linux/arch/powerpc/kernel/smp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * SMP support for ppc.
   4 *
   5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
   6 * deal of code from the sparc and intel versions.
   7 *
   8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
   9 *
  10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
  11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
  12 */
  13
  14#undef DEBUG
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/task_stack.h>
  20#include <linux/sched/topology.h>
  21#include <linux/smp.h>
  22#include <linux/interrupt.h>
  23#include <linux/delay.h>
  24#include <linux/init.h>
  25#include <linux/spinlock.h>
  26#include <linux/cache.h>
  27#include <linux/err.h>
  28#include <linux/device.h>
  29#include <linux/cpu.h>
  30#include <linux/notifier.h>
  31#include <linux/topology.h>
  32#include <linux/profile.h>
  33#include <linux/processor.h>
  34#include <linux/random.h>
  35#include <linux/stackprotector.h>
  36#include <linux/pgtable.h>
  37
  38#include <asm/ptrace.h>
  39#include <linux/atomic.h>
  40#include <asm/irq.h>
  41#include <asm/hw_irq.h>
  42#include <asm/kvm_ppc.h>
  43#include <asm/dbell.h>
  44#include <asm/page.h>
  45#include <asm/prom.h>
  46#include <asm/smp.h>
  47#include <asm/time.h>
  48#include <asm/machdep.h>
  49#include <asm/cputhreads.h>
  50#include <asm/cputable.h>
  51#include <asm/mpic.h>
  52#include <asm/vdso_datapage.h>
  53#ifdef CONFIG_PPC64
  54#include <asm/paca.h>
  55#endif
  56#include <asm/vdso.h>
  57#include <asm/debug.h>
  58#include <asm/kexec.h>
  59#include <asm/asm-prototypes.h>
  60#include <asm/cpu_has_feature.h>
  61#include <asm/ftrace.h>
  62
  63#ifdef DEBUG
  64#include <asm/udbg.h>
  65#define DBG(fmt...) udbg_printf(fmt)
  66#else
  67#define DBG(fmt...)
  68#endif
  69
  70#ifdef CONFIG_HOTPLUG_CPU
  71/* State of each CPU during hotplug phases */
  72static DEFINE_PER_CPU(int, cpu_state) = { 0 };
  73#endif
  74
  75struct task_struct *secondary_current;
  76bool has_big_cores;
  77
  78DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
  79DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
  80DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
  81DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
  82
  83EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  84EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
  85EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  86EXPORT_SYMBOL_GPL(has_big_cores);
  87
  88#define MAX_THREAD_LIST_SIZE    8
  89#define THREAD_GROUP_SHARE_L1   1
  90struct thread_groups {
  91        unsigned int property;
  92        unsigned int nr_groups;
  93        unsigned int threads_per_group;
  94        unsigned int thread_list[MAX_THREAD_LIST_SIZE];
  95};
  96
  97/*
  98 * On big-cores system, cpu_l1_cache_map for each CPU corresponds to
  99 * the set its siblings that share the L1-cache.
 100 */
 101DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map);
 102
 103/* SMP operations for this machine */
 104struct smp_ops_t *smp_ops;
 105
 106/* Can't be static due to PowerMac hackery */
 107volatile unsigned int cpu_callin_map[NR_CPUS];
 108
 109int smt_enabled_at_boot = 1;
 110
 111/*
 112 * Returns 1 if the specified cpu should be brought up during boot.
 113 * Used to inhibit booting threads if they've been disabled or
 114 * limited on the command line
 115 */
 116int smp_generic_cpu_bootable(unsigned int nr)
 117{
 118        /* Special case - we inhibit secondary thread startup
 119         * during boot if the user requests it.
 120         */
 121        if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
 122                if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
 123                        return 0;
 124                if (smt_enabled_at_boot
 125                    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
 126                        return 0;
 127        }
 128
 129        return 1;
 130}
 131
 132
 133#ifdef CONFIG_PPC64
 134int smp_generic_kick_cpu(int nr)
 135{
 136        if (nr < 0 || nr >= nr_cpu_ids)
 137                return -EINVAL;
 138
 139        /*
 140         * The processor is currently spinning, waiting for the
 141         * cpu_start field to become non-zero After we set cpu_start,
 142         * the processor will continue on to secondary_start
 143         */
 144        if (!paca_ptrs[nr]->cpu_start) {
 145                paca_ptrs[nr]->cpu_start = 1;
 146                smp_mb();
 147                return 0;
 148        }
 149
 150#ifdef CONFIG_HOTPLUG_CPU
 151        /*
 152         * Ok it's not there, so it might be soft-unplugged, let's
 153         * try to bring it back
 154         */
 155        generic_set_cpu_up(nr);
 156        smp_wmb();
 157        smp_send_reschedule(nr);
 158#endif /* CONFIG_HOTPLUG_CPU */
 159
 160        return 0;
 161}
 162#endif /* CONFIG_PPC64 */
 163
 164static irqreturn_t call_function_action(int irq, void *data)
 165{
 166        generic_smp_call_function_interrupt();
 167        return IRQ_HANDLED;
 168}
 169
 170static irqreturn_t reschedule_action(int irq, void *data)
 171{
 172        scheduler_ipi();
 173        return IRQ_HANDLED;
 174}
 175
 176#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 177static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
 178{
 179        timer_broadcast_interrupt();
 180        return IRQ_HANDLED;
 181}
 182#endif
 183
 184#ifdef CONFIG_NMI_IPI
 185static irqreturn_t nmi_ipi_action(int irq, void *data)
 186{
 187        smp_handle_nmi_ipi(get_irq_regs());
 188        return IRQ_HANDLED;
 189}
 190#endif
 191
 192static irq_handler_t smp_ipi_action[] = {
 193        [PPC_MSG_CALL_FUNCTION] =  call_function_action,
 194        [PPC_MSG_RESCHEDULE] = reschedule_action,
 195#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 196        [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
 197#endif
 198#ifdef CONFIG_NMI_IPI
 199        [PPC_MSG_NMI_IPI] = nmi_ipi_action,
 200#endif
 201};
 202
 203/*
 204 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
 205 * than going through the call function infrastructure, and strongly
 206 * serialized, so it is more appropriate for debugging.
 207 */
 208const char *smp_ipi_name[] = {
 209        [PPC_MSG_CALL_FUNCTION] =  "ipi call function",
 210        [PPC_MSG_RESCHEDULE] = "ipi reschedule",
 211#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 212        [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
 213#endif
 214#ifdef CONFIG_NMI_IPI
 215        [PPC_MSG_NMI_IPI] = "nmi ipi",
 216#endif
 217};
 218
 219/* optional function to request ipi, for controllers with >= 4 ipis */
 220int smp_request_message_ipi(int virq, int msg)
 221{
 222        int err;
 223
 224        if (msg < 0 || msg > PPC_MSG_NMI_IPI)
 225                return -EINVAL;
 226#ifndef CONFIG_NMI_IPI
 227        if (msg == PPC_MSG_NMI_IPI)
 228                return 1;
 229#endif
 230
 231        err = request_irq(virq, smp_ipi_action[msg],
 232                          IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
 233                          smp_ipi_name[msg], NULL);
 234        WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
 235                virq, smp_ipi_name[msg], err);
 236
 237        return err;
 238}
 239
 240#ifdef CONFIG_PPC_SMP_MUXED_IPI
 241struct cpu_messages {
 242        long messages;                  /* current messages */
 243};
 244static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
 245
 246void smp_muxed_ipi_set_message(int cpu, int msg)
 247{
 248        struct cpu_messages *info = &per_cpu(ipi_message, cpu);
 249        char *message = (char *)&info->messages;
 250
 251        /*
 252         * Order previous accesses before accesses in the IPI handler.
 253         */
 254        smp_mb();
 255        message[msg] = 1;
 256}
 257
 258void smp_muxed_ipi_message_pass(int cpu, int msg)
 259{
 260        smp_muxed_ipi_set_message(cpu, msg);
 261
 262        /*
 263         * cause_ipi functions are required to include a full barrier
 264         * before doing whatever causes the IPI.
 265         */
 266        smp_ops->cause_ipi(cpu);
 267}
 268
 269#ifdef __BIG_ENDIAN__
 270#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
 271#else
 272#define IPI_MESSAGE(A) (1uL << (8 * (A)))
 273#endif
 274
 275irqreturn_t smp_ipi_demux(void)
 276{
 277        mb();   /* order any irq clear */
 278
 279        return smp_ipi_demux_relaxed();
 280}
 281
 282/* sync-free variant. Callers should ensure synchronization */
 283irqreturn_t smp_ipi_demux_relaxed(void)
 284{
 285        struct cpu_messages *info;
 286        unsigned long all;
 287
 288        info = this_cpu_ptr(&ipi_message);
 289        do {
 290                all = xchg(&info->messages, 0);
 291#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
 292                /*
 293                 * Must check for PPC_MSG_RM_HOST_ACTION messages
 294                 * before PPC_MSG_CALL_FUNCTION messages because when
 295                 * a VM is destroyed, we call kick_all_cpus_sync()
 296                 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
 297                 * messages have completed before we free any VCPUs.
 298                 */
 299                if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
 300                        kvmppc_xics_ipi_action();
 301#endif
 302                if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
 303                        generic_smp_call_function_interrupt();
 304                if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
 305                        scheduler_ipi();
 306#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 307                if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
 308                        timer_broadcast_interrupt();
 309#endif
 310#ifdef CONFIG_NMI_IPI
 311                if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
 312                        nmi_ipi_action(0, NULL);
 313#endif
 314        } while (info->messages);
 315
 316        return IRQ_HANDLED;
 317}
 318#endif /* CONFIG_PPC_SMP_MUXED_IPI */
 319
 320static inline void do_message_pass(int cpu, int msg)
 321{
 322        if (smp_ops->message_pass)
 323                smp_ops->message_pass(cpu, msg);
 324#ifdef CONFIG_PPC_SMP_MUXED_IPI
 325        else
 326                smp_muxed_ipi_message_pass(cpu, msg);
 327#endif
 328}
 329
 330void smp_send_reschedule(int cpu)
 331{
 332        if (likely(smp_ops))
 333                do_message_pass(cpu, PPC_MSG_RESCHEDULE);
 334}
 335EXPORT_SYMBOL_GPL(smp_send_reschedule);
 336
 337void arch_send_call_function_single_ipi(int cpu)
 338{
 339        do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 340}
 341
 342void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 343{
 344        unsigned int cpu;
 345
 346        for_each_cpu(cpu, mask)
 347                do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
 348}
 349
 350#ifdef CONFIG_NMI_IPI
 351
 352/*
 353 * "NMI IPI" system.
 354 *
 355 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
 356 * a running system. They can be used for crash, debug, halt/reboot, etc.
 357 *
 358 * The IPI call waits with interrupts disabled until all targets enter the
 359 * NMI handler, then returns. Subsequent IPIs can be issued before targets
 360 * have returned from their handlers, so there is no guarantee about
 361 * concurrency or re-entrancy.
 362 *
 363 * A new NMI can be issued before all targets exit the handler.
 364 *
 365 * The IPI call may time out without all targets entering the NMI handler.
 366 * In that case, there is some logic to recover (and ignore subsequent
 367 * NMI interrupts that may eventually be raised), but the platform interrupt
 368 * handler may not be able to distinguish this from other exception causes,
 369 * which may cause a crash.
 370 */
 371
 372static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
 373static struct cpumask nmi_ipi_pending_mask;
 374static bool nmi_ipi_busy = false;
 375static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
 376
 377static void nmi_ipi_lock_start(unsigned long *flags)
 378{
 379        raw_local_irq_save(*flags);
 380        hard_irq_disable();
 381        while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
 382                raw_local_irq_restore(*flags);
 383                spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
 384                raw_local_irq_save(*flags);
 385                hard_irq_disable();
 386        }
 387}
 388
 389static void nmi_ipi_lock(void)
 390{
 391        while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
 392                spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
 393}
 394
 395static void nmi_ipi_unlock(void)
 396{
 397        smp_mb();
 398        WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
 399        atomic_set(&__nmi_ipi_lock, 0);
 400}
 401
 402static void nmi_ipi_unlock_end(unsigned long *flags)
 403{
 404        nmi_ipi_unlock();
 405        raw_local_irq_restore(*flags);
 406}
 407
 408/*
 409 * Platform NMI handler calls this to ack
 410 */
 411int smp_handle_nmi_ipi(struct pt_regs *regs)
 412{
 413        void (*fn)(struct pt_regs *) = NULL;
 414        unsigned long flags;
 415        int me = raw_smp_processor_id();
 416        int ret = 0;
 417
 418        /*
 419         * Unexpected NMIs are possible here because the interrupt may not
 420         * be able to distinguish NMI IPIs from other types of NMIs, or
 421         * because the caller may have timed out.
 422         */
 423        nmi_ipi_lock_start(&flags);
 424        if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
 425                cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 426                fn = READ_ONCE(nmi_ipi_function);
 427                WARN_ON_ONCE(!fn);
 428                ret = 1;
 429        }
 430        nmi_ipi_unlock_end(&flags);
 431
 432        if (fn)
 433                fn(regs);
 434
 435        return ret;
 436}
 437
 438static void do_smp_send_nmi_ipi(int cpu, bool safe)
 439{
 440        if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
 441                return;
 442
 443        if (cpu >= 0) {
 444                do_message_pass(cpu, PPC_MSG_NMI_IPI);
 445        } else {
 446                int c;
 447
 448                for_each_online_cpu(c) {
 449                        if (c == raw_smp_processor_id())
 450                                continue;
 451                        do_message_pass(c, PPC_MSG_NMI_IPI);
 452                }
 453        }
 454}
 455
 456/*
 457 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
 458 * - fn is the target callback function.
 459 * - delay_us > 0 is the delay before giving up waiting for targets to
 460 *   begin executing the handler, == 0 specifies indefinite delay.
 461 */
 462static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
 463                                u64 delay_us, bool safe)
 464{
 465        unsigned long flags;
 466        int me = raw_smp_processor_id();
 467        int ret = 1;
 468
 469        BUG_ON(cpu == me);
 470        BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
 471
 472        if (unlikely(!smp_ops))
 473                return 0;
 474
 475        nmi_ipi_lock_start(&flags);
 476        while (nmi_ipi_busy) {
 477                nmi_ipi_unlock_end(&flags);
 478                spin_until_cond(!nmi_ipi_busy);
 479                nmi_ipi_lock_start(&flags);
 480        }
 481        nmi_ipi_busy = true;
 482        nmi_ipi_function = fn;
 483
 484        WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
 485
 486        if (cpu < 0) {
 487                /* ALL_OTHERS */
 488                cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
 489                cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
 490        } else {
 491                cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
 492        }
 493
 494        nmi_ipi_unlock();
 495
 496        /* Interrupts remain hard disabled */
 497
 498        do_smp_send_nmi_ipi(cpu, safe);
 499
 500        nmi_ipi_lock();
 501        /* nmi_ipi_busy is set here, so unlock/lock is okay */
 502        while (!cpumask_empty(&nmi_ipi_pending_mask)) {
 503                nmi_ipi_unlock();
 504                udelay(1);
 505                nmi_ipi_lock();
 506                if (delay_us) {
 507                        delay_us--;
 508                        if (!delay_us)
 509                                break;
 510                }
 511        }
 512
 513        if (!cpumask_empty(&nmi_ipi_pending_mask)) {
 514                /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
 515                ret = 0;
 516                cpumask_clear(&nmi_ipi_pending_mask);
 517        }
 518
 519        nmi_ipi_function = NULL;
 520        nmi_ipi_busy = false;
 521
 522        nmi_ipi_unlock_end(&flags);
 523
 524        return ret;
 525}
 526
 527int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
 528{
 529        return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
 530}
 531
 532int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
 533{
 534        return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
 535}
 536#endif /* CONFIG_NMI_IPI */
 537
 538#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 539void tick_broadcast(const struct cpumask *mask)
 540{
 541        unsigned int cpu;
 542
 543        for_each_cpu(cpu, mask)
 544                do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
 545}
 546#endif
 547
 548#ifdef CONFIG_DEBUGGER
 549void debugger_ipi_callback(struct pt_regs *regs)
 550{
 551        debugger_ipi(regs);
 552}
 553
 554void smp_send_debugger_break(void)
 555{
 556        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
 557}
 558#endif
 559
 560#ifdef CONFIG_KEXEC_CORE
 561void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
 562{
 563        int cpu;
 564
 565        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
 566        if (kdump_in_progress() && crash_wake_offline) {
 567                for_each_present_cpu(cpu) {
 568                        if (cpu_online(cpu))
 569                                continue;
 570                        /*
 571                         * crash_ipi_callback will wait for
 572                         * all cpus, including offline CPUs.
 573                         * We don't care about nmi_ipi_function.
 574                         * Offline cpus will jump straight into
 575                         * crash_ipi_callback, we can skip the
 576                         * entire NMI dance and waiting for
 577                         * cpus to clear pending mask, etc.
 578                         */
 579                        do_smp_send_nmi_ipi(cpu, false);
 580                }
 581        }
 582}
 583#endif
 584
 585#ifdef CONFIG_NMI_IPI
 586static void nmi_stop_this_cpu(struct pt_regs *regs)
 587{
 588        /*
 589         * IRQs are already hard disabled by the smp_handle_nmi_ipi.
 590         */
 591        spin_begin();
 592        while (1)
 593                spin_cpu_relax();
 594}
 595
 596void smp_send_stop(void)
 597{
 598        smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
 599}
 600
 601#else /* CONFIG_NMI_IPI */
 602
 603static void stop_this_cpu(void *dummy)
 604{
 605        hard_irq_disable();
 606        spin_begin();
 607        while (1)
 608                spin_cpu_relax();
 609}
 610
 611void smp_send_stop(void)
 612{
 613        static bool stopped = false;
 614
 615        /*
 616         * Prevent waiting on csd lock from a previous smp_send_stop.
 617         * This is racy, but in general callers try to do the right
 618         * thing and only fire off one smp_send_stop (e.g., see
 619         * kernel/panic.c)
 620         */
 621        if (stopped)
 622                return;
 623
 624        stopped = true;
 625
 626        smp_call_function(stop_this_cpu, NULL, 0);
 627}
 628#endif /* CONFIG_NMI_IPI */
 629
 630struct task_struct *current_set[NR_CPUS];
 631
 632static void smp_store_cpu_info(int id)
 633{
 634        per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
 635#ifdef CONFIG_PPC_FSL_BOOK3E
 636        per_cpu(next_tlbcam_idx, id)
 637                = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
 638#endif
 639}
 640
 641/*
 642 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
 643 * rather than just passing around the cpumask we pass around a function that
 644 * returns the that cpumask for the given CPU.
 645 */
 646static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
 647{
 648        cpumask_set_cpu(i, get_cpumask(j));
 649        cpumask_set_cpu(j, get_cpumask(i));
 650}
 651
 652#ifdef CONFIG_HOTPLUG_CPU
 653static void set_cpus_unrelated(int i, int j,
 654                struct cpumask *(*get_cpumask)(int))
 655{
 656        cpumask_clear_cpu(i, get_cpumask(j));
 657        cpumask_clear_cpu(j, get_cpumask(i));
 658}
 659#endif
 660
 661/*
 662 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
 663 *                      property for the CPU device node @dn and stores
 664 *                      the parsed output in the thread_groups
 665 *                      structure @tg if the ibm,thread-groups[0]
 666 *                      matches @property.
 667 *
 668 * @dn: The device node of the CPU device.
 669 * @tg: Pointer to a thread group structure into which the parsed
 670 *      output of "ibm,thread-groups" is stored.
 671 * @property: The property of the thread-group that the caller is
 672 *            interested in.
 673 *
 674 * ibm,thread-groups[0..N-1] array defines which group of threads in
 675 * the CPU-device node can be grouped together based on the property.
 676 *
 677 * ibm,thread-groups[0] tells us the property based on which the
 678 * threads are being grouped together. If this value is 1, it implies
 679 * that the threads in the same group share L1, translation cache.
 680 *
 681 * ibm,thread-groups[1] tells us how many such thread groups exist.
 682 *
 683 * ibm,thread-groups[2] tells us the number of threads in each such
 684 * group.
 685 *
 686 * ibm,thread-groups[3..N-1] is the list of threads identified by
 687 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
 688 * the grouping.
 689 *
 690 * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it
 691 * implies that there are 2 groups of 4 threads each, where each group
 692 * of threads share L1, translation cache.
 693 *
 694 * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8}
 695 * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10,
 696 * 11, 12} structure
 697 *
 698 * Returns 0 on success, -EINVAL if the property does not exist,
 699 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 700 * property data isn't large enough.
 701 */
 702static int parse_thread_groups(struct device_node *dn,
 703                               struct thread_groups *tg,
 704                               unsigned int property)
 705{
 706        int i;
 707        u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE];
 708        u32 *thread_list;
 709        size_t total_threads;
 710        int ret;
 711
 712        ret = of_property_read_u32_array(dn, "ibm,thread-groups",
 713                                         thread_group_array, 3);
 714        if (ret)
 715                return ret;
 716
 717        tg->property = thread_group_array[0];
 718        tg->nr_groups = thread_group_array[1];
 719        tg->threads_per_group = thread_group_array[2];
 720        if (tg->property != property ||
 721            tg->nr_groups < 1 ||
 722            tg->threads_per_group < 1)
 723                return -ENODATA;
 724
 725        total_threads = tg->nr_groups * tg->threads_per_group;
 726
 727        ret = of_property_read_u32_array(dn, "ibm,thread-groups",
 728                                         thread_group_array,
 729                                         3 + total_threads);
 730        if (ret)
 731                return ret;
 732
 733        thread_list = &thread_group_array[3];
 734
 735        for (i = 0 ; i < total_threads; i++)
 736                tg->thread_list[i] = thread_list[i];
 737
 738        return 0;
 739}
 740
 741/*
 742 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
 743 *                              that @cpu belongs to.
 744 *
 745 * @cpu : The logical CPU whose thread group is being searched.
 746 * @tg : The thread-group structure of the CPU node which @cpu belongs
 747 *       to.
 748 *
 749 * Returns the index to tg->thread_list that points to the the start
 750 * of the thread_group that @cpu belongs to.
 751 *
 752 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
 753 * tg->thread_list.
 754 */
 755static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
 756{
 757        int hw_cpu_id = get_hard_smp_processor_id(cpu);
 758        int i, j;
 759
 760        for (i = 0; i < tg->nr_groups; i++) {
 761                int group_start = i * tg->threads_per_group;
 762
 763                for (j = 0; j < tg->threads_per_group; j++) {
 764                        int idx = group_start + j;
 765
 766                        if (tg->thread_list[idx] == hw_cpu_id)
 767                                return group_start;
 768                }
 769        }
 770
 771        return -1;
 772}
 773
 774static int init_cpu_l1_cache_map(int cpu)
 775
 776{
 777        struct device_node *dn = of_get_cpu_node(cpu, NULL);
 778        struct thread_groups tg = {.property = 0,
 779                                   .nr_groups = 0,
 780                                   .threads_per_group = 0};
 781        int first_thread = cpu_first_thread_sibling(cpu);
 782        int i, cpu_group_start = -1, err = 0;
 783
 784        if (!dn)
 785                return -ENODATA;
 786
 787        err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1);
 788        if (err)
 789                goto out;
 790
 791        zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu),
 792                                GFP_KERNEL,
 793                                cpu_to_node(cpu));
 794
 795        cpu_group_start = get_cpu_thread_group_start(cpu, &tg);
 796
 797        if (unlikely(cpu_group_start == -1)) {
 798                WARN_ON_ONCE(1);
 799                err = -ENODATA;
 800                goto out;
 801        }
 802
 803        for (i = first_thread; i < first_thread + threads_per_core; i++) {
 804                int i_group_start = get_cpu_thread_group_start(i, &tg);
 805
 806                if (unlikely(i_group_start == -1)) {
 807                        WARN_ON_ONCE(1);
 808                        err = -ENODATA;
 809                        goto out;
 810                }
 811
 812                if (i_group_start == cpu_group_start)
 813                        cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu));
 814        }
 815
 816out:
 817        of_node_put(dn);
 818        return err;
 819}
 820
 821static int init_big_cores(void)
 822{
 823        int cpu;
 824
 825        for_each_possible_cpu(cpu) {
 826                int err = init_cpu_l1_cache_map(cpu);
 827
 828                if (err)
 829                        return err;
 830
 831                zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
 832                                        GFP_KERNEL,
 833                                        cpu_to_node(cpu));
 834        }
 835
 836        has_big_cores = true;
 837        return 0;
 838}
 839
 840void __init smp_prepare_cpus(unsigned int max_cpus)
 841{
 842        unsigned int cpu;
 843
 844        DBG("smp_prepare_cpus\n");
 845
 846        /* 
 847         * setup_cpu may need to be called on the boot cpu. We havent
 848         * spun any cpus up but lets be paranoid.
 849         */
 850        BUG_ON(boot_cpuid != smp_processor_id());
 851
 852        /* Fixup boot cpu */
 853        smp_store_cpu_info(boot_cpuid);
 854        cpu_callin_map[boot_cpuid] = 1;
 855
 856        for_each_possible_cpu(cpu) {
 857                zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
 858                                        GFP_KERNEL, cpu_to_node(cpu));
 859                zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
 860                                        GFP_KERNEL, cpu_to_node(cpu));
 861                zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
 862                                        GFP_KERNEL, cpu_to_node(cpu));
 863                /*
 864                 * numa_node_id() works after this.
 865                 */
 866                if (cpu_present(cpu)) {
 867                        set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
 868                        set_cpu_numa_mem(cpu,
 869                                local_memory_node(numa_cpu_lookup_table[cpu]));
 870                }
 871        }
 872
 873        /* Init the cpumasks so the boot CPU is related to itself */
 874        cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
 875        cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
 876        cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
 877
 878        init_big_cores();
 879        if (has_big_cores) {
 880                cpumask_set_cpu(boot_cpuid,
 881                                cpu_smallcore_mask(boot_cpuid));
 882        }
 883
 884        if (smp_ops && smp_ops->probe)
 885                smp_ops->probe();
 886}
 887
 888void smp_prepare_boot_cpu(void)
 889{
 890        BUG_ON(smp_processor_id() != boot_cpuid);
 891#ifdef CONFIG_PPC64
 892        paca_ptrs[boot_cpuid]->__current = current;
 893#endif
 894        set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
 895        current_set[boot_cpuid] = current;
 896}
 897
 898#ifdef CONFIG_HOTPLUG_CPU
 899
 900int generic_cpu_disable(void)
 901{
 902        unsigned int cpu = smp_processor_id();
 903
 904        if (cpu == boot_cpuid)
 905                return -EBUSY;
 906
 907        set_cpu_online(cpu, false);
 908#ifdef CONFIG_PPC64
 909        vdso_data->processorCount--;
 910#endif
 911        /* Update affinity of all IRQs previously aimed at this CPU */
 912        irq_migrate_all_off_this_cpu();
 913
 914        /*
 915         * Depending on the details of the interrupt controller, it's possible
 916         * that one of the interrupts we just migrated away from this CPU is
 917         * actually already pending on this CPU. If we leave it in that state
 918         * the interrupt will never be EOI'ed, and will never fire again. So
 919         * temporarily enable interrupts here, to allow any pending interrupt to
 920         * be received (and EOI'ed), before we take this CPU offline.
 921         */
 922        local_irq_enable();
 923        mdelay(1);
 924        local_irq_disable();
 925
 926        return 0;
 927}
 928
 929void generic_cpu_die(unsigned int cpu)
 930{
 931        int i;
 932
 933        for (i = 0; i < 100; i++) {
 934                smp_rmb();
 935                if (is_cpu_dead(cpu))
 936                        return;
 937                msleep(100);
 938        }
 939        printk(KERN_ERR "CPU%d didn't die...\n", cpu);
 940}
 941
 942void generic_set_cpu_dead(unsigned int cpu)
 943{
 944        per_cpu(cpu_state, cpu) = CPU_DEAD;
 945}
 946
 947/*
 948 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
 949 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
 950 * which makes the delay in generic_cpu_die() not happen.
 951 */
 952void generic_set_cpu_up(unsigned int cpu)
 953{
 954        per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
 955}
 956
 957int generic_check_cpu_restart(unsigned int cpu)
 958{
 959        return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
 960}
 961
 962int is_cpu_dead(unsigned int cpu)
 963{
 964        return per_cpu(cpu_state, cpu) == CPU_DEAD;
 965}
 966
 967static bool secondaries_inhibited(void)
 968{
 969        return kvm_hv_mode_active();
 970}
 971
 972#else /* HOTPLUG_CPU */
 973
 974#define secondaries_inhibited()         0
 975
 976#endif
 977
 978static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
 979{
 980#ifdef CONFIG_PPC64
 981        paca_ptrs[cpu]->__current = idle;
 982        paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
 983                                 THREAD_SIZE - STACK_FRAME_OVERHEAD;
 984#endif
 985        idle->cpu = cpu;
 986        secondary_current = current_set[cpu] = idle;
 987}
 988
 989int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 990{
 991        int rc, c;
 992
 993        /*
 994         * Don't allow secondary threads to come online if inhibited
 995         */
 996        if (threads_per_core > 1 && secondaries_inhibited() &&
 997            cpu_thread_in_subcore(cpu))
 998                return -EBUSY;
 999
1000        if (smp_ops == NULL ||
1001            (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1002                return -EINVAL;
1003
1004        cpu_idle_thread_init(cpu, tidle);
1005
1006        /*
1007         * The platform might need to allocate resources prior to bringing
1008         * up the CPU
1009         */
1010        if (smp_ops->prepare_cpu) {
1011                rc = smp_ops->prepare_cpu(cpu);
1012                if (rc)
1013                        return rc;
1014        }
1015
1016        /* Make sure callin-map entry is 0 (can be leftover a CPU
1017         * hotplug
1018         */
1019        cpu_callin_map[cpu] = 0;
1020
1021        /* The information for processor bringup must
1022         * be written out to main store before we release
1023         * the processor.
1024         */
1025        smp_mb();
1026
1027        /* wake up cpus */
1028        DBG("smp: kicking cpu %d\n", cpu);
1029        rc = smp_ops->kick_cpu(cpu);
1030        if (rc) {
1031                pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1032                return rc;
1033        }
1034
1035        /*
1036         * wait to see if the cpu made a callin (is actually up).
1037         * use this value that I found through experimentation.
1038         * -- Cort
1039         */
1040        if (system_state < SYSTEM_RUNNING)
1041                for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1042                        udelay(100);
1043#ifdef CONFIG_HOTPLUG_CPU
1044        else
1045                /*
1046                 * CPUs can take much longer to come up in the
1047                 * hotplug case.  Wait five seconds.
1048                 */
1049                for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1050                        msleep(1);
1051#endif
1052
1053        if (!cpu_callin_map[cpu]) {
1054                printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1055                return -ENOENT;
1056        }
1057
1058        DBG("Processor %u found.\n", cpu);
1059
1060        if (smp_ops->give_timebase)
1061                smp_ops->give_timebase();
1062
1063        /* Wait until cpu puts itself in the online & active maps */
1064        spin_until_cond(cpu_online(cpu));
1065
1066        return 0;
1067}
1068
1069/* Return the value of the reg property corresponding to the given
1070 * logical cpu.
1071 */
1072int cpu_to_core_id(int cpu)
1073{
1074        struct device_node *np;
1075        const __be32 *reg;
1076        int id = -1;
1077
1078        np = of_get_cpu_node(cpu, NULL);
1079        if (!np)
1080                goto out;
1081
1082        reg = of_get_property(np, "reg", NULL);
1083        if (!reg)
1084                goto out;
1085
1086        id = be32_to_cpup(reg);
1087out:
1088        of_node_put(np);
1089        return id;
1090}
1091EXPORT_SYMBOL_GPL(cpu_to_core_id);
1092
1093/* Helper routines for cpu to core mapping */
1094int cpu_core_index_of_thread(int cpu)
1095{
1096        return cpu >> threads_shift;
1097}
1098EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1099
1100int cpu_first_thread_of_core(int core)
1101{
1102        return core << threads_shift;
1103}
1104EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1105
1106/* Must be called when no change can occur to cpu_present_mask,
1107 * i.e. during cpu online or offline.
1108 */
1109static struct device_node *cpu_to_l2cache(int cpu)
1110{
1111        struct device_node *np;
1112        struct device_node *cache;
1113
1114        if (!cpu_present(cpu))
1115                return NULL;
1116
1117        np = of_get_cpu_node(cpu, NULL);
1118        if (np == NULL)
1119                return NULL;
1120
1121        cache = of_find_next_cache_node(np);
1122
1123        of_node_put(np);
1124
1125        return cache;
1126}
1127
1128static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
1129{
1130        struct device_node *l2_cache, *np;
1131        int i;
1132
1133        l2_cache = cpu_to_l2cache(cpu);
1134        if (!l2_cache)
1135                return false;
1136
1137        for_each_cpu(i, cpu_online_mask) {
1138                /*
1139                 * when updating the marks the current CPU has not been marked
1140                 * online, but we need to update the cache masks
1141                 */
1142                np = cpu_to_l2cache(i);
1143                if (!np)
1144                        continue;
1145
1146                if (np == l2_cache)
1147                        set_cpus_related(cpu, i, mask_fn);
1148
1149                of_node_put(np);
1150        }
1151        of_node_put(l2_cache);
1152
1153        return true;
1154}
1155
1156#ifdef CONFIG_HOTPLUG_CPU
1157static void remove_cpu_from_masks(int cpu)
1158{
1159        int i;
1160
1161        /* NB: cpu_core_mask is a superset of the others */
1162        for_each_cpu(i, cpu_core_mask(cpu)) {
1163                set_cpus_unrelated(cpu, i, cpu_core_mask);
1164                set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1165                set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1166                if (has_big_cores)
1167                        set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1168        }
1169}
1170#endif
1171
1172static inline void add_cpu_to_smallcore_masks(int cpu)
1173{
1174        struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu);
1175        int i, first_thread = cpu_first_thread_sibling(cpu);
1176
1177        if (!has_big_cores)
1178                return;
1179
1180        cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1181
1182        for (i = first_thread; i < first_thread + threads_per_core; i++) {
1183                if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map))
1184                        set_cpus_related(i, cpu, cpu_smallcore_mask);
1185        }
1186}
1187
1188int get_physical_package_id(int cpu)
1189{
1190        int pkg_id = cpu_to_chip_id(cpu);
1191
1192        /*
1193         * If the platform is PowerNV or Guest on KVM, ibm,chip-id is
1194         * defined. Hence we would return the chip-id as the result of
1195         * get_physical_package_id.
1196         */
1197        if (pkg_id == -1 && firmware_has_feature(FW_FEATURE_LPAR) &&
1198            IS_ENABLED(CONFIG_PPC_SPLPAR)) {
1199                struct device_node *np = of_get_cpu_node(cpu, NULL);
1200                pkg_id = of_node_to_nid(np);
1201                of_node_put(np);
1202        }
1203
1204        return pkg_id;
1205}
1206EXPORT_SYMBOL_GPL(get_physical_package_id);
1207
1208static void add_cpu_to_masks(int cpu)
1209{
1210        int first_thread = cpu_first_thread_sibling(cpu);
1211        int pkg_id = get_physical_package_id(cpu);
1212        int i;
1213
1214        /*
1215         * This CPU will not be in the online mask yet so we need to manually
1216         * add it to it's own thread sibling mask.
1217         */
1218        cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1219
1220        for (i = first_thread; i < first_thread + threads_per_core; i++)
1221                if (cpu_online(i))
1222                        set_cpus_related(i, cpu, cpu_sibling_mask);
1223
1224        add_cpu_to_smallcore_masks(cpu);
1225        /*
1226         * Copy the thread sibling mask into the cache sibling mask
1227         * and mark any CPUs that share an L2 with this CPU.
1228         */
1229        for_each_cpu(i, cpu_sibling_mask(cpu))
1230                set_cpus_related(cpu, i, cpu_l2_cache_mask);
1231        update_mask_by_l2(cpu, cpu_l2_cache_mask);
1232
1233        /*
1234         * Copy the cache sibling mask into core sibling mask and mark
1235         * any CPUs on the same chip as this CPU.
1236         */
1237        for_each_cpu(i, cpu_l2_cache_mask(cpu))
1238                set_cpus_related(cpu, i, cpu_core_mask);
1239
1240        if (pkg_id == -1)
1241                return;
1242
1243        for_each_cpu(i, cpu_online_mask)
1244                if (get_physical_package_id(i) == pkg_id)
1245                        set_cpus_related(cpu, i, cpu_core_mask);
1246}
1247
1248static bool shared_caches;
1249
1250/* Activate a secondary processor. */
1251void start_secondary(void *unused)
1252{
1253        unsigned int cpu = smp_processor_id();
1254        struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1255
1256        mmgrab(&init_mm);
1257        current->active_mm = &init_mm;
1258
1259        smp_store_cpu_info(cpu);
1260        set_dec(tb_ticks_per_jiffy);
1261        preempt_disable();
1262        cpu_callin_map[cpu] = 1;
1263
1264        if (smp_ops->setup_cpu)
1265                smp_ops->setup_cpu(cpu);
1266        if (smp_ops->take_timebase)
1267                smp_ops->take_timebase();
1268
1269        secondary_cpu_time_init();
1270
1271#ifdef CONFIG_PPC64
1272        if (system_state == SYSTEM_RUNNING)
1273                vdso_data->processorCount++;
1274
1275        vdso_getcpu_init();
1276#endif
1277        /* Update topology CPU masks */
1278        add_cpu_to_masks(cpu);
1279
1280        if (has_big_cores)
1281                sibling_mask = cpu_smallcore_mask;
1282        /*
1283         * Check for any shared caches. Note that this must be done on a
1284         * per-core basis because one core in the pair might be disabled.
1285         */
1286        if (!cpumask_equal(cpu_l2_cache_mask(cpu), sibling_mask(cpu)))
1287                shared_caches = true;
1288
1289        set_numa_node(numa_cpu_lookup_table[cpu]);
1290        set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1291
1292        smp_wmb();
1293        notify_cpu_starting(cpu);
1294        set_cpu_online(cpu, true);
1295
1296        boot_init_stack_canary();
1297
1298        local_irq_enable();
1299
1300        /* We can enable ftrace for secondary cpus now */
1301        this_cpu_enable_ftrace();
1302
1303        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1304
1305        BUG();
1306}
1307
1308int setup_profiling_timer(unsigned int multiplier)
1309{
1310        return 0;
1311}
1312
1313#ifdef CONFIG_SCHED_SMT
1314/* cpumask of CPUs with asymetric SMT dependancy */
1315static int powerpc_smt_flags(void)
1316{
1317        int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1318
1319        if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1320                printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1321                flags |= SD_ASYM_PACKING;
1322        }
1323        return flags;
1324}
1325#endif
1326
1327static struct sched_domain_topology_level powerpc_topology[] = {
1328#ifdef CONFIG_SCHED_SMT
1329        { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1330#endif
1331        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1332        { NULL, },
1333};
1334
1335/*
1336 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1337 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1338 * since the migrated task remains cache hot. We want to take advantage of this
1339 * at the scheduler level so an extra topology level is required.
1340 */
1341static int powerpc_shared_cache_flags(void)
1342{
1343        return SD_SHARE_PKG_RESOURCES;
1344}
1345
1346/*
1347 * We can't just pass cpu_l2_cache_mask() directly because
1348 * returns a non-const pointer and the compiler barfs on that.
1349 */
1350static const struct cpumask *shared_cache_mask(int cpu)
1351{
1352        return cpu_l2_cache_mask(cpu);
1353}
1354
1355#ifdef CONFIG_SCHED_SMT
1356static const struct cpumask *smallcore_smt_mask(int cpu)
1357{
1358        return cpu_smallcore_mask(cpu);
1359}
1360#endif
1361
1362static struct sched_domain_topology_level power9_topology[] = {
1363#ifdef CONFIG_SCHED_SMT
1364        { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1365#endif
1366        { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1367        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1368        { NULL, },
1369};
1370
1371void __init smp_cpus_done(unsigned int max_cpus)
1372{
1373        /*
1374         * We are running pinned to the boot CPU, see rest_init().
1375         */
1376        if (smp_ops && smp_ops->setup_cpu)
1377                smp_ops->setup_cpu(boot_cpuid);
1378
1379        if (smp_ops && smp_ops->bringup_done)
1380                smp_ops->bringup_done();
1381
1382        dump_numa_cpu_topology();
1383
1384#ifdef CONFIG_SCHED_SMT
1385        if (has_big_cores) {
1386                pr_info("Big cores detected but using small core scheduling\n");
1387                power9_topology[0].mask = smallcore_smt_mask;
1388                powerpc_topology[0].mask = smallcore_smt_mask;
1389        }
1390#endif
1391        /*
1392         * If any CPU detects that it's sharing a cache with another CPU then
1393         * use the deeper topology that is aware of this sharing.
1394         */
1395        if (shared_caches) {
1396                pr_info("Using shared cache scheduler topology\n");
1397                set_sched_topology(power9_topology);
1398        } else {
1399                pr_info("Using standard scheduler topology\n");
1400                set_sched_topology(powerpc_topology);
1401        }
1402}
1403
1404#ifdef CONFIG_HOTPLUG_CPU
1405int __cpu_disable(void)
1406{
1407        int cpu = smp_processor_id();
1408        int err;
1409
1410        if (!smp_ops->cpu_disable)
1411                return -ENOSYS;
1412
1413        this_cpu_disable_ftrace();
1414
1415        err = smp_ops->cpu_disable();
1416        if (err)
1417                return err;
1418
1419        /* Update sibling maps */
1420        remove_cpu_from_masks(cpu);
1421
1422        return 0;
1423}
1424
1425void __cpu_die(unsigned int cpu)
1426{
1427        if (smp_ops->cpu_die)
1428                smp_ops->cpu_die(cpu);
1429}
1430
1431void cpu_die(void)
1432{
1433        /*
1434         * Disable on the down path. This will be re-enabled by
1435         * start_secondary() via start_secondary_resume() below
1436         */
1437        this_cpu_disable_ftrace();
1438
1439        if (ppc_md.cpu_die)
1440                ppc_md.cpu_die();
1441
1442        /* If we return, we re-enter start_secondary */
1443        start_secondary_resume();
1444}
1445
1446#endif
1447