out-of-bounds IPAs */
1988        VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1989
1990        if (fault_status == FSC_ACCESS) {
1991                handle_access_fault(vcpu, fault_ipa);
1992                ret = 1;
1993                goto out_unlock;
1994        }
1995
1996        ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1997        if (ret == 0)
1998                ret = 1;
1999out:
2000        if (ret == -ENOEXEC) {
2001                kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2002                ret = 1;
2003        }
2004out_unlock:
2005        srcu_read_unlock(&vcpu->kvm->srcu, idx);
2006        return ret;
2007}
2008
2009static int handle_hva_to_gpa(struct kvm *kvm,
2010                             unsigned long start,
2011                             unsigned long end,
2012                             int (*handler)(struct kvm *kvm,
2013                                            gpa_t gpa, u64 size,
2014                                            void *data),
2015                             void *data)
2016{
2017        struct kvm_memslots *slots;
2018        struct kvm_memory_slot *memslot;
2019        int ret = 0;
2020
2021        slots = kvm_memslots(kvm);
2022
2023        /* we only care about the pages that the guest sees */
2024        kvm_for_each_memslot(memslot, slots) {
2025                unsigned long hva_start, hva_end;
2026                gfn_t gpa;
2027
2028                hva_start = max(start, memslot->userspace_addr);
2029                hva_end = min(end, memslot->userspace_addr +
2030                                        (memslot->npages << PAGE_SHIFT));
2031                if (hva_start >= hva_end)
2032                        continue;
2033
2034                gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
2035                ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2036        }
2037
2038        return ret;
2039}
2040
2041static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2042{
2043        unmap_stage2_range(kvm, gpa, size);
2044        return 0;
2045}
2046
2047int kvm_unmap_hva_range(struct kvm *kvm,
2048                        unsigned long start, unsigned long end)
2049{
2050        if (!kvm->arch.pgd)
2051                return 0;
2052
2053        trace_kvm_unmap_hva_range(start, end);
2054        handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
2055        return 0;
2056}
2057
2058static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2059{
2060        pte_t *pte = (pte_t *)data;
2061
2062        WARN_ON(size != PAGE_SIZE);
2063        /*
2064         * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2065         * flag clear because MMU notifiers will have unmapped a huge PMD before
2066         * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2067         * therefore stage2_set_pte() never needs to clear out a huge PMD
2068         * through this calling path.
2069         */
2070        stage2_set_pte(kvm, NULL, gpa, pte, 0);
2071        return 0;
2072}
2073
2074
2075int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2076{
2077        unsigned long end = hva + PAGE_SIZE;
2078        kvm_pfn_t pfn = pte_pfn(pte);
2079        pte_t stage2_pte;
2080
2081        if (!kvm->arch.pgd)
2082                return 0;
2083
2084        trace_kvm_set_spte_hva(hva);
2085
2086        /*
2087         * We've moved a page around, probably through CoW, so let's treat it
2088         * just like a translation fault and clean the cache to the PoC.
2089         */
2090        clean_dcache_guest_page(pfn, PAGE_SIZE);
2091        stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2092        handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2093
2094        return 0;
2095}
2096
2097static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2098{
2099        pud_t *pud;
2100        pmd_t *pmd;
2101        pte_t *pte;
2102
2103        WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2104        if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2105                return 0;
2106
2107        if (pud)
2108                return stage2_pudp_test_and_clear_young(pud);
2109        else if (pmd)
2110                return stage2_pmdp_test_and_clear_young(pmd);
2111        else
2112                return stage2_ptep_test_and_clear_young(pte);
2113}
2114
2115static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2116{
2117        pud_t *pud;
2118        pmd_t *pmd;
2119        pte_t *pte;
2120
2121        WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2122        if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2123                return 0;
2124
2125        if (pud)
2126                return kvm_s2pud_young(*pud);
2127        else if (pmd)
2128                return pmd_young(*pmd);
2129        else
2130                return pte_young(*pte);
2131}
2132
2133int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2134{
2135        if (!kvm->arch.pgd)
2136                return 0;
2137        trace_kvm_age_hva(start, end);
2138        return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
2139}
2140
2141int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2142{
2143        if (!kvm->arch.pgd)
2144                return 0;
2145        trace_kvm_test_age_hva(hva);
2146        return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
2147                                 kvm_test_age_hva_handler, NULL);
2148}
2149
2150void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
2151{
2152        mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
2153}
2154
2155phys_addr_t kvm_mmu_get_httbr(void)
2156{
2157        if (__kvm_cpu_uses_extended_idmap())
2158                return virt_to_phys(merged_hyp_pgd);
2159        else
2160                return virt_to_phys(hyp_pgd);
2161}
2162
2163phys_addr_t kvm_get_idmap_vector(void)
2164{
2165        return hyp_idmap_vector;
2166}
2167
2168static int kvm_map_idmap_text(pgd_t *pgd)
2169{
2170        int err;
2171
2172        /* Create the idmap in the boot page tables */
2173        err =   __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2174                                      hyp_idmap_start, hyp_idmap_end,
2175                                      __phys_to_pfn(hyp_idmap_start),
2176                                      PAGE_HYP_EXEC);
2177        if (err)
2178                kvm_err("Failed to idmap %lx-%lx\n",
2179                        hyp_idmap_start, hyp_idmap_end);
2180
2181        return err;
2182}
2183
2184int kvm_mmu_init(void)
2185{
2186        int err;
2187
2188        hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
2189        hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2190        hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
2191        hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2192        hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
2193
2194        /*
2195         * We rely on the linker script to ensure at build time that the HYP
2196         * init code does not cross a page boundary.
2197         */
2198        BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2199
2200        kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2201        kvm_debug("HYP VA range: %lx:%lx\n",
2202                  kern_hyp_va(PAGE_OFFSET),
2203                  kern_hyp_va((unsigned long)high_memory - 1));
2204
2205        if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2206            hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2207            hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2208                /*
2209                 * The idmap page is intersecting with the VA space,
2210                 * it is not safe to continue further.
2211                 */
2212                kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2213                err = -EINVAL;
2214                goto out;
2215        }
2216
2217        hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2218        if (!hyp_pgd) {
2219                kvm_err("Hyp mode PGD not allocated\n");
2220                err = -ENOMEM;
2221                goto out;
2222        }
2223
2224        if (__kvm_cpu_uses_extended_idmap()) {
2225                boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2226                                                         hyp_pgd_order);
2227                if (!boot_hyp_pgd) {
2228                        kvm_err("Hyp boot PGD not allocated\n");
2229                        err = -ENOMEM;
2230                        goto out;
2231                }
2232
2233                err = kvm_map_idmap_text(boot_hyp_pgd);
2234                if (err)
2235                        goto out;
2236
2237                merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2238                if (!merged_hyp_pgd) {
2239                        kvm_err("Failed to allocate extra HYP pgd\n");
2240                        goto out;
2241                }
2242                __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2243                                    hyp_idmap_start);
2244        } else {
2245                err = kvm_map_idmap_text(hyp_pgd);
2246                if (err)
2247                        goto out;
2248        }
2249
2250        io_map_base = hyp_idmap_start;
2251        return 0;
2252out:
2253        free_hyp_pgds();
2254        return err;
2255}
2256
2257void kvm_arch_commit_memory_region(struct kvm *kvm,
2258                                   const struct kvm_userspace_memory_region *mem,
2259                                   struct kvm_memory_slot *old,
2260                                   const struct kvm_memory_slot *new,
2261                                   enum kvm_mr_change change)
2262{
2263        /*
2264         * At this point memslot has been committed and there is an
2265         * allocated dirty_bitmap[], dirty pages will be be tracked while the
2266         * memory slot is write protected.
2267         */
2268        if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
2269                kvm_mmu_wp_memory_region(kvm, mem->slot);
2270}
2271
2272int kvm_arch_prepare_memory_region(struct kvm *kvm,
2273                                   struct kvm_memory_slot *memslot,
2274                                   const struct kvm_userspace_memory_region *mem,
2275                                   enum kvm_mr_change change)
2276{
2277        hva_t hva = mem->userspace_addr;
2278        hva_t reg_end = hva + mem->memory_size;
2279        bool writable = !(mem->flags & KVM_MEM_READONLY);
2280        int ret = 0;
2281
2282        if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2283                        change != KVM_MR_FLAGS_ONLY)
2284                return 0;
2285
2286        /*
2287         * Prevent userspace from creating a memory region outside of the IPA
2288         * space addressable by the KVM guest IPA space.
2289         */
2290        if (memslot->base_gfn + memslot->npages >=
2291            (kvm_phys_size(kvm) >> PAGE_SHIFT))
2292                return -EFAULT;
2293
2294        down_read(&current->mm->mmap_sem);
2295        /*
2296         * A memory region could potentially cover multiple VMAs, and any holes
2297         * between them, so iterate over all of them to find out if we can map
2298         * any of them right now.
2299         *
2300         *     +--------------------------------------------+
2301         * +---------------+----------------+   +----------------+
2302         * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2303         * +---------------+----------------+   +----------------+
2304         *     |               memory region                |
2305         *     +--------------------------------------------+
2306         */
2307        do {
2308                struct vm_area_struct *vma = find_vma(current->mm, hva);
2309                hva_t vm_start, vm_end;
2310
2311                if (!vma || vma->vm_start >= reg_end)
2312                        break;
2313
2314                /*
2315                 * Take the intersection of this VMA with the memory region
2316                 */
2317                vm_start = max(hva, vma->vm_start);
2318                vm_end = min(reg_end, vma->vm_end);
2319
2320                if (vma->vm_flags & VM_PFNMAP) {
2321                        gpa_t gpa = mem->guest_phys_addr +
2322                                    (vm_start - mem->userspace_addr);
2323                        phys_addr_t pa;
2324
2325                        pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2326                        pa += vm_start - vma->vm_start;
2327
2328                        /* IO region dirty page logging not allowed */
2329                        if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2330                                ret = -EINVAL;
2331                                goto out;
2332                        }
2333
2334                        ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2335                                                    vm_end - vm_start,
2336                                                    writable);
2337                        if (ret)
2338                                break;
2339                }
2340                hva = vm_end;
2341        } while (hva < reg_end);
2342
2343        if (change == KVM_MR_FLAGS_ONLY)
2344                goto out;
2345
2346        spin_lock(&kvm->mmu_lock);
2347        if (ret)
2348                unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2349        else
2350                stage2_flush_memslot(kvm, memslot);
2351        spin_unlock(&kvm->mmu_lock);
2352out:
2353        up_read(&current->mm->mmap_sem);
2354        return ret;
2355}
2356
2357void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2358{
2359}
2360
2361void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2362{
2363}
2364
2365void kvm_arch_flush_shadow_all(struct kvm *kvm)
2366{
2367        kvm_free_stage2_pgd(kvm);
2368}
2369
2370void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2371                                   struct kvm_memory_slot *slot)
2372{
2373        gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2374        phys_addr_t size = slot->npages << PAGE_SHIFT;
2375
2376        spin_lock(&kvm->mmu_lock);
2377        unmap_stage2_range(kvm, gpa, size);
2378        spin_unlock(&kvm->mmu_lock);
2379}
2380
2381/*
2382 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2383 *
2384 * Main problems:
2385 * - S/W ops are local to a CPU (not broadcast)
2386 * - We have line migration behind our back (speculation)
2387 * - System caches don't support S/W at all (damn!)
2388 *
2389 * In the face of the above, the best we can do is to try and convert
2390 * S/W ops to VA ops. Because the guest is not allowed to infer the
2391 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2392 * which is a rather good thing for us.
2393 *
2394 * Also, it is only used when turning caches on/off ("The expected
2395 * usage of the cache maintenance instructions that operate by set/way
2396 * is associated with the cache maintenance instructions associated
2397 * with the powerdown and powerup of caches, if this is required by
2398 * the implementation.").
2399 *
2400 * We use the following policy:
2401 *
2402 * - If we trap a S/W operation, we enable VM trapping to detect
2403 *   caches being turned on/off, and do a full clean.
2404 *
2405 * - We flush the caches on both caches being turned on and off.
2406 *
2407 * - Once the caches are enabled, we stop trapping VM ops.
2408 */
2409void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2410{
2411        unsigned long hcr = *vcpu_hcr(vcpu);
2412
2413        /*
2414         * If this is the first time we do a S/W operation
2415         * (i.e. HCR_TVM not set) flush the whole memory, and set the
2416         * VM trapping.
2417         *
2418         * Otherwise, rely on the VM trapping to wait for the MMU +
2419         * Caches to be turned off. At that point, we'll be able to
2420         * clean the caches again.
2421         */
2422        if (!(hcr & HCR_TVM)) {
2423                trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2424                                        vcpu_has_cache_enabled(vcpu));
2425                stage2_flush_vm(vcpu->kvm);
2426                *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2427        }
2428}
2429
2430void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2431{
2432        bool now_enabled = vcpu_has_cache_enabled(vcpu);
2433
2434        /*
2435         * If switching the MMU+caches on, need to invalidate the caches.
2436         * If switching it off, need to clean the caches.
2437         * Clean + invalidate does the trick always.
2438         */
2439        if (now_enabled != was_enabled)
2440                stage2_flush_vm(vcpu->kvm);
2441
2442        /* Caches are now on, stop trapping VM ops (until a S/W op) */
2443        if (now_enabled)
2444                *vcpu_hcr(vcpu) &= ~HCR_TVM;
2445
2446        trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2447}
2448