linux/arch/powerpc/kvm/book3s_64_mmu_hv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   5 */
   6
   7#include <linux/types.h>
   8#include <linux/string.h>
   9#include <linux/kvm.h>
  10#include <linux/kvm_host.h>
  11#include <linux/highmem.h>
  12#include <linux/gfp.h>
  13#include <linux/slab.h>
  14#include <linux/hugetlb.h>
  15#include <linux/vmalloc.h>
  16#include <linux/srcu.h>
  17#include <linux/anon_inodes.h>
  18#include <linux/file.h>
  19#include <linux/debugfs.h>
  20
  21#include <asm/kvm_ppc.h>
  22#include <asm/kvm_book3s.h>
  23#include <asm/book3s/64/mmu-hash.h>
  24#include <asm/hvcall.h>
  25#include <asm/synch.h>
  26#include <asm/ppc-opcode.h>
  27#include <asm/cputable.h>
  28#include <asm/pte-walk.h>
  29
  30#include "trace_hv.h"
  31
  32//#define DEBUG_RESIZE_HPT      1
  33
  34#ifdef DEBUG_RESIZE_HPT
  35#define resize_hpt_debug(resize, ...)                           \
  36        do {                                                    \
  37                printk(KERN_DEBUG "RESIZE HPT %p: ", resize);   \
  38                printk(__VA_ARGS__);                            \
  39        } while (0)
  40#else
  41#define resize_hpt_debug(resize, ...)                           \
  42        do { } while (0)
  43#endif
  44
  45static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
  46                                long pte_index, unsigned long pteh,
  47                                unsigned long ptel, unsigned long *pte_idx_ret);
  48
  49struct kvm_resize_hpt {
  50        /* These fields read-only after init */
  51        struct kvm *kvm;
  52        struct work_struct work;
  53        u32 order;
  54
  55        /* These fields protected by kvm->arch.mmu_setup_lock */
  56
  57        /* Possible values and their usage:
  58         *  <0     an error occurred during allocation,
  59         *  -EBUSY allocation is in the progress,
  60         *  0      allocation made successfuly.
  61         */
  62        int error;
  63
  64        /* Private to the work thread, until error != -EBUSY,
  65         * then protected by kvm->arch.mmu_setup_lock.
  66         */
  67        struct kvm_hpt_info hpt;
  68};
  69
  70int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
  71{
  72        unsigned long hpt = 0;
  73        int cma = 0;
  74        struct page *page = NULL;
  75        struct revmap_entry *rev;
  76        unsigned long npte;
  77
  78        if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
  79                return -EINVAL;
  80
  81        page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
  82        if (page) {
  83                hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
  84                memset((void *)hpt, 0, (1ul << order));
  85                cma = 1;
  86        }
  87
  88        if (!hpt)
  89                hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
  90                                       |__GFP_NOWARN, order - PAGE_SHIFT);
  91
  92        if (!hpt)
  93                return -ENOMEM;
  94
  95        /* HPTEs are 2**4 bytes long */
  96        npte = 1ul << (order - 4);
  97
  98        /* Allocate reverse map array */
  99        rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
 100        if (!rev) {
 101                if (cma)
 102                        kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
 103                else
 104                        free_pages(hpt, order - PAGE_SHIFT);
 105                return -ENOMEM;
 106        }
 107
 108        info->order = order;
 109        info->virt = hpt;
 110        info->cma = cma;
 111        info->rev = rev;
 112
 113        return 0;
 114}
 115
 116void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
 117{
 118        atomic64_set(&kvm->arch.mmio_update, 0);
 119        kvm->arch.hpt = *info;
 120        kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
 121
 122        pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
 123                 info->virt, (long)info->order, kvm->arch.lpid);
 124}
 125
 126long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
 127{
 128        long err = -EBUSY;
 129        struct kvm_hpt_info info;
 130
 131        mutex_lock(&kvm->arch.mmu_setup_lock);
 132        if (kvm->arch.mmu_ready) {
 133                kvm->arch.mmu_ready = 0;
 134                /* order mmu_ready vs. vcpus_running */
 135                smp_mb();
 136                if (atomic_read(&kvm->arch.vcpus_running)) {
 137                        kvm->arch.mmu_ready = 1;
 138                        goto out;
 139                }
 140        }
 141        if (kvm_is_radix(kvm)) {
 142                err = kvmppc_switch_mmu_to_hpt(kvm);
 143                if (err)
 144                        goto out;
 145        }
 146
 147        if (kvm->arch.hpt.order == order) {
 148                /* We already have a suitable HPT */
 149
 150                /* Set the entire HPT to 0, i.e. invalid HPTEs */
 151                memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
 152                /*
 153                 * Reset all the reverse-mapping chains for all memslots
 154                 */
 155                kvmppc_rmap_reset(kvm);
 156                err = 0;
 157                goto out;
 158        }
 159
 160        if (kvm->arch.hpt.virt) {
 161                kvmppc_free_hpt(&kvm->arch.hpt);
 162                kvmppc_rmap_reset(kvm);
 163        }
 164
 165        err = kvmppc_allocate_hpt(&info, order);
 166        if (err < 0)
 167                goto out;
 168        kvmppc_set_hpt(kvm, &info);
 169
 170out:
 171        if (err == 0)
 172                /* Ensure that each vcpu will flush its TLB on next entry. */
 173                cpumask_setall(&kvm->arch.need_tlb_flush);
 174
 175        mutex_unlock(&kvm->arch.mmu_setup_lock);
 176        return err;
 177}
 178
 179void kvmppc_free_hpt(struct kvm_hpt_info *info)
 180{
 181        vfree(info->rev);
 182        info->rev = NULL;
 183        if (info->cma)
 184                kvm_free_hpt_cma(virt_to_page(info->virt),
 185                                 1 << (info->order - PAGE_SHIFT));
 186        else if (info->virt)
 187                free_pages(info->virt, info->order - PAGE_SHIFT);
 188        info->virt = 0;
 189        info->order = 0;
 190}
 191
 192/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
 193static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
 194{
 195        return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
 196}
 197
 198/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
 199static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
 200{
 201        return (pgsize == 0x10000) ? 0x1000 : 0;
 202}
 203
 204void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
 205                     unsigned long porder)
 206{
 207        unsigned long i;
 208        unsigned long npages;
 209        unsigned long hp_v, hp_r;
 210        unsigned long addr, hash;
 211        unsigned long psize;
 212        unsigned long hp0, hp1;
 213        unsigned long idx_ret;
 214        long ret;
 215        struct kvm *kvm = vcpu->kvm;
 216
 217        psize = 1ul << porder;
 218        npages = memslot->npages >> (porder - PAGE_SHIFT);
 219
 220        /* VRMA can't be > 1TB */
 221        if (npages > 1ul << (40 - porder))
 222                npages = 1ul << (40 - porder);
 223        /* Can't use more than 1 HPTE per HPTEG */
 224        if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
 225                npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
 226
 227        hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
 228                HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
 229        hp1 = hpte1_pgsize_encoding(psize) |
 230                HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
 231
 232        for (i = 0; i < npages; ++i) {
 233                addr = i << porder;
 234                /* can't use hpt_hash since va > 64 bits */
 235                hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
 236                        & kvmppc_hpt_mask(&kvm->arch.hpt);
 237                /*
 238                 * We assume that the hash table is empty and no
 239                 * vcpus are using it at this stage.  Since we create
 240                 * at most one HPTE per HPTEG, we just assume entry 7
 241                 * is available and use it.
 242                 */
 243                hash = (hash << 3) + 7;
 244                hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
 245                hp_r = hp1 | addr;
 246                ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
 247                                                 &idx_ret);
 248                if (ret != H_SUCCESS) {
 249                        pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
 250                               addr, ret);
 251                        break;
 252                }
 253        }
 254}
 255
 256int kvmppc_mmu_hv_init(void)
 257{
 258        unsigned long host_lpid, rsvd_lpid;
 259
 260        if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
 261                return -EINVAL;
 262
 263        /* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
 264        host_lpid = 0;
 265        if (cpu_has_feature(CPU_FTR_HVMODE))
 266                host_lpid = mfspr(SPRN_LPID);
 267        rsvd_lpid = LPID_RSVD;
 268
 269        kvmppc_init_lpid(rsvd_lpid + 1);
 270
 271        kvmppc_claim_lpid(host_lpid);
 272        /* rsvd_lpid is reserved for use in partition switching */
 273        kvmppc_claim_lpid(rsvd_lpid);
 274
 275        return 0;
 276}
 277
 278static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
 279                                long pte_index, unsigned long pteh,
 280                                unsigned long ptel, unsigned long *pte_idx_ret)
 281{
 282        long ret;
 283
 284        preempt_disable();
 285        ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
 286                                kvm->mm->pgd, false, pte_idx_ret);
 287        preempt_enable();
 288        if (ret == H_TOO_HARD) {
 289                /* this can't happen */
 290                pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
 291                ret = H_RESOURCE;       /* or something */
 292        }
 293        return ret;
 294
 295}
 296
 297static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
 298                                                         gva_t eaddr)
 299{
 300        u64 mask;
 301        int i;
 302
 303        for (i = 0; i < vcpu->arch.slb_nr; i++) {
 304                if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
 305                        continue;
 306
 307                if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
 308                        mask = ESID_MASK_1T;
 309                else
 310                        mask = ESID_MASK;
 311
 312                if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
 313                        return &vcpu->arch.slb[i];
 314        }
 315        return NULL;
 316}
 317
 318static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
 319                        unsigned long ea)
 320{
 321        unsigned long ra_mask;
 322
 323        ra_mask = kvmppc_actual_pgsz(v, r) - 1;
 324        return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
 325}
 326
 327static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 328                        struct kvmppc_pte *gpte, bool data, bool iswrite)
 329{
 330        struct kvm *kvm = vcpu->kvm;
 331        struct kvmppc_slb *slbe;
 332        unsigned long slb_v;
 333        unsigned long pp, key;
 334        unsigned long v, orig_v, gr;
 335        __be64 *hptep;
 336        long int index;
 337        int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
 338
 339        if (kvm_is_radix(vcpu->kvm))
 340                return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
 341
 342        /* Get SLB entry */
 343        if (virtmode) {
 344                slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
 345                if (!slbe)
 346                        return -EINVAL;
 347                slb_v = slbe->origv;
 348        } else {
 349                /* real mode access */
 350                slb_v = vcpu->kvm->arch.vrma_slb_v;
 351        }
 352
 353        preempt_disable();
 354        /* Find the HPTE in the hash table */
 355        index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
 356                                         HPTE_V_VALID | HPTE_V_ABSENT);
 357        if (index < 0) {
 358                preempt_enable();
 359                return -ENOENT;
 360        }
 361        hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
 362        v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
 363        if (cpu_has_feature(CPU_FTR_ARCH_300))
 364                v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
 365        gr = kvm->arch.hpt.rev[index].guest_rpte;
 366
 367        unlock_hpte(hptep, orig_v);
 368        preempt_enable();
 369
 370        gpte->eaddr = eaddr;
 371        gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
 372
 373        /* Get PP bits and key for permission check */
 374        pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
 375        key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
 376        key &= slb_v;
 377
 378        /* Calculate permissions */
 379        gpte->may_read = hpte_read_permission(pp, key);
 380        gpte->may_write = hpte_write_permission(pp, key);
 381        gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
 382
 383        /* Storage key permission check for POWER7 */
 384        if (data && virtmode) {
 385                int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
 386                if (amrfield & 1)
 387                        gpte->may_read = 0;
 388                if (amrfield & 2)
 389                        gpte->may_write = 0;
 390        }
 391
 392        /* Get the guest physical address */
 393        gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
 394        return 0;
 395}
 396
 397/*
 398 * Quick test for whether an instruction is a load or a store.
 399 * If the instruction is a load or a store, then this will indicate
 400 * which it is, at least on server processors.  (Embedded processors
 401 * have some external PID instructions that don't follow the rule
 402 * embodied here.)  If the instruction isn't a load or store, then
 403 * this doesn't return anything useful.
 404 */
 405static int instruction_is_store(unsigned int instr)
 406{
 407        unsigned int mask;
 408
 409        mask = 0x10000000;
 410        if ((instr & 0xfc000000) == 0x7c000000)
 411                mask = 0x100;           /* major opcode 31 */
 412        return (instr & mask) != 0;
 413}
 414
 415int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
 416                           unsigned long gpa, gva_t ea, int is_store)
 417{
 418        u32 last_inst;
 419
 420        /*
 421         * Fast path - check if the guest physical address corresponds to a
 422         * device on the FAST_MMIO_BUS, if so we can avoid loading the
 423         * instruction all together, then we can just handle it and return.
 424         */
 425        if (is_store) {
 426                int idx, ret;
 427
 428                idx = srcu_read_lock(&vcpu->kvm->srcu);
 429                ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
 430                                       NULL);
 431                srcu_read_unlock(&vcpu->kvm->srcu, idx);
 432                if (!ret) {
 433                        kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
 434                        return RESUME_GUEST;
 435                }
 436        }
 437
 438        /*
 439         * If we fail, we just return to the guest and try executing it again.
 440         */
 441        if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
 442                EMULATE_DONE)
 443                return RESUME_GUEST;
 444
 445        /*
 446         * WARNING: We do not know for sure whether the instruction we just
 447         * read from memory is the same that caused the fault in the first
 448         * place.  If the instruction we read is neither an load or a store,
 449         * then it can't access memory, so we don't need to worry about
 450         * enforcing access permissions.  So, assuming it is a load or
 451         * store, we just check that its direction (load or store) is
 452         * consistent with the original fault, since that's what we
 453         * checked the access permissions against.  If there is a mismatch
 454         * we just return and retry the instruction.
 455         */
 456
 457        if (instruction_is_store(last_inst) != !!is_store)
 458                return RESUME_GUEST;
 459
 460        /*
 461         * Emulated accesses are emulated by looking at the hash for
 462         * translation once, then performing the access later. The
 463         * translation could be invalidated in the meantime in which
 464         * point performing the subsequent memory access on the old
 465         * physical address could possibly be a security hole for the
 466         * guest (but not the host).
 467         *
 468         * This is less of an issue for MMIO stores since they aren't
 469         * globally visible. It could be an issue for MMIO loads to
 470         * a certain extent but we'll ignore it for now.
 471         */
 472
 473        vcpu->arch.paddr_accessed = gpa;
 474        vcpu->arch.vaddr_accessed = ea;
 475        return kvmppc_emulate_mmio(vcpu);
 476}
 477
 478int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
 479                                unsigned long ea, unsigned long dsisr)
 480{
 481        struct kvm *kvm = vcpu->kvm;
 482        unsigned long hpte[3], r;
 483        unsigned long hnow_v, hnow_r;
 484        __be64 *hptep;
 485        unsigned long mmu_seq, psize, pte_size;
 486        unsigned long gpa_base, gfn_base;
 487        unsigned long gpa, gfn, hva, pfn, hpa;
 488        struct kvm_memory_slot *memslot;
 489        unsigned long *rmap;
 490        struct revmap_entry *rev;
 491        struct page *page;
 492        long index, ret;
 493        bool is_ci;
 494        bool writing, write_ok;
 495        unsigned int shift;
 496        unsigned long rcbits;
 497        long mmio_update;
 498        pte_t pte, *ptep;
 499
 500        if (kvm_is_radix(kvm))
 501                return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
 502
 503        /*
 504         * Real-mode code has already searched the HPT and found the
 505         * entry we're interested in.  Lock the entry and check that
 506         * it hasn't changed.  If it has, just return and re-execute the
 507         * instruction.
 508         */
 509        if (ea != vcpu->arch.pgfault_addr)
 510                return RESUME_GUEST;
 511
 512        if (vcpu->arch.pgfault_cache) {
 513                mmio_update = atomic64_read(&kvm->arch.mmio_update);
 514                if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
 515                        r = vcpu->arch.pgfault_cache->rpte;
 516                        psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
 517                                                   r);
 518                        gpa_base = r & HPTE_R_RPN & ~(psize - 1);
 519                        gfn_base = gpa_base >> PAGE_SHIFT;
 520                        gpa = gpa_base | (ea & (psize - 1));
 521                        return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
 522                                                dsisr & DSISR_ISSTORE);
 523                }
 524        }
 525        index = vcpu->arch.pgfault_index;
 526        hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
 527        rev = &kvm->arch.hpt.rev[index];
 528        preempt_disable();
 529        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
 530                cpu_relax();
 531        hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
 532        hpte[1] = be64_to_cpu(hptep[1]);
 533        hpte[2] = r = rev->guest_rpte;
 534        unlock_hpte(hptep, hpte[0]);
 535        preempt_enable();
 536
 537        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 538                hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
 539                hpte[1] = hpte_new_to_old_r(hpte[1]);
 540        }
 541        if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
 542            hpte[1] != vcpu->arch.pgfault_hpte[1])
 543                return RESUME_GUEST;
 544
 545        /* Translate the logical address and get the page */
 546        psize = kvmppc_actual_pgsz(hpte[0], r);
 547        gpa_base = r & HPTE_R_RPN & ~(psize - 1);
 548        gfn_base = gpa_base >> PAGE_SHIFT;
 549        gpa = gpa_base | (ea & (psize - 1));
 550        gfn = gpa >> PAGE_SHIFT;
 551        memslot = gfn_to_memslot(kvm, gfn);
 552
 553        trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
 554
 555        /* No memslot means it's an emulated MMIO region */
 556        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
 557                return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
 558                                              dsisr & DSISR_ISSTORE);
 559
 560        /*
 561         * This should never happen, because of the slot_is_aligned()
 562         * check in kvmppc_do_h_enter().
 563         */
 564        if (gfn_base < memslot->base_gfn)
 565                return -EFAULT;
 566
 567        /* used to check for invalidations in progress */
 568        mmu_seq = kvm->mmu_notifier_seq;
 569        smp_rmb();
 570
 571        ret = -EFAULT;
 572        page = NULL;
 573        writing = (dsisr & DSISR_ISSTORE) != 0;
 574        /* If writing != 0, then the HPTE must allow writing, if we get here */
 575        write_ok = writing;
 576        hva = gfn_to_hva_memslot(memslot, gfn);
 577
 578        /*
 579         * Do a fast check first, since __gfn_to_pfn_memslot doesn't
 580         * do it with !atomic && !async, which is how we call it.
 581         * We always ask for write permission since the common case
 582         * is that the page is writable.
 583         */
 584        if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
 585                write_ok = true;
 586        } else {
 587                /* Call KVM generic code to do the slow-path check */
 588                pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
 589                                           writing, &write_ok);
 590                if (is_error_noslot_pfn(pfn))
 591                        return -EFAULT;
 592                page = NULL;
 593                if (pfn_valid(pfn)) {
 594                        page = pfn_to_page(pfn);
 595                        if (PageReserved(page))
 596                                page = NULL;
 597                }
 598        }
 599
 600        /*
 601         * Read the PTE from the process' radix tree and use that
 602         * so we get the shift and attribute bits.
 603         */
 604        spin_lock(&kvm->mmu_lock);
 605        ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
 606        pte = __pte(0);
 607        if (ptep)
 608                pte = READ_ONCE(*ptep);
 609        spin_unlock(&kvm->mmu_lock);
 610        /*
 611         * If the PTE disappeared temporarily due to a THP
 612         * collapse, just return and let the guest try again.
 613         */
 614        if (!pte_present(pte)) {
 615                if (page)
 616                        put_page(page);
 617                return RESUME_GUEST;
 618        }
 619        hpa = pte_pfn(pte) << PAGE_SHIFT;
 620        pte_size = PAGE_SIZE;
 621        if (shift)
 622                pte_size = 1ul << shift;
 623        is_ci = pte_ci(pte);
 624
 625        if (psize > pte_size)
 626                goto out_put;
 627        if (pte_size > psize)
 628                hpa |= hva & (pte_size - psize);
 629
 630        /* Check WIMG vs. the actual page we're accessing */
 631        if (!hpte_cache_flags_ok(r, is_ci)) {
 632                if (is_ci)
 633                        goto out_put;
 634                /*
 635                 * Allow guest to map emulated device memory as
 636                 * uncacheable, but actually make it cacheable.
 637                 */
 638                r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
 639        }
 640
 641        /*
 642         * Set the HPTE to point to hpa.
 643         * Since the hpa is at PAGE_SIZE granularity, make sure we
 644         * don't mask out lower-order bits if psize < PAGE_SIZE.
 645         */
 646        if (psize < PAGE_SIZE)
 647                psize = PAGE_SIZE;
 648        r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
 649        if (hpte_is_writable(r) && !write_ok)
 650                r = hpte_make_readonly(r);
 651        ret = RESUME_GUEST;
 652        preempt_disable();
 653        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
 654                cpu_relax();
 655        hnow_v = be64_to_cpu(hptep[0]);
 656        hnow_r = be64_to_cpu(hptep[1]);
 657        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 658                hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
 659                hnow_r = hpte_new_to_old_r(hnow_r);
 660        }
 661
 662        /*
 663         * If the HPT is being resized, don't update the HPTE,
 664         * instead let the guest retry after the resize operation is complete.
 665         * The synchronization for mmu_ready test vs. set is provided
 666         * by the HPTE lock.
 667         */
 668        if (!kvm->arch.mmu_ready)
 669                goto out_unlock;
 670
 671        if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
 672            rev->guest_rpte != hpte[2])
 673                /* HPTE has been changed under us; let the guest retry */
 674                goto out_unlock;
 675        hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
 676
 677        /* Always put the HPTE in the rmap chain for the page base address */
 678        rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
 679        lock_rmap(rmap);
 680
 681        /* Check if we might have been invalidated; let the guest retry if so */
 682        ret = RESUME_GUEST;
 683        if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
 684                unlock_rmap(rmap);
 685                goto out_unlock;
 686        }
 687
 688        /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
 689        rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
 690        r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
 691
 692        if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
 693                /* HPTE was previously valid, so we need to invalidate it */
 694                unlock_rmap(rmap);
 695                hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
 696                kvmppc_invalidate_hpte(kvm, hptep, index);
 697                /* don't lose previous R and C bits */
 698                r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
 699        } else {
 700                kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
 701        }
 702
 703        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 704                r = hpte_old_to_new_r(hpte[0], r);
 705                hpte[0] = hpte_old_to_new_v(hpte[0]);
 706        }
 707        hptep[1] = cpu_to_be64(r);
 708        eieio();
 709        __unlock_hpte(hptep, hpte[0]);
 710        asm volatile("ptesync" : : : "memory");
 711        preempt_enable();
 712        if (page && hpte_is_writable(r))
 713                set_page_dirty_lock(page);
 714
 715 out_put:
 716        trace_kvm_page_fault_exit(vcpu, hpte, ret);
 717
 718        if (page)
 719                put_page(page);
 720        return ret;
 721
 722 out_unlock:
 723        __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
 724        preempt_enable();
 725        goto out_put;
 726}
 727
 728void kvmppc_rmap_reset(struct kvm *kvm)
 729{
 730        struct kvm_memslots *slots;
 731        struct kvm_memory_slot *memslot;
 732        int srcu_idx;
 733
 734        srcu_idx = srcu_read_lock(&kvm->srcu);
 735        slots = kvm_memslots(kvm);
 736        kvm_for_each_memslot(memslot, slots) {
 737                /* Mutual exclusion with kvm_unmap_hva_range etc. */
 738                spin_lock(&kvm->mmu_lock);
 739                /*
 740                 * This assumes it is acceptable to lose reference and
 741                 * change bits across a reset.
 742                 */
 743                memset(memslot->arch.rmap, 0,
 744                       memslot->npages * sizeof(*memslot->arch.rmap));
 745                spin_unlock(&kvm->mmu_lock);
 746        }
 747        srcu_read_unlock(&kvm->srcu, srcu_idx);
 748}
 749
 750typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
 751                              unsigned long gfn);
 752
 753static int kvm_handle_hva_range(struct kvm *kvm,
 754                                unsigned long start,
 755                                unsigned long end,
 756                                hva_handler_fn handler)
 757{
 758        int ret;
 759        int retval = 0;
 760        struct kvm_memslots *slots;
 761        struct kvm_memory_slot *memslot;
 762
 763        slots = kvm_memslots(kvm);
 764        kvm_for_each_memslot(memslot, slots) {
 765                unsigned long hva_start, hva_end;
 766                gfn_t gfn, gfn_end;
 767
 768                hva_start = max(start, memslot->userspace_addr);
 769                hva_end = min(end, memslot->userspace_addr +
 770                                        (memslot->npages << PAGE_SHIFT));
 771                if (hva_start >= hva_end)
 772                        continue;
 773                /*
 774                 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 775                 * {gfn, gfn+1, ..., gfn_end-1}.
 776                 */
 777                gfn = hva_to_gfn_memslot(hva_start, memslot);
 778                gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
 779
 780                for (; gfn < gfn_end; ++gfn) {
 781                        ret = handler(kvm, memslot, gfn);
 782                        retval |= ret;
 783                }
 784        }
 785
 786        return retval;
 787}
 788
 789static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
 790                          hva_handler_fn handler)
 791{
 792        return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
 793}
 794
 795/* Must be called with both HPTE and rmap locked */
 796static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
 797                              struct kvm_memory_slot *memslot,
 798                              unsigned long *rmapp, unsigned long gfn)
 799{
 800        __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
 801        struct revmap_entry *rev = kvm->arch.hpt.rev;
 802        unsigned long j, h;
 803        unsigned long ptel, psize, rcbits;
 804
 805        j = rev[i].forw;
 806        if (j == i) {
 807                /* chain is now empty */
 808                *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
 809        } else {
 810                /* remove i from chain */
 811                h = rev[i].back;
 812                rev[h].forw = j;
 813                rev[j].back = h;
 814                rev[i].forw = rev[i].back = i;
 815                *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
 816        }
 817
 818        /* Now check and modify the HPTE */
 819        ptel = rev[i].guest_rpte;
 820        psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
 821        if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
 822            hpte_rpn(ptel, psize) == gfn) {
 823                hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
 824                kvmppc_invalidate_hpte(kvm, hptep, i);
 825                hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
 826                /* Harvest R and C */
 827                rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
 828                *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
 829                if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
 830                        kvmppc_update_dirty_map(memslot, gfn, psize);
 831                if (rcbits & ~rev[i].guest_rpte) {
 832                        rev[i].guest_rpte = ptel | rcbits;
 833                        note_hpte_modification(kvm, &rev[i]);
 834                }
 835        }
 836}
 837
 838static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
 839                           unsigned long gfn)
 840{
 841        unsigned long i;
 842        __be64 *hptep;
 843        unsigned long *rmapp;
 844
 845        rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
 846        for (;;) {
 847                lock_rmap(rmapp);
 848                if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 849                        unlock_rmap(rmapp);
 850                        break;
 851                }
 852
 853                /*
 854                 * To avoid an ABBA deadlock with the HPTE lock bit,
 855                 * we can't spin on the HPTE lock while holding the
 856                 * rmap chain lock.
 857                 */
 858                i = *rmapp & KVMPPC_RMAP_INDEX;
 859                hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
 860                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 861                        /* unlock rmap before spinning on the HPTE lock */
 862                        unlock_rmap(rmapp);
 863                        while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
 864                                cpu_relax();
 865                        continue;
 866                }
 867
 868                kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
 869                unlock_rmap(rmapp);
 870                __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
 871        }
 872        return 0;
 873}
 874
 875int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
 876{
 877        hva_handler_fn handler;
 878
 879        handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
 880        kvm_handle_hva_range(kvm, start, end, handler);
 881        return 0;
 882}
 883
 884void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
 885                                  struct kvm_memory_slot *memslot)
 886{
 887        unsigned long gfn;
 888        unsigned long n;
 889        unsigned long *rmapp;
 890
 891        gfn = memslot->base_gfn;
 892        rmapp = memslot->arch.rmap;
 893        if (kvm_is_radix(kvm)) {
 894                kvmppc_radix_flush_memslot(kvm, memslot);
 895                return;
 896        }
 897
 898        for (n = memslot->npages; n; --n, ++gfn) {
 899                /*
 900                 * Testing the present bit without locking is OK because
 901                 * the memslot has been marked invalid already, and hence
 902                 * no new HPTEs referencing this page can be created,
 903                 * thus the present bit can't go from 0 to 1.
 904                 */
 905                if (*rmapp & KVMPPC_RMAP_PRESENT)
 906                        kvm_unmap_rmapp(kvm, memslot, gfn);
 907                ++rmapp;
 908        }
 909}
 910
 911static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
 912                         unsigned long gfn)
 913{
 914        struct revmap_entry *rev = kvm->arch.hpt.rev;
 915        unsigned long head, i, j;
 916        __be64 *hptep;
 917        int ret = 0;
 918        unsigned long *rmapp;
 919
 920        rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
 921 retry:
 922        lock_rmap(rmapp);
 923        if (*rmapp & KVMPPC_RMAP_REFERENCED) {
 924                *rmapp &= ~KVMPPC_RMAP_REFERENCED;
 925                ret = 1;
 926        }
 927        if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
 928                unlock_rmap(rmapp);
 929                return ret;
 930        }
 931
 932        i = head = *rmapp & KVMPPC_RMAP_INDEX;
 933        do {
 934                hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
 935                j = rev[i].forw;
 936
 937                /* If this HPTE isn't referenced, ignore it */
 938                if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
 939                        continue;
 940
 941                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
 942                        /* unlock rmap before spinning on the HPTE lock */
 943                        unlock_rmap(rmapp);
 944                        while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
 945                                cpu_relax();
 946                        goto retry;
 947                }
 948
 949                /* Now check and modify the HPTE */
 950                if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
 951                    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
 952                        kvmppc_clear_ref_hpte(kvm, hptep, i);
 953                        if (!(rev[i].guest_rpte & HPTE_R_R)) {
 954                                rev[i].guest_rpte |= HPTE_R_R;
 955                                note_hpte_modification(kvm, &rev[i]);
 956                        }
 957                        ret = 1;
 958                }
 959                __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
 960        } while ((i = j) != head);
 961
 962        unlock_rmap(rmapp);
 963        return ret;
 964}
 965
 966int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
 967{
 968        hva_handler_fn handler;
 969
 970        handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
 971        return kvm_handle_hva_range(kvm, start, end, handler);
 972}
 973
 974static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
 975                              unsigned long gfn)
 976{
 977        struct revmap_entry *rev = kvm->arch.hpt.rev;
 978        unsigned long head, i, j;
 979        unsigned long *hp;
 980        int ret = 1;
 981        unsigned long *rmapp;
 982
 983        rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
 984        if (*rmapp & KVMPPC_RMAP_REFERENCED)
 985                return 1;
 986
 987        lock_rmap(rmapp);
 988        if (*rmapp & KVMPPC_RMAP_REFERENCED)
 989                goto out;
 990
 991        if (*rmapp & KVMPPC_RMAP_PRESENT) {
 992                i = head = *rmapp & KVMPPC_RMAP_INDEX;
 993                do {
 994                        hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
 995                        j = rev[i].forw;
 996                        if (be64_to_cpu(hp[1]) & HPTE_R_R)
 997                                goto out;
 998                } while ((i = j) != head);
 999        }
1000        ret = 0;
1001
1002 out:
1003        unlock_rmap(rmapp);
1004        return ret;
1005}
1006
1007int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1008{
1009        hva_handler_fn handler;
1010
1011        handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
1012        return kvm_handle_hva(kvm, hva, handler);
1013}
1014
1015void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1016{
1017        hva_handler_fn handler;
1018
1019        handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1020        kvm_handle_hva(kvm, hva, handler);
1021}
1022
1023static int vcpus_running(struct kvm *kvm)
1024{
1025        return atomic_read(&kvm->arch.vcpus_running) != 0;
1026}
1027
1028/*
1029 * Returns the number of system pages that are dirty.
1030 * This can be more than 1 if we find a huge-page HPTE.
1031 */
1032static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1033{
1034        struct revmap_entry *rev = kvm->arch.hpt.rev;
1035        unsigned long head, i, j;
1036        unsigned long n;
1037        unsigned long v, r;
1038        __be64 *hptep;
1039        int npages_dirty = 0;
1040
1041 retry:
1042        lock_rmap(rmapp);
1043        if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1044                unlock_rmap(rmapp);
1045                return npages_dirty;
1046        }
1047
1048        i = head = *rmapp & KVMPPC_RMAP_INDEX;
1049        do {
1050                unsigned long hptep1;
1051                hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1052                j = rev[i].forw;
1053
1054                /*
1055                 * Checking the C (changed) bit here is racy since there
1056                 * is no guarantee about when the hardware writes it back.
1057                 * If the HPTE is not writable then it is stable since the
1058                 * page can't be written to, and we would have done a tlbie
1059                 * (which forces the hardware to complete any writeback)
1060                 * when making the HPTE read-only.
1061                 * If vcpus are running then this call is racy anyway
1062                 * since the page could get dirtied subsequently, so we
1063                 * expect there to be a further call which would pick up
1064                 * any delayed C bit writeback.
1065                 * Otherwise we need to do the tlbie even if C==0 in
1066                 * order to pick up any delayed writeback of C.
1067                 */
1068                hptep1 = be64_to_cpu(hptep[1]);
1069                if (!(hptep1 & HPTE_R_C) &&
1070                    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1071                        continue;
1072
1073                if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1074                        /* unlock rmap before spinning on the HPTE lock */
1075                        unlock_rmap(rmapp);
1076                        while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1077                                cpu_relax();
1078                        goto retry;
1079                }
1080
1081                /* Now check and modify the HPTE */
1082                if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1083                        __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1084                        continue;
1085                }
1086
1087                /* need to make it temporarily absent so C is stable */
1088                hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1089                kvmppc_invalidate_hpte(kvm, hptep, i);
1090                v = be64_to_cpu(hptep[0]);
1091                r = be64_to_cpu(hptep[1]);
1092                if (r & HPTE_R_C) {
1093                        hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1094                        if (!(rev[i].guest_rpte & HPTE_R_C)) {
1095                                rev[i].guest_rpte |= HPTE_R_C;
1096                                note_hpte_modification(kvm, &rev[i]);
1097                        }
1098                        n = kvmppc_actual_pgsz(v, r);
1099                        n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1100                        if (n > npages_dirty)
1101                                npages_dirty = n;
1102                        eieio();
1103                }
1104                v &= ~HPTE_V_ABSENT;
1105                v |= HPTE_V_VALID;
1106                __unlock_hpte(hptep, v);
1107        } while ((i = j) != head);
1108
1109        unlock_rmap(rmapp);
1110        return npages_dirty;
1111}
1112
1113void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1114                              struct kvm_memory_slot *memslot,
1115                              unsigned long *map)
1116{
1117        unsigned long gfn;
1118
1119        if (!vpa->dirty || !vpa->pinned_addr)
1120                return;
1121        gfn = vpa->gpa >> PAGE_SHIFT;
1122        if (gfn < memslot->base_gfn ||
1123            gfn >= memslot->base_gfn + memslot->npages)
1124                return;
1125
1126        vpa->dirty = false;
1127        if (map)
1128                __set_bit_le(gfn - memslot->base_gfn, map);
1129}
1130
1131long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1132                        struct kvm_memory_slot *memslot, unsigned long *map)
1133{
1134        unsigned long i;
1135        unsigned long *rmapp;
1136
1137        preempt_disable();
1138        rmapp = memslot->arch.rmap;
1139        for (i = 0; i < memslot->npages; ++i) {
1140                int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1141                /*
1142                 * Note that if npages > 0 then i must be a multiple of npages,
1143                 * since we always put huge-page HPTEs in the rmap chain
1144                 * corresponding to their page base address.
1145                 */
1146                if (npages)
1147                        set_dirty_bits(map, i, npages);
1148                ++rmapp;
1149        }
1150        preempt_enable();
1151        return 0;
1152}
1153
1154void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1155                            unsigned long *nb_ret)
1156{
1157        struct kvm_memory_slot *memslot;
1158        unsigned long gfn = gpa >> PAGE_SHIFT;
1159        struct page *page, *pages[1];
1160        int npages;
1161        unsigned long hva, offset;
1162        int srcu_idx;
1163
1164        srcu_idx = srcu_read_lock(&kvm->srcu);
1165        memslot = gfn_to_memslot(kvm, gfn);
1166        if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1167                goto err;
1168        hva = gfn_to_hva_memslot(memslot, gfn);
1169        npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1170        if (npages < 1)
1171                goto err;
1172        page = pages[0];
1173        srcu_read_unlock(&kvm->srcu, srcu_idx);
1174
1175        offset = gpa & (PAGE_SIZE - 1);
1176        if (nb_ret)
1177                *nb_ret = PAGE_SIZE - offset;
1178        return page_address(page) + offset;
1179
1180 err:
1181        srcu_read_unlock(&kvm->srcu, srcu_idx);
1182        return NULL;
1183}
1184
1185void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1186                             bool dirty)
1187{
1188        struct page *page = virt_to_page(va);
1189        struct kvm_memory_slot *memslot;
1190        unsigned long gfn;
1191        int srcu_idx;
1192
1193        put_page(page);
1194
1195        if (!dirty)
1196                return;
1197
1198        /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1199        gfn = gpa >> PAGE_SHIFT;
1200        srcu_idx = srcu_read_lock(&kvm->srcu);
1201        memslot = gfn_to_memslot(kvm, gfn);
1202        if (memslot && memslot->dirty_bitmap)
1203                set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1204        srcu_read_unlock(&kvm->srcu, srcu_idx);
1205}
1206
1207/*
1208 * HPT resizing
1209 */
1210static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1211{
1212        int rc;
1213
1214        rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1215        if (rc < 0)
1216                return rc;
1217
1218        resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1219                         resize->hpt.virt);
1220
1221        return 0;
1222}
1223
1224static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1225                                            unsigned long idx)
1226{
1227        struct kvm *kvm = resize->kvm;
1228        struct kvm_hpt_info *old = &kvm->arch.hpt;
1229        struct kvm_hpt_info *new = &resize->hpt;
1230        unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1231        unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1232        __be64 *hptep, *new_hptep;
1233        unsigned long vpte, rpte, guest_rpte;
1234        int ret;
1235        struct revmap_entry *rev;
1236        unsigned long apsize, avpn, pteg, hash;
1237        unsigned long new_idx, new_pteg, replace_vpte;
1238        int pshift;
1239
1240        hptep = (__be64 *)(old->virt + (idx << 4));
1241
1242        /* Guest is stopped, so new HPTEs can't be added or faulted
1243         * in, only unmapped or altered by host actions.  So, it's
1244         * safe to check this before we take the HPTE lock */
1245        vpte = be64_to_cpu(hptep[0]);
1246        if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1247                return 0; /* nothing to do */
1248
1249        while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1250                cpu_relax();
1251
1252        vpte = be64_to_cpu(hptep[0]);
1253
1254        ret = 0;
1255        if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1256                /* Nothing to do */
1257                goto out;
1258
1259        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1260                rpte = be64_to_cpu(hptep[1]);
1261                vpte = hpte_new_to_old_v(vpte, rpte);
1262        }
1263
1264        /* Unmap */
1265        rev = &old->rev[idx];
1266        guest_rpte = rev->guest_rpte;
1267
1268        ret = -EIO;
1269        apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1270        if (!apsize)
1271                goto out;
1272
1273        if (vpte & HPTE_V_VALID) {
1274                unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1275                int srcu_idx = srcu_read_lock(&kvm->srcu);
1276                struct kvm_memory_slot *memslot =
1277                        __gfn_to_memslot(kvm_memslots(kvm), gfn);
1278
1279                if (memslot) {
1280                        unsigned long *rmapp;
1281                        rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1282
1283                        lock_rmap(rmapp);
1284                        kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1285                        unlock_rmap(rmapp);
1286                }
1287
1288                srcu_read_unlock(&kvm->srcu, srcu_idx);
1289        }
1290
1291        /* Reload PTE after unmap */
1292        vpte = be64_to_cpu(hptep[0]);
1293        BUG_ON(vpte & HPTE_V_VALID);
1294        BUG_ON(!(vpte & HPTE_V_ABSENT));
1295
1296        ret = 0;
1297        if (!(vpte & HPTE_V_BOLTED))
1298                goto out;
1299
1300        rpte = be64_to_cpu(hptep[1]);
1301
1302        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1303                vpte = hpte_new_to_old_v(vpte, rpte);
1304                rpte = hpte_new_to_old_r(rpte);
1305        }
1306
1307        pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1308        avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1309        pteg = idx / HPTES_PER_GROUP;
1310        if (vpte & HPTE_V_SECONDARY)
1311                pteg = ~pteg;
1312
1313        if (!(vpte & HPTE_V_1TB_SEG)) {
1314                unsigned long offset, vsid;
1315
1316                /* We only have 28 - 23 bits of offset in avpn */
1317                offset = (avpn & 0x1f) << 23;
1318                vsid = avpn >> 5;
1319                /* We can find more bits from the pteg value */
1320                if (pshift < 23)
1321                        offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1322
1323                hash = vsid ^ (offset >> pshift);
1324        } else {
1325                unsigned long offset, vsid;
1326
1327                /* We only have 40 - 23 bits of seg_off in avpn */
1328                offset = (avpn & 0x1ffff) << 23;
1329                vsid = avpn >> 17;
1330                if (pshift < 23)
1331                        offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1332
1333                hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1334        }
1335
1336        new_pteg = hash & new_hash_mask;
1337        if (vpte & HPTE_V_SECONDARY)
1338                new_pteg = ~hash & new_hash_mask;
1339
1340        new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1341        new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1342
1343        replace_vpte = be64_to_cpu(new_hptep[0]);
1344        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1345                unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1346                replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1347        }
1348
1349        if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1350                BUG_ON(new->order >= old->order);
1351
1352                if (replace_vpte & HPTE_V_BOLTED) {
1353                        if (vpte & HPTE_V_BOLTED)
1354                                /* Bolted collision, nothing we can do */
1355                                ret = -ENOSPC;
1356                        /* Discard the new HPTE */
1357                        goto out;
1358                }
1359
1360                /* Discard the previous HPTE */
1361        }
1362
1363        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1364                rpte = hpte_old_to_new_r(vpte, rpte);
1365                vpte = hpte_old_to_new_v(vpte);
1366        }
1367
1368        new_hptep[1] = cpu_to_be64(rpte);
1369        new->rev[new_idx].guest_rpte = guest_rpte;
1370        /* No need for a barrier, since new HPT isn't active */
1371        new_hptep[0] = cpu_to_be64(vpte);
1372        unlock_hpte(new_hptep, vpte);
1373
1374out:
1375        unlock_hpte(hptep, vpte);
1376        return ret;
1377}
1378
1379static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1380{
1381        struct kvm *kvm = resize->kvm;
1382        unsigned  long i;
1383        int rc;
1384
1385        for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1386                rc = resize_hpt_rehash_hpte(resize, i);
1387                if (rc != 0)
1388                        return rc;
1389        }
1390
1391        return 0;
1392}
1393
1394static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1395{
1396        struct kvm *kvm = resize->kvm;
1397        struct kvm_hpt_info hpt_tmp;
1398
1399        /* Exchange the pending tables in the resize structure with
1400         * the active tables */
1401
1402        resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1403
1404        spin_lock(&kvm->mmu_lock);
1405        asm volatile("ptesync" : : : "memory");
1406
1407        hpt_tmp = kvm->arch.hpt;
1408        kvmppc_set_hpt(kvm, &resize->hpt);
1409        resize->hpt = hpt_tmp;
1410
1411        spin_unlock(&kvm->mmu_lock);
1412
1413        synchronize_srcu_expedited(&kvm->srcu);
1414
1415        if (cpu_has_feature(CPU_FTR_ARCH_300))
1416                kvmppc_setup_partition_table(kvm);
1417
1418        resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1419}
1420
1421static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1422{
1423        if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1424                return;
1425
1426        if (!resize)
1427                return;
1428
1429        if (resize->error != -EBUSY) {
1430                if (resize->hpt.virt)
1431                        kvmppc_free_hpt(&resize->hpt);
1432                kfree(resize);
1433        }
1434
1435        if (kvm->arch.resize_hpt == resize)
1436                kvm->arch.resize_hpt = NULL;
1437}
1438
1439static void resize_hpt_prepare_work(struct work_struct *work)
1440{
1441        struct kvm_resize_hpt *resize = container_of(work,
1442                                                     struct kvm_resize_hpt,
1443                                                     work);
1444        struct kvm *kvm = resize->kvm;
1445        int err = 0;
1446
1447        if (WARN_ON(resize->error != -EBUSY))
1448                return;
1449
1450        mutex_lock(&kvm->arch.mmu_setup_lock);
1451
1452        /* Request is still current? */
1453        if (kvm->arch.resize_hpt == resize) {
1454                /* We may request large allocations here:
1455                 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1456                 */
1457                mutex_unlock(&kvm->arch.mmu_setup_lock);
1458
1459                resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1460                                 resize->order);
1461
1462                err = resize_hpt_allocate(resize);
1463
1464                /* We have strict assumption about -EBUSY
1465                 * when preparing for HPT resize.
1466                 */
1467                if (WARN_ON(err == -EBUSY))
1468                        err = -EINPROGRESS;
1469
1470                mutex_lock(&kvm->arch.mmu_setup_lock);
1471                /* It is possible that kvm->arch.resize_hpt != resize
1472                 * after we grab kvm->arch.mmu_setup_lock again.
1473                 */
1474        }
1475
1476        resize->error = err;
1477
1478        if (kvm->arch.resize_hpt != resize)
1479                resize_hpt_release(kvm, resize);
1480
1481        mutex_unlock(&kvm->arch.mmu_setup_lock);
1482}
1483
1484long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1485                                     struct kvm_ppc_resize_hpt *rhpt)
1486{
1487        unsigned long flags = rhpt->flags;
1488        unsigned long shift = rhpt->shift;
1489        struct kvm_resize_hpt *resize;
1490        int ret;
1491
1492        if (flags != 0 || kvm_is_radix(kvm))
1493                return -EINVAL;
1494
1495        if (shift && ((shift < 18) || (shift > 46)))
1496                return -EINVAL;
1497
1498        mutex_lock(&kvm->arch.mmu_setup_lock);
1499
1500        resize = kvm->arch.resize_hpt;
1501
1502        if (resize) {
1503                if (resize->order == shift) {
1504                        /* Suitable resize in progress? */
1505                        ret = resize->error;
1506                        if (ret == -EBUSY)
1507                                ret = 100; /* estimated time in ms */
1508                        else if (ret)
1509                                resize_hpt_release(kvm, resize);
1510
1511                        goto out;
1512                }
1513
1514                /* not suitable, cancel it */
1515                resize_hpt_release(kvm, resize);
1516        }
1517
1518        ret = 0;
1519        if (!shift)
1520                goto out; /* nothing to do */
1521
1522        /* start new resize */
1523
1524        resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1525        if (!resize) {
1526                ret = -ENOMEM;
1527                goto out;
1528        }
1529
1530        resize->error = -EBUSY;
1531        resize->order = shift;
1532        resize->kvm = kvm;
1533        INIT_WORK(&resize->work, resize_hpt_prepare_work);
1534        kvm->arch.resize_hpt = resize;
1535
1536        schedule_work(&resize->work);
1537
1538        ret = 100; /* estimated time in ms */
1539
1540out:
1541        mutex_unlock(&kvm->arch.mmu_setup_lock);
1542        return ret;
1543}
1544
1545static void resize_hpt_boot_vcpu(void *opaque)
1546{
1547        /* Nothing to do, just force a KVM exit */
1548}
1549
1550long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1551                                    struct kvm_ppc_resize_hpt *rhpt)
1552{
1553        unsigned long flags = rhpt->flags;
1554        unsigned long shift = rhpt->shift;
1555        struct kvm_resize_hpt *resize;
1556        long ret;
1557
1558        if (flags != 0 || kvm_is_radix(kvm))
1559                return -EINVAL;
1560
1561        if (shift && ((shift < 18) || (shift > 46)))
1562                return -EINVAL;
1563
1564        mutex_lock(&kvm->arch.mmu_setup_lock);
1565
1566        resize = kvm->arch.resize_hpt;
1567
1568        /* This shouldn't be possible */
1569        ret = -EIO;
1570        if (WARN_ON(!kvm->arch.mmu_ready))
1571                goto out_no_hpt;
1572
1573        /* Stop VCPUs from running while we mess with the HPT */
1574        kvm->arch.mmu_ready = 0;
1575        smp_mb();
1576
1577        /* Boot all CPUs out of the guest so they re-read
1578         * mmu_ready */
1579        on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1580
1581        ret = -ENXIO;
1582        if (!resize || (resize->order != shift))
1583                goto out;
1584
1585        ret = resize->error;
1586        if (ret)
1587                goto out;
1588
1589        ret = resize_hpt_rehash(resize);
1590        if (ret)
1591                goto out;
1592
1593        resize_hpt_pivot(resize);
1594
1595out:
1596        /* Let VCPUs run again */
1597        kvm->arch.mmu_ready = 1;
1598        smp_mb();
1599out_no_hpt:
1600        resize_hpt_release(kvm, resize);
1601        mutex_unlock(&kvm->arch.mmu_setup_lock);
1602        return ret;
1603}
1604
1605/*
1606 * Functions for reading and writing the hash table via reads and
1607 * writes on a file descriptor.
1608 *
1609 * Reads return the guest view of the hash table, which has to be
1610 * pieced together from the real hash table and the guest_rpte
1611 * values in the revmap array.
1612 *
1613 * On writes, each HPTE written is considered in turn, and if it
1614 * is valid, it is written to the HPT as if an H_ENTER with the
1615 * exact flag set was done.  When the invalid count is non-zero
1616 * in the header written to the stream, the kernel will make
1617 * sure that that many HPTEs are invalid, and invalidate them
1618 * if not.
1619 */
1620
1621struct kvm_htab_ctx {
1622        unsigned long   index;
1623        unsigned long   flags;
1624        struct kvm      *kvm;
1625        int             first_pass;
1626};
1627
1628#define HPTE_SIZE       (2 * sizeof(unsigned long))
1629
1630/*
1631 * Returns 1 if this HPT entry has been modified or has pending
1632 * R/C bit changes.
1633 */
1634static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1635{
1636        unsigned long rcbits_unset;
1637
1638        if (revp->guest_rpte & HPTE_GR_MODIFIED)
1639                return 1;
1640
1641        /* Also need to consider changes in reference and changed bits */
1642        rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1643        if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1644            (be64_to_cpu(hptp[1]) & rcbits_unset))
1645                return 1;
1646
1647        return 0;
1648}
1649
1650static long record_hpte(unsigned long flags, __be64 *hptp,
1651                        unsigned long *hpte, struct revmap_entry *revp,
1652                        int want_valid, int first_pass)
1653{
1654        unsigned long v, r, hr;
1655        unsigned long rcbits_unset;
1656        int ok = 1;
1657        int valid, dirty;
1658
1659        /* Unmodified entries are uninteresting except on the first pass */
1660        dirty = hpte_dirty(revp, hptp);
1661        if (!first_pass && !dirty)
1662                return 0;
1663
1664        valid = 0;
1665        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1666                valid = 1;
1667                if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1668                    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1669                        valid = 0;
1670        }
1671        if (valid != want_valid)
1672                return 0;
1673
1674        v = r = 0;
1675        if (valid || dirty) {
1676                /* lock the HPTE so it's stable and read it */
1677                preempt_disable();
1678                while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1679                        cpu_relax();
1680                v = be64_to_cpu(hptp[0]);
1681                hr = be64_to_cpu(hptp[1]);
1682                if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1683                        v = hpte_new_to_old_v(v, hr);
1684                        hr = hpte_new_to_old_r(hr);
1685                }
1686
1687                /* re-evaluate valid and dirty from synchronized HPTE value */
1688                valid = !!(v & HPTE_V_VALID);
1689                dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1690
1691                /* Harvest R and C into guest view if necessary */
1692                rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1693                if (valid && (rcbits_unset & hr)) {
1694                        revp->guest_rpte |= (hr &
1695                                (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1696                        dirty = 1;
1697                }
1698
1699                if (v & HPTE_V_ABSENT) {
1700                        v &= ~HPTE_V_ABSENT;
1701                        v |= HPTE_V_VALID;
1702                        valid = 1;
1703                }
1704                if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1705                        valid = 0;
1706
1707                r = revp->guest_rpte;
1708                /* only clear modified if this is the right sort of entry */
1709                if (valid == want_valid && dirty) {
1710                        r &= ~HPTE_GR_MODIFIED;
1711                        revp->guest_rpte = r;
1712                }
1713                unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1714                preempt_enable();
1715                if (!(valid == want_valid && (first_pass || dirty)))
1716                        ok = 0;
1717        }
1718        hpte[0] = cpu_to_be64(v);
1719        hpte[1] = cpu_to_be64(r);
1720        return ok;
1721}
1722
1723static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1724                             size_t count, loff_t *ppos)
1725{
1726        struct kvm_htab_ctx *ctx = file->private_data;
1727        struct kvm *kvm = ctx->kvm;
1728        struct kvm_get_htab_header hdr;
1729        __be64 *hptp;
1730        struct revmap_entry *revp;
1731        unsigned long i, nb, nw;
1732        unsigned long __user *lbuf;
1733        struct kvm_get_htab_header __user *hptr;
1734        unsigned long flags;
1735        int first_pass;
1736        unsigned long hpte[2];
1737
1738        if (!access_ok(buf, count))
1739                return -EFAULT;
1740        if (kvm_is_radix(kvm))
1741                return 0;
1742
1743        first_pass = ctx->first_pass;
1744        flags = ctx->flags;
1745
1746        i = ctx->index;
1747        hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1748        revp = kvm->arch.hpt.rev + i;
1749        lbuf = (unsigned long __user *)buf;
1750
1751        nb = 0;
1752        while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1753                /* Initialize header */
1754                hptr = (struct kvm_get_htab_header __user *)buf;
1755                hdr.n_valid = 0;
1756                hdr.n_invalid = 0;
1757                nw = nb;
1758                nb += sizeof(hdr);
1759                lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1760
1761                /* Skip uninteresting entries, i.e. clean on not-first pass */
1762                if (!first_pass) {
1763                        while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1764                               !hpte_dirty(revp, hptp)) {
1765                                ++i;
1766                                hptp += 2;
1767                                ++revp;
1768                        }
1769                }
1770                hdr.index = i;
1771
1772                /* Grab a series of valid entries */
1773                while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1774                       hdr.n_valid < 0xffff &&
1775                       nb + HPTE_SIZE < count &&
1776                       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1777                        /* valid entry, write it out */
1778                        ++hdr.n_valid;
1779                        if (__put_user(hpte[0], lbuf) ||
1780                            __put_user(hpte[1], lbuf + 1))
1781                                return -EFAULT;
1782                        nb += HPTE_SIZE;
1783                        lbuf += 2;
1784                        ++i;
1785                        hptp += 2;
1786                        ++revp;
1787                }
1788                /* Now skip invalid entries while we can */
1789                while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1790                       hdr.n_invalid < 0xffff &&
1791                       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1792                        /* found an invalid entry */
1793                        ++hdr.n_invalid;
1794                        ++i;
1795                        hptp += 2;
1796                        ++revp;
1797                }
1798
1799                if (hdr.n_valid || hdr.n_invalid) {
1800                        /* write back the header */
1801                        if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1802                                return -EFAULT;
1803                        nw = nb;
1804                        buf = (char __user *)lbuf;
1805                } else {
1806                        nb = nw;
1807                }
1808
1809                /* Check if we've wrapped around the hash table */
1810                if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1811                        i = 0;
1812                        ctx->first_pass = 0;
1813                        break;
1814                }
1815        }
1816
1817        ctx->index = i;
1818
1819        return nb;
1820}
1821
1822static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1823                              size_t count, loff_t *ppos)
1824{
1825        struct kvm_htab_ctx *ctx = file->private_data;
1826        struct kvm *kvm = ctx->kvm;
1827        struct kvm_get_htab_header hdr;
1828        unsigned long i, j;
1829        unsigned long v, r;
1830        unsigned long __user *lbuf;
1831        __be64 *hptp;
1832        unsigned long tmp[2];
1833        ssize_t nb;
1834        long int err, ret;
1835        int mmu_ready;
1836        int pshift;
1837
1838        if (!access_ok(buf, count))
1839                return -EFAULT;
1840        if (kvm_is_radix(kvm))
1841                return -EINVAL;
1842
1843        /* lock out vcpus from running while we're doing this */
1844        mutex_lock(&kvm->arch.mmu_setup_lock);
1845        mmu_ready = kvm->arch.mmu_ready;
1846        if (mmu_ready) {
1847                kvm->arch.mmu_ready = 0;        /* temporarily */
1848                /* order mmu_ready vs. vcpus_running */
1849                smp_mb();
1850                if (atomic_read(&kvm->arch.vcpus_running)) {
1851                        kvm->arch.mmu_ready = 1;
1852                        mutex_unlock(&kvm->arch.mmu_setup_lock);
1853                        return -EBUSY;
1854                }
1855        }
1856
1857        err = 0;
1858        for (nb = 0; nb + sizeof(hdr) <= count; ) {
1859                err = -EFAULT;
1860                if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1861                        break;
1862
1863                err = 0;
1864                if (nb + hdr.n_valid * HPTE_SIZE > count)
1865                        break;
1866
1867                nb += sizeof(hdr);
1868                buf += sizeof(hdr);
1869
1870                err = -EINVAL;
1871                i = hdr.index;
1872                if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1873                    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1874                        break;
1875
1876                hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1877                lbuf = (unsigned long __user *)buf;
1878                for (j = 0; j < hdr.n_valid; ++j) {
1879                        __be64 hpte_v;
1880                        __be64 hpte_r;
1881
1882                        err = -EFAULT;
1883                        if (__get_user(hpte_v, lbuf) ||
1884                            __get_user(hpte_r, lbuf + 1))
1885                                goto out;
1886                        v = be64_to_cpu(hpte_v);
1887                        r = be64_to_cpu(hpte_r);
1888                        err = -EINVAL;
1889                        if (!(v & HPTE_V_VALID))
1890                                goto out;
1891                        pshift = kvmppc_hpte_base_page_shift(v, r);
1892                        if (pshift <= 0)
1893                                goto out;
1894                        lbuf += 2;
1895                        nb += HPTE_SIZE;
1896
1897                        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1898                                kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1899                        err = -EIO;
1900                        ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1901                                                         tmp);
1902                        if (ret != H_SUCCESS) {
1903                                pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1904                                       "r=%lx\n", ret, i, v, r);
1905                                goto out;
1906                        }
1907                        if (!mmu_ready && is_vrma_hpte(v)) {
1908                                unsigned long senc, lpcr;
1909
1910                                senc = slb_pgsize_encoding(1ul << pshift);
1911                                kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1912                                        (VRMA_VSID << SLB_VSID_SHIFT_1T);
1913                                if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1914                                        lpcr = senc << (LPCR_VRMASD_SH - 4);
1915                                        kvmppc_update_lpcr(kvm, lpcr,
1916                                                           LPCR_VRMASD);
1917                                } else {
1918                                        kvmppc_setup_partition_table(kvm);
1919                                }
1920                                mmu_ready = 1;
1921                        }
1922                        ++i;
1923                        hptp += 2;
1924                }
1925
1926                for (j = 0; j < hdr.n_invalid; ++j) {
1927                        if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1928                                kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1929                        ++i;
1930                        hptp += 2;
1931                }
1932                err = 0;
1933        }
1934
1935 out:
1936        /* Order HPTE updates vs. mmu_ready */
1937        smp_wmb();
1938        kvm->arch.mmu_ready = mmu_ready;
1939        mutex_unlock(&kvm->arch.mmu_setup_lock);
1940
1941        if (err)
1942                return err;
1943        return nb;
1944}
1945
1946static int kvm_htab_release(struct inode *inode, struct file *filp)
1947{
1948        struct kvm_htab_ctx *ctx = filp->private_data;
1949
1950        filp->private_data = NULL;
1951        if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1952                atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1953        kvm_put_kvm(ctx->kvm);
1954        kfree(ctx);
1955        return 0;
1956}
1957
1958static const struct file_operations kvm_htab_fops = {
1959        .read           = kvm_htab_read,
1960        .write          = kvm_htab_write,
1961        .llseek         = default_llseek,
1962        .release        = kvm_htab_release,
1963};
1964
1965int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1966{
1967        int ret;
1968        struct kvm_htab_ctx *ctx;
1969        int rwflag;
1970
1971        /* reject flags we don't recognize */
1972        if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1973                return -EINVAL;
1974        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1975        if (!ctx)
1976                return -ENOMEM;
1977        kvm_get_kvm(kvm);
1978        ctx->kvm = kvm;
1979        ctx->index = ghf->start_index;
1980        ctx->flags = ghf->flags;
1981        ctx->first_pass = 1;
1982
1983        rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1984        ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1985        if (ret < 0) {
1986                kfree(ctx);
1987                kvm_put_kvm_no_destroy(kvm);
1988                return ret;
1989        }
1990
1991        if (rwflag == O_RDONLY) {
1992                mutex_lock(&kvm->slots_lock);
1993                atomic_inc(&kvm->arch.hpte_mod_interest);
1994                /* make sure kvmppc_do_h_enter etc. see the increment */
1995                synchronize_srcu_expedited(&kvm->srcu);
1996                mutex_unlock(&kvm->slots_lock);
1997        }
1998
1999        return ret;
2000}
2001
2002struct debugfs_htab_state {
2003        struct kvm      *kvm;
2004        struct mutex    mutex;
2005        unsigned long   hpt_index;
2006        int             chars_left;
2007        int             buf_index;
2008        char            buf[64];
2009};
2010
2011static int debugfs_htab_open(struct inode *inode, struct file *file)
2012{
2013        struct kvm *kvm = inode->i_private;
2014        struct debugfs_htab_state *p;
2015
2016        p = kzalloc(sizeof(*p), GFP_KERNEL);
2017        if (!p)
2018                return -ENOMEM;
2019
2020        kvm_get_kvm(kvm);
2021        p->kvm = kvm;
2022        mutex_init(&p->mutex);
2023        file->private_data = p;
2024
2025        return nonseekable_open(inode, file);
2026}
2027
2028static int debugfs_htab_release(struct inode *inode, struct file *file)
2029{
2030        struct debugfs_htab_state *p = file->private_data;
2031
2032        kvm_put_kvm(p->kvm);
2033        kfree(p);
2034        return 0;
2035}
2036
2037static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2038                                 size_t len, loff_t *ppos)
2039{
2040        struct debugfs_htab_state *p = file->private_data;
2041        ssize_t ret, r;
2042        unsigned long i, n;
2043        unsigned long v, hr, gr;
2044        struct kvm *kvm;
2045        __be64 *hptp;
2046
2047        kvm = p->kvm;
2048        if (kvm_is_radix(kvm))
2049                return 0;
2050
2051        ret = mutex_lock_interruptible(&p->mutex);
2052        if (ret)
2053                return ret;
2054
2055        if (p->chars_left) {
2056                n = p->chars_left;
2057                if (n > len)
2058                        n = len;
2059                r = copy_to_user(buf, p->buf + p->buf_index, n);
2060                n -= r;
2061                p->chars_left -= n;
2062                p->buf_index += n;
2063                buf += n;
2064                len -= n;
2065                ret = n;
2066                if (r) {
2067                        if (!n)
2068                                ret = -EFAULT;
2069                        goto out;
2070                }
2071        }
2072
2073        i = p->hpt_index;
2074        hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2075        for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2076             ++i, hptp += 2) {
2077                if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2078                        continue;
2079
2080                /* lock the HPTE so it's stable and read it */
2081                preempt_disable();
2082                while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2083                        cpu_relax();
2084                v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2085                hr = be64_to_cpu(hptp[1]);
2086                gr = kvm->arch.hpt.rev[i].guest_rpte;
2087                unlock_hpte(hptp, v);
2088                preempt_enable();
2089
2090                if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2091                        continue;
2092
2093                n = scnprintf(p->buf, sizeof(p->buf),
2094                              "%6lx %.16lx %.16lx %.16lx\n",
2095                              i, v, hr, gr);
2096                p->chars_left = n;
2097                if (n > len)
2098                        n = len;
2099                r = copy_to_user(buf, p->buf, n);
2100                n -= r;
2101                p->chars_left -= n;
2102                p->buf_index = n;
2103                buf += n;
2104                len -= n;
2105                ret += n;
2106                if (r) {
2107                        if (!ret)
2108                                ret = -EFAULT;
2109                        goto out;
2110                }
2111        }
2112        p->hpt_index = i;
2113
2114 out:
2115        mutex_unlock(&p->mutex);
2116        return ret;
2117}
2118
2119static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2120                           size_t len, loff_t *ppos)
2121{
2122        return -EACCES;
2123}
2124
2125static const struct file_operations debugfs_htab_fops = {
2126        .owner   = THIS_MODULE,
2127        .open    = debugfs_htab_open,
2128        .release = debugfs_htab_release,
2129        .read    = debugfs_htab_read,
2130        .write   = debugfs_htab_write,
2131        .llseek  = generic_file_llseek,
2132};
2133
2134void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2135{
2136        debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm,
2137                            &debugfs_htab_fops);
2138}
2139
2140void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2141{
2142        struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2143
2144        vcpu->arch.slb_nr = 32;         /* POWER7/POWER8 */
2145
2146        mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2147
2148        vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2149}
2150