linux/arch/microblaze/mm/fault.c
<<
>>
Prefs
   1/*
   2 *  arch/microblaze/mm/fault.c
   3 *
   4 *    Copyright (C) 2007 Xilinx, Inc.  All rights reserved.
   5 *
   6 *  Derived from "arch/ppc/mm/fault.c"
   7 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   8 *
   9 *  Derived from "arch/i386/mm/fault.c"
  10 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  11 *
  12 *  Modified by Cort Dougan and Paul Mackerras.
  13 *
  14 * This file is subject to the terms and conditions of the GNU General
  15 * Public License.  See the file COPYING in the main directory of this
  16 * archive for more details.
  17 *
  18 */
  19
  20#include <linux/extable.h>
  21#include <linux/signal.h>
  22#include <linux/sched.h>
  23#include <linux/kernel.h>
  24#include <linux/errno.h>
  25#include <linux/string.h>
  26#include <linux/types.h>
  27#include <linux/ptrace.h>
  28#include <linux/mman.h>
  29#include <linux/mm.h>
  30#include <linux/interrupt.h>
  31
  32#include <asm/page.h>
  33#include <asm/mmu.h>
  34#include <linux/mmu_context.h>
  35#include <linux/uaccess.h>
  36#include <asm/exceptions.h>
  37
  38static unsigned long pte_misses;        /* updated by do_page_fault() */
  39static unsigned long pte_errors;        /* updated by do_page_fault() */
  40
  41/*
  42 * Check whether the instruction at regs->pc is a store using
  43 * an update addressing form which will update r1.
  44 */
  45static int store_updates_sp(struct pt_regs *regs)
  46{
  47        unsigned int inst;
  48
  49        if (get_user(inst, (unsigned int __user *)regs->pc))
  50                return 0;
  51        /* check for 1 in the rD field */
  52        if (((inst >> 21) & 0x1f) != 1)
  53                return 0;
  54        /* check for store opcodes */
  55        if ((inst & 0xd0000000) == 0xd0000000)
  56                return 1;
  57        return 0;
  58}
  59
  60
  61/*
  62 * bad_page_fault is called when we have a bad access from the kernel.
  63 * It is called from do_page_fault above and from some of the procedures
  64 * in traps.c.
  65 */
  66void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
  67{
  68        const struct exception_table_entry *fixup;
  69/* MS: no context */
  70        /* Are we prepared to handle this fault?  */
  71        fixup = search_exception_tables(regs->pc);
  72        if (fixup) {
  73                regs->pc = fixup->fixup;
  74                return;
  75        }
  76
  77        /* kernel has accessed a bad area */
  78        die("kernel access of bad area", regs, sig);
  79}
  80
  81/*
  82 * The error_code parameter is ESR for a data fault,
  83 * 0 for an instruction fault.
  84 */
  85void do_page_fault(struct pt_regs *regs, unsigned long address,
  86                   unsigned long error_code)
  87{
  88        struct vm_area_struct *vma;
  89        struct mm_struct *mm = current->mm;
  90        int code = SEGV_MAPERR;
  91        int is_write = error_code & ESR_S;
  92        vm_fault_t fault;
  93        unsigned int flags = FAULT_FLAG_DEFAULT;
  94
  95        regs->ear = address;
  96        regs->esr = error_code;
  97
  98        /* On a kernel SLB miss we can only check for a valid exception entry */
  99        if (unlikely(kernel_mode(regs) && (address >= TASK_SIZE))) {
 100                pr_warn("kernel task_size exceed");
 101                _exception(SIGSEGV, regs, code, address);
 102        }
 103
 104        /* for instr TLB miss and instr storage exception ESR_S is undefined */
 105        if ((error_code & 0x13) == 0x13 || (error_code & 0x11) == 0x11)
 106                is_write = 0;
 107
 108        if (unlikely(faulthandler_disabled() || !mm)) {
 109                if (kernel_mode(regs))
 110                        goto bad_area_nosemaphore;
 111
 112                /* faulthandler_disabled() in user mode is really bad,
 113                   as is current->mm == NULL. */
 114                pr_emerg("Page fault in user mode with faulthandler_disabled(), mm = %p\n",
 115                         mm);
 116                pr_emerg("r15 = %lx  MSR = %lx\n",
 117                       regs->r15, regs->msr);
 118                die("Weird page fault", regs, SIGSEGV);
 119        }
 120
 121        if (user_mode(regs))
 122                flags |= FAULT_FLAG_USER;
 123
 124        /* When running in the kernel we expect faults to occur only to
 125         * addresses in user space.  All other faults represent errors in the
 126         * kernel and should generate an OOPS.  Unfortunately, in the case of an
 127         * erroneous fault occurring in a code path which already holds mmap_lock
 128         * we will deadlock attempting to validate the fault against the
 129         * address space.  Luckily the kernel only validly references user
 130         * space from well defined areas of code, which are listed in the
 131         * exceptions table.
 132         *
 133         * As the vast majority of faults will be valid we will only perform
 134         * the source reference check when there is a possibility of a deadlock.
 135         * Attempt to lock the address space, if we cannot we then validate the
 136         * source.  If this is invalid we can skip the address space check,
 137         * thus avoiding the deadlock.
 138         */
 139        if (unlikely(!mmap_read_trylock(mm))) {
 140                if (kernel_mode(regs) && !search_exception_tables(regs->pc))
 141                        goto bad_area_nosemaphore;
 142
 143retry:
 144                mmap_read_lock(mm);
 145        }
 146
 147        vma = find_vma(mm, address);
 148        if (unlikely(!vma))
 149                goto bad_area;
 150
 151        if (vma->vm_start <= address)
 152                goto good_area;
 153
 154        if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
 155                goto bad_area;
 156
 157        if (unlikely(!is_write))
 158                goto bad_area;
 159
 160        /*
 161         * N.B. The ABI allows programs to access up to
 162         * a few hundred bytes below the stack pointer (TBD).
 163         * The kernel signal delivery code writes up to about 1.5kB
 164         * below the stack pointer (r1) before decrementing it.
 165         * The exec code can write slightly over 640kB to the stack
 166         * before setting the user r1.  Thus we allow the stack to
 167         * expand to 1MB without further checks.
 168         */
 169        if (unlikely(address + 0x100000 < vma->vm_end)) {
 170
 171                /* get user regs even if this fault is in kernel mode */
 172                struct pt_regs *uregs = current->thread.regs;
 173                if (uregs == NULL)
 174                        goto bad_area;
 175
 176                /*
 177                 * A user-mode access to an address a long way below
 178                 * the stack pointer is only valid if the instruction
 179                 * is one which would update the stack pointer to the
 180                 * address accessed if the instruction completed,
 181                 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
 182                 * (or the byte, halfword, float or double forms).
 183                 *
 184                 * If we don't check this then any write to the area
 185                 * between the last mapped region and the stack will
 186                 * expand the stack rather than segfaulting.
 187                 */
 188                if (address + 2048 < uregs->r1
 189                        && (kernel_mode(regs) || !store_updates_sp(regs)))
 190                                goto bad_area;
 191        }
 192        if (expand_stack(vma, address))
 193                goto bad_area;
 194
 195good_area:
 196        code = SEGV_ACCERR;
 197
 198        /* a write */
 199        if (unlikely(is_write)) {
 200                if (unlikely(!(vma->vm_flags & VM_WRITE)))
 201                        goto bad_area;
 202                flags |= FAULT_FLAG_WRITE;
 203        /* a read */
 204        } else {
 205                /* protection fault */
 206                if (unlikely(error_code & 0x08000000))
 207                        goto bad_area;
 208                if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC))))
 209                        goto bad_area;
 210        }
 211
 212        /*
 213         * If for any reason at all we couldn't handle the fault,
 214         * make sure we exit gracefully rather than endlessly redo
 215         * the fault.
 216         */
 217        fault = handle_mm_fault(vma, address, flags);
 218
 219        if (fault_signal_pending(fault, regs))
 220                return;
 221
 222        if (unlikely(fault & VM_FAULT_ERROR)) {
 223                if (fault & VM_FAULT_OOM)
 224                        goto out_of_memory;
 225                else if (fault & VM_FAULT_SIGSEGV)
 226                        goto bad_area;
 227                else if (fault & VM_FAULT_SIGBUS)
 228                        goto do_sigbus;
 229                BUG();
 230        }
 231
 232        if (flags & FAULT_FLAG_ALLOW_RETRY) {
 233                if (unlikely(fault & VM_FAULT_MAJOR))
 234                        current->maj_flt++;
 235                else
 236                        current->min_flt++;
 237                if (fault & VM_FAULT_RETRY) {
 238                        flags |= FAULT_FLAG_TRIED;
 239
 240                        /*
 241                         * No need to mmap_read_unlock(mm) as we would
 242                         * have already released it in __lock_page_or_retry
 243                         * in mm/filemap.c.
 244                         */
 245
 246                        goto retry;
 247                }
 248        }
 249
 250        mmap_read_unlock(mm);
 251
 252        /*
 253         * keep track of tlb+htab misses that are good addrs but
 254         * just need pte's created via handle_mm_fault()
 255         * -- Cort
 256         */
 257        pte_misses++;
 258        return;
 259
 260bad_area:
 261        mmap_read_unlock(mm);
 262
 263bad_area_nosemaphore:
 264        pte_errors++;
 265
 266        /* User mode accesses cause a SIGSEGV */
 267        if (user_mode(regs)) {
 268                _exception(SIGSEGV, regs, code, address);
 269                return;
 270        }
 271
 272        bad_page_fault(regs, address, SIGSEGV);
 273        return;
 274
 275/*
 276 * We ran out of memory, or some other thing happened to us that made
 277 * us unable to handle the page fault gracefully.
 278 */
 279out_of_memory:
 280        mmap_read_unlock(mm);
 281        if (!user_mode(regs))
 282                bad_page_fault(regs, address, SIGKILL);
 283        else
 284                pagefault_out_of_memory();
 285        return;
 286
 287do_sigbus:
 288        mmap_read_unlock(mm);
 289        if (user_mode(regs)) {
 290                force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 291                return;
 292        }
 293        bad_page_fault(regs, address, SIGBUS);
 294}
 295