linux/arch/x86/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events x86 architecture code
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2009 Jaswinder Singh Rajput
   7 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
   8 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
   9 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
  11 *
  12 *  For licencing details see kernel-base/COPYING
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/capability.h>
  17#include <linux/notifier.h>
  18#include <linux/hardirq.h>
  19#include <linux/kprobes.h>
  20#include <linux/export.h>
  21#include <linux/init.h>
  22#include <linux/kdebug.h>
  23#include <linux/sched/mm.h>
  24#include <linux/sched/clock.h>
  25#include <linux/uaccess.h>
  26#include <linux/slab.h>
  27#include <linux/cpu.h>
  28#include <linux/bitops.h>
  29#include <linux/device.h>
  30#include <linux/nospec.h>
  31
  32#include <asm/apic.h>
  33#include <asm/stacktrace.h>
  34#include <asm/nmi.h>
  35#include <asm/smp.h>
  36#include <asm/alternative.h>
  37#include <asm/mmu_context.h>
  38#include <asm/tlbflush.h>
  39#include <asm/timer.h>
  40#include <asm/desc.h>
  41#include <asm/ldt.h>
  42#include <asm/unwind.h>
  43
  44#include "perf_event.h"
  45
  46struct x86_pmu x86_pmu __read_mostly;
  47
  48DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  49        .enabled = 1,
  50};
  51
  52DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
  53DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
  54
  55u64 __read_mostly hw_cache_event_ids
  56                                [PERF_COUNT_HW_CACHE_MAX]
  57                                [PERF_COUNT_HW_CACHE_OP_MAX]
  58                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  59u64 __read_mostly hw_cache_extra_regs
  60                                [PERF_COUNT_HW_CACHE_MAX]
  61                                [PERF_COUNT_HW_CACHE_OP_MAX]
  62                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  63
  64/*
  65 * Propagate event elapsed time into the generic event.
  66 * Can only be executed on the CPU where the event is active.
  67 * Returns the delta events processed.
  68 */
  69u64 x86_perf_event_update(struct perf_event *event)
  70{
  71        struct hw_perf_event *hwc = &event->hw;
  72        int shift = 64 - x86_pmu.cntval_bits;
  73        u64 prev_raw_count, new_raw_count;
  74        int idx = hwc->idx;
  75        u64 delta;
  76
  77        if (idx == INTEL_PMC_IDX_FIXED_BTS)
  78                return 0;
  79
  80        /*
  81         * Careful: an NMI might modify the previous event value.
  82         *
  83         * Our tactic to handle this is to first atomically read and
  84         * exchange a new raw count - then add that new-prev delta
  85         * count to the generic event atomically:
  86         */
  87again:
  88        prev_raw_count = local64_read(&hwc->prev_count);
  89        rdpmcl(hwc->event_base_rdpmc, new_raw_count);
  90
  91        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  92                                        new_raw_count) != prev_raw_count)
  93                goto again;
  94
  95        /*
  96         * Now we have the new raw value and have updated the prev
  97         * timestamp already. We can now calculate the elapsed delta
  98         * (event-)time and add that to the generic event.
  99         *
 100         * Careful, not all hw sign-extends above the physical width
 101         * of the count.
 102         */
 103        delta = (new_raw_count << shift) - (prev_raw_count << shift);
 104        delta >>= shift;
 105
 106        local64_add(delta, &event->count);
 107        local64_sub(delta, &hwc->period_left);
 108
 109        return new_raw_count;
 110}
 111
 112/*
 113 * Find and validate any extra registers to set up.
 114 */
 115static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
 116{
 117        struct hw_perf_event_extra *reg;
 118        struct extra_reg *er;
 119
 120        reg = &event->hw.extra_reg;
 121
 122        if (!x86_pmu.extra_regs)
 123                return 0;
 124
 125        for (er = x86_pmu.extra_regs; er->msr; er++) {
 126                if (er->event != (config & er->config_mask))
 127                        continue;
 128                if (event->attr.config1 & ~er->valid_mask)
 129                        return -EINVAL;
 130                /* Check if the extra msrs can be safely accessed*/
 131                if (!er->extra_msr_access)
 132                        return -ENXIO;
 133
 134                reg->idx = er->idx;
 135                reg->config = event->attr.config1;
 136                reg->reg = er->msr;
 137                break;
 138        }
 139        return 0;
 140}
 141
 142static atomic_t active_events;
 143static atomic_t pmc_refcount;
 144static DEFINE_MUTEX(pmc_reserve_mutex);
 145
 146#ifdef CONFIG_X86_LOCAL_APIC
 147
 148static bool reserve_pmc_hardware(void)
 149{
 150        int i;
 151
 152        for (i = 0; i < x86_pmu.num_counters; i++) {
 153                if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
 154                        goto perfctr_fail;
 155        }
 156
 157        for (i = 0; i < x86_pmu.num_counters; i++) {
 158                if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
 159                        goto eventsel_fail;
 160        }
 161
 162        return true;
 163
 164eventsel_fail:
 165        for (i--; i >= 0; i--)
 166                release_evntsel_nmi(x86_pmu_config_addr(i));
 167
 168        i = x86_pmu.num_counters;
 169
 170perfctr_fail:
 171        for (i--; i >= 0; i--)
 172                release_perfctr_nmi(x86_pmu_event_addr(i));
 173
 174        return false;
 175}
 176
 177static void release_pmc_hardware(void)
 178{
 179        int i;
 180
 181        for (i = 0; i < x86_pmu.num_counters; i++) {
 182                release_perfctr_nmi(x86_pmu_event_addr(i));
 183                release_evntsel_nmi(x86_pmu_config_addr(i));
 184        }
 185}
 186
 187#else
 188
 189static bool reserve_pmc_hardware(void) { return true; }
 190static void release_pmc_hardware(void) {}
 191
 192#endif
 193
 194static bool check_hw_exists(void)
 195{
 196        u64 val, val_fail = -1, val_new= ~0;
 197        int i, reg, reg_fail = -1, ret = 0;
 198        int bios_fail = 0;
 199        int reg_safe = -1;
 200
 201        /*
 202         * Check to see if the BIOS enabled any of the counters, if so
 203         * complain and bail.
 204         */
 205        for (i = 0; i < x86_pmu.num_counters; i++) {
 206                reg = x86_pmu_config_addr(i);
 207                ret = rdmsrl_safe(reg, &val);
 208                if (ret)
 209                        goto msr_fail;
 210                if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
 211                        bios_fail = 1;
 212                        val_fail = val;
 213                        reg_fail = reg;
 214                } else {
 215                        reg_safe = i;
 216                }
 217        }
 218
 219        if (x86_pmu.num_counters_fixed) {
 220                reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
 221                ret = rdmsrl_safe(reg, &val);
 222                if (ret)
 223                        goto msr_fail;
 224                for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
 225                        if (val & (0x03 << i*4)) {
 226                                bios_fail = 1;
 227                                val_fail = val;
 228                                reg_fail = reg;
 229                        }
 230                }
 231        }
 232
 233        /*
 234         * If all the counters are enabled, the below test will always
 235         * fail.  The tools will also become useless in this scenario.
 236         * Just fail and disable the hardware counters.
 237         */
 238
 239        if (reg_safe == -1) {
 240                reg = reg_safe;
 241                goto msr_fail;
 242        }
 243
 244        /*
 245         * Read the current value, change it and read it back to see if it
 246         * matches, this is needed to detect certain hardware emulators
 247         * (qemu/kvm) that don't trap on the MSR access and always return 0s.
 248         */
 249        reg = x86_pmu_event_addr(reg_safe);
 250        if (rdmsrl_safe(reg, &val))
 251                goto msr_fail;
 252        val ^= 0xffffUL;
 253        ret = wrmsrl_safe(reg, val);
 254        ret |= rdmsrl_safe(reg, &val_new);
 255        if (ret || val != val_new)
 256                goto msr_fail;
 257
 258        /*
 259         * We still allow the PMU driver to operate:
 260         */
 261        if (bios_fail) {
 262                pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
 263                pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
 264                              reg_fail, val_fail);
 265        }
 266
 267        return true;
 268
 269msr_fail:
 270        if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
 271                pr_cont("PMU not available due to virtualization, using software events only.\n");
 272        } else {
 273                pr_cont("Broken PMU hardware detected, using software events only.\n");
 274                pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
 275                       reg, val_new);
 276        }
 277
 278        return false;
 279}
 280
 281static void hw_perf_event_destroy(struct perf_event *event)
 282{
 283        x86_release_hardware();
 284        atomic_dec(&active_events);
 285}
 286
 287void hw_perf_lbr_event_destroy(struct perf_event *event)
 288{
 289        hw_perf_event_destroy(event);
 290
 291        /* undo the lbr/bts event accounting */
 292        x86_del_exclusive(x86_lbr_exclusive_lbr);
 293}
 294
 295static inline int x86_pmu_initialized(void)
 296{
 297        return x86_pmu.handle_irq != NULL;
 298}
 299
 300static inline int
 301set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
 302{
 303        struct perf_event_attr *attr = &event->attr;
 304        unsigned int cache_type, cache_op, cache_result;
 305        u64 config, val;
 306
 307        config = attr->config;
 308
 309        cache_type = (config >> 0) & 0xff;
 310        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 311                return -EINVAL;
 312        cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
 313
 314        cache_op = (config >>  8) & 0xff;
 315        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 316                return -EINVAL;
 317        cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
 318
 319        cache_result = (config >> 16) & 0xff;
 320        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 321                return -EINVAL;
 322        cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
 323
 324        val = hw_cache_event_ids[cache_type][cache_op][cache_result];
 325
 326        if (val == 0)
 327                return -ENOENT;
 328
 329        if (val == -1)
 330                return -EINVAL;
 331
 332        hwc->config |= val;
 333        attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
 334        return x86_pmu_extra_regs(val, event);
 335}
 336
 337int x86_reserve_hardware(void)
 338{
 339        int err = 0;
 340
 341        if (!atomic_inc_not_zero(&pmc_refcount)) {
 342                mutex_lock(&pmc_reserve_mutex);
 343                if (atomic_read(&pmc_refcount) == 0) {
 344                        if (!reserve_pmc_hardware())
 345                                err = -EBUSY;
 346                        else
 347                                reserve_ds_buffers();
 348                }
 349                if (!err)
 350                        atomic_inc(&pmc_refcount);
 351                mutex_unlock(&pmc_reserve_mutex);
 352        }
 353
 354        return err;
 355}
 356
 357void x86_release_hardware(void)
 358{
 359        if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
 360                release_pmc_hardware();
 361                release_ds_buffers();
 362                mutex_unlock(&pmc_reserve_mutex);
 363        }
 364}
 365
 366/*
 367 * Check if we can create event of a certain type (that no conflicting events
 368 * are present).
 369 */
 370int x86_add_exclusive(unsigned int what)
 371{
 372        int i;
 373
 374        /*
 375         * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
 376         * LBR and BTS are still mutually exclusive.
 377         */
 378        if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
 379                goto out;
 380
 381        if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
 382                mutex_lock(&pmc_reserve_mutex);
 383                for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
 384                        if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
 385                                goto fail_unlock;
 386                }
 387                atomic_inc(&x86_pmu.lbr_exclusive[what]);
 388                mutex_unlock(&pmc_reserve_mutex);
 389        }
 390
 391out:
 392        atomic_inc(&active_events);
 393        return 0;
 394
 395fail_unlock:
 396        mutex_unlock(&pmc_reserve_mutex);
 397        return -EBUSY;
 398}
 399
 400void x86_del_exclusive(unsigned int what)
 401{
 402        atomic_dec(&active_events);
 403
 404        /*
 405         * See the comment in x86_add_exclusive().
 406         */
 407        if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
 408                return;
 409
 410        atomic_dec(&x86_pmu.lbr_exclusive[what]);
 411}
 412
 413int x86_setup_perfctr(struct perf_event *event)
 414{
 415        struct perf_event_attr *attr = &event->attr;
 416        struct hw_perf_event *hwc = &event->hw;
 417        u64 config;
 418
 419        if (!is_sampling_event(event)) {
 420                hwc->sample_period = x86_pmu.max_period;
 421                hwc->last_period = hwc->sample_period;
 422                local64_set(&hwc->period_left, hwc->sample_period);
 423        }
 424
 425        if (attr->type == PERF_TYPE_RAW)
 426                return x86_pmu_extra_regs(event->attr.config, event);
 427
 428        if (attr->type == PERF_TYPE_HW_CACHE)
 429                return set_ext_hw_attr(hwc, event);
 430
 431        if (attr->config >= x86_pmu.max_events)
 432                return -EINVAL;
 433
 434        attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
 435
 436        /*
 437         * The generic map:
 438         */
 439        config = x86_pmu.event_map(attr->config);
 440
 441        if (config == 0)
 442                return -ENOENT;
 443
 444        if (config == -1LL)
 445                return -EINVAL;
 446
 447        hwc->config |= config;
 448
 449        return 0;
 450}
 451
 452/*
 453 * check that branch_sample_type is compatible with
 454 * settings needed for precise_ip > 1 which implies
 455 * using the LBR to capture ALL taken branches at the
 456 * priv levels of the measurement
 457 */
 458static inline int precise_br_compat(struct perf_event *event)
 459{
 460        u64 m = event->attr.branch_sample_type;
 461        u64 b = 0;
 462
 463        /* must capture all branches */
 464        if (!(m & PERF_SAMPLE_BRANCH_ANY))
 465                return 0;
 466
 467        m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
 468
 469        if (!event->attr.exclude_user)
 470                b |= PERF_SAMPLE_BRANCH_USER;
 471
 472        if (!event->attr.exclude_kernel)
 473                b |= PERF_SAMPLE_BRANCH_KERNEL;
 474
 475        /*
 476         * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
 477         */
 478
 479        return m == b;
 480}
 481
 482int x86_pmu_max_precise(void)
 483{
 484        int precise = 0;
 485
 486        /* Support for constant skid */
 487        if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
 488                precise++;
 489
 490                /* Support for IP fixup */
 491                if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
 492                        precise++;
 493
 494                if (x86_pmu.pebs_prec_dist)
 495                        precise++;
 496        }
 497        return precise;
 498}
 499
 500int x86_pmu_hw_config(struct perf_event *event)
 501{
 502        if (event->attr.precise_ip) {
 503                int precise = x86_pmu_max_precise();
 504
 505                if (event->attr.precise_ip > precise)
 506                        return -EOPNOTSUPP;
 507
 508                /* There's no sense in having PEBS for non sampling events: */
 509                if (!is_sampling_event(event))
 510                        return -EINVAL;
 511        }
 512        /*
 513         * check that PEBS LBR correction does not conflict with
 514         * whatever the user is asking with attr->branch_sample_type
 515         */
 516        if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
 517                u64 *br_type = &event->attr.branch_sample_type;
 518
 519                if (has_branch_stack(event)) {
 520                        if (!precise_br_compat(event))
 521                                return -EOPNOTSUPP;
 522
 523                        /* branch_sample_type is compatible */
 524
 525                } else {
 526                        /*
 527                         * user did not specify  branch_sample_type
 528                         *
 529                         * For PEBS fixups, we capture all
 530                         * the branches at the priv level of the
 531                         * event.
 532                         */
 533                        *br_type = PERF_SAMPLE_BRANCH_ANY;
 534
 535                        if (!event->attr.exclude_user)
 536                                *br_type |= PERF_SAMPLE_BRANCH_USER;
 537
 538                        if (!event->attr.exclude_kernel)
 539                                *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
 540                }
 541        }
 542
 543        if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
 544                event->attach_state |= PERF_ATTACH_TASK_DATA;
 545
 546        /*
 547         * Generate PMC IRQs:
 548         * (keep 'enabled' bit clear for now)
 549         */
 550        event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
 551
 552        /*
 553         * Count user and OS events unless requested not to
 554         */
 555        if (!event->attr.exclude_user)
 556                event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
 557        if (!event->attr.exclude_kernel)
 558                event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
 559
 560        if (event->attr.type == PERF_TYPE_RAW)
 561                event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
 562
 563        if (event->attr.sample_period && x86_pmu.limit_period) {
 564                if (x86_pmu.limit_period(event, event->attr.sample_period) >
 565                                event->attr.sample_period)
 566                        return -EINVAL;
 567        }
 568
 569        /* sample_regs_user never support XMM registers */
 570        if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
 571                return -EINVAL;
 572        /*
 573         * Besides the general purpose registers, XMM registers may
 574         * be collected in PEBS on some platforms, e.g. Icelake
 575         */
 576        if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
 577                if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
 578                        return -EINVAL;
 579
 580                if (!event->attr.precise_ip)
 581                        return -EINVAL;
 582        }
 583
 584        return x86_setup_perfctr(event);
 585}
 586
 587/*
 588 * Setup the hardware configuration for a given attr_type
 589 */
 590static int __x86_pmu_event_init(struct perf_event *event)
 591{
 592        int err;
 593
 594        if (!x86_pmu_initialized())
 595                return -ENODEV;
 596
 597        err = x86_reserve_hardware();
 598        if (err)
 599                return err;
 600
 601        atomic_inc(&active_events);
 602        event->destroy = hw_perf_event_destroy;
 603
 604        event->hw.idx = -1;
 605        event->hw.last_cpu = -1;
 606        event->hw.last_tag = ~0ULL;
 607
 608        /* mark unused */
 609        event->hw.extra_reg.idx = EXTRA_REG_NONE;
 610        event->hw.branch_reg.idx = EXTRA_REG_NONE;
 611
 612        return x86_pmu.hw_config(event);
 613}
 614
 615void x86_pmu_disable_all(void)
 616{
 617        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 618        int idx;
 619
 620        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 621                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 622                u64 val;
 623
 624                if (!test_bit(idx, cpuc->active_mask))
 625                        continue;
 626                rdmsrl(x86_pmu_config_addr(idx), val);
 627                if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
 628                        continue;
 629                val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
 630                wrmsrl(x86_pmu_config_addr(idx), val);
 631                if (is_counter_pair(hwc))
 632                        wrmsrl(x86_pmu_config_addr(idx + 1), 0);
 633        }
 634}
 635
 636/*
 637 * There may be PMI landing after enabled=0. The PMI hitting could be before or
 638 * after disable_all.
 639 *
 640 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
 641 * It will not be re-enabled in the NMI handler again, because enabled=0. After
 642 * handling the NMI, disable_all will be called, which will not change the
 643 * state either. If PMI hits after disable_all, the PMU is already disabled
 644 * before entering NMI handler. The NMI handler will not change the state
 645 * either.
 646 *
 647 * So either situation is harmless.
 648 */
 649static void x86_pmu_disable(struct pmu *pmu)
 650{
 651        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 652
 653        if (!x86_pmu_initialized())
 654                return;
 655
 656        if (!cpuc->enabled)
 657                return;
 658
 659        cpuc->n_added = 0;
 660        cpuc->enabled = 0;
 661        barrier();
 662
 663        x86_pmu.disable_all();
 664}
 665
 666void x86_pmu_enable_all(int added)
 667{
 668        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 669        int idx;
 670
 671        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 672                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 673
 674                if (!test_bit(idx, cpuc->active_mask))
 675                        continue;
 676
 677                __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
 678        }
 679}
 680
 681static struct pmu pmu;
 682
 683static inline int is_x86_event(struct perf_event *event)
 684{
 685        return event->pmu == &pmu;
 686}
 687
 688struct pmu *x86_get_pmu(void)
 689{
 690        return &pmu;
 691}
 692/*
 693 * Event scheduler state:
 694 *
 695 * Assign events iterating over all events and counters, beginning
 696 * with events with least weights first. Keep the current iterator
 697 * state in struct sched_state.
 698 */
 699struct sched_state {
 700        int     weight;
 701        int     event;          /* event index */
 702        int     counter;        /* counter index */
 703        int     unassigned;     /* number of events to be assigned left */
 704        int     nr_gp;          /* number of GP counters used */
 705        u64     used;
 706};
 707
 708/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
 709#define SCHED_STATES_MAX        2
 710
 711struct perf_sched {
 712        int                     max_weight;
 713        int                     max_events;
 714        int                     max_gp;
 715        int                     saved_states;
 716        struct event_constraint **constraints;
 717        struct sched_state      state;
 718        struct sched_state      saved[SCHED_STATES_MAX];
 719};
 720
 721/*
 722 * Initialize interator that runs through all events and counters.
 723 */
 724static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
 725                            int num, int wmin, int wmax, int gpmax)
 726{
 727        int idx;
 728
 729        memset(sched, 0, sizeof(*sched));
 730        sched->max_events       = num;
 731        sched->max_weight       = wmax;
 732        sched->max_gp           = gpmax;
 733        sched->constraints      = constraints;
 734
 735        for (idx = 0; idx < num; idx++) {
 736                if (constraints[idx]->weight == wmin)
 737                        break;
 738        }
 739
 740        sched->state.event      = idx;          /* start with min weight */
 741        sched->state.weight     = wmin;
 742        sched->state.unassigned = num;
 743}
 744
 745static void perf_sched_save_state(struct perf_sched *sched)
 746{
 747        if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
 748                return;
 749
 750        sched->saved[sched->saved_states] = sched->state;
 751        sched->saved_states++;
 752}
 753
 754static bool perf_sched_restore_state(struct perf_sched *sched)
 755{
 756        if (!sched->saved_states)
 757                return false;
 758
 759        sched->saved_states--;
 760        sched->state = sched->saved[sched->saved_states];
 761
 762        /* this assignment didn't work out */
 763        /* XXX broken vs EVENT_PAIR */
 764        sched->state.used &= ~BIT_ULL(sched->state.counter);
 765
 766        /* try the next one */
 767        sched->state.counter++;
 768
 769        return true;
 770}
 771
 772/*
 773 * Select a counter for the current event to schedule. Return true on
 774 * success.
 775 */
 776static bool __perf_sched_find_counter(struct perf_sched *sched)
 777{
 778        struct event_constraint *c;
 779        int idx;
 780
 781        if (!sched->state.unassigned)
 782                return false;
 783
 784        if (sched->state.event >= sched->max_events)
 785                return false;
 786
 787        c = sched->constraints[sched->state.event];
 788        /* Prefer fixed purpose counters */
 789        if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
 790                idx = INTEL_PMC_IDX_FIXED;
 791                for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
 792                        u64 mask = BIT_ULL(idx);
 793
 794                        if (sched->state.used & mask)
 795                                continue;
 796
 797                        sched->state.used |= mask;
 798                        goto done;
 799                }
 800        }
 801
 802        /* Grab the first unused counter starting with idx */
 803        idx = sched->state.counter;
 804        for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
 805                u64 mask = BIT_ULL(idx);
 806
 807                if (c->flags & PERF_X86_EVENT_PAIR)
 808                        mask |= mask << 1;
 809
 810                if (sched->state.used & mask)
 811                        continue;
 812
 813                if (sched->state.nr_gp++ >= sched->max_gp)
 814                        return false;
 815
 816                sched->state.used |= mask;
 817                goto done;
 818        }
 819
 820        return false;
 821
 822done:
 823        sched->state.counter = idx;
 824
 825        if (c->overlap)
 826                perf_sched_save_state(sched);
 827
 828        return true;
 829}
 830
 831static bool perf_sched_find_counter(struct perf_sched *sched)
 832{
 833        while (!__perf_sched_find_counter(sched)) {
 834                if (!perf_sched_restore_state(sched))
 835                        return false;
 836        }
 837
 838        return true;
 839}
 840
 841/*
 842 * Go through all unassigned events and find the next one to schedule.
 843 * Take events with the least weight first. Return true on success.
 844 */
 845static bool perf_sched_next_event(struct perf_sched *sched)
 846{
 847        struct event_constraint *c;
 848
 849        if (!sched->state.unassigned || !--sched->state.unassigned)
 850                return false;
 851
 852        do {
 853                /* next event */
 854                sched->state.event++;
 855                if (sched->state.event >= sched->max_events) {
 856                        /* next weight */
 857                        sched->state.event = 0;
 858                        sched->state.weight++;
 859                        if (sched->state.weight > sched->max_weight)
 860                                return false;
 861                }
 862                c = sched->constraints[sched->state.event];
 863        } while (c->weight != sched->state.weight);
 864
 865        sched->state.counter = 0;       /* start with first counter */
 866
 867        return true;
 868}
 869
 870/*
 871 * Assign a counter for each event.
 872 */
 873int perf_assign_events(struct event_constraint **constraints, int n,
 874                        int wmin, int wmax, int gpmax, int *assign)
 875{
 876        struct perf_sched sched;
 877
 878        perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
 879
 880        do {
 881                if (!perf_sched_find_counter(&sched))
 882                        break;  /* failed */
 883                if (assign)
 884                        assign[sched.state.event] = sched.state.counter;
 885        } while (perf_sched_next_event(&sched));
 886
 887        return sched.state.unassigned;
 888}
 889EXPORT_SYMBOL_GPL(perf_assign_events);
 890
 891int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
 892{
 893        struct event_constraint *c;
 894        struct perf_event *e;
 895        int n0, i, wmin, wmax, unsched = 0;
 896        struct hw_perf_event *hwc;
 897        u64 used_mask = 0;
 898
 899        /*
 900         * Compute the number of events already present; see x86_pmu_add(),
 901         * validate_group() and x86_pmu_commit_txn(). For the former two
 902         * cpuc->n_events hasn't been updated yet, while for the latter
 903         * cpuc->n_txn contains the number of events added in the current
 904         * transaction.
 905         */
 906        n0 = cpuc->n_events;
 907        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
 908                n0 -= cpuc->n_txn;
 909
 910        if (x86_pmu.start_scheduling)
 911                x86_pmu.start_scheduling(cpuc);
 912
 913        for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
 914                c = cpuc->event_constraint[i];
 915
 916                /*
 917                 * Previously scheduled events should have a cached constraint,
 918                 * while new events should not have one.
 919                 */
 920                WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
 921
 922                /*
 923                 * Request constraints for new events; or for those events that
 924                 * have a dynamic constraint -- for those the constraint can
 925                 * change due to external factors (sibling state, allow_tfa).
 926                 */
 927                if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
 928                        c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
 929                        cpuc->event_constraint[i] = c;
 930                }
 931
 932                wmin = min(wmin, c->weight);
 933                wmax = max(wmax, c->weight);
 934        }
 935
 936        /*
 937         * fastpath, try to reuse previous register
 938         */
 939        for (i = 0; i < n; i++) {
 940                u64 mask;
 941
 942                hwc = &cpuc->event_list[i]->hw;
 943                c = cpuc->event_constraint[i];
 944
 945                /* never assigned */
 946                if (hwc->idx == -1)
 947                        break;
 948
 949                /* constraint still honored */
 950                if (!test_bit(hwc->idx, c->idxmsk))
 951                        break;
 952
 953                mask = BIT_ULL(hwc->idx);
 954                if (is_counter_pair(hwc))
 955                        mask |= mask << 1;
 956
 957                /* not already used */
 958                if (used_mask & mask)
 959                        break;
 960
 961                used_mask |= mask;
 962
 963                if (assign)
 964                        assign[i] = hwc->idx;
 965        }
 966
 967        /* slow path */
 968        if (i != n) {
 969                int gpmax = x86_pmu.num_counters;
 970
 971                /*
 972                 * Do not allow scheduling of more than half the available
 973                 * generic counters.
 974                 *
 975                 * This helps avoid counter starvation of sibling thread by
 976                 * ensuring at most half the counters cannot be in exclusive
 977                 * mode. There is no designated counters for the limits. Any
 978                 * N/2 counters can be used. This helps with events with
 979                 * specific counter constraints.
 980                 */
 981                if (is_ht_workaround_enabled() && !cpuc->is_fake &&
 982                    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
 983                        gpmax /= 2;
 984
 985                /*
 986                 * Reduce the amount of available counters to allow fitting
 987                 * the extra Merge events needed by large increment events.
 988                 */
 989                if (x86_pmu.flags & PMU_FL_PAIR) {
 990                        gpmax = x86_pmu.num_counters - cpuc->n_pair;
 991                        WARN_ON(gpmax <= 0);
 992                }
 993
 994                unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
 995                                             wmax, gpmax, assign);
 996        }
 997
 998        /*
 999         * In case of success (unsched = 0), mark events as committed,
1000         * so we do not put_constraint() in case new events are added
1001         * and fail to be scheduled
1002         *
1003         * We invoke the lower level commit callback to lock the resource
1004         *
1005         * We do not need to do all of this in case we are called to
1006         * validate an event group (assign == NULL)
1007         */
1008        if (!unsched && assign) {
1009                for (i = 0; i < n; i++) {
1010                        e = cpuc->event_list[i];
1011                        if (x86_pmu.commit_scheduling)
1012                                x86_pmu.commit_scheduling(cpuc, i, assign[i]);
1013                }
1014        } else {
1015                for (i = n0; i < n; i++) {
1016                        e = cpuc->event_list[i];
1017
1018                        /*
1019                         * release events that failed scheduling
1020                         */
1021                        if (x86_pmu.put_event_constraints)
1022                                x86_pmu.put_event_constraints(cpuc, e);
1023
1024                        cpuc->event_constraint[i] = NULL;
1025                }
1026        }
1027
1028        if (x86_pmu.stop_scheduling)
1029                x86_pmu.stop_scheduling(cpuc);
1030
1031        return unsched ? -EINVAL : 0;
1032}
1033
1034/*
1035 * dogrp: true if must collect siblings events (group)
1036 * returns total number of events and error code
1037 */
1038static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1039{
1040        struct perf_event *event;
1041        int n, max_count;
1042
1043        max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1044
1045        /* current number of events already accepted */
1046        n = cpuc->n_events;
1047        if (!cpuc->n_events)
1048                cpuc->pebs_output = 0;
1049
1050        if (!cpuc->is_fake && leader->attr.precise_ip) {
1051                /*
1052                 * For PEBS->PT, if !aux_event, the group leader (PT) went
1053                 * away, the group was broken down and this singleton event
1054                 * can't schedule any more.
1055                 */
1056                if (is_pebs_pt(leader) && !leader->aux_event)
1057                        return -EINVAL;
1058
1059                /*
1060                 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1061                 */
1062                if (cpuc->pebs_output &&
1063                    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1064                        return -EINVAL;
1065
1066                cpuc->pebs_output = is_pebs_pt(leader) + 1;
1067        }
1068
1069        if (is_x86_event(leader)) {
1070                if (n >= max_count)
1071                        return -EINVAL;
1072                cpuc->event_list[n] = leader;
1073                n++;
1074                if (is_counter_pair(&leader->hw))
1075                        cpuc->n_pair++;
1076        }
1077        if (!dogrp)
1078                return n;
1079
1080        for_each_sibling_event(event, leader) {
1081                if (!is_x86_event(event) ||
1082                    event->state <= PERF_EVENT_STATE_OFF)
1083                        continue;
1084
1085                if (n >= max_count)
1086                        return -EINVAL;
1087
1088                cpuc->event_list[n] = event;
1089                n++;
1090                if (is_counter_pair(&event->hw))
1091                        cpuc->n_pair++;
1092        }
1093        return n;
1094}
1095
1096static inline void x86_assign_hw_event(struct perf_event *event,
1097                                struct cpu_hw_events *cpuc, int i)
1098{
1099        struct hw_perf_event *hwc = &event->hw;
1100
1101        hwc->idx = cpuc->assign[i];
1102        hwc->last_cpu = smp_processor_id();
1103        hwc->last_tag = ++cpuc->tags[i];
1104
1105        if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1106                hwc->config_base = 0;
1107                hwc->event_base = 0;
1108        } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1109                hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1110                hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1111                hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1112        } else {
1113                hwc->config_base = x86_pmu_config_addr(hwc->idx);
1114                hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1115                hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1116        }
1117}
1118
1119/**
1120 * x86_perf_rdpmc_index - Return PMC counter used for event
1121 * @event: the perf_event to which the PMC counter was assigned
1122 *
1123 * The counter assigned to this performance event may change if interrupts
1124 * are enabled. This counter should thus never be used while interrupts are
1125 * enabled. Before this function is used to obtain the assigned counter the
1126 * event should be checked for validity using, for example,
1127 * perf_event_read_local(), within the same interrupt disabled section in
1128 * which this counter is planned to be used.
1129 *
1130 * Return: The index of the performance monitoring counter assigned to
1131 * @perf_event.
1132 */
1133int x86_perf_rdpmc_index(struct perf_event *event)
1134{
1135        lockdep_assert_irqs_disabled();
1136
1137        return event->hw.event_base_rdpmc;
1138}
1139
1140static inline int match_prev_assignment(struct hw_perf_event *hwc,
1141                                        struct cpu_hw_events *cpuc,
1142                                        int i)
1143{
1144        return hwc->idx == cpuc->assign[i] &&
1145                hwc->last_cpu == smp_processor_id() &&
1146                hwc->last_tag == cpuc->tags[i];
1147}
1148
1149static void x86_pmu_start(struct perf_event *event, int flags);
1150
1151static void x86_pmu_enable(struct pmu *pmu)
1152{
1153        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1154        struct perf_event *event;
1155        struct hw_perf_event *hwc;
1156        int i, added = cpuc->n_added;
1157
1158        if (!x86_pmu_initialized())
1159                return;
1160
1161        if (cpuc->enabled)
1162                return;
1163
1164        if (cpuc->n_added) {
1165                int n_running = cpuc->n_events - cpuc->n_added;
1166                /*
1167                 * apply assignment obtained either from
1168                 * hw_perf_group_sched_in() or x86_pmu_enable()
1169                 *
1170                 * step1: save events moving to new counters
1171                 */
1172                for (i = 0; i < n_running; i++) {
1173                        event = cpuc->event_list[i];
1174                        hwc = &event->hw;
1175
1176                        /*
1177                         * we can avoid reprogramming counter if:
1178                         * - assigned same counter as last time
1179                         * - running on same CPU as last time
1180                         * - no other event has used the counter since
1181                         */
1182                        if (hwc->idx == -1 ||
1183                            match_prev_assignment(hwc, cpuc, i))
1184                                continue;
1185
1186                        /*
1187                         * Ensure we don't accidentally enable a stopped
1188                         * counter simply because we rescheduled.
1189                         */
1190                        if (hwc->state & PERF_HES_STOPPED)
1191                                hwc->state |= PERF_HES_ARCH;
1192
1193                        x86_pmu_stop(event, PERF_EF_UPDATE);
1194                }
1195
1196                /*
1197                 * step2: reprogram moved events into new counters
1198                 */
1199                for (i = 0; i < cpuc->n_events; i++) {
1200                        event = cpuc->event_list[i];
1201                        hwc = &event->hw;
1202
1203                        if (!match_prev_assignment(hwc, cpuc, i))
1204                                x86_assign_hw_event(event, cpuc, i);
1205                        else if (i < n_running)
1206                                continue;
1207
1208                        if (hwc->state & PERF_HES_ARCH)
1209                                continue;
1210
1211                        x86_pmu_start(event, PERF_EF_RELOAD);
1212                }
1213                cpuc->n_added = 0;
1214                perf_events_lapic_init();
1215        }
1216
1217        cpuc->enabled = 1;
1218        barrier();
1219
1220        x86_pmu.enable_all(added);
1221}
1222
1223static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1224
1225/*
1226 * Set the next IRQ period, based on the hwc->period_left value.
1227 * To be called with the event disabled in hw:
1228 */
1229int x86_perf_event_set_period(struct perf_event *event)
1230{
1231        struct hw_perf_event *hwc = &event->hw;
1232        s64 left = local64_read(&hwc->period_left);
1233        s64 period = hwc->sample_period;
1234        int ret = 0, idx = hwc->idx;
1235
1236        if (idx == INTEL_PMC_IDX_FIXED_BTS)
1237                return 0;
1238
1239        /*
1240         * If we are way outside a reasonable range then just skip forward:
1241         */
1242        if (unlikely(left <= -period)) {
1243                left = period;
1244                local64_set(&hwc->period_left, left);
1245                hwc->last_period = period;
1246                ret = 1;
1247        }
1248
1249        if (unlikely(left <= 0)) {
1250                left += period;
1251                local64_set(&hwc->period_left, left);
1252                hwc->last_period = period;
1253                ret = 1;
1254        }
1255        /*
1256         * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1257         */
1258        if (unlikely(left < 2))
1259                left = 2;
1260
1261        if (left > x86_pmu.max_period)
1262                left = x86_pmu.max_period;
1263
1264        if (x86_pmu.limit_period)
1265                left = x86_pmu.limit_period(event, left);
1266
1267        per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1268
1269        /*
1270         * The hw event starts counting from this event offset,
1271         * mark it to be able to extra future deltas:
1272         */
1273        local64_set(&hwc->prev_count, (u64)-left);
1274
1275        wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1276
1277        /*
1278         * Clear the Merge event counter's upper 16 bits since
1279         * we currently declare a 48-bit counter width
1280         */
1281        if (is_counter_pair(hwc))
1282                wrmsrl(x86_pmu_event_addr(idx + 1), 0);
1283
1284        /*
1285         * Due to erratum on certan cpu we need
1286         * a second write to be sure the register
1287         * is updated properly
1288         */
1289        if (x86_pmu.perfctr_second_write) {
1290                wrmsrl(hwc->event_base,
1291                        (u64)(-left) & x86_pmu.cntval_mask);
1292        }
1293
1294        perf_event_update_userpage(event);
1295
1296        return ret;
1297}
1298
1299void x86_pmu_enable_event(struct perf_event *event)
1300{
1301        if (__this_cpu_read(cpu_hw_events.enabled))
1302                __x86_pmu_enable_event(&event->hw,
1303                                       ARCH_PERFMON_EVENTSEL_ENABLE);
1304}
1305
1306/*
1307 * Add a single event to the PMU.
1308 *
1309 * The event is added to the group of enabled events
1310 * but only if it can be scheduled with existing events.
1311 */
1312static int x86_pmu_add(struct perf_event *event, int flags)
1313{
1314        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1315        struct hw_perf_event *hwc;
1316        int assign[X86_PMC_IDX_MAX];
1317        int n, n0, ret;
1318
1319        hwc = &event->hw;
1320
1321        n0 = cpuc->n_events;
1322        ret = n = collect_events(cpuc, event, false);
1323        if (ret < 0)
1324                goto out;
1325
1326        hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1327        if (!(flags & PERF_EF_START))
1328                hwc->state |= PERF_HES_ARCH;
1329
1330        /*
1331         * If group events scheduling transaction was started,
1332         * skip the schedulability test here, it will be performed
1333         * at commit time (->commit_txn) as a whole.
1334         *
1335         * If commit fails, we'll call ->del() on all events
1336         * for which ->add() was called.
1337         */
1338        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1339                goto done_collect;
1340
1341        ret = x86_pmu.schedule_events(cpuc, n, assign);
1342        if (ret)
1343                goto out;
1344        /*
1345         * copy new assignment, now we know it is possible
1346         * will be used by hw_perf_enable()
1347         */
1348        memcpy(cpuc->assign, assign, n*sizeof(int));
1349
1350done_collect:
1351        /*
1352         * Commit the collect_events() state. See x86_pmu_del() and
1353         * x86_pmu_*_txn().
1354         */
1355        cpuc->n_events = n;
1356        cpuc->n_added += n - n0;
1357        cpuc->n_txn += n - n0;
1358
1359        if (x86_pmu.add) {
1360                /*
1361                 * This is before x86_pmu_enable() will call x86_pmu_start(),
1362                 * so we enable LBRs before an event needs them etc..
1363                 */
1364                x86_pmu.add(event);
1365        }
1366
1367        ret = 0;
1368out:
1369        return ret;
1370}
1371
1372static void x86_pmu_start(struct perf_event *event, int flags)
1373{
1374        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1375        int idx = event->hw.idx;
1376
1377        if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1378                return;
1379
1380        if (WARN_ON_ONCE(idx == -1))
1381                return;
1382
1383        if (flags & PERF_EF_RELOAD) {
1384                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1385                x86_perf_event_set_period(event);
1386        }
1387
1388        event->hw.state = 0;
1389
1390        cpuc->events[idx] = event;
1391        __set_bit(idx, cpuc->active_mask);
1392        __set_bit(idx, cpuc->running);
1393        x86_pmu.enable(event);
1394        perf_event_update_userpage(event);
1395}
1396
1397void perf_event_print_debug(void)
1398{
1399        u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1400        u64 pebs, debugctl;
1401        struct cpu_hw_events *cpuc;
1402        unsigned long flags;
1403        int cpu, idx;
1404
1405        if (!x86_pmu.num_counters)
1406                return;
1407
1408        local_irq_save(flags);
1409
1410        cpu = smp_processor_id();
1411        cpuc = &per_cpu(cpu_hw_events, cpu);
1412
1413        if (x86_pmu.version >= 2) {
1414                rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1415                rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1416                rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1417                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1418
1419                pr_info("\n");
1420                pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1421                pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1422                pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1423                pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1424                if (x86_pmu.pebs_constraints) {
1425                        rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1426                        pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1427                }
1428                if (x86_pmu.lbr_nr) {
1429                        rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1430                        pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1431                }
1432        }
1433        pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1434
1435        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1436                rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1437                rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1438
1439                prev_left = per_cpu(pmc_prev_left[idx], cpu);
1440
1441                pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1442                        cpu, idx, pmc_ctrl);
1443                pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1444                        cpu, idx, pmc_count);
1445                pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1446                        cpu, idx, prev_left);
1447        }
1448        for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1449                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1450
1451                pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1452                        cpu, idx, pmc_count);
1453        }
1454        local_irq_restore(flags);
1455}
1456
1457void x86_pmu_stop(struct perf_event *event, int flags)
1458{
1459        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1460        struct hw_perf_event *hwc = &event->hw;
1461
1462        if (test_bit(hwc->idx, cpuc->active_mask)) {
1463                x86_pmu.disable(event);
1464                __clear_bit(hwc->idx, cpuc->active_mask);
1465                cpuc->events[hwc->idx] = NULL;
1466                WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1467                hwc->state |= PERF_HES_STOPPED;
1468        }
1469
1470        if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1471                /*
1472                 * Drain the remaining delta count out of a event
1473                 * that we are disabling:
1474                 */
1475                x86_perf_event_update(event);
1476                hwc->state |= PERF_HES_UPTODATE;
1477        }
1478}
1479
1480static void x86_pmu_del(struct perf_event *event, int flags)
1481{
1482        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1483        int i;
1484
1485        /*
1486         * If we're called during a txn, we only need to undo x86_pmu.add.
1487         * The events never got scheduled and ->cancel_txn will truncate
1488         * the event_list.
1489         *
1490         * XXX assumes any ->del() called during a TXN will only be on
1491         * an event added during that same TXN.
1492         */
1493        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1494                goto do_del;
1495
1496        /*
1497         * Not a TXN, therefore cleanup properly.
1498         */
1499        x86_pmu_stop(event, PERF_EF_UPDATE);
1500
1501        for (i = 0; i < cpuc->n_events; i++) {
1502                if (event == cpuc->event_list[i])
1503                        break;
1504        }
1505
1506        if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1507                return;
1508
1509        /* If we have a newly added event; make sure to decrease n_added. */
1510        if (i >= cpuc->n_events - cpuc->n_added)
1511                --cpuc->n_added;
1512
1513        if (x86_pmu.put_event_constraints)
1514                x86_pmu.put_event_constraints(cpuc, event);
1515
1516        /* Delete the array entry. */
1517        while (++i < cpuc->n_events) {
1518                cpuc->event_list[i-1] = cpuc->event_list[i];
1519                cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1520        }
1521        cpuc->event_constraint[i-1] = NULL;
1522        --cpuc->n_events;
1523
1524        perf_event_update_userpage(event);
1525
1526do_del:
1527        if (x86_pmu.del) {
1528                /*
1529                 * This is after x86_pmu_stop(); so we disable LBRs after any
1530                 * event can need them etc..
1531                 */
1532                x86_pmu.del(event);
1533        }
1534}
1535
1536int x86_pmu_handle_irq(struct pt_regs *regs)
1537{
1538        struct perf_sample_data data;
1539        struct cpu_hw_events *cpuc;
1540        struct perf_event *event;
1541        int idx, handled = 0;
1542        u64 val;
1543
1544        cpuc = this_cpu_ptr(&cpu_hw_events);
1545
1546        /*
1547         * Some chipsets need to unmask the LVTPC in a particular spot
1548         * inside the nmi handler.  As a result, the unmasking was pushed
1549         * into all the nmi handlers.
1550         *
1551         * This generic handler doesn't seem to have any issues where the
1552         * unmasking occurs so it was left at the top.
1553         */
1554        apic_write(APIC_LVTPC, APIC_DM_NMI);
1555
1556        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1557                if (!test_bit(idx, cpuc->active_mask))
1558                        continue;
1559
1560                event = cpuc->events[idx];
1561
1562                val = x86_perf_event_update(event);
1563                if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1564                        continue;
1565
1566                /*
1567                 * event overflow
1568                 */
1569                handled++;
1570                perf_sample_data_init(&data, 0, event->hw.last_period);
1571
1572                if (!x86_perf_event_set_period(event))
1573                        continue;
1574
1575                if (perf_event_overflow(event, &data, regs))
1576                        x86_pmu_stop(event, 0);
1577        }
1578
1579        if (handled)
1580                inc_irq_stat(apic_perf_irqs);
1581
1582        return handled;
1583}
1584
1585void perf_events_lapic_init(void)
1586{
1587        if (!x86_pmu.apic || !x86_pmu_initialized())
1588                return;
1589
1590        /*
1591         * Always use NMI for PMU
1592         */
1593        apic_write(APIC_LVTPC, APIC_DM_NMI);
1594}
1595
1596static int
1597perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1598{
1599        u64 start_clock;
1600        u64 finish_clock;
1601        int ret;
1602
1603        /*
1604         * All PMUs/events that share this PMI handler should make sure to
1605         * increment active_events for their events.
1606         */
1607        if (!atomic_read(&active_events))
1608                return NMI_DONE;
1609
1610        start_clock = sched_clock();
1611        ret = x86_pmu.handle_irq(regs);
1612        finish_clock = sched_clock();
1613
1614        perf_sample_event_took(finish_clock - start_clock);
1615
1616        return ret;
1617}
1618NOKPROBE_SYMBOL(perf_event_nmi_handler);
1619
1620struct event_constraint emptyconstraint;
1621struct event_constraint unconstrained;
1622
1623static int x86_pmu_prepare_cpu(unsigned int cpu)
1624{
1625        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1626        int i;
1627
1628        for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1629                cpuc->kfree_on_online[i] = NULL;
1630        if (x86_pmu.cpu_prepare)
1631                return x86_pmu.cpu_prepare(cpu);
1632        return 0;
1633}
1634
1635static int x86_pmu_dead_cpu(unsigned int cpu)
1636{
1637        if (x86_pmu.cpu_dead)
1638                x86_pmu.cpu_dead(cpu);
1639        return 0;
1640}
1641
1642static int x86_pmu_online_cpu(unsigned int cpu)
1643{
1644        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1645        int i;
1646
1647        for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1648                kfree(cpuc->kfree_on_online[i]);
1649                cpuc->kfree_on_online[i] = NULL;
1650        }
1651        return 0;
1652}
1653
1654static int x86_pmu_starting_cpu(unsigned int cpu)
1655{
1656        if (x86_pmu.cpu_starting)
1657                x86_pmu.cpu_starting(cpu);
1658        return 0;
1659}
1660
1661static int x86_pmu_dying_cpu(unsigned int cpu)
1662{
1663        if (x86_pmu.cpu_dying)
1664                x86_pmu.cpu_dying(cpu);
1665        return 0;
1666}
1667
1668static void __init pmu_check_apic(void)
1669{
1670        if (boot_cpu_has(X86_FEATURE_APIC))
1671                return;
1672
1673        x86_pmu.apic = 0;
1674        pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1675        pr_info("no hardware sampling interrupt available.\n");
1676
1677        /*
1678         * If we have a PMU initialized but no APIC
1679         * interrupts, we cannot sample hardware
1680         * events (user-space has to fall back and
1681         * sample via a hrtimer based software event):
1682         */
1683        pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1684
1685}
1686
1687static struct attribute_group x86_pmu_format_group __ro_after_init = {
1688        .name = "format",
1689        .attrs = NULL,
1690};
1691
1692ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1693{
1694        struct perf_pmu_events_attr *pmu_attr =
1695                container_of(attr, struct perf_pmu_events_attr, attr);
1696        u64 config = 0;
1697
1698        if (pmu_attr->id < x86_pmu.max_events)
1699                config = x86_pmu.event_map(pmu_attr->id);
1700
1701        /* string trumps id */
1702        if (pmu_attr->event_str)
1703                return sprintf(page, "%s", pmu_attr->event_str);
1704
1705        return x86_pmu.events_sysfs_show(page, config);
1706}
1707EXPORT_SYMBOL_GPL(events_sysfs_show);
1708
1709ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1710                          char *page)
1711{
1712        struct perf_pmu_events_ht_attr *pmu_attr =
1713                container_of(attr, struct perf_pmu_events_ht_attr, attr);
1714
1715        /*
1716         * Report conditional events depending on Hyper-Threading.
1717         *
1718         * This is overly conservative as usually the HT special
1719         * handling is not needed if the other CPU thread is idle.
1720         *
1721         * Note this does not (and cannot) handle the case when thread
1722         * siblings are invisible, for example with virtualization
1723         * if they are owned by some other guest.  The user tool
1724         * has to re-read when a thread sibling gets onlined later.
1725         */
1726        return sprintf(page, "%s",
1727                        topology_max_smt_threads() > 1 ?
1728                        pmu_attr->event_str_ht :
1729                        pmu_attr->event_str_noht);
1730}
1731
1732EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1733EVENT_ATTR(instructions,                INSTRUCTIONS            );
1734EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1735EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1736EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1737EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1738EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1739EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1740EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1741EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1742
1743static struct attribute *empty_attrs;
1744
1745static struct attribute *events_attr[] = {
1746        EVENT_PTR(CPU_CYCLES),
1747        EVENT_PTR(INSTRUCTIONS),
1748        EVENT_PTR(CACHE_REFERENCES),
1749        EVENT_PTR(CACHE_MISSES),
1750        EVENT_PTR(BRANCH_INSTRUCTIONS),
1751        EVENT_PTR(BRANCH_MISSES),
1752        EVENT_PTR(BUS_CYCLES),
1753        EVENT_PTR(STALLED_CYCLES_FRONTEND),
1754        EVENT_PTR(STALLED_CYCLES_BACKEND),
1755        EVENT_PTR(REF_CPU_CYCLES),
1756        NULL,
1757};
1758
1759/*
1760 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1761 * out of events_attr attributes.
1762 */
1763static umode_t
1764is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1765{
1766        struct perf_pmu_events_attr *pmu_attr;
1767
1768        if (idx >= x86_pmu.max_events)
1769                return 0;
1770
1771        pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1772        /* str trumps id */
1773        return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1774}
1775
1776static struct attribute_group x86_pmu_events_group __ro_after_init = {
1777        .name = "events",
1778        .attrs = events_attr,
1779        .is_visible = is_visible,
1780};
1781
1782ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1783{
1784        u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1785        u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1786        bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1787        bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1788        bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1789        bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1790        ssize_t ret;
1791
1792        /*
1793        * We have whole page size to spend and just little data
1794        * to write, so we can safely use sprintf.
1795        */
1796        ret = sprintf(page, "event=0x%02llx", event);
1797
1798        if (umask)
1799                ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1800
1801        if (edge)
1802                ret += sprintf(page + ret, ",edge");
1803
1804        if (pc)
1805                ret += sprintf(page + ret, ",pc");
1806
1807        if (any)
1808                ret += sprintf(page + ret, ",any");
1809
1810        if (inv)
1811                ret += sprintf(page + ret, ",inv");
1812
1813        if (cmask)
1814                ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1815
1816        ret += sprintf(page + ret, "\n");
1817
1818        return ret;
1819}
1820
1821static struct attribute_group x86_pmu_attr_group;
1822static struct attribute_group x86_pmu_caps_group;
1823
1824static int __init init_hw_perf_events(void)
1825{
1826        struct x86_pmu_quirk *quirk;
1827        int err;
1828
1829        pr_info("Performance Events: ");
1830
1831        switch (boot_cpu_data.x86_vendor) {
1832        case X86_VENDOR_INTEL:
1833                err = intel_pmu_init();
1834                break;
1835        case X86_VENDOR_AMD:
1836                err = amd_pmu_init();
1837                break;
1838        case X86_VENDOR_HYGON:
1839                err = amd_pmu_init();
1840                x86_pmu.name = "HYGON";
1841                break;
1842        case X86_VENDOR_ZHAOXIN:
1843        case X86_VENDOR_CENTAUR:
1844                err = zhaoxin_pmu_init();
1845                break;
1846        default:
1847                err = -ENOTSUPP;
1848        }
1849        if (err != 0) {
1850                pr_cont("no PMU driver, software events only.\n");
1851                return 0;
1852        }
1853
1854        pmu_check_apic();
1855
1856        /* sanity check that the hardware exists or is emulated */
1857        if (!check_hw_exists())
1858                return 0;
1859
1860        pr_cont("%s PMU driver.\n", x86_pmu.name);
1861
1862        x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1863
1864        for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1865                quirk->func();
1866
1867        if (!x86_pmu.intel_ctrl)
1868                x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1869
1870        perf_events_lapic_init();
1871        register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1872
1873        unconstrained = (struct event_constraint)
1874                __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1875                                   0, x86_pmu.num_counters, 0, 0);
1876
1877        x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1878
1879        if (!x86_pmu.events_sysfs_show)
1880                x86_pmu_events_group.attrs = &empty_attrs;
1881
1882        pmu.attr_update = x86_pmu.attr_update;
1883
1884        pr_info("... version:                %d\n",     x86_pmu.version);
1885        pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1886        pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1887        pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1888        pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1889        pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1890        pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1891
1892        /*
1893         * Install callbacks. Core will call them for each online
1894         * cpu.
1895         */
1896        err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1897                                x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1898        if (err)
1899                return err;
1900
1901        err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1902                                "perf/x86:starting", x86_pmu_starting_cpu,
1903                                x86_pmu_dying_cpu);
1904        if (err)
1905                goto out;
1906
1907        err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1908                                x86_pmu_online_cpu, NULL);
1909        if (err)
1910                goto out1;
1911
1912        err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1913        if (err)
1914                goto out2;
1915
1916        return 0;
1917
1918out2:
1919        cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1920out1:
1921        cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1922out:
1923        cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1924        return err;
1925}
1926early_initcall(init_hw_perf_events);
1927
1928static inline void x86_pmu_read(struct perf_event *event)
1929{
1930        if (x86_pmu.read)
1931                return x86_pmu.read(event);
1932        x86_perf_event_update(event);
1933}
1934
1935/*
1936 * Start group events scheduling transaction
1937 * Set the flag to make pmu::enable() not perform the
1938 * schedulability test, it will be performed at commit time
1939 *
1940 * We only support PERF_PMU_TXN_ADD transactions. Save the
1941 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1942 * transactions.
1943 */
1944static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1945{
1946        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1947
1948        WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1949
1950        cpuc->txn_flags = txn_flags;
1951        if (txn_flags & ~PERF_PMU_TXN_ADD)
1952                return;
1953
1954        perf_pmu_disable(pmu);
1955        __this_cpu_write(cpu_hw_events.n_txn, 0);
1956}
1957
1958/*
1959 * Stop group events scheduling transaction
1960 * Clear the flag and pmu::enable() will perform the
1961 * schedulability test.
1962 */
1963static void x86_pmu_cancel_txn(struct pmu *pmu)
1964{
1965        unsigned int txn_flags;
1966        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1967
1968        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1969
1970        txn_flags = cpuc->txn_flags;
1971        cpuc->txn_flags = 0;
1972        if (txn_flags & ~PERF_PMU_TXN_ADD)
1973                return;
1974
1975        /*
1976         * Truncate collected array by the number of events added in this
1977         * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1978         */
1979        __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1980        __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1981        perf_pmu_enable(pmu);
1982}
1983
1984/*
1985 * Commit group events scheduling transaction
1986 * Perform the group schedulability test as a whole
1987 * Return 0 if success
1988 *
1989 * Does not cancel the transaction on failure; expects the caller to do this.
1990 */
1991static int x86_pmu_commit_txn(struct pmu *pmu)
1992{
1993        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1994        int assign[X86_PMC_IDX_MAX];
1995        int n, ret;
1996
1997        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1998
1999        if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2000                cpuc->txn_flags = 0;
2001                return 0;
2002        }
2003
2004        n = cpuc->n_events;
2005
2006        if (!x86_pmu_initialized())
2007                return -EAGAIN;
2008
2009        ret = x86_pmu.schedule_events(cpuc, n, assign);
2010        if (ret)
2011                return ret;
2012
2013        /*
2014         * copy new assignment, now we know it is possible
2015         * will be used by hw_perf_enable()
2016         */
2017        memcpy(cpuc->assign, assign, n*sizeof(int));
2018
2019        cpuc->txn_flags = 0;
2020        perf_pmu_enable(pmu);
2021        return 0;
2022}
2023/*
2024 * a fake_cpuc is used to validate event groups. Due to
2025 * the extra reg logic, we need to also allocate a fake
2026 * per_core and per_cpu structure. Otherwise, group events
2027 * using extra reg may conflict without the kernel being
2028 * able to catch this when the last event gets added to
2029 * the group.
2030 */
2031static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2032{
2033        intel_cpuc_finish(cpuc);
2034        kfree(cpuc);
2035}
2036
2037static struct cpu_hw_events *allocate_fake_cpuc(void)
2038{
2039        struct cpu_hw_events *cpuc;
2040        int cpu = raw_smp_processor_id();
2041
2042        cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2043        if (!cpuc)
2044                return ERR_PTR(-ENOMEM);
2045        cpuc->is_fake = 1;
2046
2047        if (intel_cpuc_prepare(cpuc, cpu))
2048                goto error;
2049
2050        return cpuc;
2051error:
2052        free_fake_cpuc(cpuc);
2053        return ERR_PTR(-ENOMEM);
2054}
2055
2056/*
2057 * validate that we can schedule this event
2058 */
2059static int validate_event(struct perf_event *event)
2060{
2061        struct cpu_hw_events *fake_cpuc;
2062        struct event_constraint *c;
2063        int ret = 0;
2064
2065        fake_cpuc = allocate_fake_cpuc();
2066        if (IS_ERR(fake_cpuc))
2067                return PTR_ERR(fake_cpuc);
2068
2069        c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2070
2071        if (!c || !c->weight)
2072                ret = -EINVAL;
2073
2074        if (x86_pmu.put_event_constraints)
2075                x86_pmu.put_event_constraints(fake_cpuc, event);
2076
2077        free_fake_cpuc(fake_cpuc);
2078
2079        return ret;
2080}
2081
2082/*
2083 * validate a single event group
2084 *
2085 * validation include:
2086 *      - check events are compatible which each other
2087 *      - events do not compete for the same counter
2088 *      - number of events <= number of counters
2089 *
2090 * validation ensures the group can be loaded onto the
2091 * PMU if it was the only group available.
2092 */
2093static int validate_group(struct perf_event *event)
2094{
2095        struct perf_event *leader = event->group_leader;
2096        struct cpu_hw_events *fake_cpuc;
2097        int ret = -EINVAL, n;
2098
2099        fake_cpuc = allocate_fake_cpuc();
2100        if (IS_ERR(fake_cpuc))
2101                return PTR_ERR(fake_cpuc);
2102        /*
2103         * the event is not yet connected with its
2104         * siblings therefore we must first collect
2105         * existing siblings, then add the new event
2106         * before we can simulate the scheduling
2107         */
2108        n = collect_events(fake_cpuc, leader, true);
2109        if (n < 0)
2110                goto out;
2111
2112        fake_cpuc->n_events = n;
2113        n = collect_events(fake_cpuc, event, false);
2114        if (n < 0)
2115                goto out;
2116
2117        fake_cpuc->n_events = 0;
2118        ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2119
2120out:
2121        free_fake_cpuc(fake_cpuc);
2122        return ret;
2123}
2124
2125static int x86_pmu_event_init(struct perf_event *event)
2126{
2127        struct pmu *tmp;
2128        int err;
2129
2130        switch (event->attr.type) {
2131        case PERF_TYPE_RAW:
2132        case PERF_TYPE_HARDWARE:
2133        case PERF_TYPE_HW_CACHE:
2134                break;
2135
2136        default:
2137                return -ENOENT;
2138        }
2139
2140        err = __x86_pmu_event_init(event);
2141        if (!err) {
2142                /*
2143                 * we temporarily connect event to its pmu
2144                 * such that validate_group() can classify
2145                 * it as an x86 event using is_x86_event()
2146                 */
2147                tmp = event->pmu;
2148                event->pmu = &pmu;
2149
2150                if (event->group_leader != event)
2151                        err = validate_group(event);
2152                else
2153                        err = validate_event(event);
2154
2155                event->pmu = tmp;
2156        }
2157        if (err) {
2158                if (event->destroy)
2159                        event->destroy(event);
2160        }
2161
2162        if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2163            !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2164                event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2165
2166        return err;
2167}
2168
2169static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2170{
2171        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2172                return;
2173
2174        /*
2175         * This function relies on not being called concurrently in two
2176         * tasks in the same mm.  Otherwise one task could observe
2177         * perf_rdpmc_allowed > 1 and return all the way back to
2178         * userspace with CR4.PCE clear while another task is still
2179         * doing on_each_cpu_mask() to propagate CR4.PCE.
2180         *
2181         * For now, this can't happen because all callers hold mmap_lock
2182         * for write.  If this changes, we'll need a different solution.
2183         */
2184        mmap_assert_write_locked(mm);
2185
2186        if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2187                on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2188}
2189
2190static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2191{
2192
2193        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2194                return;
2195
2196        if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2197                on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2198}
2199
2200static int x86_pmu_event_idx(struct perf_event *event)
2201{
2202        int idx = event->hw.idx;
2203
2204        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2205                return 0;
2206
2207        if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2208                idx -= INTEL_PMC_IDX_FIXED;
2209                idx |= 1 << 30;
2210        }
2211
2212        return idx + 1;
2213}
2214
2215static ssize_t get_attr_rdpmc(struct device *cdev,
2216                              struct device_attribute *attr,
2217                              char *buf)
2218{
2219        return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2220}
2221
2222static ssize_t set_attr_rdpmc(struct device *cdev,
2223                              struct device_attribute *attr,
2224                              const char *buf, size_t count)
2225{
2226        unsigned long val;
2227        ssize_t ret;
2228
2229        ret = kstrtoul(buf, 0, &val);
2230        if (ret)
2231                return ret;
2232
2233        if (val > 2)
2234                return -EINVAL;
2235
2236        if (x86_pmu.attr_rdpmc_broken)
2237                return -ENOTSUPP;
2238
2239        if (val != x86_pmu.attr_rdpmc) {
2240                /*
2241                 * Changing into or out of never available or always available,
2242                 * aka perf-event-bypassing mode. This path is extremely slow,
2243                 * but only root can trigger it, so it's okay.
2244                 */
2245                if (val == 0)
2246                        static_branch_inc(&rdpmc_never_available_key);
2247                else if (x86_pmu.attr_rdpmc == 0)
2248                        static_branch_dec(&rdpmc_never_available_key);
2249
2250                if (val == 2)
2251                        static_branch_inc(&rdpmc_always_available_key);
2252                else if (x86_pmu.attr_rdpmc == 2)
2253                        static_branch_dec(&rdpmc_always_available_key);
2254
2255                on_each_cpu(cr4_update_pce, NULL, 1);
2256                x86_pmu.attr_rdpmc = val;
2257        }
2258
2259        return count;
2260}
2261
2262static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2263
2264static struct attribute *x86_pmu_attrs[] = {
2265        &dev_attr_rdpmc.attr,
2266        NULL,
2267};
2268
2269static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2270        .attrs = x86_pmu_attrs,
2271};
2272
2273static ssize_t max_precise_show(struct device *cdev,
2274                                  struct device_attribute *attr,
2275                                  char *buf)
2276{
2277        return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2278}
2279
2280static DEVICE_ATTR_RO(max_precise);
2281
2282static struct attribute *x86_pmu_caps_attrs[] = {
2283        &dev_attr_max_precise.attr,
2284        NULL
2285};
2286
2287static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2288        .name = "caps",
2289        .attrs = x86_pmu_caps_attrs,
2290};
2291
2292static const struct attribute_group *x86_pmu_attr_groups[] = {
2293        &x86_pmu_attr_group,
2294        &x86_pmu_format_group,
2295        &x86_pmu_events_group,
2296        &x86_pmu_caps_group,
2297        NULL,
2298};
2299
2300static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2301{
2302        if (x86_pmu.sched_task)
2303                x86_pmu.sched_task(ctx, sched_in);
2304}
2305
2306static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2307                                  struct perf_event_context *next)
2308{
2309        if (x86_pmu.swap_task_ctx)
2310                x86_pmu.swap_task_ctx(prev, next);
2311}
2312
2313void perf_check_microcode(void)
2314{
2315        if (x86_pmu.check_microcode)
2316                x86_pmu.check_microcode();
2317}
2318
2319static int x86_pmu_check_period(struct perf_event *event, u64 value)
2320{
2321        if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2322                return -EINVAL;
2323
2324        if (value && x86_pmu.limit_period) {
2325                if (x86_pmu.limit_period(event, value) > value)
2326                        return -EINVAL;
2327        }
2328
2329        return 0;
2330}
2331
2332static int x86_pmu_aux_output_match(struct perf_event *event)
2333{
2334        if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2335                return 0;
2336
2337        if (x86_pmu.aux_output_match)
2338                return x86_pmu.aux_output_match(event);
2339
2340        return 0;
2341}
2342
2343static struct pmu pmu = {
2344        .pmu_enable             = x86_pmu_enable,
2345        .pmu_disable            = x86_pmu_disable,
2346
2347        .attr_groups            = x86_pmu_attr_groups,
2348
2349        .event_init             = x86_pmu_event_init,
2350
2351        .event_mapped           = x86_pmu_event_mapped,
2352        .event_unmapped         = x86_pmu_event_unmapped,
2353
2354        .add                    = x86_pmu_add,
2355        .del                    = x86_pmu_del,
2356        .start                  = x86_pmu_start,
2357        .stop                   = x86_pmu_stop,
2358        .read                   = x86_pmu_read,
2359
2360        .start_txn              = x86_pmu_start_txn,
2361        .cancel_txn             = x86_pmu_cancel_txn,
2362        .commit_txn             = x86_pmu_commit_txn,
2363
2364        .event_idx              = x86_pmu_event_idx,
2365        .sched_task             = x86_pmu_sched_task,
2366        .task_ctx_size          = sizeof(struct x86_perf_task_context),
2367        .swap_task_ctx          = x86_pmu_swap_task_ctx,
2368        .check_period           = x86_pmu_check_period,
2369
2370        .aux_output_match       = x86_pmu_aux_output_match,
2371};
2372
2373void arch_perf_update_userpage(struct perf_event *event,
2374                               struct perf_event_mmap_page *userpg, u64 now)
2375{
2376        struct cyc2ns_data data;
2377        u64 offset;
2378
2379        userpg->cap_user_time = 0;
2380        userpg->cap_user_time_zero = 0;
2381        userpg->cap_user_rdpmc =
2382                !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2383        userpg->pmc_width = x86_pmu.cntval_bits;
2384
2385        if (!using_native_sched_clock() || !sched_clock_stable())
2386                return;
2387
2388        cyc2ns_read_begin(&data);
2389
2390        offset = data.cyc2ns_offset + __sched_clock_offset;
2391
2392        /*
2393         * Internal timekeeping for enabled/running/stopped times
2394         * is always in the local_clock domain.
2395         */
2396        userpg->cap_user_time = 1;
2397        userpg->time_mult = data.cyc2ns_mul;
2398        userpg->time_shift = data.cyc2ns_shift;
2399        userpg->time_offset = offset - now;
2400
2401        /*
2402         * cap_user_time_zero doesn't make sense when we're using a different
2403         * time base for the records.
2404         */
2405        if (!event->attr.use_clockid) {
2406                userpg->cap_user_time_zero = 1;
2407                userpg->time_zero = offset;
2408        }
2409
2410        cyc2ns_read_end();
2411}
2412
2413/*
2414 * Determine whether the regs were taken from an irq/exception handler rather
2415 * than from perf_arch_fetch_caller_regs().
2416 */
2417static bool perf_hw_regs(struct pt_regs *regs)
2418{
2419        return regs->flags & X86_EFLAGS_FIXED;
2420}
2421
2422void
2423perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2424{
2425        struct unwind_state state;
2426        unsigned long addr;
2427
2428        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2429                /* TODO: We don't support guest os callchain now */
2430                return;
2431        }
2432
2433        if (perf_callchain_store(entry, regs->ip))
2434                return;
2435
2436        if (perf_hw_regs(regs))
2437                unwind_start(&state, current, regs, NULL);
2438        else
2439                unwind_start(&state, current, NULL, (void *)regs->sp);
2440
2441        for (; !unwind_done(&state); unwind_next_frame(&state)) {
2442                addr = unwind_get_return_address(&state);
2443                if (!addr || perf_callchain_store(entry, addr))
2444                        return;
2445        }
2446}
2447
2448static inline int
2449valid_user_frame(const void __user *fp, unsigned long size)
2450{
2451        return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2452}
2453
2454static unsigned long get_segment_base(unsigned int segment)
2455{
2456        struct desc_struct *desc;
2457        unsigned int idx = segment >> 3;
2458
2459        if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2460#ifdef CONFIG_MODIFY_LDT_SYSCALL
2461                struct ldt_struct *ldt;
2462
2463                /* IRQs are off, so this synchronizes with smp_store_release */
2464                ldt = READ_ONCE(current->active_mm->context.ldt);
2465                if (!ldt || idx >= ldt->nr_entries)
2466                        return 0;
2467
2468                desc = &ldt->entries[idx];
2469#else
2470                return 0;
2471#endif
2472        } else {
2473                if (idx >= GDT_ENTRIES)
2474                        return 0;
2475
2476                desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2477        }
2478
2479        return get_desc_base(desc);
2480}
2481
2482#ifdef CONFIG_IA32_EMULATION
2483
2484#include <linux/compat.h>
2485
2486static inline int
2487perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2488{
2489        /* 32-bit process in 64-bit kernel. */
2490        unsigned long ss_base, cs_base;
2491        struct stack_frame_ia32 frame;
2492        const struct stack_frame_ia32 __user *fp;
2493
2494        if (!test_thread_flag(TIF_IA32))
2495                return 0;
2496
2497        cs_base = get_segment_base(regs->cs);
2498        ss_base = get_segment_base(regs->ss);
2499
2500        fp = compat_ptr(ss_base + regs->bp);
2501        pagefault_disable();
2502        while (entry->nr < entry->max_stack) {
2503                if (!valid_user_frame(fp, sizeof(frame)))
2504                        break;
2505
2506                if (__get_user(frame.next_frame, &fp->next_frame))
2507                        break;
2508                if (__get_user(frame.return_address, &fp->return_address))
2509                        break;
2510
2511                perf_callchain_store(entry, cs_base + frame.return_address);
2512                fp = compat_ptr(ss_base + frame.next_frame);
2513        }
2514        pagefault_enable();
2515        return 1;
2516}
2517#else
2518static inline int
2519perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2520{
2521    return 0;
2522}
2523#endif
2524
2525void
2526perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2527{
2528        struct stack_frame frame;
2529        const struct stack_frame __user *fp;
2530
2531        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2532                /* TODO: We don't support guest os callchain now */
2533                return;
2534        }
2535
2536        /*
2537         * We don't know what to do with VM86 stacks.. ignore them for now.
2538         */
2539        if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2540                return;
2541
2542        fp = (void __user *)regs->bp;
2543
2544        perf_callchain_store(entry, regs->ip);
2545
2546        if (!nmi_uaccess_okay())
2547                return;
2548
2549        if (perf_callchain_user32(regs, entry))
2550                return;
2551
2552        pagefault_disable();
2553        while (entry->nr < entry->max_stack) {
2554                if (!valid_user_frame(fp, sizeof(frame)))
2555                        break;
2556
2557                if (__get_user(frame.next_frame, &fp->next_frame))
2558                        break;
2559                if (__get_user(frame.return_address, &fp->return_address))
2560                        break;
2561
2562                perf_callchain_store(entry, frame.return_address);
2563                fp = (void __user *)frame.next_frame;
2564        }
2565        pagefault_enable();
2566}
2567
2568/*
2569 * Deal with code segment offsets for the various execution modes:
2570 *
2571 *   VM86 - the good olde 16 bit days, where the linear address is
2572 *          20 bits and we use regs->ip + 0x10 * regs->cs.
2573 *
2574 *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2575 *          to figure out what the 32bit base address is.
2576 *
2577 *    X32 - has TIF_X32 set, but is running in x86_64
2578 *
2579 * X86_64 - CS,DS,SS,ES are all zero based.
2580 */
2581static unsigned long code_segment_base(struct pt_regs *regs)
2582{
2583        /*
2584         * For IA32 we look at the GDT/LDT segment base to convert the
2585         * effective IP to a linear address.
2586         */
2587
2588#ifdef CONFIG_X86_32
2589        /*
2590         * If we are in VM86 mode, add the segment offset to convert to a
2591         * linear address.
2592         */
2593        if (regs->flags & X86_VM_MASK)
2594                return 0x10 * regs->cs;
2595
2596        if (user_mode(regs) && regs->cs != __USER_CS)
2597                return get_segment_base(regs->cs);
2598#else
2599        if (user_mode(regs) && !user_64bit_mode(regs) &&
2600            regs->cs != __USER32_CS)
2601                return get_segment_base(regs->cs);
2602#endif
2603        return 0;
2604}
2605
2606unsigned long perf_instruction_pointer(struct pt_regs *regs)
2607{
2608        if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2609                return perf_guest_cbs->get_guest_ip();
2610
2611        return regs->ip + code_segment_base(regs);
2612}
2613
2614unsigned long perf_misc_flags(struct pt_regs *regs)
2615{
2616        int misc = 0;
2617
2618        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2619                if (perf_guest_cbs->is_user_mode())
2620                        misc |= PERF_RECORD_MISC_GUEST_USER;
2621                else
2622                        misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2623        } else {
2624                if (user_mode(regs))
2625                        misc |= PERF_RECORD_MISC_USER;
2626                else
2627                        misc |= PERF_RECORD_MISC_KERNEL;
2628        }
2629
2630        if (regs->flags & PERF_EFLAGS_EXACT)
2631                misc |= PERF_RECORD_MISC_EXACT_IP;
2632
2633        return misc;
2634}
2635
2636void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2637{
2638        cap->version            = x86_pmu.version;
2639        cap->num_counters_gp    = x86_pmu.num_counters;
2640        cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2641        cap->bit_width_gp       = x86_pmu.cntval_bits;
2642        cap->bit_width_fixed    = x86_pmu.cntval_bits;
2643        cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2644        cap->events_mask_len    = x86_pmu.events_mask_len;
2645}
2646EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2647