linux/arch/x86/kvm/hyperv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * KVM Microsoft Hyper-V emulation
   4 *
   5 * derived from arch/x86/kvm/x86.c
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright (C) 2008 Qumranet, Inc.
   9 * Copyright IBM Corporation, 2008
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
  12 *
  13 * Authors:
  14 *   Avi Kivity   <avi@qumranet.com>
  15 *   Yaniv Kamay  <yaniv@qumranet.com>
  16 *   Amit Shah    <amit.shah@qumranet.com>
  17 *   Ben-Ami Yassour <benami@il.ibm.com>
  18 *   Andrey Smetanin <asmetanin@virtuozzo.com>
  19 */
  20
  21#include "x86.h"
  22#include "lapic.h"
  23#include "ioapic.h"
  24#include "cpuid.h"
  25#include "hyperv.h"
  26
  27#include <linux/cpu.h>
  28#include <linux/kvm_host.h>
  29#include <linux/highmem.h>
  30#include <linux/sched/cputime.h>
  31#include <linux/eventfd.h>
  32
  33#include <asm/apicdef.h>
  34#include <trace/events/kvm.h>
  35
  36#include "trace.h"
  37#include "irq.h"
  38
  39#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
  40
  41static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
  42                                bool vcpu_kick);
  43
  44static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
  45{
  46        return atomic64_read(&synic->sint[sint]);
  47}
  48
  49static inline int synic_get_sint_vector(u64 sint_value)
  50{
  51        if (sint_value & HV_SYNIC_SINT_MASKED)
  52                return -1;
  53        return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
  54}
  55
  56static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
  57                                      int vector)
  58{
  59        int i;
  60
  61        for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
  62                if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
  63                        return true;
  64        }
  65        return false;
  66}
  67
  68static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
  69                                     int vector)
  70{
  71        int i;
  72        u64 sint_value;
  73
  74        for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
  75                sint_value = synic_read_sint(synic, i);
  76                if (synic_get_sint_vector(sint_value) == vector &&
  77                    sint_value & HV_SYNIC_SINT_AUTO_EOI)
  78                        return true;
  79        }
  80        return false;
  81}
  82
  83static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
  84                                int vector)
  85{
  86        if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
  87                return;
  88
  89        if (synic_has_vector_connected(synic, vector))
  90                __set_bit(vector, synic->vec_bitmap);
  91        else
  92                __clear_bit(vector, synic->vec_bitmap);
  93
  94        if (synic_has_vector_auto_eoi(synic, vector))
  95                __set_bit(vector, synic->auto_eoi_bitmap);
  96        else
  97                __clear_bit(vector, synic->auto_eoi_bitmap);
  98}
  99
 100static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
 101                          u64 data, bool host)
 102{
 103        int vector, old_vector;
 104        bool masked;
 105
 106        vector = data & HV_SYNIC_SINT_VECTOR_MASK;
 107        masked = data & HV_SYNIC_SINT_MASKED;
 108
 109        /*
 110         * Valid vectors are 16-255, however, nested Hyper-V attempts to write
 111         * default '0x10000' value on boot and this should not #GP. We need to
 112         * allow zero-initing the register from host as well.
 113         */
 114        if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
 115                return 1;
 116        /*
 117         * Guest may configure multiple SINTs to use the same vector, so
 118         * we maintain a bitmap of vectors handled by synic, and a
 119         * bitmap of vectors with auto-eoi behavior.  The bitmaps are
 120         * updated here, and atomically queried on fast paths.
 121         */
 122        old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
 123
 124        atomic64_set(&synic->sint[sint], data);
 125
 126        synic_update_vector(synic, old_vector);
 127
 128        synic_update_vector(synic, vector);
 129
 130        /* Load SynIC vectors into EOI exit bitmap */
 131        kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
 132        return 0;
 133}
 134
 135static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
 136{
 137        struct kvm_vcpu *vcpu = NULL;
 138        int i;
 139
 140        if (vpidx >= KVM_MAX_VCPUS)
 141                return NULL;
 142
 143        vcpu = kvm_get_vcpu(kvm, vpidx);
 144        if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
 145                return vcpu;
 146        kvm_for_each_vcpu(i, vcpu, kvm)
 147                if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
 148                        return vcpu;
 149        return NULL;
 150}
 151
 152static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
 153{
 154        struct kvm_vcpu *vcpu;
 155        struct kvm_vcpu_hv_synic *synic;
 156
 157        vcpu = get_vcpu_by_vpidx(kvm, vpidx);
 158        if (!vcpu)
 159                return NULL;
 160        synic = vcpu_to_synic(vcpu);
 161        return (synic->active) ? synic : NULL;
 162}
 163
 164static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
 165{
 166        struct kvm *kvm = vcpu->kvm;
 167        struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
 168        struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
 169        struct kvm_vcpu_hv_stimer *stimer;
 170        int gsi, idx;
 171
 172        trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
 173
 174        /* Try to deliver pending Hyper-V SynIC timers messages */
 175        for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
 176                stimer = &hv_vcpu->stimer[idx];
 177                if (stimer->msg_pending && stimer->config.enable &&
 178                    !stimer->config.direct_mode &&
 179                    stimer->config.sintx == sint)
 180                        stimer_mark_pending(stimer, false);
 181        }
 182
 183        idx = srcu_read_lock(&kvm->irq_srcu);
 184        gsi = atomic_read(&synic->sint_to_gsi[sint]);
 185        if (gsi != -1)
 186                kvm_notify_acked_gsi(kvm, gsi);
 187        srcu_read_unlock(&kvm->irq_srcu, idx);
 188}
 189
 190static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
 191{
 192        struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
 193        struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
 194
 195        hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
 196        hv_vcpu->exit.u.synic.msr = msr;
 197        hv_vcpu->exit.u.synic.control = synic->control;
 198        hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
 199        hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
 200
 201        kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
 202}
 203
 204static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
 205                         u32 msr, u64 data, bool host)
 206{
 207        struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
 208        int ret;
 209
 210        if (!synic->active && !host)
 211                return 1;
 212
 213        trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
 214
 215        ret = 0;
 216        switch (msr) {
 217        case HV_X64_MSR_SCONTROL:
 218                synic->control = data;
 219                if (!host)
 220                        synic_exit(synic, msr);
 221                break;
 222        case HV_X64_MSR_SVERSION:
 223                if (!host) {
 224                        ret = 1;
 225                        break;
 226                }
 227                synic->version = data;
 228                break;
 229        case HV_X64_MSR_SIEFP:
 230                if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
 231                    !synic->dont_zero_synic_pages)
 232                        if (kvm_clear_guest(vcpu->kvm,
 233                                            data & PAGE_MASK, PAGE_SIZE)) {
 234                                ret = 1;
 235                                break;
 236                        }
 237                synic->evt_page = data;
 238                if (!host)
 239                        synic_exit(synic, msr);
 240                break;
 241        case HV_X64_MSR_SIMP:
 242                if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
 243                    !synic->dont_zero_synic_pages)
 244                        if (kvm_clear_guest(vcpu->kvm,
 245                                            data & PAGE_MASK, PAGE_SIZE)) {
 246                                ret = 1;
 247                                break;
 248                        }
 249                synic->msg_page = data;
 250                if (!host)
 251                        synic_exit(synic, msr);
 252                break;
 253        case HV_X64_MSR_EOM: {
 254                int i;
 255
 256                for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
 257                        kvm_hv_notify_acked_sint(vcpu, i);
 258                break;
 259        }
 260        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
 261                ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
 262                break;
 263        default:
 264                ret = 1;
 265                break;
 266        }
 267        return ret;
 268}
 269
 270static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
 271{
 272        struct kvm_cpuid_entry2 *entry;
 273
 274        entry = kvm_find_cpuid_entry(vcpu,
 275                                     HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES,
 276                                     0);
 277        if (!entry)
 278                return false;
 279
 280        return entry->eax & HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
 281}
 282
 283static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
 284{
 285        struct kvm *kvm = vcpu->kvm;
 286        struct kvm_hv *hv = &kvm->arch.hyperv;
 287
 288        if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
 289                hv->hv_syndbg.control.status =
 290                        vcpu->run->hyperv.u.syndbg.status;
 291        return 1;
 292}
 293
 294static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
 295{
 296        struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);
 297        struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
 298
 299        hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
 300        hv_vcpu->exit.u.syndbg.msr = msr;
 301        hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
 302        hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
 303        hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
 304        hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
 305        vcpu->arch.complete_userspace_io =
 306                        kvm_hv_syndbg_complete_userspace;
 307
 308        kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
 309}
 310
 311static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
 312{
 313        struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);
 314
 315        if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
 316                return 1;
 317
 318        trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
 319                                    vcpu_to_hv_vcpu(vcpu)->vp_index, msr, data);
 320        switch (msr) {
 321        case HV_X64_MSR_SYNDBG_CONTROL:
 322                syndbg->control.control = data;
 323                if (!host)
 324                        syndbg_exit(vcpu, msr);
 325                break;
 326        case HV_X64_MSR_SYNDBG_STATUS:
 327                syndbg->control.status = data;
 328                break;
 329        case HV_X64_MSR_SYNDBG_SEND_BUFFER:
 330                syndbg->control.send_page = data;
 331                break;
 332        case HV_X64_MSR_SYNDBG_RECV_BUFFER:
 333                syndbg->control.recv_page = data;
 334                break;
 335        case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
 336                syndbg->control.pending_page = data;
 337                if (!host)
 338                        syndbg_exit(vcpu, msr);
 339                break;
 340        case HV_X64_MSR_SYNDBG_OPTIONS:
 341                syndbg->options = data;
 342                break;
 343        default:
 344                break;
 345        }
 346
 347        return 0;
 348}
 349
 350static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
 351{
 352        struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);
 353
 354        if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
 355                return 1;
 356
 357        switch (msr) {
 358        case HV_X64_MSR_SYNDBG_CONTROL:
 359                *pdata = syndbg->control.control;
 360                break;
 361        case HV_X64_MSR_SYNDBG_STATUS:
 362                *pdata = syndbg->control.status;
 363                break;
 364        case HV_X64_MSR_SYNDBG_SEND_BUFFER:
 365                *pdata = syndbg->control.send_page;
 366                break;
 367        case HV_X64_MSR_SYNDBG_RECV_BUFFER:
 368                *pdata = syndbg->control.recv_page;
 369                break;
 370        case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
 371                *pdata = syndbg->control.pending_page;
 372                break;
 373        case HV_X64_MSR_SYNDBG_OPTIONS:
 374                *pdata = syndbg->options;
 375                break;
 376        default:
 377                break;
 378        }
 379
 380        trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id,
 381                                    vcpu_to_hv_vcpu(vcpu)->vp_index, msr,
 382                                    *pdata);
 383
 384        return 0;
 385}
 386
 387static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
 388                         bool host)
 389{
 390        int ret;
 391
 392        if (!synic->active && !host)
 393                return 1;
 394
 395        ret = 0;
 396        switch (msr) {
 397        case HV_X64_MSR_SCONTROL:
 398                *pdata = synic->control;
 399                break;
 400        case HV_X64_MSR_SVERSION:
 401                *pdata = synic->version;
 402                break;
 403        case HV_X64_MSR_SIEFP:
 404                *pdata = synic->evt_page;
 405                break;
 406        case HV_X64_MSR_SIMP:
 407                *pdata = synic->msg_page;
 408                break;
 409        case HV_X64_MSR_EOM:
 410                *pdata = 0;
 411                break;
 412        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
 413                *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
 414                break;
 415        default:
 416                ret = 1;
 417                break;
 418        }
 419        return ret;
 420}
 421
 422static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
 423{
 424        struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
 425        struct kvm_lapic_irq irq;
 426        int ret, vector;
 427
 428        if (sint >= ARRAY_SIZE(synic->sint))
 429                return -EINVAL;
 430
 431        vector = synic_get_sint_vector(synic_read_sint(synic, sint));
 432        if (vector < 0)
 433                return -ENOENT;
 434
 435        memset(&irq, 0, sizeof(irq));
 436        irq.shorthand = APIC_DEST_SELF;
 437        irq.dest_mode = APIC_DEST_PHYSICAL;
 438        irq.delivery_mode = APIC_DM_FIXED;
 439        irq.vector = vector;
 440        irq.level = 1;
 441
 442        ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
 443        trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
 444        return ret;
 445}
 446
 447int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
 448{
 449        struct kvm_vcpu_hv_synic *synic;
 450
 451        synic = synic_get(kvm, vpidx);
 452        if (!synic)
 453                return -EINVAL;
 454
 455        return synic_set_irq(synic, sint);
 456}
 457
 458void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
 459{
 460        struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
 461        int i;
 462
 463        trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
 464
 465        for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
 466                if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
 467                        kvm_hv_notify_acked_sint(vcpu, i);
 468}
 469
 470static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
 471{
 472        struct kvm_vcpu_hv_synic *synic;
 473
 474        synic = synic_get(kvm, vpidx);
 475        if (!synic)
 476                return -EINVAL;
 477
 478        if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
 479                return -EINVAL;
 480
 481        atomic_set(&synic->sint_to_gsi[sint], gsi);
 482        return 0;
 483}
 484
 485void kvm_hv_irq_routing_update(struct kvm *kvm)
 486{
 487        struct kvm_irq_routing_table *irq_rt;
 488        struct kvm_kernel_irq_routing_entry *e;
 489        u32 gsi;
 490
 491        irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
 492                                        lockdep_is_held(&kvm->irq_lock));
 493
 494        for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
 495                hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
 496                        if (e->type == KVM_IRQ_ROUTING_HV_SINT)
 497                                kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
 498                                                    e->hv_sint.sint, gsi);
 499                }
 500        }
 501}
 502
 503static void synic_init(struct kvm_vcpu_hv_synic *synic)
 504{
 505        int i;
 506
 507        memset(synic, 0, sizeof(*synic));
 508        synic->version = HV_SYNIC_VERSION_1;
 509        for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
 510                atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
 511                atomic_set(&synic->sint_to_gsi[i], -1);
 512        }
 513}
 514
 515static u64 get_time_ref_counter(struct kvm *kvm)
 516{
 517        struct kvm_hv *hv = &kvm->arch.hyperv;
 518        struct kvm_vcpu *vcpu;
 519        u64 tsc;
 520
 521        /*
 522         * The guest has not set up the TSC page or the clock isn't
 523         * stable, fall back to get_kvmclock_ns.
 524         */
 525        if (!hv->tsc_ref.tsc_sequence)
 526                return div_u64(get_kvmclock_ns(kvm), 100);
 527
 528        vcpu = kvm_get_vcpu(kvm, 0);
 529        tsc = kvm_read_l1_tsc(vcpu, rdtsc());
 530        return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
 531                + hv->tsc_ref.tsc_offset;
 532}
 533
 534static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
 535                                bool vcpu_kick)
 536{
 537        struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
 538
 539        set_bit(stimer->index,
 540                vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
 541        kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
 542        if (vcpu_kick)
 543                kvm_vcpu_kick(vcpu);
 544}
 545
 546static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
 547{
 548        struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
 549
 550        trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
 551                                    stimer->index);
 552
 553        hrtimer_cancel(&stimer->timer);
 554        clear_bit(stimer->index,
 555                  vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
 556        stimer->msg_pending = false;
 557        stimer->exp_time = 0;
 558}
 559
 560static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
 561{
 562        struct kvm_vcpu_hv_stimer *stimer;
 563
 564        stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
 565        trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
 566                                     stimer->index);
 567        stimer_mark_pending(stimer, true);
 568
 569        return HRTIMER_NORESTART;
 570}
 571
 572/*
 573 * stimer_start() assumptions:
 574 * a) stimer->count is not equal to 0
 575 * b) stimer->config has HV_STIMER_ENABLE flag
 576 */
 577static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
 578{
 579        u64 time_now;
 580        ktime_t ktime_now;
 581
 582        time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
 583        ktime_now = ktime_get();
 584
 585        if (stimer->config.periodic) {
 586                if (stimer->exp_time) {
 587                        if (time_now >= stimer->exp_time) {
 588                                u64 remainder;
 589
 590                                div64_u64_rem(time_now - stimer->exp_time,
 591                                              stimer->count, &remainder);
 592                                stimer->exp_time =
 593                                        time_now + (stimer->count - remainder);
 594                        }
 595                } else
 596                        stimer->exp_time = time_now + stimer->count;
 597
 598                trace_kvm_hv_stimer_start_periodic(
 599                                        stimer_to_vcpu(stimer)->vcpu_id,
 600                                        stimer->index,
 601                                        time_now, stimer->exp_time);
 602
 603                hrtimer_start(&stimer->timer,
 604                              ktime_add_ns(ktime_now,
 605                                           100 * (stimer->exp_time - time_now)),
 606                              HRTIMER_MODE_ABS);
 607                return 0;
 608        }
 609        stimer->exp_time = stimer->count;
 610        if (time_now >= stimer->count) {
 611                /*
 612                 * Expire timer according to Hypervisor Top-Level Functional
 613                 * specification v4(15.3.1):
 614                 * "If a one shot is enabled and the specified count is in
 615                 * the past, it will expire immediately."
 616                 */
 617                stimer_mark_pending(stimer, false);
 618                return 0;
 619        }
 620
 621        trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
 622                                           stimer->index,
 623                                           time_now, stimer->count);
 624
 625        hrtimer_start(&stimer->timer,
 626                      ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
 627                      HRTIMER_MODE_ABS);
 628        return 0;
 629}
 630
 631static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
 632                             bool host)
 633{
 634        union hv_stimer_config new_config = {.as_uint64 = config},
 635                old_config = {.as_uint64 = stimer->config.as_uint64};
 636
 637        trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
 638                                       stimer->index, config, host);
 639
 640        stimer_cleanup(stimer);
 641        if (old_config.enable &&
 642            !new_config.direct_mode && new_config.sintx == 0)
 643                new_config.enable = 0;
 644        stimer->config.as_uint64 = new_config.as_uint64;
 645
 646        if (stimer->config.enable)
 647                stimer_mark_pending(stimer, false);
 648
 649        return 0;
 650}
 651
 652static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
 653                            bool host)
 654{
 655        trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
 656                                      stimer->index, count, host);
 657
 658        stimer_cleanup(stimer);
 659        stimer->count = count;
 660        if (stimer->count == 0)
 661                stimer->config.enable = 0;
 662        else if (stimer->config.auto_enable)
 663                stimer->config.enable = 1;
 664
 665        if (stimer->config.enable)
 666                stimer_mark_pending(stimer, false);
 667
 668        return 0;
 669}
 670
 671static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
 672{
 673        *pconfig = stimer->config.as_uint64;
 674        return 0;
 675}
 676
 677static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
 678{
 679        *pcount = stimer->count;
 680        return 0;
 681}
 682
 683static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
 684                             struct hv_message *src_msg, bool no_retry)
 685{
 686        struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
 687        int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
 688        gfn_t msg_page_gfn;
 689        struct hv_message_header hv_hdr;
 690        int r;
 691
 692        if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
 693                return -ENOENT;
 694
 695        msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
 696
 697        /*
 698         * Strictly following the spec-mandated ordering would assume setting
 699         * .msg_pending before checking .message_type.  However, this function
 700         * is only called in vcpu context so the entire update is atomic from
 701         * guest POV and thus the exact order here doesn't matter.
 702         */
 703        r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
 704                                     msg_off + offsetof(struct hv_message,
 705                                                        header.message_type),
 706                                     sizeof(hv_hdr.message_type));
 707        if (r < 0)
 708                return r;
 709
 710        if (hv_hdr.message_type != HVMSG_NONE) {
 711                if (no_retry)
 712                        return 0;
 713
 714                hv_hdr.message_flags.msg_pending = 1;
 715                r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
 716                                              &hv_hdr.message_flags,
 717                                              msg_off +
 718                                              offsetof(struct hv_message,
 719                                                       header.message_flags),
 720                                              sizeof(hv_hdr.message_flags));
 721                if (r < 0)
 722                        return r;
 723                return -EAGAIN;
 724        }
 725
 726        r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
 727                                      sizeof(src_msg->header) +
 728                                      src_msg->header.payload_size);
 729        if (r < 0)
 730                return r;
 731
 732        r = synic_set_irq(synic, sint);
 733        if (r < 0)
 734                return r;
 735        if (r == 0)
 736                return -EFAULT;
 737        return 0;
 738}
 739
 740static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
 741{
 742        struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
 743        struct hv_message *msg = &stimer->msg;
 744        struct hv_timer_message_payload *payload =
 745                        (struct hv_timer_message_payload *)&msg->u.payload;
 746
 747        /*
 748         * To avoid piling up periodic ticks, don't retry message
 749         * delivery for them (within "lazy" lost ticks policy).
 750         */
 751        bool no_retry = stimer->config.periodic;
 752
 753        payload->expiration_time = stimer->exp_time;
 754        payload->delivery_time = get_time_ref_counter(vcpu->kvm);
 755        return synic_deliver_msg(vcpu_to_synic(vcpu),
 756                                 stimer->config.sintx, msg,
 757                                 no_retry);
 758}
 759
 760static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
 761{
 762        struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
 763        struct kvm_lapic_irq irq = {
 764                .delivery_mode = APIC_DM_FIXED,
 765                .vector = stimer->config.apic_vector
 766        };
 767
 768        if (lapic_in_kernel(vcpu))
 769                return !kvm_apic_set_irq(vcpu, &irq, NULL);
 770        return 0;
 771}
 772
 773static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
 774{
 775        int r, direct = stimer->config.direct_mode;
 776
 777        stimer->msg_pending = true;
 778        if (!direct)
 779                r = stimer_send_msg(stimer);
 780        else
 781                r = stimer_notify_direct(stimer);
 782        trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
 783                                       stimer->index, direct, r);
 784        if (!r) {
 785                stimer->msg_pending = false;
 786                if (!(stimer->config.periodic))
 787                        stimer->config.enable = 0;
 788        }
 789}
 790
 791void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
 792{
 793        struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
 794        struct kvm_vcpu_hv_stimer *stimer;
 795        u64 time_now, exp_time;
 796        int i;
 797
 798        for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
 799                if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
 800                        stimer = &hv_vcpu->stimer[i];
 801                        if (stimer->config.enable) {
 802                                exp_time = stimer->exp_time;
 803
 804                                if (exp_time) {
 805                                        time_now =
 806                                                get_time_ref_counter(vcpu->kvm);
 807                                        if (time_now >= exp_time)
 808                                                stimer_expiration(stimer);
 809                                }
 810
 811                                if ((stimer->config.enable) &&
 812                                    stimer->count) {
 813                                        if (!stimer->msg_pending)
 814                                                stimer_start(stimer);
 815                                } else
 816                                        stimer_cleanup(stimer);
 817                        }
 818                }
 819}
 820
 821void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
 822{
 823        struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
 824        int i;
 825
 826        for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
 827                stimer_cleanup(&hv_vcpu->stimer[i]);
 828}
 829
 830bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
 831{
 832        if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
 833                return false;
 834        return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
 835}
 836EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
 837
 838bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
 839                            struct hv_vp_assist_page *assist_page)
 840{
 841        if (!kvm_hv_assist_page_enabled(vcpu))
 842                return false;
 843        return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
 844                                      assist_page, sizeof(*assist_page));
 845}
 846EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
 847
 848static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
 849{
 850        struct hv_message *msg = &stimer->msg;
 851        struct hv_timer_message_payload *payload =
 852                        (struct hv_timer_message_payload *)&msg->u.payload;
 853
 854        memset(&msg->header, 0, sizeof(msg->header));
 855        msg->header.message_type = HVMSG_TIMER_EXPIRED;
 856        msg->header.payload_size = sizeof(*payload);
 857
 858        payload->timer_index = stimer->index;
 859        payload->expiration_time = 0;
 860        payload->delivery_time = 0;
 861}
 862
 863static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
 864{
 865        memset(stimer, 0, sizeof(*stimer));
 866        stimer->index = timer_index;
 867        hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 868        stimer->timer.function = stimer_timer_callback;
 869        stimer_prepare_msg(stimer);
 870}
 871
 872void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
 873{
 874        struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
 875        int i;
 876
 877        synic_init(&hv_vcpu->synic);
 878
 879        bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
 880        for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
 881                stimer_init(&hv_vcpu->stimer[i], i);
 882}
 883
 884void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
 885{
 886        struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
 887
 888        hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
 889}
 890
 891int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
 892{
 893        struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
 894
 895        /*
 896         * Hyper-V SynIC auto EOI SINT's are
 897         * not compatible with APICV, so request
 898         * to deactivate APICV permanently.
 899         */
 900        kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_HYPERV);
 901        synic->active = true;
 902        synic->dont_zero_synic_pages = dont_zero_synic_pages;
 903        return 0;
 904}
 905
 906static bool kvm_hv_msr_partition_wide(u32 msr)
 907{
 908        bool r = false;
 909
 910        switch (msr) {
 911        case HV_X64_MSR_GUEST_OS_ID:
 912        case HV_X64_MSR_HYPERCALL:
 913        case HV_X64_MSR_REFERENCE_TSC:
 914        case HV_X64_MSR_TIME_REF_COUNT:
 915        case HV_X64_MSR_CRASH_CTL:
 916        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
 917        case HV_X64_MSR_RESET:
 918        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
 919        case HV_X64_MSR_TSC_EMULATION_CONTROL:
 920        case HV_X64_MSR_TSC_EMULATION_STATUS:
 921        case HV_X64_MSR_SYNDBG_OPTIONS:
 922        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
 923                r = true;
 924                break;
 925        }
 926
 927        return r;
 928}
 929
 930static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
 931                                     u32 index, u64 *pdata)
 932{
 933        struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
 934        size_t size = ARRAY_SIZE(hv->hv_crash_param);
 935
 936        if (WARN_ON_ONCE(index >= size))
 937                return -EINVAL;
 938
 939        *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
 940        return 0;
 941}
 942
 943static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
 944{
 945        struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
 946
 947        *pdata = hv->hv_crash_ctl;
 948        return 0;
 949}
 950
 951static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
 952{
 953        struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
 954
 955        if (host)
 956                hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
 957
 958        if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
 959
 960                vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
 961                          hv->hv_crash_param[0],
 962                          hv->hv_crash_param[1],
 963                          hv->hv_crash_param[2],
 964                          hv->hv_crash_param[3],
 965                          hv->hv_crash_param[4]);
 966
 967                /* Send notification about crash to user space */
 968                kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
 969        }
 970
 971        return 0;
 972}
 973
 974static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
 975                                     u32 index, u64 data)
 976{
 977        struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
 978        size_t size = ARRAY_SIZE(hv->hv_crash_param);
 979
 980        if (WARN_ON_ONCE(index >= size))
 981                return -EINVAL;
 982
 983        hv->hv_crash_param[array_index_nospec(index, size)] = data;
 984        return 0;
 985}
 986
 987/*
 988 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
 989 * between them is possible:
 990 *
 991 * kvmclock formula:
 992 *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
 993 *           + system_time
 994 *
 995 * Hyper-V formula:
 996 *    nsec/100 = ticks * scale / 2^64 + offset
 997 *
 998 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
 999 * By dividing the kvmclock formula by 100 and equating what's left we get:
1000 *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1001 *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
1002 *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
1003 *
1004 * Now expand the kvmclock formula and divide by 100:
1005 *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1006 *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1007 *           + system_time
1008 *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1009 *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1010 *               + system_time / 100
1011 *
1012 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1013 *    nsec/100 = ticks * scale / 2^64
1014 *               - tsc_timestamp * scale / 2^64
1015 *               + system_time / 100
1016 *
1017 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1018 *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
1019 *
1020 * These two equivalencies are implemented in this function.
1021 */
1022static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1023                                        struct ms_hyperv_tsc_page *tsc_ref)
1024{
1025        u64 max_mul;
1026
1027        if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1028                return false;
1029
1030        /*
1031         * check if scale would overflow, if so we use the time ref counter
1032         *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1033         *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1034         *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1035         */
1036        max_mul = 100ull << (32 - hv_clock->tsc_shift);
1037        if (hv_clock->tsc_to_system_mul >= max_mul)
1038                return false;
1039
1040        /*
1041         * Otherwise compute the scale and offset according to the formulas
1042         * derived above.
1043         */
1044        tsc_ref->tsc_scale =
1045                mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1046                                hv_clock->tsc_to_system_mul,
1047                                100);
1048
1049        tsc_ref->tsc_offset = hv_clock->system_time;
1050        do_div(tsc_ref->tsc_offset, 100);
1051        tsc_ref->tsc_offset -=
1052                mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1053        return true;
1054}
1055
1056void kvm_hv_setup_tsc_page(struct kvm *kvm,
1057                           struct pvclock_vcpu_time_info *hv_clock)
1058{
1059        struct kvm_hv *hv = &kvm->arch.hyperv;
1060        u32 tsc_seq;
1061        u64 gfn;
1062
1063        BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1064        BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1065
1066        if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1067                return;
1068
1069        mutex_lock(&kvm->arch.hyperv.hv_lock);
1070        if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1071                goto out_unlock;
1072
1073        gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1074        /*
1075         * Because the TSC parameters only vary when there is a
1076         * change in the master clock, do not bother with caching.
1077         */
1078        if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1079                                    &tsc_seq, sizeof(tsc_seq))))
1080                goto out_unlock;
1081
1082        /*
1083         * While we're computing and writing the parameters, force the
1084         * guest to use the time reference count MSR.
1085         */
1086        hv->tsc_ref.tsc_sequence = 0;
1087        if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1088                            &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1089                goto out_unlock;
1090
1091        if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1092                goto out_unlock;
1093
1094        /* Ensure sequence is zero before writing the rest of the struct.  */
1095        smp_wmb();
1096        if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1097                goto out_unlock;
1098
1099        /*
1100         * Now switch to the TSC page mechanism by writing the sequence.
1101         */
1102        tsc_seq++;
1103        if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1104                tsc_seq = 1;
1105
1106        /* Write the struct entirely before the non-zero sequence.  */
1107        smp_wmb();
1108
1109        hv->tsc_ref.tsc_sequence = tsc_seq;
1110        kvm_write_guest(kvm, gfn_to_gpa(gfn),
1111                        &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
1112out_unlock:
1113        mutex_unlock(&kvm->arch.hyperv.hv_lock);
1114}
1115
1116static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1117                             bool host)
1118{
1119        struct kvm *kvm = vcpu->kvm;
1120        struct kvm_hv *hv = &kvm->arch.hyperv;
1121
1122        switch (msr) {
1123        case HV_X64_MSR_GUEST_OS_ID:
1124                hv->hv_guest_os_id = data;
1125                /* setting guest os id to zero disables hypercall page */
1126                if (!hv->hv_guest_os_id)
1127                        hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1128                break;
1129        case HV_X64_MSR_HYPERCALL: {
1130                u64 gfn;
1131                unsigned long addr;
1132                u8 instructions[4];
1133
1134                /* if guest os id is not set hypercall should remain disabled */
1135                if (!hv->hv_guest_os_id)
1136                        break;
1137                if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1138                        hv->hv_hypercall = data;
1139                        break;
1140                }
1141                gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1142                addr = gfn_to_hva(kvm, gfn);
1143                if (kvm_is_error_hva(addr))
1144                        return 1;
1145                kvm_x86_ops.patch_hypercall(vcpu, instructions);
1146                ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1147                if (__copy_to_user((void __user *)addr, instructions, 4))
1148                        return 1;
1149                hv->hv_hypercall = data;
1150                mark_page_dirty(kvm, gfn);
1151                break;
1152        }
1153        case HV_X64_MSR_REFERENCE_TSC:
1154                hv->hv_tsc_page = data;
1155                if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
1156                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1157                break;
1158        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1159                return kvm_hv_msr_set_crash_data(vcpu,
1160                                                 msr - HV_X64_MSR_CRASH_P0,
1161                                                 data);
1162        case HV_X64_MSR_CRASH_CTL:
1163                return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1164        case HV_X64_MSR_RESET:
1165                if (data == 1) {
1166                        vcpu_debug(vcpu, "hyper-v reset requested\n");
1167                        kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1168                }
1169                break;
1170        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1171                hv->hv_reenlightenment_control = data;
1172                break;
1173        case HV_X64_MSR_TSC_EMULATION_CONTROL:
1174                hv->hv_tsc_emulation_control = data;
1175                break;
1176        case HV_X64_MSR_TSC_EMULATION_STATUS:
1177                hv->hv_tsc_emulation_status = data;
1178                break;
1179        case HV_X64_MSR_TIME_REF_COUNT:
1180                /* read-only, but still ignore it if host-initiated */
1181                if (!host)
1182                        return 1;
1183                break;
1184        case HV_X64_MSR_SYNDBG_OPTIONS:
1185        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1186                return syndbg_set_msr(vcpu, msr, data, host);
1187        default:
1188                vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1189                            msr, data);
1190                return 1;
1191        }
1192        return 0;
1193}
1194
1195/* Calculate cpu time spent by current task in 100ns units */
1196static u64 current_task_runtime_100ns(void)
1197{
1198        u64 utime, stime;
1199
1200        task_cputime_adjusted(current, &utime, &stime);
1201
1202        return div_u64(utime + stime, 100);
1203}
1204
1205static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1206{
1207        struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1208
1209        switch (msr) {
1210        case HV_X64_MSR_VP_INDEX: {
1211                struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
1212                int vcpu_idx = kvm_vcpu_get_idx(vcpu);
1213                u32 new_vp_index = (u32)data;
1214
1215                if (!host || new_vp_index >= KVM_MAX_VCPUS)
1216                        return 1;
1217
1218                if (new_vp_index == hv_vcpu->vp_index)
1219                        return 0;
1220
1221                /*
1222                 * The VP index is initialized to vcpu_index by
1223                 * kvm_hv_vcpu_postcreate so they initially match.  Now the
1224                 * VP index is changing, adjust num_mismatched_vp_indexes if
1225                 * it now matches or no longer matches vcpu_idx.
1226                 */
1227                if (hv_vcpu->vp_index == vcpu_idx)
1228                        atomic_inc(&hv->num_mismatched_vp_indexes);
1229                else if (new_vp_index == vcpu_idx)
1230                        atomic_dec(&hv->num_mismatched_vp_indexes);
1231
1232                hv_vcpu->vp_index = new_vp_index;
1233                break;
1234        }
1235        case HV_X64_MSR_VP_ASSIST_PAGE: {
1236                u64 gfn;
1237                unsigned long addr;
1238
1239                if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1240                        hv_vcpu->hv_vapic = data;
1241                        if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1242                                return 1;
1243                        break;
1244                }
1245                gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1246                addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1247                if (kvm_is_error_hva(addr))
1248                        return 1;
1249
1250                /*
1251                 * Clear apic_assist portion of struct hv_vp_assist_page
1252                 * only, there can be valuable data in the rest which needs
1253                 * to be preserved e.g. on migration.
1254                 */
1255                if (__put_user(0, (u32 __user *)addr))
1256                        return 1;
1257                hv_vcpu->hv_vapic = data;
1258                kvm_vcpu_mark_page_dirty(vcpu, gfn);
1259                if (kvm_lapic_enable_pv_eoi(vcpu,
1260                                            gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1261                                            sizeof(struct hv_vp_assist_page)))
1262                        return 1;
1263                break;
1264        }
1265        case HV_X64_MSR_EOI:
1266                return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1267        case HV_X64_MSR_ICR:
1268                return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1269        case HV_X64_MSR_TPR:
1270                return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1271        case HV_X64_MSR_VP_RUNTIME:
1272                if (!host)
1273                        return 1;
1274                hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1275                break;
1276        case HV_X64_MSR_SCONTROL:
1277        case HV_X64_MSR_SVERSION:
1278        case HV_X64_MSR_SIEFP:
1279        case HV_X64_MSR_SIMP:
1280        case HV_X64_MSR_EOM:
1281        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1282                return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1283        case HV_X64_MSR_STIMER0_CONFIG:
1284        case HV_X64_MSR_STIMER1_CONFIG:
1285        case HV_X64_MSR_STIMER2_CONFIG:
1286        case HV_X64_MSR_STIMER3_CONFIG: {
1287                int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1288
1289                return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1290                                         data, host);
1291        }
1292        case HV_X64_MSR_STIMER0_COUNT:
1293        case HV_X64_MSR_STIMER1_COUNT:
1294        case HV_X64_MSR_STIMER2_COUNT:
1295        case HV_X64_MSR_STIMER3_COUNT: {
1296                int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1297
1298                return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1299                                        data, host);
1300        }
1301        case HV_X64_MSR_TSC_FREQUENCY:
1302        case HV_X64_MSR_APIC_FREQUENCY:
1303                /* read-only, but still ignore it if host-initiated */
1304                if (!host)
1305                        return 1;
1306                break;
1307        default:
1308                vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1309                            msr, data);
1310                return 1;
1311        }
1312
1313        return 0;
1314}
1315
1316static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1317                             bool host)
1318{
1319        u64 data = 0;
1320        struct kvm *kvm = vcpu->kvm;
1321        struct kvm_hv *hv = &kvm->arch.hyperv;
1322
1323        switch (msr) {
1324        case HV_X64_MSR_GUEST_OS_ID:
1325                data = hv->hv_guest_os_id;
1326                break;
1327        case HV_X64_MSR_HYPERCALL:
1328                data = hv->hv_hypercall;
1329                break;
1330        case HV_X64_MSR_TIME_REF_COUNT:
1331                data = get_time_ref_counter(kvm);
1332                break;
1333        case HV_X64_MSR_REFERENCE_TSC:
1334                data = hv->hv_tsc_page;
1335                break;
1336        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1337                return kvm_hv_msr_get_crash_data(vcpu,
1338                                                 msr - HV_X64_MSR_CRASH_P0,
1339                                                 pdata);
1340        case HV_X64_MSR_CRASH_CTL:
1341                return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1342        case HV_X64_MSR_RESET:
1343                data = 0;
1344                break;
1345        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1346                data = hv->hv_reenlightenment_control;
1347                break;
1348        case HV_X64_MSR_TSC_EMULATION_CONTROL:
1349                data = hv->hv_tsc_emulation_control;
1350                break;
1351        case HV_X64_MSR_TSC_EMULATION_STATUS:
1352                data = hv->hv_tsc_emulation_status;
1353                break;
1354        case HV_X64_MSR_SYNDBG_OPTIONS:
1355        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1356                return syndbg_get_msr(vcpu, msr, pdata, host);
1357        default:
1358                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1359                return 1;
1360        }
1361
1362        *pdata = data;
1363        return 0;
1364}
1365
1366static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1367                          bool host)
1368{
1369        u64 data = 0;
1370        struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1371
1372        switch (msr) {
1373        case HV_X64_MSR_VP_INDEX:
1374                data = hv_vcpu->vp_index;
1375                break;
1376        case HV_X64_MSR_EOI:
1377                return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1378        case HV_X64_MSR_ICR:
1379                return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1380        case HV_X64_MSR_TPR:
1381                return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1382        case HV_X64_MSR_VP_ASSIST_PAGE:
1383                data = hv_vcpu->hv_vapic;
1384                break;
1385        case HV_X64_MSR_VP_RUNTIME:
1386                data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1387                break;
1388        case HV_X64_MSR_SCONTROL:
1389        case HV_X64_MSR_SVERSION:
1390        case HV_X64_MSR_SIEFP:
1391        case HV_X64_MSR_SIMP:
1392        case HV_X64_MSR_EOM:
1393        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1394                return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
1395        case HV_X64_MSR_STIMER0_CONFIG:
1396        case HV_X64_MSR_STIMER1_CONFIG:
1397        case HV_X64_MSR_STIMER2_CONFIG:
1398        case HV_X64_MSR_STIMER3_CONFIG: {
1399                int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1400
1401                return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1402                                         pdata);
1403        }
1404        case HV_X64_MSR_STIMER0_COUNT:
1405        case HV_X64_MSR_STIMER1_COUNT:
1406        case HV_X64_MSR_STIMER2_COUNT:
1407        case HV_X64_MSR_STIMER3_COUNT: {
1408                int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1409
1410                return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1411                                        pdata);
1412        }
1413        case HV_X64_MSR_TSC_FREQUENCY:
1414                data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1415                break;
1416        case HV_X64_MSR_APIC_FREQUENCY:
1417                data = APIC_BUS_FREQUENCY;
1418                break;
1419        default:
1420                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1421                return 1;
1422        }
1423        *pdata = data;
1424        return 0;
1425}
1426
1427int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1428{
1429        if (kvm_hv_msr_partition_wide(msr)) {
1430                int r;
1431
1432                mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1433                r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1434                mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1435                return r;
1436        } else
1437                return kvm_hv_set_msr(vcpu, msr, data, host);
1438}
1439
1440int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1441{
1442        if (kvm_hv_msr_partition_wide(msr)) {
1443                int r;
1444
1445                mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1446                r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1447                mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1448                return r;
1449        } else
1450                return kvm_hv_get_msr(vcpu, msr, pdata, host);
1451}
1452
1453static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1454        struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1455        u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1456{
1457        struct kvm_hv *hv = &kvm->arch.hyperv;
1458        struct kvm_vcpu *vcpu;
1459        int i, bank, sbank = 0;
1460
1461        memset(vp_bitmap, 0,
1462               KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1463        for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1464                         KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1465                vp_bitmap[bank] = sparse_banks[sbank++];
1466
1467        if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1468                /* for all vcpus vp_index == vcpu_idx */
1469                return (unsigned long *)vp_bitmap;
1470        }
1471
1472        bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1473        kvm_for_each_vcpu(i, vcpu, kvm) {
1474                if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
1475                             (unsigned long *)vp_bitmap))
1476                        __set_bit(i, vcpu_bitmap);
1477        }
1478        return vcpu_bitmap;
1479}
1480
1481static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1482                            u16 rep_cnt, bool ex)
1483{
1484        struct kvm *kvm = current_vcpu->kvm;
1485        struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
1486        struct hv_tlb_flush_ex flush_ex;
1487        struct hv_tlb_flush flush;
1488        u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1489        DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1490        unsigned long *vcpu_mask;
1491        u64 valid_bank_mask;
1492        u64 sparse_banks[64];
1493        int sparse_banks_len;
1494        bool all_cpus;
1495
1496        if (!ex) {
1497                if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1498                        return HV_STATUS_INVALID_HYPERCALL_INPUT;
1499
1500                trace_kvm_hv_flush_tlb(flush.processor_mask,
1501                                       flush.address_space, flush.flags);
1502
1503                valid_bank_mask = BIT_ULL(0);
1504                sparse_banks[0] = flush.processor_mask;
1505
1506                /*
1507                 * Work around possible WS2012 bug: it sends hypercalls
1508                 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
1509                 * while also expecting us to flush something and crashing if
1510                 * we don't. Let's treat processor_mask == 0 same as
1511                 * HV_FLUSH_ALL_PROCESSORS.
1512                 */
1513                all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
1514                        flush.processor_mask == 0;
1515        } else {
1516                if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1517                                            sizeof(flush_ex))))
1518                        return HV_STATUS_INVALID_HYPERCALL_INPUT;
1519
1520                trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1521                                          flush_ex.hv_vp_set.format,
1522                                          flush_ex.address_space,
1523                                          flush_ex.flags);
1524
1525                valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1526                all_cpus = flush_ex.hv_vp_set.format !=
1527                        HV_GENERIC_SET_SPARSE_4K;
1528
1529                sparse_banks_len =
1530                        bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1531                        sizeof(sparse_banks[0]);
1532
1533                if (!sparse_banks_len && !all_cpus)
1534                        goto ret_success;
1535
1536                if (!all_cpus &&
1537                    kvm_read_guest(kvm,
1538                                   ingpa + offsetof(struct hv_tlb_flush_ex,
1539                                                    hv_vp_set.bank_contents),
1540                                   sparse_banks,
1541                                   sparse_banks_len))
1542                        return HV_STATUS_INVALID_HYPERCALL_INPUT;
1543        }
1544
1545        cpumask_clear(&hv_vcpu->tlb_flush);
1546
1547        vcpu_mask = all_cpus ? NULL :
1548                sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1549                                        vp_bitmap, vcpu_bitmap);
1550
1551        /*
1552         * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1553         * analyze it here, flush TLB regardless of the specified address space.
1554         */
1555        kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH,
1556                                    NULL, vcpu_mask, &hv_vcpu->tlb_flush);
1557
1558ret_success:
1559        /* We always do full TLB flush, set rep_done = rep_cnt. */
1560        return (u64)HV_STATUS_SUCCESS |
1561                ((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1562}
1563
1564static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1565                                 unsigned long *vcpu_bitmap)
1566{
1567        struct kvm_lapic_irq irq = {
1568                .delivery_mode = APIC_DM_FIXED,
1569                .vector = vector
1570        };
1571        struct kvm_vcpu *vcpu;
1572        int i;
1573
1574        kvm_for_each_vcpu(i, vcpu, kvm) {
1575                if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1576                        continue;
1577
1578                /* We fail only when APIC is disabled */
1579                kvm_apic_set_irq(vcpu, &irq, NULL);
1580        }
1581}
1582
1583static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
1584                           bool ex, bool fast)
1585{
1586        struct kvm *kvm = current_vcpu->kvm;
1587        struct hv_send_ipi_ex send_ipi_ex;
1588        struct hv_send_ipi send_ipi;
1589        u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1590        DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1591        unsigned long *vcpu_mask;
1592        unsigned long valid_bank_mask;
1593        u64 sparse_banks[64];
1594        int sparse_banks_len;
1595        u32 vector;
1596        bool all_cpus;
1597
1598        if (!ex) {
1599                if (!fast) {
1600                        if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
1601                                                    sizeof(send_ipi))))
1602                                return HV_STATUS_INVALID_HYPERCALL_INPUT;
1603                        sparse_banks[0] = send_ipi.cpu_mask;
1604                        vector = send_ipi.vector;
1605                } else {
1606                        /* 'reserved' part of hv_send_ipi should be 0 */
1607                        if (unlikely(ingpa >> 32 != 0))
1608                                return HV_STATUS_INVALID_HYPERCALL_INPUT;
1609                        sparse_banks[0] = outgpa;
1610                        vector = (u32)ingpa;
1611                }
1612                all_cpus = false;
1613                valid_bank_mask = BIT_ULL(0);
1614
1615                trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1616        } else {
1617                if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
1618                                            sizeof(send_ipi_ex))))
1619                        return HV_STATUS_INVALID_HYPERCALL_INPUT;
1620
1621                trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1622                                         send_ipi_ex.vp_set.format,
1623                                         send_ipi_ex.vp_set.valid_bank_mask);
1624
1625                vector = send_ipi_ex.vector;
1626                valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1627                sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1628                        sizeof(sparse_banks[0]);
1629
1630                all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1631
1632                if (!sparse_banks_len)
1633                        goto ret_success;
1634
1635                if (!all_cpus &&
1636                    kvm_read_guest(kvm,
1637                                   ingpa + offsetof(struct hv_send_ipi_ex,
1638                                                    vp_set.bank_contents),
1639                                   sparse_banks,
1640                                   sparse_banks_len))
1641                        return HV_STATUS_INVALID_HYPERCALL_INPUT;
1642        }
1643
1644        if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1645                return HV_STATUS_INVALID_HYPERCALL_INPUT;
1646
1647        vcpu_mask = all_cpus ? NULL :
1648                sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1649                                        vp_bitmap, vcpu_bitmap);
1650
1651        kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1652
1653ret_success:
1654        return HV_STATUS_SUCCESS;
1655}
1656
1657bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1658{
1659        return READ_ONCE(kvm->arch.hyperv.hv_guest_os_id) != 0;
1660}
1661
1662static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1663{
1664        bool longmode;
1665
1666        longmode = is_64_bit_mode(vcpu);
1667        if (longmode)
1668                kvm_rax_write(vcpu, result);
1669        else {
1670                kvm_rdx_write(vcpu, result >> 32);
1671                kvm_rax_write(vcpu, result & 0xffffffff);
1672        }
1673}
1674
1675static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1676{
1677        kvm_hv_hypercall_set_result(vcpu, result);
1678        ++vcpu->stat.hypercalls;
1679        return kvm_skip_emulated_instruction(vcpu);
1680}
1681
1682static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1683{
1684        return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1685}
1686
1687static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1688{
1689        struct eventfd_ctx *eventfd;
1690
1691        if (unlikely(!fast)) {
1692                int ret;
1693                gpa_t gpa = param;
1694
1695                if ((gpa & (__alignof__(param) - 1)) ||
1696                    offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1697                        return HV_STATUS_INVALID_ALIGNMENT;
1698
1699                ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1700                if (ret < 0)
1701                        return HV_STATUS_INVALID_ALIGNMENT;
1702        }
1703
1704        /*
1705         * Per spec, bits 32-47 contain the extra "flag number".  However, we
1706         * have no use for it, and in all known usecases it is zero, so just
1707         * report lookup failure if it isn't.
1708         */
1709        if (param & 0xffff00000000ULL)
1710                return HV_STATUS_INVALID_PORT_ID;
1711        /* remaining bits are reserved-zero */
1712        if (param & ~KVM_HYPERV_CONN_ID_MASK)
1713                return HV_STATUS_INVALID_HYPERCALL_INPUT;
1714
1715        /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1716        rcu_read_lock();
1717        eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1718        rcu_read_unlock();
1719        if (!eventfd)
1720                return HV_STATUS_INVALID_PORT_ID;
1721
1722        eventfd_signal(eventfd, 1);
1723        return HV_STATUS_SUCCESS;
1724}
1725
1726int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1727{
1728        u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1729        uint16_t code, rep_idx, rep_cnt;
1730        bool fast, rep;
1731
1732        /*
1733         * hypercall generates UD from non zero cpl and real mode
1734         * per HYPER-V spec
1735         */
1736        if (kvm_x86_ops.get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1737                kvm_queue_exception(vcpu, UD_VECTOR);
1738                return 1;
1739        }
1740
1741#ifdef CONFIG_X86_64
1742        if (is_64_bit_mode(vcpu)) {
1743                param = kvm_rcx_read(vcpu);
1744                ingpa = kvm_rdx_read(vcpu);
1745                outgpa = kvm_r8_read(vcpu);
1746        } else
1747#endif
1748        {
1749                param = ((u64)kvm_rdx_read(vcpu) << 32) |
1750                        (kvm_rax_read(vcpu) & 0xffffffff);
1751                ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
1752                        (kvm_rcx_read(vcpu) & 0xffffffff);
1753                outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
1754                        (kvm_rsi_read(vcpu) & 0xffffffff);
1755        }
1756
1757        code = param & 0xffff;
1758        fast = !!(param & HV_HYPERCALL_FAST_BIT);
1759        rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1760        rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1761        rep = !!(rep_cnt || rep_idx);
1762
1763        trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1764
1765        switch (code) {
1766        case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1767                if (unlikely(rep)) {
1768                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1769                        break;
1770                }
1771                kvm_vcpu_on_spin(vcpu, true);
1772                break;
1773        case HVCALL_SIGNAL_EVENT:
1774                if (unlikely(rep)) {
1775                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1776                        break;
1777                }
1778                ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1779                if (ret != HV_STATUS_INVALID_PORT_ID)
1780                        break;
1781                /* fall through - maybe userspace knows this conn_id. */
1782        case HVCALL_POST_MESSAGE:
1783                /* don't bother userspace if it has no way to handle it */
1784                if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
1785                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1786                        break;
1787                }
1788                vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1789                vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1790                vcpu->run->hyperv.u.hcall.input = param;
1791                vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1792                vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1793                vcpu->arch.complete_userspace_io =
1794                                kvm_hv_hypercall_complete_userspace;
1795                return 0;
1796        case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1797                if (unlikely(fast || !rep_cnt || rep_idx)) {
1798                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1799                        break;
1800                }
1801                ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1802                break;
1803        case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1804                if (unlikely(fast || rep)) {
1805                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1806                        break;
1807                }
1808                ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1809                break;
1810        case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1811                if (unlikely(fast || !rep_cnt || rep_idx)) {
1812                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1813                        break;
1814                }
1815                ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1816                break;
1817        case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1818                if (unlikely(fast || rep)) {
1819                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1820                        break;
1821                }
1822                ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1823                break;
1824        case HVCALL_SEND_IPI:
1825                if (unlikely(rep)) {
1826                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1827                        break;
1828                }
1829                ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
1830                break;
1831        case HVCALL_SEND_IPI_EX:
1832                if (unlikely(fast || rep)) {
1833                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1834                        break;
1835                }
1836                ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
1837                break;
1838        case HVCALL_POST_DEBUG_DATA:
1839        case HVCALL_RETRIEVE_DEBUG_DATA:
1840                if (unlikely(fast)) {
1841                        ret = HV_STATUS_INVALID_PARAMETER;
1842                        break;
1843                }
1844                fallthrough;
1845        case HVCALL_RESET_DEBUG_SESSION: {
1846                struct kvm_hv_syndbg *syndbg = vcpu_to_hv_syndbg(vcpu);
1847
1848                if (!kvm_hv_is_syndbg_enabled(vcpu)) {
1849                        ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1850                        break;
1851                }
1852
1853                if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
1854                        ret = HV_STATUS_OPERATION_DENIED;
1855                        break;
1856                }
1857                vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1858                vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1859                vcpu->run->hyperv.u.hcall.input = param;
1860                vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1861                vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1862                vcpu->arch.complete_userspace_io =
1863                                kvm_hv_hypercall_complete_userspace;
1864                return 0;
1865        }
1866        default:
1867                ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1868                break;
1869        }
1870
1871        return kvm_hv_hypercall_complete(vcpu, ret);
1872}
1873
1874void kvm_hv_init_vm(struct kvm *kvm)
1875{
1876        mutex_init(&kvm->arch.hyperv.hv_lock);
1877        idr_init(&kvm->arch.hyperv.conn_to_evt);
1878}
1879
1880void kvm_hv_destroy_vm(struct kvm *kvm)
1881{
1882        struct eventfd_ctx *eventfd;
1883        int i;
1884
1885        idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1886                eventfd_ctx_put(eventfd);
1887        idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1888}
1889
1890static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1891{
1892        struct kvm_hv *hv = &kvm->arch.hyperv;
1893        struct eventfd_ctx *eventfd;
1894        int ret;
1895
1896        eventfd = eventfd_ctx_fdget(fd);
1897        if (IS_ERR(eventfd))
1898                return PTR_ERR(eventfd);
1899
1900        mutex_lock(&hv->hv_lock);
1901        ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1902                        GFP_KERNEL_ACCOUNT);
1903        mutex_unlock(&hv->hv_lock);
1904
1905        if (ret >= 0)
1906                return 0;
1907
1908        if (ret == -ENOSPC)
1909                ret = -EEXIST;
1910        eventfd_ctx_put(eventfd);
1911        return ret;
1912}
1913
1914static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1915{
1916        struct kvm_hv *hv = &kvm->arch.hyperv;
1917        struct eventfd_ctx *eventfd;
1918
1919        mutex_lock(&hv->hv_lock);
1920        eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1921        mutex_unlock(&hv->hv_lock);
1922
1923        if (!eventfd)
1924                return -ENOENT;
1925
1926        synchronize_srcu(&kvm->srcu);
1927        eventfd_ctx_put(eventfd);
1928        return 0;
1929}
1930
1931int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1932{
1933        if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1934            (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1935                return -EINVAL;
1936
1937        if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1938                return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1939        return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1940}
1941
1942int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
1943                                struct kvm_cpuid_entry2 __user *entries)
1944{
1945        uint16_t evmcs_ver = 0;
1946        struct kvm_cpuid_entry2 cpuid_entries[] = {
1947                { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
1948                { .function = HYPERV_CPUID_INTERFACE },
1949                { .function = HYPERV_CPUID_VERSION },
1950                { .function = HYPERV_CPUID_FEATURES },
1951                { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
1952                { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
1953                { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
1954                { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
1955                { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
1956                { .function = HYPERV_CPUID_NESTED_FEATURES },
1957        };
1958        int i, nent = ARRAY_SIZE(cpuid_entries);
1959
1960        if (kvm_x86_ops.nested_ops->get_evmcs_version)
1961                evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
1962
1963        /* Skip NESTED_FEATURES if eVMCS is not supported */
1964        if (!evmcs_ver)
1965                --nent;
1966
1967        if (cpuid->nent < nent)
1968                return -E2BIG;
1969
1970        if (cpuid->nent > nent)
1971                cpuid->nent = nent;
1972
1973        for (i = 0; i < nent; i++) {
1974                struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
1975                u32 signature[3];
1976
1977                switch (ent->function) {
1978                case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
1979                        memcpy(signature, "Linux KVM Hv", 12);
1980
1981                        ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1982                        ent->ebx = signature[0];
1983                        ent->ecx = signature[1];
1984                        ent->edx = signature[2];
1985                        break;
1986
1987                case HYPERV_CPUID_INTERFACE:
1988                        memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1989                        ent->eax = signature[0];
1990                        break;
1991
1992                case HYPERV_CPUID_VERSION:
1993                        /*
1994                         * We implement some Hyper-V 2016 functions so let's use
1995                         * this version.
1996                         */
1997                        ent->eax = 0x00003839;
1998                        ent->ebx = 0x000A0000;
1999                        break;
2000
2001                case HYPERV_CPUID_FEATURES:
2002                        ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
2003                        ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2004                        ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
2005                        ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2006                        ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
2007                        ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
2008                        ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
2009                        ent->eax |= HV_X64_MSR_RESET_AVAILABLE;
2010                        ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2011                        ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS;
2012                        ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT;
2013
2014                        ent->ebx |= HV_X64_POST_MESSAGES;
2015                        ent->ebx |= HV_X64_SIGNAL_EVENTS;
2016
2017                        ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2018                        ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2019
2020                        ent->ebx |= HV_DEBUGGING;
2021                        ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2022                        ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2023
2024                        /*
2025                         * Direct Synthetic timers only make sense with in-kernel
2026                         * LAPIC
2027                         */
2028                        if (lapic_in_kernel(vcpu))
2029                                ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2030
2031                        break;
2032
2033                case HYPERV_CPUID_ENLIGHTMENT_INFO:
2034                        ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2035                        ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2036                        ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2037                        ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2038                        ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2039                        if (evmcs_ver)
2040                                ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2041                        if (!cpu_smt_possible())
2042                                ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2043                        /*
2044                         * Default number of spinlock retry attempts, matches
2045                         * HyperV 2016.
2046                         */
2047                        ent->ebx = 0x00000FFF;
2048
2049                        break;
2050
2051                case HYPERV_CPUID_IMPLEMENT_LIMITS:
2052                        /* Maximum number of virtual processors */
2053                        ent->eax = KVM_MAX_VCPUS;
2054                        /*
2055                         * Maximum number of logical processors, matches
2056                         * HyperV 2016.
2057                         */
2058                        ent->ebx = 64;
2059
2060                        break;
2061
2062                case HYPERV_CPUID_NESTED_FEATURES:
2063                        ent->eax = evmcs_ver;
2064
2065                        break;
2066
2067                case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2068                        memcpy(signature, "Linux KVM Hv", 12);
2069
2070                        ent->eax = 0;
2071                        ent->ebx = signature[0];
2072                        ent->ecx = signature[1];
2073                        ent->edx = signature[2];
2074                        break;
2075
2076                case HYPERV_CPUID_SYNDBG_INTERFACE:
2077                        memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2078                        ent->eax = signature[0];
2079                        break;
2080
2081                case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2082                        ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2083                        break;
2084
2085                default:
2086                        break;
2087                }
2088        }
2089
2090        if (copy_to_user(entries, cpuid_entries,
2091                         nent * sizeof(struct kvm_cpuid_entry2)))
2092                return -EFAULT;
2093
2094        return 0;
2095}
2096