linux/arch/arm/net/bpf_jit_32.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Just-In-Time compiler for eBPF filters on 32bit ARM
   4 *
   5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
   6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
   7 */
   8
   9#include <linux/bpf.h>
  10#include <linux/bitops.h>
  11#include <linux/compiler.h>
  12#include <linux/errno.h>
  13#include <linux/filter.h>
  14#include <linux/netdevice.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/if_vlan.h>
  18
  19#include <asm/cacheflush.h>
  20#include <asm/hwcap.h>
  21#include <asm/opcodes.h>
  22#include <asm/system_info.h>
  23
  24#include "bpf_jit_32.h"
  25
  26/*
  27 * eBPF prog stack layout:
  28 *
  29 *                         high
  30 * original ARM_SP =>     +-----+
  31 *                        |     | callee saved registers
  32 *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
  33 *                        | ... | eBPF JIT scratch space
  34 * eBPF fp register =>    +-----+
  35 *   (BPF_FP)             | ... | eBPF prog stack
  36 *                        +-----+
  37 *                        |RSVD | JIT scratchpad
  38 * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
  39 *                        |     |
  40 *                        | ... | Function call stack
  41 *                        |     |
  42 *                        +-----+
  43 *                          low
  44 *
  45 * The callee saved registers depends on whether frame pointers are enabled.
  46 * With frame pointers (to be compliant with the ABI):
  47 *
  48 *                              high
  49 * original ARM_SP =>     +--------------+ \
  50 *                        |      pc      | |
  51 * current ARM_FP =>      +--------------+ } callee saved registers
  52 *                        |r4-r9,fp,ip,lr| |
  53 *                        +--------------+ /
  54 *                              low
  55 *
  56 * Without frame pointers:
  57 *
  58 *                              high
  59 * original ARM_SP =>     +--------------+
  60 *                        |  r4-r9,fp,lr | callee saved registers
  61 * current ARM_FP =>      +--------------+
  62 *                              low
  63 *
  64 * When popping registers off the stack at the end of a BPF function, we
  65 * reference them via the current ARM_FP register.
  66 */
  67#define CALLEE_MASK     (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
  68                         1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
  69                         1 << ARM_FP)
  70#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
  71#define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
  72
  73enum {
  74        /* Stack layout - these are offsets from (top of stack - 4) */
  75        BPF_R2_HI,
  76        BPF_R2_LO,
  77        BPF_R3_HI,
  78        BPF_R3_LO,
  79        BPF_R4_HI,
  80        BPF_R4_LO,
  81        BPF_R5_HI,
  82        BPF_R5_LO,
  83        BPF_R7_HI,
  84        BPF_R7_LO,
  85        BPF_R8_HI,
  86        BPF_R8_LO,
  87        BPF_R9_HI,
  88        BPF_R9_LO,
  89        BPF_FP_HI,
  90        BPF_FP_LO,
  91        BPF_TC_HI,
  92        BPF_TC_LO,
  93        BPF_AX_HI,
  94        BPF_AX_LO,
  95        /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
  96         * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
  97         * BPF_REG_FP and Tail call counts.
  98         */
  99        BPF_JIT_SCRATCH_REGS,
 100};
 101
 102/*
 103 * Negative "register" values indicate the register is stored on the stack
 104 * and are the offset from the top of the eBPF JIT scratch space.
 105 */
 106#define STACK_OFFSET(k) (-4 - (k) * 4)
 107#define SCRATCH_SIZE    (BPF_JIT_SCRATCH_REGS * 4)
 108
 109#ifdef CONFIG_FRAME_POINTER
 110#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
 111#else
 112#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
 113#endif
 114
 115#define TMP_REG_1       (MAX_BPF_JIT_REG + 0)   /* TEMP Register 1 */
 116#define TMP_REG_2       (MAX_BPF_JIT_REG + 1)   /* TEMP Register 2 */
 117#define TCALL_CNT       (MAX_BPF_JIT_REG + 2)   /* Tail Call Count */
 118
 119#define FLAG_IMM_OVERFLOW       (1 << 0)
 120
 121/*
 122 * Map eBPF registers to ARM 32bit registers or stack scratch space.
 123 *
 124 * 1. First argument is passed using the arm 32bit registers and rest of the
 125 * arguments are passed on stack scratch space.
 126 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
 127 * arguments are mapped to scratch space on stack.
 128 * 3. We need two 64 bit temp registers to do complex operations on eBPF
 129 * registers.
 130 *
 131 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
 132 * registers, we have to map each eBPF registers with two arm 32 bit regs or
 133 * scratch memory space and we have to build eBPF 64 bit register from those.
 134 *
 135 */
 136static const s8 bpf2a32[][2] = {
 137        /* return value from in-kernel function, and exit value from eBPF */
 138        [BPF_REG_0] = {ARM_R1, ARM_R0},
 139        /* arguments from eBPF program to in-kernel function */
 140        [BPF_REG_1] = {ARM_R3, ARM_R2},
 141        /* Stored on stack scratch space */
 142        [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
 143        [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
 144        [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
 145        [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
 146        /* callee saved registers that in-kernel function will preserve */
 147        [BPF_REG_6] = {ARM_R5, ARM_R4},
 148        /* Stored on stack scratch space */
 149        [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
 150        [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
 151        [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
 152        /* Read only Frame Pointer to access Stack */
 153        [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
 154        /* Temporary Register for internal BPF JIT, can be used
 155         * for constant blindings and others.
 156         */
 157        [TMP_REG_1] = {ARM_R7, ARM_R6},
 158        [TMP_REG_2] = {ARM_R9, ARM_R8},
 159        /* Tail call count. Stored on stack scratch space. */
 160        [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
 161        /* temporary register for blinding constants.
 162         * Stored on stack scratch space.
 163         */
 164        [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
 165};
 166
 167#define dst_lo  dst[1]
 168#define dst_hi  dst[0]
 169#define src_lo  src[1]
 170#define src_hi  src[0]
 171
 172/*
 173 * JIT Context:
 174 *
 175 * prog                 :       bpf_prog
 176 * idx                  :       index of current last JITed instruction.
 177 * prologue_bytes       :       bytes used in prologue.
 178 * epilogue_offset      :       offset of epilogue starting.
 179 * offsets              :       array of eBPF instruction offsets in
 180 *                              JITed code.
 181 * target               :       final JITed code.
 182 * epilogue_bytes       :       no of bytes used in epilogue.
 183 * imm_count            :       no of immediate counts used for global
 184 *                              variables.
 185 * imms                 :       array of global variable addresses.
 186 */
 187
 188struct jit_ctx {
 189        const struct bpf_prog *prog;
 190        unsigned int idx;
 191        unsigned int prologue_bytes;
 192        unsigned int epilogue_offset;
 193        unsigned int cpu_architecture;
 194        u32 flags;
 195        u32 *offsets;
 196        u32 *target;
 197        u32 stack_size;
 198#if __LINUX_ARM_ARCH__ < 7
 199        u16 epilogue_bytes;
 200        u16 imm_count;
 201        u32 *imms;
 202#endif
 203};
 204
 205/*
 206 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 207 * (where the assembly routines like __aeabi_uidiv could cause problems).
 208 */
 209static u32 jit_udiv32(u32 dividend, u32 divisor)
 210{
 211        return dividend / divisor;
 212}
 213
 214static u32 jit_mod32(u32 dividend, u32 divisor)
 215{
 216        return dividend % divisor;
 217}
 218
 219static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 220{
 221        inst |= (cond << 28);
 222        inst = __opcode_to_mem_arm(inst);
 223
 224        if (ctx->target != NULL)
 225                ctx->target[ctx->idx] = inst;
 226
 227        ctx->idx++;
 228}
 229
 230/*
 231 * Emit an instruction that will be executed unconditionally.
 232 */
 233static inline void emit(u32 inst, struct jit_ctx *ctx)
 234{
 235        _emit(ARM_COND_AL, inst, ctx);
 236}
 237
 238/*
 239 * This is rather horrid, but necessary to convert an integer constant
 240 * to an immediate operand for the opcodes, and be able to detect at
 241 * build time whether the constant can't be converted (iow, usable in
 242 * BUILD_BUG_ON()).
 243 */
 244#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
 245#define const_imm8m(x)                                  \
 246        ({ int r;                                       \
 247           u32 v = (x);                                 \
 248           if (!(v & ~0x000000ff))                      \
 249                r = imm12val(v, 0);                     \
 250           else if (!(v & ~0xc000003f))                 \
 251                r = imm12val(v, 2);                     \
 252           else if (!(v & ~0xf000000f))                 \
 253                r = imm12val(v, 4);                     \
 254           else if (!(v & ~0xfc000003))                 \
 255                r = imm12val(v, 6);                     \
 256           else if (!(v & ~0xff000000))                 \
 257                r = imm12val(v, 8);                     \
 258           else if (!(v & ~0x3fc00000))                 \
 259                r = imm12val(v, 10);                    \
 260           else if (!(v & ~0x0ff00000))                 \
 261                r = imm12val(v, 12);                    \
 262           else if (!(v & ~0x03fc0000))                 \
 263                r = imm12val(v, 14);                    \
 264           else if (!(v & ~0x00ff0000))                 \
 265                r = imm12val(v, 16);                    \
 266           else if (!(v & ~0x003fc000))                 \
 267                r = imm12val(v, 18);                    \
 268           else if (!(v & ~0x000ff000))                 \
 269                r = imm12val(v, 20);                    \
 270           else if (!(v & ~0x0003fc00))                 \
 271                r = imm12val(v, 22);                    \
 272           else if (!(v & ~0x0000ff00))                 \
 273                r = imm12val(v, 24);                    \
 274           else if (!(v & ~0x00003fc0))                 \
 275                r = imm12val(v, 26);                    \
 276           else if (!(v & ~0x00000ff0))                 \
 277                r = imm12val(v, 28);                    \
 278           else if (!(v & ~0x000003fc))                 \
 279                r = imm12val(v, 30);                    \
 280           else                                         \
 281                r = -1;                                 \
 282           r; })
 283
 284/*
 285 * Checks if immediate value can be converted to imm12(12 bits) value.
 286 */
 287static int imm8m(u32 x)
 288{
 289        u32 rot;
 290
 291        for (rot = 0; rot < 16; rot++)
 292                if ((x & ~ror32(0xff, 2 * rot)) == 0)
 293                        return rol32(x, 2 * rot) | (rot << 8);
 294        return -1;
 295}
 296
 297#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
 298
 299static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
 300{
 301        op |= rt << 12 | rn << 16;
 302        if (imm12 >= 0)
 303                op |= ARM_INST_LDST__U;
 304        else
 305                imm12 = -imm12;
 306        return op | (imm12 & ARM_INST_LDST__IMM12);
 307}
 308
 309static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
 310{
 311        op |= rt << 12 | rn << 16;
 312        if (imm8 >= 0)
 313                op |= ARM_INST_LDST__U;
 314        else
 315                imm8 = -imm8;
 316        return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
 317}
 318
 319#define ARM_LDR_I(rt, rn, off)  arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
 320#define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
 321#define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
 322#define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
 323
 324#define ARM_STR_I(rt, rn, off)  arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
 325#define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
 326#define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
 327#define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
 328
 329/*
 330 * Initializes the JIT space with undefined instructions.
 331 */
 332static void jit_fill_hole(void *area, unsigned int size)
 333{
 334        u32 *ptr;
 335        /* We are guaranteed to have aligned memory. */
 336        for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 337                *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 338}
 339
 340#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
 341/* EABI requires the stack to be aligned to 64-bit boundaries */
 342#define STACK_ALIGNMENT 8
 343#else
 344/* Stack must be aligned to 32-bit boundaries */
 345#define STACK_ALIGNMENT 4
 346#endif
 347
 348/* total stack size used in JITed code */
 349#define _STACK_SIZE     (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
 350#define STACK_SIZE      ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
 351
 352#if __LINUX_ARM_ARCH__ < 7
 353
 354static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 355{
 356        unsigned int i = 0, offset;
 357        u16 imm;
 358
 359        /* on the "fake" run we just count them (duplicates included) */
 360        if (ctx->target == NULL) {
 361                ctx->imm_count++;
 362                return 0;
 363        }
 364
 365        while ((i < ctx->imm_count) && ctx->imms[i]) {
 366                if (ctx->imms[i] == k)
 367                        break;
 368                i++;
 369        }
 370
 371        if (ctx->imms[i] == 0)
 372                ctx->imms[i] = k;
 373
 374        /* constants go just after the epilogue */
 375        offset =  ctx->offsets[ctx->prog->len - 1] * 4;
 376        offset += ctx->prologue_bytes;
 377        offset += ctx->epilogue_bytes;
 378        offset += i * 4;
 379
 380        ctx->target[offset / 4] = k;
 381
 382        /* PC in ARM mode == address of the instruction + 8 */
 383        imm = offset - (8 + ctx->idx * 4);
 384
 385        if (imm & ~0xfff) {
 386                /*
 387                 * literal pool is too far, signal it into flags. we
 388                 * can only detect it on the second pass unfortunately.
 389                 */
 390                ctx->flags |= FLAG_IMM_OVERFLOW;
 391                return 0;
 392        }
 393
 394        return imm;
 395}
 396
 397#endif /* __LINUX_ARM_ARCH__ */
 398
 399static inline int bpf2a32_offset(int bpf_to, int bpf_from,
 400                                 const struct jit_ctx *ctx) {
 401        int to, from;
 402
 403        if (ctx->target == NULL)
 404                return 0;
 405        to = ctx->offsets[bpf_to];
 406        from = ctx->offsets[bpf_from];
 407
 408        return to - from - 1;
 409}
 410
 411/*
 412 * Move an immediate that's not an imm8m to a core register.
 413 */
 414static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
 415{
 416#if __LINUX_ARM_ARCH__ < 7
 417        emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 418#else
 419        emit(ARM_MOVW(rd, val & 0xffff), ctx);
 420        if (val > 0xffff)
 421                emit(ARM_MOVT(rd, val >> 16), ctx);
 422#endif
 423}
 424
 425static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
 426{
 427        int imm12 = imm8m(val);
 428
 429        if (imm12 >= 0)
 430                emit(ARM_MOV_I(rd, imm12), ctx);
 431        else
 432                emit_mov_i_no8m(rd, val, ctx);
 433}
 434
 435static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
 436{
 437        if (elf_hwcap & HWCAP_THUMB)
 438                emit(ARM_BX(tgt_reg), ctx);
 439        else
 440                emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 441}
 442
 443static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 444{
 445#if __LINUX_ARM_ARCH__ < 5
 446        emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 447        emit_bx_r(tgt_reg, ctx);
 448#else
 449        emit(ARM_BLX_R(tgt_reg), ctx);
 450#endif
 451}
 452
 453static inline int epilogue_offset(const struct jit_ctx *ctx)
 454{
 455        int to, from;
 456        /* No need for 1st dummy run */
 457        if (ctx->target == NULL)
 458                return 0;
 459        to = ctx->epilogue_offset;
 460        from = ctx->idx;
 461
 462        return to - from - 2;
 463}
 464
 465static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
 466{
 467        const s8 *tmp = bpf2a32[TMP_REG_1];
 468
 469#if __LINUX_ARM_ARCH__ == 7
 470        if (elf_hwcap & HWCAP_IDIVA) {
 471                if (op == BPF_DIV)
 472                        emit(ARM_UDIV(rd, rm, rn), ctx);
 473                else {
 474                        emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
 475                        emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
 476                }
 477                return;
 478        }
 479#endif
 480
 481        /*
 482         * For BPF_ALU | BPF_DIV | BPF_K instructions
 483         * As ARM_R1 and ARM_R0 contains 1st argument of bpf
 484         * function, we need to save it on caller side to save
 485         * it from getting destroyed within callee.
 486         * After the return from the callee, we restore ARM_R0
 487         * ARM_R1.
 488         */
 489        if (rn != ARM_R1) {
 490                emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
 491                emit(ARM_MOV_R(ARM_R1, rn), ctx);
 492        }
 493        if (rm != ARM_R0) {
 494                emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
 495                emit(ARM_MOV_R(ARM_R0, rm), ctx);
 496        }
 497
 498        /* Call appropriate function */
 499        emit_mov_i(ARM_IP, op == BPF_DIV ?
 500                   (u32)jit_udiv32 : (u32)jit_mod32, ctx);
 501        emit_blx_r(ARM_IP, ctx);
 502
 503        /* Save return value */
 504        if (rd != ARM_R0)
 505                emit(ARM_MOV_R(rd, ARM_R0), ctx);
 506
 507        /* Restore ARM_R0 and ARM_R1 */
 508        if (rn != ARM_R1)
 509                emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
 510        if (rm != ARM_R0)
 511                emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
 512}
 513
 514/* Is the translated BPF register on stack? */
 515static bool is_stacked(s8 reg)
 516{
 517        return reg < 0;
 518}
 519
 520/* If a BPF register is on the stack (stk is true), load it to the
 521 * supplied temporary register and return the temporary register
 522 * for subsequent operations, otherwise just use the CPU register.
 523 */
 524static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
 525{
 526        if (is_stacked(reg)) {
 527                emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 528                reg = tmp;
 529        }
 530        return reg;
 531}
 532
 533static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
 534                                   struct jit_ctx *ctx)
 535{
 536        if (is_stacked(reg[1])) {
 537                if (__LINUX_ARM_ARCH__ >= 6 ||
 538                    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 539                        emit(ARM_LDRD_I(tmp[1], ARM_FP,
 540                                        EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 541                } else {
 542                        emit(ARM_LDR_I(tmp[1], ARM_FP,
 543                                       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 544                        emit(ARM_LDR_I(tmp[0], ARM_FP,
 545                                       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 546                }
 547                reg = tmp;
 548        }
 549        return reg;
 550}
 551
 552/* If a BPF register is on the stack (stk is true), save the register
 553 * back to the stack.  If the source register is not the same, then
 554 * move it into the correct register.
 555 */
 556static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
 557{
 558        if (is_stacked(reg))
 559                emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 560        else if (reg != src)
 561                emit(ARM_MOV_R(reg, src), ctx);
 562}
 563
 564static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
 565                              struct jit_ctx *ctx)
 566{
 567        if (is_stacked(reg[1])) {
 568                if (__LINUX_ARM_ARCH__ >= 6 ||
 569                    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 570                        emit(ARM_STRD_I(src[1], ARM_FP,
 571                                       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 572                } else {
 573                        emit(ARM_STR_I(src[1], ARM_FP,
 574                                       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 575                        emit(ARM_STR_I(src[0], ARM_FP,
 576                                       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 577                }
 578        } else {
 579                if (reg[1] != src[1])
 580                        emit(ARM_MOV_R(reg[1], src[1]), ctx);
 581                if (reg[0] != src[0])
 582                        emit(ARM_MOV_R(reg[0], src[0]), ctx);
 583        }
 584}
 585
 586static inline void emit_a32_mov_i(const s8 dst, const u32 val,
 587                                  struct jit_ctx *ctx)
 588{
 589        const s8 *tmp = bpf2a32[TMP_REG_1];
 590
 591        if (is_stacked(dst)) {
 592                emit_mov_i(tmp[1], val, ctx);
 593                arm_bpf_put_reg32(dst, tmp[1], ctx);
 594        } else {
 595                emit_mov_i(dst, val, ctx);
 596        }
 597}
 598
 599static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
 600{
 601        const s8 *tmp = bpf2a32[TMP_REG_1];
 602        const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
 603
 604        emit_mov_i(rd[1], (u32)val, ctx);
 605        emit_mov_i(rd[0], val >> 32, ctx);
 606
 607        arm_bpf_put_reg64(dst, rd, ctx);
 608}
 609
 610/* Sign extended move */
 611static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
 612                                       const u32 val, struct jit_ctx *ctx) {
 613        u64 val64 = val;
 614
 615        if (is64 && (val & (1<<31)))
 616                val64 |= 0xffffffff00000000ULL;
 617        emit_a32_mov_i64(dst, val64, ctx);
 618}
 619
 620static inline void emit_a32_add_r(const u8 dst, const u8 src,
 621                              const bool is64, const bool hi,
 622                              struct jit_ctx *ctx) {
 623        /* 64 bit :
 624         *      adds dst_lo, dst_lo, src_lo
 625         *      adc dst_hi, dst_hi, src_hi
 626         * 32 bit :
 627         *      add dst_lo, dst_lo, src_lo
 628         */
 629        if (!hi && is64)
 630                emit(ARM_ADDS_R(dst, dst, src), ctx);
 631        else if (hi && is64)
 632                emit(ARM_ADC_R(dst, dst, src), ctx);
 633        else
 634                emit(ARM_ADD_R(dst, dst, src), ctx);
 635}
 636
 637static inline void emit_a32_sub_r(const u8 dst, const u8 src,
 638                                  const bool is64, const bool hi,
 639                                  struct jit_ctx *ctx) {
 640        /* 64 bit :
 641         *      subs dst_lo, dst_lo, src_lo
 642         *      sbc dst_hi, dst_hi, src_hi
 643         * 32 bit :
 644         *      sub dst_lo, dst_lo, src_lo
 645         */
 646        if (!hi && is64)
 647                emit(ARM_SUBS_R(dst, dst, src), ctx);
 648        else if (hi && is64)
 649                emit(ARM_SBC_R(dst, dst, src), ctx);
 650        else
 651                emit(ARM_SUB_R(dst, dst, src), ctx);
 652}
 653
 654static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
 655                              const bool hi, const u8 op, struct jit_ctx *ctx){
 656        switch (BPF_OP(op)) {
 657        /* dst = dst + src */
 658        case BPF_ADD:
 659                emit_a32_add_r(dst, src, is64, hi, ctx);
 660                break;
 661        /* dst = dst - src */
 662        case BPF_SUB:
 663                emit_a32_sub_r(dst, src, is64, hi, ctx);
 664                break;
 665        /* dst = dst | src */
 666        case BPF_OR:
 667                emit(ARM_ORR_R(dst, dst, src), ctx);
 668                break;
 669        /* dst = dst & src */
 670        case BPF_AND:
 671                emit(ARM_AND_R(dst, dst, src), ctx);
 672                break;
 673        /* dst = dst ^ src */
 674        case BPF_XOR:
 675                emit(ARM_EOR_R(dst, dst, src), ctx);
 676                break;
 677        /* dst = dst * src */
 678        case BPF_MUL:
 679                emit(ARM_MUL(dst, dst, src), ctx);
 680                break;
 681        /* dst = dst << src */
 682        case BPF_LSH:
 683                emit(ARM_LSL_R(dst, dst, src), ctx);
 684                break;
 685        /* dst = dst >> src */
 686        case BPF_RSH:
 687                emit(ARM_LSR_R(dst, dst, src), ctx);
 688                break;
 689        /* dst = dst >> src (signed)*/
 690        case BPF_ARSH:
 691                emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
 692                break;
 693        }
 694}
 695
 696/* ALU operation (32 bit)
 697 * dst = dst (op) src
 698 */
 699static inline void emit_a32_alu_r(const s8 dst, const s8 src,
 700                                  struct jit_ctx *ctx, const bool is64,
 701                                  const bool hi, const u8 op) {
 702        const s8 *tmp = bpf2a32[TMP_REG_1];
 703        s8 rn, rd;
 704
 705        rn = arm_bpf_get_reg32(src, tmp[1], ctx);
 706        rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 707        /* ALU operation */
 708        emit_alu_r(rd, rn, is64, hi, op, ctx);
 709        arm_bpf_put_reg32(dst, rd, ctx);
 710}
 711
 712/* ALU operation (64 bit) */
 713static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
 714                                  const s8 src[], struct jit_ctx *ctx,
 715                                  const u8 op) {
 716        const s8 *tmp = bpf2a32[TMP_REG_1];
 717        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 718        const s8 *rd;
 719
 720        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 721        if (is64) {
 722                const s8 *rs;
 723
 724                rs = arm_bpf_get_reg64(src, tmp2, ctx);
 725
 726                /* ALU operation */
 727                emit_alu_r(rd[1], rs[1], true, false, op, ctx);
 728                emit_alu_r(rd[0], rs[0], true, true, op, ctx);
 729        } else {
 730                s8 rs;
 731
 732                rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 733
 734                /* ALU operation */
 735                emit_alu_r(rd[1], rs, true, false, op, ctx);
 736                if (!ctx->prog->aux->verifier_zext)
 737                        emit_a32_mov_i(rd[0], 0, ctx);
 738        }
 739
 740        arm_bpf_put_reg64(dst, rd, ctx);
 741}
 742
 743/* dst = src (4 bytes)*/
 744static inline void emit_a32_mov_r(const s8 dst, const s8 src,
 745                                  struct jit_ctx *ctx) {
 746        const s8 *tmp = bpf2a32[TMP_REG_1];
 747        s8 rt;
 748
 749        rt = arm_bpf_get_reg32(src, tmp[0], ctx);
 750        arm_bpf_put_reg32(dst, rt, ctx);
 751}
 752
 753/* dst = src */
 754static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
 755                                  const s8 src[],
 756                                  struct jit_ctx *ctx) {
 757        if (!is64) {
 758                emit_a32_mov_r(dst_lo, src_lo, ctx);
 759                if (!ctx->prog->aux->verifier_zext)
 760                        /* Zero out high 4 bytes */
 761                        emit_a32_mov_i(dst_hi, 0, ctx);
 762        } else if (__LINUX_ARM_ARCH__ < 6 &&
 763                   ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
 764                /* complete 8 byte move */
 765                emit_a32_mov_r(dst_lo, src_lo, ctx);
 766                emit_a32_mov_r(dst_hi, src_hi, ctx);
 767        } else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
 768                const u8 *tmp = bpf2a32[TMP_REG_1];
 769
 770                emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 771                emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 772        } else if (is_stacked(src_lo)) {
 773                emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 774        } else if (is_stacked(dst_lo)) {
 775                emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 776        } else {
 777                emit(ARM_MOV_R(dst[0], src[0]), ctx);
 778                emit(ARM_MOV_R(dst[1], src[1]), ctx);
 779        }
 780}
 781
 782/* Shift operations */
 783static inline void emit_a32_alu_i(const s8 dst, const u32 val,
 784                                struct jit_ctx *ctx, const u8 op) {
 785        const s8 *tmp = bpf2a32[TMP_REG_1];
 786        s8 rd;
 787
 788        rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 789
 790        /* Do shift operation */
 791        switch (op) {
 792        case BPF_LSH:
 793                emit(ARM_LSL_I(rd, rd, val), ctx);
 794                break;
 795        case BPF_RSH:
 796                emit(ARM_LSR_I(rd, rd, val), ctx);
 797                break;
 798        case BPF_ARSH:
 799                emit(ARM_ASR_I(rd, rd, val), ctx);
 800                break;
 801        case BPF_NEG:
 802                emit(ARM_RSB_I(rd, rd, val), ctx);
 803                break;
 804        }
 805
 806        arm_bpf_put_reg32(dst, rd, ctx);
 807}
 808
 809/* dst = ~dst (64 bit) */
 810static inline void emit_a32_neg64(const s8 dst[],
 811                                struct jit_ctx *ctx){
 812        const s8 *tmp = bpf2a32[TMP_REG_1];
 813        const s8 *rd;
 814
 815        /* Setup Operand */
 816        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 817
 818        /* Do Negate Operation */
 819        emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
 820        emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
 821
 822        arm_bpf_put_reg64(dst, rd, ctx);
 823}
 824
 825/* dst = dst << src */
 826static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
 827                                    struct jit_ctx *ctx) {
 828        const s8 *tmp = bpf2a32[TMP_REG_1];
 829        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 830        const s8 *rd;
 831        s8 rt;
 832
 833        /* Setup Operands */
 834        rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 835        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 836
 837        /* Do LSH operation */
 838        emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
 839        emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
 840        emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
 841        emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
 842        emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
 843        emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
 844
 845        arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 846        arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 847}
 848
 849/* dst = dst >> src (signed)*/
 850static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
 851                                     struct jit_ctx *ctx) {
 852        const s8 *tmp = bpf2a32[TMP_REG_1];
 853        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 854        const s8 *rd;
 855        s8 rt;
 856
 857        /* Setup Operands */
 858        rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 859        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 860
 861        /* Do the ARSH operation */
 862        emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 863        emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 864        emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
 865        emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
 866        _emit(ARM_COND_PL,
 867              ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
 868        emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
 869
 870        arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 871        arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 872}
 873
 874/* dst = dst >> src */
 875static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
 876                                    struct jit_ctx *ctx) {
 877        const s8 *tmp = bpf2a32[TMP_REG_1];
 878        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 879        const s8 *rd;
 880        s8 rt;
 881
 882        /* Setup Operands */
 883        rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 884        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 885
 886        /* Do RSH operation */
 887        emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 888        emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 889        emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
 890        emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
 891        emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
 892        emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
 893
 894        arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 895        arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 896}
 897
 898/* dst = dst << val */
 899static inline void emit_a32_lsh_i64(const s8 dst[],
 900                                    const u32 val, struct jit_ctx *ctx){
 901        const s8 *tmp = bpf2a32[TMP_REG_1];
 902        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 903        const s8 *rd;
 904
 905        /* Setup operands */
 906        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 907
 908        /* Do LSH operation */
 909        if (val < 32) {
 910                emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
 911                emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
 912                emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
 913        } else {
 914                if (val == 32)
 915                        emit(ARM_MOV_R(rd[0], rd[1]), ctx);
 916                else
 917                        emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
 918                emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
 919        }
 920
 921        arm_bpf_put_reg64(dst, rd, ctx);
 922}
 923
 924/* dst = dst >> val */
 925static inline void emit_a32_rsh_i64(const s8 dst[],
 926                                    const u32 val, struct jit_ctx *ctx) {
 927        const s8 *tmp = bpf2a32[TMP_REG_1];
 928        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 929        const s8 *rd;
 930
 931        /* Setup operands */
 932        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 933
 934        /* Do LSR operation */
 935        if (val == 0) {
 936                /* An immediate value of 0 encodes a shift amount of 32
 937                 * for LSR. To shift by 0, don't do anything.
 938                 */
 939        } else if (val < 32) {
 940                emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
 941                emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
 942                emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
 943        } else if (val == 32) {
 944                emit(ARM_MOV_R(rd[1], rd[0]), ctx);
 945                emit(ARM_MOV_I(rd[0], 0), ctx);
 946        } else {
 947                emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
 948                emit(ARM_MOV_I(rd[0], 0), ctx);
 949        }
 950
 951        arm_bpf_put_reg64(dst, rd, ctx);
 952}
 953
 954/* dst = dst >> val (signed) */
 955static inline void emit_a32_arsh_i64(const s8 dst[],
 956                                     const u32 val, struct jit_ctx *ctx){
 957        const s8 *tmp = bpf2a32[TMP_REG_1];
 958        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 959        const s8 *rd;
 960
 961        /* Setup operands */
 962        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 963
 964        /* Do ARSH operation */
 965        if (val == 0) {
 966                /* An immediate value of 0 encodes a shift amount of 32
 967                 * for ASR. To shift by 0, don't do anything.
 968                 */
 969        } else if (val < 32) {
 970                emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
 971                emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
 972                emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
 973        } else if (val == 32) {
 974                emit(ARM_MOV_R(rd[1], rd[0]), ctx);
 975                emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
 976        } else {
 977                emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
 978                emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
 979        }
 980
 981        arm_bpf_put_reg64(dst, rd, ctx);
 982}
 983
 984static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
 985                                    struct jit_ctx *ctx) {
 986        const s8 *tmp = bpf2a32[TMP_REG_1];
 987        const s8 *tmp2 = bpf2a32[TMP_REG_2];
 988        const s8 *rd, *rt;
 989
 990        /* Setup operands for multiplication */
 991        rd = arm_bpf_get_reg64(dst, tmp, ctx);
 992        rt = arm_bpf_get_reg64(src, tmp2, ctx);
 993
 994        /* Do Multiplication */
 995        emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
 996        emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
 997        emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
 998
 999        emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1000        emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1001
1002        arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1003        arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1004}
1005
1006static bool is_ldst_imm(s16 off, const u8 size)
1007{
1008        s16 off_max = 0;
1009
1010        switch (size) {
1011        case BPF_B:
1012        case BPF_W:
1013                off_max = 0xfff;
1014                break;
1015        case BPF_H:
1016                off_max = 0xff;
1017                break;
1018        case BPF_DW:
1019                /* Need to make sure off+4 does not overflow. */
1020                off_max = 0xfff - 4;
1021                break;
1022        }
1023        return -off_max <= off && off <= off_max;
1024}
1025
1026/* *(size *)(dst + off) = src */
1027static inline void emit_str_r(const s8 dst, const s8 src[],
1028                              s16 off, struct jit_ctx *ctx, const u8 sz){
1029        const s8 *tmp = bpf2a32[TMP_REG_1];
1030        s8 rd;
1031
1032        rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1033
1034        if (!is_ldst_imm(off, sz)) {
1035                emit_a32_mov_i(tmp[0], off, ctx);
1036                emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1037                rd = tmp[0];
1038                off = 0;
1039        }
1040        switch (sz) {
1041        case BPF_B:
1042                /* Store a Byte */
1043                emit(ARM_STRB_I(src_lo, rd, off), ctx);
1044                break;
1045        case BPF_H:
1046                /* Store a HalfWord */
1047                emit(ARM_STRH_I(src_lo, rd, off), ctx);
1048                break;
1049        case BPF_W:
1050                /* Store a Word */
1051                emit(ARM_STR_I(src_lo, rd, off), ctx);
1052                break;
1053        case BPF_DW:
1054                /* Store a Double Word */
1055                emit(ARM_STR_I(src_lo, rd, off), ctx);
1056                emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1057                break;
1058        }
1059}
1060
1061/* dst = *(size*)(src + off) */
1062static inline void emit_ldx_r(const s8 dst[], const s8 src,
1063                              s16 off, struct jit_ctx *ctx, const u8 sz){
1064        const s8 *tmp = bpf2a32[TMP_REG_1];
1065        const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1066        s8 rm = src;
1067
1068        if (!is_ldst_imm(off, sz)) {
1069                emit_a32_mov_i(tmp[0], off, ctx);
1070                emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1071                rm = tmp[0];
1072                off = 0;
1073        } else if (rd[1] == rm) {
1074                emit(ARM_MOV_R(tmp[0], rm), ctx);
1075                rm = tmp[0];
1076        }
1077        switch (sz) {
1078        case BPF_B:
1079                /* Load a Byte */
1080                emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1081                if (!ctx->prog->aux->verifier_zext)
1082                        emit_a32_mov_i(rd[0], 0, ctx);
1083                break;
1084        case BPF_H:
1085                /* Load a HalfWord */
1086                emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1087                if (!ctx->prog->aux->verifier_zext)
1088                        emit_a32_mov_i(rd[0], 0, ctx);
1089                break;
1090        case BPF_W:
1091                /* Load a Word */
1092                emit(ARM_LDR_I(rd[1], rm, off), ctx);
1093                if (!ctx->prog->aux->verifier_zext)
1094                        emit_a32_mov_i(rd[0], 0, ctx);
1095                break;
1096        case BPF_DW:
1097                /* Load a Double Word */
1098                emit(ARM_LDR_I(rd[1], rm, off), ctx);
1099                emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1100                break;
1101        }
1102        arm_bpf_put_reg64(dst, rd, ctx);
1103}
1104
1105/* Arithmatic Operation */
1106static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1107                             const u8 rn, struct jit_ctx *ctx, u8 op,
1108                             bool is_jmp64) {
1109        switch (op) {
1110        case BPF_JSET:
1111                if (is_jmp64) {
1112                        emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1113                        emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1114                        emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1115                } else {
1116                        emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1117                }
1118                break;
1119        case BPF_JEQ:
1120        case BPF_JNE:
1121        case BPF_JGT:
1122        case BPF_JGE:
1123        case BPF_JLE:
1124        case BPF_JLT:
1125                if (is_jmp64) {
1126                        emit(ARM_CMP_R(rd, rm), ctx);
1127                        /* Only compare low halve if high halve are equal. */
1128                        _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1129                } else {
1130                        emit(ARM_CMP_R(rt, rn), ctx);
1131                }
1132                break;
1133        case BPF_JSLE:
1134        case BPF_JSGT:
1135                emit(ARM_CMP_R(rn, rt), ctx);
1136                if (is_jmp64)
1137                        emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1138                break;
1139        case BPF_JSLT:
1140        case BPF_JSGE:
1141                emit(ARM_CMP_R(rt, rn), ctx);
1142                if (is_jmp64)
1143                        emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1144                break;
1145        }
1146}
1147
1148static int out_offset = -1; /* initialized on the first pass of build_body() */
1149static int emit_bpf_tail_call(struct jit_ctx *ctx)
1150{
1151
1152        /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1153        const s8 *r2 = bpf2a32[BPF_REG_2];
1154        const s8 *r3 = bpf2a32[BPF_REG_3];
1155        const s8 *tmp = bpf2a32[TMP_REG_1];
1156        const s8 *tmp2 = bpf2a32[TMP_REG_2];
1157        const s8 *tcc = bpf2a32[TCALL_CNT];
1158        const s8 *tc;
1159        const int idx0 = ctx->idx;
1160#define cur_offset (ctx->idx - idx0)
1161#define jmp_offset (out_offset - (cur_offset) - 2)
1162        u32 lo, hi;
1163        s8 r_array, r_index;
1164        int off;
1165
1166        /* if (index >= array->map.max_entries)
1167         *      goto out;
1168         */
1169        BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1170                     ARM_INST_LDST__IMM12);
1171        off = offsetof(struct bpf_array, map.max_entries);
1172        r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1173        /* index is 32-bit for arrays */
1174        r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1175        /* array->map.max_entries */
1176        emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1177        /* index >= array->map.max_entries */
1178        emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1179        _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1180
1181        /* tmp2[0] = array, tmp2[1] = index */
1182
1183        /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1184         *      goto out;
1185         * tail_call_cnt++;
1186         */
1187        lo = (u32)MAX_TAIL_CALL_CNT;
1188        hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1189        tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1190        emit(ARM_CMP_I(tc[0], hi), ctx);
1191        _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1192        _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1193        emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1194        emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1195        arm_bpf_put_reg64(tcc, tmp, ctx);
1196
1197        /* prog = array->ptrs[index]
1198         * if (prog == NULL)
1199         *      goto out;
1200         */
1201        BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1202        off = imm8m(offsetof(struct bpf_array, ptrs));
1203        emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1204        emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1205        emit(ARM_CMP_I(tmp[1], 0), ctx);
1206        _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1207
1208        /* goto *(prog->bpf_func + prologue_size); */
1209        BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1210                     ARM_INST_LDST__IMM12);
1211        off = offsetof(struct bpf_prog, bpf_func);
1212        emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1213        emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1214        emit_bx_r(tmp[1], ctx);
1215
1216        /* out: */
1217        if (out_offset == -1)
1218                out_offset = cur_offset;
1219        if (cur_offset != out_offset) {
1220                pr_err_once("tail_call out_offset = %d, expected %d!\n",
1221                            cur_offset, out_offset);
1222                return -1;
1223        }
1224        return 0;
1225#undef cur_offset
1226#undef jmp_offset
1227}
1228
1229/* 0xabcd => 0xcdab */
1230static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1231{
1232#if __LINUX_ARM_ARCH__ < 6
1233        const s8 *tmp2 = bpf2a32[TMP_REG_2];
1234
1235        emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1236        emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1237        emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1238        emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1239#else /* ARMv6+ */
1240        emit(ARM_REV16(rd, rn), ctx);
1241#endif
1242}
1243
1244/* 0xabcdefgh => 0xghefcdab */
1245static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1246{
1247#if __LINUX_ARM_ARCH__ < 6
1248        const s8 *tmp2 = bpf2a32[TMP_REG_2];
1249
1250        emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1251        emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1252        emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1253
1254        emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1255        emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1256        emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1257        emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1258        emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1259        emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1260        emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1261
1262#else /* ARMv6+ */
1263        emit(ARM_REV(rd, rn), ctx);
1264#endif
1265}
1266
1267// push the scratch stack register on top of the stack
1268static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1269{
1270        const s8 *tmp2 = bpf2a32[TMP_REG_2];
1271        const s8 *rt;
1272        u16 reg_set = 0;
1273
1274        rt = arm_bpf_get_reg64(src, tmp2, ctx);
1275
1276        reg_set = (1 << rt[1]) | (1 << rt[0]);
1277        emit(ARM_PUSH(reg_set), ctx);
1278}
1279
1280static void build_prologue(struct jit_ctx *ctx)
1281{
1282        const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1283        const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1284        const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
1285        const s8 *tcc = bpf2a32[TCALL_CNT];
1286
1287        /* Save callee saved registers. */
1288#ifdef CONFIG_FRAME_POINTER
1289        u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1290        emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1291        emit(ARM_PUSH(reg_set), ctx);
1292        emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1293#else
1294        emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1295        emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1296#endif
1297        /* mov r3, #0 */
1298        /* sub r2, sp, #SCRATCH_SIZE */
1299        emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1300        emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
1301
1302        ctx->stack_size = imm8m(STACK_SIZE);
1303
1304        /* Set up function call stack */
1305        emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1306
1307        /* Set up BPF prog stack base register */
1308        emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
1309
1310        /* Initialize Tail Count */
1311        emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1312        emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1313
1314        /* Move BPF_CTX to BPF_R1 */
1315        emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1316
1317        /* end of prologue */
1318}
1319
1320/* restore callee saved registers. */
1321static void build_epilogue(struct jit_ctx *ctx)
1322{
1323#ifdef CONFIG_FRAME_POINTER
1324        /* When using frame pointers, some additional registers need to
1325         * be loaded. */
1326        u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1327        emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1328        emit(ARM_LDM(ARM_SP, reg_set), ctx);
1329#else
1330        /* Restore callee saved registers. */
1331        emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1332        emit(ARM_POP(CALLEE_POP_MASK), ctx);
1333#endif
1334}
1335
1336/*
1337 * Convert an eBPF instruction to native instruction, i.e
1338 * JITs an eBPF instruction.
1339 * Returns :
1340 *      0  - Successfully JITed an 8-byte eBPF instruction
1341 *      >0 - Successfully JITed a 16-byte eBPF instruction
1342 *      <0 - Failed to JIT.
1343 */
1344static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1345{
1346        const u8 code = insn->code;
1347        const s8 *dst = bpf2a32[insn->dst_reg];
1348        const s8 *src = bpf2a32[insn->src_reg];
1349        const s8 *tmp = bpf2a32[TMP_REG_1];
1350        const s8 *tmp2 = bpf2a32[TMP_REG_2];
1351        const s16 off = insn->off;
1352        const s32 imm = insn->imm;
1353        const int i = insn - ctx->prog->insnsi;
1354        const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1355        const s8 *rd, *rs;
1356        s8 rd_lo, rt, rm, rn;
1357        s32 jmp_offset;
1358
1359#define check_imm(bits, imm) do {                               \
1360        if ((imm) >= (1 << ((bits) - 1)) ||                     \
1361            (imm) < -(1 << ((bits) - 1))) {                     \
1362                pr_info("[%2d] imm=%d(0x%x) out of range\n",    \
1363                        i, imm, imm);                           \
1364                return -EINVAL;                                 \
1365        }                                                       \
1366} while (0)
1367#define check_imm24(imm) check_imm(24, imm)
1368
1369        switch (code) {
1370        /* ALU operations */
1371
1372        /* dst = src */
1373        case BPF_ALU | BPF_MOV | BPF_K:
1374        case BPF_ALU | BPF_MOV | BPF_X:
1375        case BPF_ALU64 | BPF_MOV | BPF_K:
1376        case BPF_ALU64 | BPF_MOV | BPF_X:
1377                switch (BPF_SRC(code)) {
1378                case BPF_X:
1379                        if (imm == 1) {
1380                                /* Special mov32 for zext */
1381                                emit_a32_mov_i(dst_hi, 0, ctx);
1382                                break;
1383                        }
1384                        emit_a32_mov_r64(is64, dst, src, ctx);
1385                        break;
1386                case BPF_K:
1387                        /* Sign-extend immediate value to destination reg */
1388                        emit_a32_mov_se_i64(is64, dst, imm, ctx);
1389                        break;
1390                }
1391                break;
1392        /* dst = dst + src/imm */
1393        /* dst = dst - src/imm */
1394        /* dst = dst | src/imm */
1395        /* dst = dst & src/imm */
1396        /* dst = dst ^ src/imm */
1397        /* dst = dst * src/imm */
1398        /* dst = dst << src */
1399        /* dst = dst >> src */
1400        case BPF_ALU | BPF_ADD | BPF_K:
1401        case BPF_ALU | BPF_ADD | BPF_X:
1402        case BPF_ALU | BPF_SUB | BPF_K:
1403        case BPF_ALU | BPF_SUB | BPF_X:
1404        case BPF_ALU | BPF_OR | BPF_K:
1405        case BPF_ALU | BPF_OR | BPF_X:
1406        case BPF_ALU | BPF_AND | BPF_K:
1407        case BPF_ALU | BPF_AND | BPF_X:
1408        case BPF_ALU | BPF_XOR | BPF_K:
1409        case BPF_ALU | BPF_XOR | BPF_X:
1410        case BPF_ALU | BPF_MUL | BPF_K:
1411        case BPF_ALU | BPF_MUL | BPF_X:
1412        case BPF_ALU | BPF_LSH | BPF_X:
1413        case BPF_ALU | BPF_RSH | BPF_X:
1414        case BPF_ALU | BPF_ARSH | BPF_X:
1415        case BPF_ALU64 | BPF_ADD | BPF_K:
1416        case BPF_ALU64 | BPF_ADD | BPF_X:
1417        case BPF_ALU64 | BPF_SUB | BPF_K:
1418        case BPF_ALU64 | BPF_SUB | BPF_X:
1419        case BPF_ALU64 | BPF_OR | BPF_K:
1420        case BPF_ALU64 | BPF_OR | BPF_X:
1421        case BPF_ALU64 | BPF_AND | BPF_K:
1422        case BPF_ALU64 | BPF_AND | BPF_X:
1423        case BPF_ALU64 | BPF_XOR | BPF_K:
1424        case BPF_ALU64 | BPF_XOR | BPF_X:
1425                switch (BPF_SRC(code)) {
1426                case BPF_X:
1427                        emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1428                        break;
1429                case BPF_K:
1430                        /* Move immediate value to the temporary register
1431                         * and then do the ALU operation on the temporary
1432                         * register as this will sign-extend the immediate
1433                         * value into temporary reg and then it would be
1434                         * safe to do the operation on it.
1435                         */
1436                        emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1437                        emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1438                        break;
1439                }
1440                break;
1441        /* dst = dst / src(imm) */
1442        /* dst = dst % src(imm) */
1443        case BPF_ALU | BPF_DIV | BPF_K:
1444        case BPF_ALU | BPF_DIV | BPF_X:
1445        case BPF_ALU | BPF_MOD | BPF_K:
1446        case BPF_ALU | BPF_MOD | BPF_X:
1447                rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1448                switch (BPF_SRC(code)) {
1449                case BPF_X:
1450                        rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1451                        break;
1452                case BPF_K:
1453                        rt = tmp2[0];
1454                        emit_a32_mov_i(rt, imm, ctx);
1455                        break;
1456                default:
1457                        rt = src_lo;
1458                        break;
1459                }
1460                emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1461                arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1462                if (!ctx->prog->aux->verifier_zext)
1463                        emit_a32_mov_i(dst_hi, 0, ctx);
1464                break;
1465        case BPF_ALU64 | BPF_DIV | BPF_K:
1466        case BPF_ALU64 | BPF_DIV | BPF_X:
1467        case BPF_ALU64 | BPF_MOD | BPF_K:
1468        case BPF_ALU64 | BPF_MOD | BPF_X:
1469                goto notyet;
1470        /* dst = dst << imm */
1471        /* dst = dst >> imm */
1472        /* dst = dst >> imm (signed) */
1473        case BPF_ALU | BPF_LSH | BPF_K:
1474        case BPF_ALU | BPF_RSH | BPF_K:
1475        case BPF_ALU | BPF_ARSH | BPF_K:
1476                if (unlikely(imm > 31))
1477                        return -EINVAL;
1478                if (imm)
1479                        emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1480                if (!ctx->prog->aux->verifier_zext)
1481                        emit_a32_mov_i(dst_hi, 0, ctx);
1482                break;
1483        /* dst = dst << imm */
1484        case BPF_ALU64 | BPF_LSH | BPF_K:
1485                if (unlikely(imm > 63))
1486                        return -EINVAL;
1487                emit_a32_lsh_i64(dst, imm, ctx);
1488                break;
1489        /* dst = dst >> imm */
1490        case BPF_ALU64 | BPF_RSH | BPF_K:
1491                if (unlikely(imm > 63))
1492                        return -EINVAL;
1493                emit_a32_rsh_i64(dst, imm, ctx);
1494                break;
1495        /* dst = dst << src */
1496        case BPF_ALU64 | BPF_LSH | BPF_X:
1497                emit_a32_lsh_r64(dst, src, ctx);
1498                break;
1499        /* dst = dst >> src */
1500        case BPF_ALU64 | BPF_RSH | BPF_X:
1501                emit_a32_rsh_r64(dst, src, ctx);
1502                break;
1503        /* dst = dst >> src (signed) */
1504        case BPF_ALU64 | BPF_ARSH | BPF_X:
1505                emit_a32_arsh_r64(dst, src, ctx);
1506                break;
1507        /* dst = dst >> imm (signed) */
1508        case BPF_ALU64 | BPF_ARSH | BPF_K:
1509                if (unlikely(imm > 63))
1510                        return -EINVAL;
1511                emit_a32_arsh_i64(dst, imm, ctx);
1512                break;
1513        /* dst = ~dst */
1514        case BPF_ALU | BPF_NEG:
1515                emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1516                if (!ctx->prog->aux->verifier_zext)
1517                        emit_a32_mov_i(dst_hi, 0, ctx);
1518                break;
1519        /* dst = ~dst (64 bit) */
1520        case BPF_ALU64 | BPF_NEG:
1521                emit_a32_neg64(dst, ctx);
1522                break;
1523        /* dst = dst * src/imm */
1524        case BPF_ALU64 | BPF_MUL | BPF_X:
1525        case BPF_ALU64 | BPF_MUL | BPF_K:
1526                switch (BPF_SRC(code)) {
1527                case BPF_X:
1528                        emit_a32_mul_r64(dst, src, ctx);
1529                        break;
1530                case BPF_K:
1531                        /* Move immediate value to the temporary register
1532                         * and then do the multiplication on it as this
1533                         * will sign-extend the immediate value into temp
1534                         * reg then it would be safe to do the operation
1535                         * on it.
1536                         */
1537                        emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1538                        emit_a32_mul_r64(dst, tmp2, ctx);
1539                        break;
1540                }
1541                break;
1542        /* dst = htole(dst) */
1543        /* dst = htobe(dst) */
1544        case BPF_ALU | BPF_END | BPF_FROM_LE:
1545        case BPF_ALU | BPF_END | BPF_FROM_BE:
1546                rd = arm_bpf_get_reg64(dst, tmp, ctx);
1547                if (BPF_SRC(code) == BPF_FROM_LE)
1548                        goto emit_bswap_uxt;
1549                switch (imm) {
1550                case 16:
1551                        emit_rev16(rd[1], rd[1], ctx);
1552                        goto emit_bswap_uxt;
1553                case 32:
1554                        emit_rev32(rd[1], rd[1], ctx);
1555                        goto emit_bswap_uxt;
1556                case 64:
1557                        emit_rev32(ARM_LR, rd[1], ctx);
1558                        emit_rev32(rd[1], rd[0], ctx);
1559                        emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1560                        break;
1561                }
1562                goto exit;
1563emit_bswap_uxt:
1564                switch (imm) {
1565                case 16:
1566                        /* zero-extend 16 bits into 64 bits */
1567#if __LINUX_ARM_ARCH__ < 6
1568                        emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1569                        emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1570#else /* ARMv6+ */
1571                        emit(ARM_UXTH(rd[1], rd[1]), ctx);
1572#endif
1573                        if (!ctx->prog->aux->verifier_zext)
1574                                emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1575                        break;
1576                case 32:
1577                        /* zero-extend 32 bits into 64 bits */
1578                        if (!ctx->prog->aux->verifier_zext)
1579                                emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1580                        break;
1581                case 64:
1582                        /* nop */
1583                        break;
1584                }
1585exit:
1586                arm_bpf_put_reg64(dst, rd, ctx);
1587                break;
1588        /* dst = imm64 */
1589        case BPF_LD | BPF_IMM | BPF_DW:
1590        {
1591                u64 val = (u32)imm | (u64)insn[1].imm << 32;
1592
1593                emit_a32_mov_i64(dst, val, ctx);
1594
1595                return 1;
1596        }
1597        /* LDX: dst = *(size *)(src + off) */
1598        case BPF_LDX | BPF_MEM | BPF_W:
1599        case BPF_LDX | BPF_MEM | BPF_H:
1600        case BPF_LDX | BPF_MEM | BPF_B:
1601        case BPF_LDX | BPF_MEM | BPF_DW:
1602                rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1603                emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1604                break;
1605        /* ST: *(size *)(dst + off) = imm */
1606        case BPF_ST | BPF_MEM | BPF_W:
1607        case BPF_ST | BPF_MEM | BPF_H:
1608        case BPF_ST | BPF_MEM | BPF_B:
1609        case BPF_ST | BPF_MEM | BPF_DW:
1610                switch (BPF_SIZE(code)) {
1611                case BPF_DW:
1612                        /* Sign-extend immediate value into temp reg */
1613                        emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1614                        break;
1615                case BPF_W:
1616                case BPF_H:
1617                case BPF_B:
1618                        emit_a32_mov_i(tmp2[1], imm, ctx);
1619                        break;
1620                }
1621                emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1622                break;
1623        /* STX XADD: lock *(u32 *)(dst + off) += src */
1624        case BPF_STX | BPF_XADD | BPF_W:
1625        /* STX XADD: lock *(u64 *)(dst + off) += src */
1626        case BPF_STX | BPF_XADD | BPF_DW:
1627                goto notyet;
1628        /* STX: *(size *)(dst + off) = src */
1629        case BPF_STX | BPF_MEM | BPF_W:
1630        case BPF_STX | BPF_MEM | BPF_H:
1631        case BPF_STX | BPF_MEM | BPF_B:
1632        case BPF_STX | BPF_MEM | BPF_DW:
1633                rs = arm_bpf_get_reg64(src, tmp2, ctx);
1634                emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1635                break;
1636        /* PC += off if dst == src */
1637        /* PC += off if dst > src */
1638        /* PC += off if dst >= src */
1639        /* PC += off if dst < src */
1640        /* PC += off if dst <= src */
1641        /* PC += off if dst != src */
1642        /* PC += off if dst > src (signed) */
1643        /* PC += off if dst >= src (signed) */
1644        /* PC += off if dst < src (signed) */
1645        /* PC += off if dst <= src (signed) */
1646        /* PC += off if dst & src */
1647        case BPF_JMP | BPF_JEQ | BPF_X:
1648        case BPF_JMP | BPF_JGT | BPF_X:
1649        case BPF_JMP | BPF_JGE | BPF_X:
1650        case BPF_JMP | BPF_JNE | BPF_X:
1651        case BPF_JMP | BPF_JSGT | BPF_X:
1652        case BPF_JMP | BPF_JSGE | BPF_X:
1653        case BPF_JMP | BPF_JSET | BPF_X:
1654        case BPF_JMP | BPF_JLE | BPF_X:
1655        case BPF_JMP | BPF_JLT | BPF_X:
1656        case BPF_JMP | BPF_JSLT | BPF_X:
1657        case BPF_JMP | BPF_JSLE | BPF_X:
1658        case BPF_JMP32 | BPF_JEQ | BPF_X:
1659        case BPF_JMP32 | BPF_JGT | BPF_X:
1660        case BPF_JMP32 | BPF_JGE | BPF_X:
1661        case BPF_JMP32 | BPF_JNE | BPF_X:
1662        case BPF_JMP32 | BPF_JSGT | BPF_X:
1663        case BPF_JMP32 | BPF_JSGE | BPF_X:
1664        case BPF_JMP32 | BPF_JSET | BPF_X:
1665        case BPF_JMP32 | BPF_JLE | BPF_X:
1666        case BPF_JMP32 | BPF_JLT | BPF_X:
1667        case BPF_JMP32 | BPF_JSLT | BPF_X:
1668        case BPF_JMP32 | BPF_JSLE | BPF_X:
1669                /* Setup source registers */
1670                rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1671                rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1672                goto go_jmp;
1673        /* PC += off if dst == imm */
1674        /* PC += off if dst > imm */
1675        /* PC += off if dst >= imm */
1676        /* PC += off if dst < imm */
1677        /* PC += off if dst <= imm */
1678        /* PC += off if dst != imm */
1679        /* PC += off if dst > imm (signed) */
1680        /* PC += off if dst >= imm (signed) */
1681        /* PC += off if dst < imm (signed) */
1682        /* PC += off if dst <= imm (signed) */
1683        /* PC += off if dst & imm */
1684        case BPF_JMP | BPF_JEQ | BPF_K:
1685        case BPF_JMP | BPF_JGT | BPF_K:
1686        case BPF_JMP | BPF_JGE | BPF_K:
1687        case BPF_JMP | BPF_JNE | BPF_K:
1688        case BPF_JMP | BPF_JSGT | BPF_K:
1689        case BPF_JMP | BPF_JSGE | BPF_K:
1690        case BPF_JMP | BPF_JSET | BPF_K:
1691        case BPF_JMP | BPF_JLT | BPF_K:
1692        case BPF_JMP | BPF_JLE | BPF_K:
1693        case BPF_JMP | BPF_JSLT | BPF_K:
1694        case BPF_JMP | BPF_JSLE | BPF_K:
1695        case BPF_JMP32 | BPF_JEQ | BPF_K:
1696        case BPF_JMP32 | BPF_JGT | BPF_K:
1697        case BPF_JMP32 | BPF_JGE | BPF_K:
1698        case BPF_JMP32 | BPF_JNE | BPF_K:
1699        case BPF_JMP32 | BPF_JSGT | BPF_K:
1700        case BPF_JMP32 | BPF_JSGE | BPF_K:
1701        case BPF_JMP32 | BPF_JSET | BPF_K:
1702        case BPF_JMP32 | BPF_JLT | BPF_K:
1703        case BPF_JMP32 | BPF_JLE | BPF_K:
1704        case BPF_JMP32 | BPF_JSLT | BPF_K:
1705        case BPF_JMP32 | BPF_JSLE | BPF_K:
1706                if (off == 0)
1707                        break;
1708                rm = tmp2[0];
1709                rn = tmp2[1];
1710                /* Sign-extend immediate value */
1711                emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1712go_jmp:
1713                /* Setup destination register */
1714                rd = arm_bpf_get_reg64(dst, tmp, ctx);
1715
1716                /* Check for the condition */
1717                emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1718                          BPF_CLASS(code) == BPF_JMP);
1719
1720                /* Setup JUMP instruction */
1721                jmp_offset = bpf2a32_offset(i+off, i, ctx);
1722                switch (BPF_OP(code)) {
1723                case BPF_JNE:
1724                case BPF_JSET:
1725                        _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1726                        break;
1727                case BPF_JEQ:
1728                        _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1729                        break;
1730                case BPF_JGT:
1731                        _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1732                        break;
1733                case BPF_JGE:
1734                        _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1735                        break;
1736                case BPF_JSGT:
1737                        _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1738                        break;
1739                case BPF_JSGE:
1740                        _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1741                        break;
1742                case BPF_JLE:
1743                        _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1744                        break;
1745                case BPF_JLT:
1746                        _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1747                        break;
1748                case BPF_JSLT:
1749                        _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1750                        break;
1751                case BPF_JSLE:
1752                        _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1753                        break;
1754                }
1755                break;
1756        /* JMP OFF */
1757        case BPF_JMP | BPF_JA:
1758        {
1759                if (off == 0)
1760                        break;
1761                jmp_offset = bpf2a32_offset(i+off, i, ctx);
1762                check_imm24(jmp_offset);
1763                emit(ARM_B(jmp_offset), ctx);
1764                break;
1765        }
1766        /* tail call */
1767        case BPF_JMP | BPF_TAIL_CALL:
1768                if (emit_bpf_tail_call(ctx))
1769                        return -EFAULT;
1770                break;
1771        /* function call */
1772        case BPF_JMP | BPF_CALL:
1773        {
1774                const s8 *r0 = bpf2a32[BPF_REG_0];
1775                const s8 *r1 = bpf2a32[BPF_REG_1];
1776                const s8 *r2 = bpf2a32[BPF_REG_2];
1777                const s8 *r3 = bpf2a32[BPF_REG_3];
1778                const s8 *r4 = bpf2a32[BPF_REG_4];
1779                const s8 *r5 = bpf2a32[BPF_REG_5];
1780                const u32 func = (u32)__bpf_call_base + (u32)imm;
1781
1782                emit_a32_mov_r64(true, r0, r1, ctx);
1783                emit_a32_mov_r64(true, r1, r2, ctx);
1784                emit_push_r64(r5, ctx);
1785                emit_push_r64(r4, ctx);
1786                emit_push_r64(r3, ctx);
1787
1788                emit_a32_mov_i(tmp[1], func, ctx);
1789                emit_blx_r(tmp[1], ctx);
1790
1791                emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1792                break;
1793        }
1794        /* function return */
1795        case BPF_JMP | BPF_EXIT:
1796                /* Optimization: when last instruction is EXIT
1797                 * simply fallthrough to epilogue.
1798                 */
1799                if (i == ctx->prog->len - 1)
1800                        break;
1801                jmp_offset = epilogue_offset(ctx);
1802                check_imm24(jmp_offset);
1803                emit(ARM_B(jmp_offset), ctx);
1804                break;
1805notyet:
1806                pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1807                return -EFAULT;
1808        default:
1809                pr_err_once("unknown opcode %02x\n", code);
1810                return -EINVAL;
1811        }
1812
1813        if (ctx->flags & FLAG_IMM_OVERFLOW)
1814                /*
1815                 * this instruction generated an overflow when
1816                 * trying to access the literal pool, so
1817                 * delegate this filter to the kernel interpreter.
1818                 */
1819                return -1;
1820        return 0;
1821}
1822
1823static int build_body(struct jit_ctx *ctx)
1824{
1825        const struct bpf_prog *prog = ctx->prog;
1826        unsigned int i;
1827
1828        for (i = 0; i < prog->len; i++) {
1829                const struct bpf_insn *insn = &(prog->insnsi[i]);
1830                int ret;
1831
1832                ret = build_insn(insn, ctx);
1833
1834                /* It's used with loading the 64 bit immediate value. */
1835                if (ret > 0) {
1836                        i++;
1837                        if (ctx->target == NULL)
1838                                ctx->offsets[i] = ctx->idx;
1839                        continue;
1840                }
1841
1842                if (ctx->target == NULL)
1843                        ctx->offsets[i] = ctx->idx;
1844
1845                /* If unsuccesfull, return with error code */
1846                if (ret)
1847                        return ret;
1848        }
1849        return 0;
1850}
1851
1852static int validate_code(struct jit_ctx *ctx)
1853{
1854        int i;
1855
1856        for (i = 0; i < ctx->idx; i++) {
1857                if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1858                        return -1;
1859        }
1860
1861        return 0;
1862}
1863
1864void bpf_jit_compile(struct bpf_prog *prog)
1865{
1866        /* Nothing to do here. We support Internal BPF. */
1867}
1868
1869bool bpf_jit_needs_zext(void)
1870{
1871        return true;
1872}
1873
1874struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1875{
1876        struct bpf_prog *tmp, *orig_prog = prog;
1877        struct bpf_binary_header *header;
1878        bool tmp_blinded = false;
1879        struct jit_ctx ctx;
1880        unsigned int tmp_idx;
1881        unsigned int image_size;
1882        u8 *image_ptr;
1883
1884        /* If BPF JIT was not enabled then we must fall back to
1885         * the interpreter.
1886         */
1887        if (!prog->jit_requested)
1888                return orig_prog;
1889
1890        /* If constant blinding was enabled and we failed during blinding
1891         * then we must fall back to the interpreter. Otherwise, we save
1892         * the new JITed code.
1893         */
1894        tmp = bpf_jit_blind_constants(prog);
1895
1896        if (IS_ERR(tmp))
1897                return orig_prog;
1898        if (tmp != prog) {
1899                tmp_blinded = true;
1900                prog = tmp;
1901        }
1902
1903        memset(&ctx, 0, sizeof(ctx));
1904        ctx.prog = prog;
1905        ctx.cpu_architecture = cpu_architecture();
1906
1907        /* Not able to allocate memory for offsets[] , then
1908         * we must fall back to the interpreter
1909         */
1910        ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1911        if (ctx.offsets == NULL) {
1912                prog = orig_prog;
1913                goto out;
1914        }
1915
1916        /* 1) fake pass to find in the length of the JITed code,
1917         * to compute ctx->offsets and other context variables
1918         * needed to compute final JITed code.
1919         * Also, calculate random starting pointer/start of JITed code
1920         * which is prefixed by random number of fault instructions.
1921         *
1922         * If the first pass fails then there is no chance of it
1923         * being successful in the second pass, so just fall back
1924         * to the interpreter.
1925         */
1926        if (build_body(&ctx)) {
1927                prog = orig_prog;
1928                goto out_off;
1929        }
1930
1931        tmp_idx = ctx.idx;
1932        build_prologue(&ctx);
1933        ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1934
1935        ctx.epilogue_offset = ctx.idx;
1936
1937#if __LINUX_ARM_ARCH__ < 7
1938        tmp_idx = ctx.idx;
1939        build_epilogue(&ctx);
1940        ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1941
1942        ctx.idx += ctx.imm_count;
1943        if (ctx.imm_count) {
1944                ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1945                if (ctx.imms == NULL) {
1946                        prog = orig_prog;
1947                        goto out_off;
1948                }
1949        }
1950#else
1951        /* there's nothing about the epilogue on ARMv7 */
1952        build_epilogue(&ctx);
1953#endif
1954        /* Now we can get the actual image size of the JITed arm code.
1955         * Currently, we are not considering the THUMB-2 instructions
1956         * for jit, although it can decrease the size of the image.
1957         *
1958         * As each arm instruction is of length 32bit, we are translating
1959         * number of JITed intructions into the size required to store these
1960         * JITed code.
1961         */
1962        image_size = sizeof(u32) * ctx.idx;
1963
1964        /* Now we know the size of the structure to make */
1965        header = bpf_jit_binary_alloc(image_size, &image_ptr,
1966                                      sizeof(u32), jit_fill_hole);
1967        /* Not able to allocate memory for the structure then
1968         * we must fall back to the interpretation
1969         */
1970        if (header == NULL) {
1971                prog = orig_prog;
1972                goto out_imms;
1973        }
1974
1975        /* 2.) Actual pass to generate final JIT code */
1976        ctx.target = (u32 *) image_ptr;
1977        ctx.idx = 0;
1978
1979        build_prologue(&ctx);
1980
1981        /* If building the body of the JITed code fails somehow,
1982         * we fall back to the interpretation.
1983         */
1984        if (build_body(&ctx) < 0) {
1985                image_ptr = NULL;
1986                bpf_jit_binary_free(header);
1987                prog = orig_prog;
1988                goto out_imms;
1989        }
1990        build_epilogue(&ctx);
1991
1992        /* 3.) Extra pass to validate JITed Code */
1993        if (validate_code(&ctx)) {
1994                image_ptr = NULL;
1995                bpf_jit_binary_free(header);
1996                prog = orig_prog;
1997                goto out_imms;
1998        }
1999        flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2000
2001        if (bpf_jit_enable > 1)
2002                /* there are 2 passes here */
2003                bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2004
2005        bpf_jit_binary_lock_ro(header);
2006        prog->bpf_func = (void *)ctx.target;
2007        prog->jited = 1;
2008        prog->jited_len = image_size;
2009
2010out_imms:
2011#if __LINUX_ARM_ARCH__ < 7
2012        if (ctx.imm_count)
2013                kfree(ctx.imms);
2014#endif
2015out_off:
2016        kfree(ctx.offsets);
2017out:
2018        if (tmp_blinded)
2019                bpf_jit_prog_release_other(prog, prog == orig_prog ?
2020                                           tmp : orig_prog);
2021        return prog;
2022}
2023
2024