linux/arch/x86/kvm/svm/svm.c
<<
>>
Prefs
   1#define pr_fmt(fmt) "SVM: " fmt
   2
   3#include <linux/kvm_host.h>
   4
   5#include "irq.h"
   6#include "mmu.h"
   7#include "kvm_cache_regs.h"
   8#include "x86.h"
   9#include "cpuid.h"
  10#include "pmu.h"
  11
  12#include <linux/module.h>
  13#include <linux/mod_devicetable.h>
  14#include <linux/kernel.h>
  15#include <linux/vmalloc.h>
  16#include <linux/highmem.h>
  17#include <linux/amd-iommu.h>
  18#include <linux/sched.h>
  19#include <linux/trace_events.h>
  20#include <linux/slab.h>
  21#include <linux/hashtable.h>
  22#include <linux/frame.h>
  23#include <linux/psp-sev.h>
  24#include <linux/file.h>
  25#include <linux/pagemap.h>
  26#include <linux/swap.h>
  27#include <linux/rwsem.h>
  28
  29#include <asm/apic.h>
  30#include <asm/perf_event.h>
  31#include <asm/tlbflush.h>
  32#include <asm/desc.h>
  33#include <asm/debugreg.h>
  34#include <asm/kvm_para.h>
  35#include <asm/irq_remapping.h>
  36#include <asm/mce.h>
  37#include <asm/spec-ctrl.h>
  38#include <asm/cpu_device_id.h>
  39
  40#include <asm/virtext.h>
  41#include "trace.h"
  42
  43#include "svm.h"
  44
  45#define __ex(x) __kvm_handle_fault_on_reboot(x)
  46
  47MODULE_AUTHOR("Qumranet");
  48MODULE_LICENSE("GPL");
  49
  50#ifdef MODULE
  51static const struct x86_cpu_id svm_cpu_id[] = {
  52        X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
  53        {}
  54};
  55MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
  56#endif
  57
  58#define IOPM_ALLOC_ORDER 2
  59#define MSRPM_ALLOC_ORDER 1
  60
  61#define SEG_TYPE_LDT 2
  62#define SEG_TYPE_BUSY_TSS16 3
  63
  64#define SVM_FEATURE_LBRV           (1 <<  1)
  65#define SVM_FEATURE_SVML           (1 <<  2)
  66#define SVM_FEATURE_TSC_RATE       (1 <<  4)
  67#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
  68#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
  69#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
  70#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
  71
  72#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  73
  74#define TSC_RATIO_RSVD          0xffffff0000000000ULL
  75#define TSC_RATIO_MIN           0x0000000000000001ULL
  76#define TSC_RATIO_MAX           0x000000ffffffffffULL
  77
  78static bool erratum_383_found __read_mostly;
  79
  80u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
  81
  82/*
  83 * Set osvw_len to higher value when updated Revision Guides
  84 * are published and we know what the new status bits are
  85 */
  86static uint64_t osvw_len = 4, osvw_status;
  87
  88static DEFINE_PER_CPU(u64, current_tsc_ratio);
  89#define TSC_RATIO_DEFAULT       0x0100000000ULL
  90
  91static const struct svm_direct_access_msrs {
  92        u32 index;   /* Index of the MSR */
  93        bool always; /* True if intercept is always on */
  94} direct_access_msrs[] = {
  95        { .index = MSR_STAR,                            .always = true  },
  96        { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
  97#ifdef CONFIG_X86_64
  98        { .index = MSR_GS_BASE,                         .always = true  },
  99        { .index = MSR_FS_BASE,                         .always = true  },
 100        { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
 101        { .index = MSR_LSTAR,                           .always = true  },
 102        { .index = MSR_CSTAR,                           .always = true  },
 103        { .index = MSR_SYSCALL_MASK,                    .always = true  },
 104#endif
 105        { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
 106        { .index = MSR_IA32_PRED_CMD,                   .always = false },
 107        { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
 108        { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
 109        { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
 110        { .index = MSR_IA32_LASTINTTOIP,                .always = false },
 111        { .index = MSR_INVALID,                         .always = false },
 112};
 113
 114/* enable NPT for AMD64 and X86 with PAE */
 115#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 116bool npt_enabled = true;
 117#else
 118bool npt_enabled;
 119#endif
 120
 121/*
 122 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 123 * pause_filter_count: On processors that support Pause filtering(indicated
 124 *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
 125 *      count value. On VMRUN this value is loaded into an internal counter.
 126 *      Each time a pause instruction is executed, this counter is decremented
 127 *      until it reaches zero at which time a #VMEXIT is generated if pause
 128 *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
 129 *      Intercept Filtering for more details.
 130 *      This also indicate if ple logic enabled.
 131 *
 132 * pause_filter_thresh: In addition, some processor families support advanced
 133 *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
 134 *      the amount of time a guest is allowed to execute in a pause loop.
 135 *      In this mode, a 16-bit pause filter threshold field is added in the
 136 *      VMCB. The threshold value is a cycle count that is used to reset the
 137 *      pause counter. As with simple pause filtering, VMRUN loads the pause
 138 *      count value from VMCB into an internal counter. Then, on each pause
 139 *      instruction the hardware checks the elapsed number of cycles since
 140 *      the most recent pause instruction against the pause filter threshold.
 141 *      If the elapsed cycle count is greater than the pause filter threshold,
 142 *      then the internal pause count is reloaded from the VMCB and execution
 143 *      continues. If the elapsed cycle count is less than the pause filter
 144 *      threshold, then the internal pause count is decremented. If the count
 145 *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
 146 *      triggered. If advanced pause filtering is supported and pause filter
 147 *      threshold field is set to zero, the filter will operate in the simpler,
 148 *      count only mode.
 149 */
 150
 151static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
 152module_param(pause_filter_thresh, ushort, 0444);
 153
 154static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
 155module_param(pause_filter_count, ushort, 0444);
 156
 157/* Default doubles per-vcpu window every exit. */
 158static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
 159module_param(pause_filter_count_grow, ushort, 0444);
 160
 161/* Default resets per-vcpu window every exit to pause_filter_count. */
 162static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
 163module_param(pause_filter_count_shrink, ushort, 0444);
 164
 165/* Default is to compute the maximum so we can never overflow. */
 166static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
 167module_param(pause_filter_count_max, ushort, 0444);
 168
 169/* allow nested paging (virtualized MMU) for all guests */
 170static int npt = true;
 171module_param(npt, int, S_IRUGO);
 172
 173/* allow nested virtualization in KVM/SVM */
 174static int nested = true;
 175module_param(nested, int, S_IRUGO);
 176
 177/* enable/disable Next RIP Save */
 178static int nrips = true;
 179module_param(nrips, int, 0444);
 180
 181/* enable/disable Virtual VMLOAD VMSAVE */
 182static int vls = true;
 183module_param(vls, int, 0444);
 184
 185/* enable/disable Virtual GIF */
 186static int vgif = true;
 187module_param(vgif, int, 0444);
 188
 189/* enable/disable SEV support */
 190static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
 191module_param(sev, int, 0444);
 192
 193static bool __read_mostly dump_invalid_vmcb = 0;
 194module_param(dump_invalid_vmcb, bool, 0644);
 195
 196static u8 rsm_ins_bytes[] = "\x0f\xaa";
 197
 198static void svm_complete_interrupts(struct vcpu_svm *svm);
 199
 200static unsigned long iopm_base;
 201
 202struct kvm_ldttss_desc {
 203        u16 limit0;
 204        u16 base0;
 205        unsigned base1:8, type:5, dpl:2, p:1;
 206        unsigned limit1:4, zero0:3, g:1, base2:8;
 207        u32 base3;
 208        u32 zero1;
 209} __attribute__((packed));
 210
 211DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 212
 213static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 214
 215#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
 216#define MSRS_RANGE_SIZE 2048
 217#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
 218
 219u32 svm_msrpm_offset(u32 msr)
 220{
 221        u32 offset;
 222        int i;
 223
 224        for (i = 0; i < NUM_MSR_MAPS; i++) {
 225                if (msr < msrpm_ranges[i] ||
 226                    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
 227                        continue;
 228
 229                offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
 230                offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
 231
 232                /* Now we have the u8 offset - but need the u32 offset */
 233                return offset / 4;
 234        }
 235
 236        /* MSR not in any range */
 237        return MSR_INVALID;
 238}
 239
 240#define MAX_INST_SIZE 15
 241
 242static inline void clgi(void)
 243{
 244        asm volatile (__ex("clgi"));
 245}
 246
 247static inline void stgi(void)
 248{
 249        asm volatile (__ex("stgi"));
 250}
 251
 252static inline void invlpga(unsigned long addr, u32 asid)
 253{
 254        asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
 255}
 256
 257static int get_npt_level(struct kvm_vcpu *vcpu)
 258{
 259#ifdef CONFIG_X86_64
 260        return PT64_ROOT_4LEVEL;
 261#else
 262        return PT32E_ROOT_LEVEL;
 263#endif
 264}
 265
 266void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 267{
 268        struct vcpu_svm *svm = to_svm(vcpu);
 269        vcpu->arch.efer = efer;
 270
 271        if (!npt_enabled) {
 272                /* Shadow paging assumes NX to be available.  */
 273                efer |= EFER_NX;
 274
 275                if (!(efer & EFER_LMA))
 276                        efer &= ~EFER_LME;
 277        }
 278
 279        if (!(efer & EFER_SVME)) {
 280                svm_leave_nested(svm);
 281                svm_set_gif(svm, true);
 282        }
 283
 284        svm->vmcb->save.efer = efer | EFER_SVME;
 285        mark_dirty(svm->vmcb, VMCB_CR);
 286}
 287
 288static int is_external_interrupt(u32 info)
 289{
 290        info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
 291        return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
 292}
 293
 294static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
 295{
 296        struct vcpu_svm *svm = to_svm(vcpu);
 297        u32 ret = 0;
 298
 299        if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
 300                ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
 301        return ret;
 302}
 303
 304static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 305{
 306        struct vcpu_svm *svm = to_svm(vcpu);
 307
 308        if (mask == 0)
 309                svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
 310        else
 311                svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
 312
 313}
 314
 315static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
 316{
 317        struct vcpu_svm *svm = to_svm(vcpu);
 318
 319        if (nrips && svm->vmcb->control.next_rip != 0) {
 320                WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
 321                svm->next_rip = svm->vmcb->control.next_rip;
 322        }
 323
 324        if (!svm->next_rip) {
 325                if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
 326                        return 0;
 327        } else {
 328                kvm_rip_write(vcpu, svm->next_rip);
 329        }
 330        svm_set_interrupt_shadow(vcpu, 0);
 331
 332        return 1;
 333}
 334
 335static void svm_queue_exception(struct kvm_vcpu *vcpu)
 336{
 337        struct vcpu_svm *svm = to_svm(vcpu);
 338        unsigned nr = vcpu->arch.exception.nr;
 339        bool has_error_code = vcpu->arch.exception.has_error_code;
 340        u32 error_code = vcpu->arch.exception.error_code;
 341
 342        kvm_deliver_exception_payload(&svm->vcpu);
 343
 344        if (nr == BP_VECTOR && !nrips) {
 345                unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 346
 347                /*
 348                 * For guest debugging where we have to reinject #BP if some
 349                 * INT3 is guest-owned:
 350                 * Emulate nRIP by moving RIP forward. Will fail if injection
 351                 * raises a fault that is not intercepted. Still better than
 352                 * failing in all cases.
 353                 */
 354                (void)skip_emulated_instruction(&svm->vcpu);
 355                rip = kvm_rip_read(&svm->vcpu);
 356                svm->int3_rip = rip + svm->vmcb->save.cs.base;
 357                svm->int3_injected = rip - old_rip;
 358        }
 359
 360        svm->vmcb->control.event_inj = nr
 361                | SVM_EVTINJ_VALID
 362                | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
 363                | SVM_EVTINJ_TYPE_EXEPT;
 364        svm->vmcb->control.event_inj_err = error_code;
 365}
 366
 367static void svm_init_erratum_383(void)
 368{
 369        u32 low, high;
 370        int err;
 371        u64 val;
 372
 373        if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
 374                return;
 375
 376        /* Use _safe variants to not break nested virtualization */
 377        val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
 378        if (err)
 379                return;
 380
 381        val |= (1ULL << 47);
 382
 383        low  = lower_32_bits(val);
 384        high = upper_32_bits(val);
 385
 386        native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
 387
 388        erratum_383_found = true;
 389}
 390
 391static void svm_init_osvw(struct kvm_vcpu *vcpu)
 392{
 393        /*
 394         * Guests should see errata 400 and 415 as fixed (assuming that
 395         * HLT and IO instructions are intercepted).
 396         */
 397        vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
 398        vcpu->arch.osvw.status = osvw_status & ~(6ULL);
 399
 400        /*
 401         * By increasing VCPU's osvw.length to 3 we are telling the guest that
 402         * all osvw.status bits inside that length, including bit 0 (which is
 403         * reserved for erratum 298), are valid. However, if host processor's
 404         * osvw_len is 0 then osvw_status[0] carries no information. We need to
 405         * be conservative here and therefore we tell the guest that erratum 298
 406         * is present (because we really don't know).
 407         */
 408        if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
 409                vcpu->arch.osvw.status |= 1;
 410}
 411
 412static int has_svm(void)
 413{
 414        const char *msg;
 415
 416        if (!cpu_has_svm(&msg)) {
 417                printk(KERN_INFO "has_svm: %s\n", msg);
 418                return 0;
 419        }
 420
 421        return 1;
 422}
 423
 424static void svm_hardware_disable(void)
 425{
 426        /* Make sure we clean up behind us */
 427        if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
 428                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 429
 430        cpu_svm_disable();
 431
 432        amd_pmu_disable_virt();
 433}
 434
 435static int svm_hardware_enable(void)
 436{
 437
 438        struct svm_cpu_data *sd;
 439        uint64_t efer;
 440        struct desc_struct *gdt;
 441        int me = raw_smp_processor_id();
 442
 443        rdmsrl(MSR_EFER, efer);
 444        if (efer & EFER_SVME)
 445                return -EBUSY;
 446
 447        if (!has_svm()) {
 448                pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
 449                return -EINVAL;
 450        }
 451        sd = per_cpu(svm_data, me);
 452        if (!sd) {
 453                pr_err("%s: svm_data is NULL on %d\n", __func__, me);
 454                return -EINVAL;
 455        }
 456
 457        sd->asid_generation = 1;
 458        sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
 459        sd->next_asid = sd->max_asid + 1;
 460        sd->min_asid = max_sev_asid + 1;
 461
 462        gdt = get_current_gdt_rw();
 463        sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
 464
 465        wrmsrl(MSR_EFER, efer | EFER_SVME);
 466
 467        wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
 468
 469        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 470                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 471                __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
 472        }
 473
 474
 475        /*
 476         * Get OSVW bits.
 477         *
 478         * Note that it is possible to have a system with mixed processor
 479         * revisions and therefore different OSVW bits. If bits are not the same
 480         * on different processors then choose the worst case (i.e. if erratum
 481         * is present on one processor and not on another then assume that the
 482         * erratum is present everywhere).
 483         */
 484        if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
 485                uint64_t len, status = 0;
 486                int err;
 487
 488                len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
 489                if (!err)
 490                        status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
 491                                                      &err);
 492
 493                if (err)
 494                        osvw_status = osvw_len = 0;
 495                else {
 496                        if (len < osvw_len)
 497                                osvw_len = len;
 498                        osvw_status |= status;
 499                        osvw_status &= (1ULL << osvw_len) - 1;
 500                }
 501        } else
 502                osvw_status = osvw_len = 0;
 503
 504        svm_init_erratum_383();
 505
 506        amd_pmu_enable_virt();
 507
 508        return 0;
 509}
 510
 511static void svm_cpu_uninit(int cpu)
 512{
 513        struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
 514
 515        if (!sd)
 516                return;
 517
 518        per_cpu(svm_data, raw_smp_processor_id()) = NULL;
 519        kfree(sd->sev_vmcbs);
 520        __free_page(sd->save_area);
 521        kfree(sd);
 522}
 523
 524static int svm_cpu_init(int cpu)
 525{
 526        struct svm_cpu_data *sd;
 527
 528        sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
 529        if (!sd)
 530                return -ENOMEM;
 531        sd->cpu = cpu;
 532        sd->save_area = alloc_page(GFP_KERNEL);
 533        if (!sd->save_area)
 534                goto free_cpu_data;
 535
 536        if (svm_sev_enabled()) {
 537                sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
 538                                              sizeof(void *),
 539                                              GFP_KERNEL);
 540                if (!sd->sev_vmcbs)
 541                        goto free_save_area;
 542        }
 543
 544        per_cpu(svm_data, cpu) = sd;
 545
 546        return 0;
 547
 548free_save_area:
 549        __free_page(sd->save_area);
 550free_cpu_data:
 551        kfree(sd);
 552        return -ENOMEM;
 553
 554}
 555
 556static bool valid_msr_intercept(u32 index)
 557{
 558        int i;
 559
 560        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
 561                if (direct_access_msrs[i].index == index)
 562                        return true;
 563
 564        return false;
 565}
 566
 567static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
 568{
 569        u8 bit_write;
 570        unsigned long tmp;
 571        u32 offset;
 572        u32 *msrpm;
 573
 574        msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
 575                                      to_svm(vcpu)->msrpm;
 576
 577        offset    = svm_msrpm_offset(msr);
 578        bit_write = 2 * (msr & 0x0f) + 1;
 579        tmp       = msrpm[offset];
 580
 581        BUG_ON(offset == MSR_INVALID);
 582
 583        return !!test_bit(bit_write,  &tmp);
 584}
 585
 586static void set_msr_interception(u32 *msrpm, unsigned msr,
 587                                 int read, int write)
 588{
 589        u8 bit_read, bit_write;
 590        unsigned long tmp;
 591        u32 offset;
 592
 593        /*
 594         * If this warning triggers extend the direct_access_msrs list at the
 595         * beginning of the file
 596         */
 597        WARN_ON(!valid_msr_intercept(msr));
 598
 599        offset    = svm_msrpm_offset(msr);
 600        bit_read  = 2 * (msr & 0x0f);
 601        bit_write = 2 * (msr & 0x0f) + 1;
 602        tmp       = msrpm[offset];
 603
 604        BUG_ON(offset == MSR_INVALID);
 605
 606        read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
 607        write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
 608
 609        msrpm[offset] = tmp;
 610}
 611
 612static void svm_vcpu_init_msrpm(u32 *msrpm)
 613{
 614        int i;
 615
 616        memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
 617
 618        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 619                if (!direct_access_msrs[i].always)
 620                        continue;
 621
 622                set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
 623        }
 624}
 625
 626static void add_msr_offset(u32 offset)
 627{
 628        int i;
 629
 630        for (i = 0; i < MSRPM_OFFSETS; ++i) {
 631
 632                /* Offset already in list? */
 633                if (msrpm_offsets[i] == offset)
 634                        return;
 635
 636                /* Slot used by another offset? */
 637                if (msrpm_offsets[i] != MSR_INVALID)
 638                        continue;
 639
 640                /* Add offset to list */
 641                msrpm_offsets[i] = offset;
 642
 643                return;
 644        }
 645
 646        /*
 647         * If this BUG triggers the msrpm_offsets table has an overflow. Just
 648         * increase MSRPM_OFFSETS in this case.
 649         */
 650        BUG();
 651}
 652
 653static void init_msrpm_offsets(void)
 654{
 655        int i;
 656
 657        memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
 658
 659        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 660                u32 offset;
 661
 662                offset = svm_msrpm_offset(direct_access_msrs[i].index);
 663                BUG_ON(offset == MSR_INVALID);
 664
 665                add_msr_offset(offset);
 666        }
 667}
 668
 669static void svm_enable_lbrv(struct vcpu_svm *svm)
 670{
 671        u32 *msrpm = svm->msrpm;
 672
 673        svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
 674        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
 675        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
 676        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
 677        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
 678}
 679
 680static void svm_disable_lbrv(struct vcpu_svm *svm)
 681{
 682        u32 *msrpm = svm->msrpm;
 683
 684        svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
 685        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
 686        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
 687        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
 688        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
 689}
 690
 691void disable_nmi_singlestep(struct vcpu_svm *svm)
 692{
 693        svm->nmi_singlestep = false;
 694
 695        if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
 696                /* Clear our flags if they were not set by the guest */
 697                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
 698                        svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
 699                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
 700                        svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
 701        }
 702}
 703
 704static void grow_ple_window(struct kvm_vcpu *vcpu)
 705{
 706        struct vcpu_svm *svm = to_svm(vcpu);
 707        struct vmcb_control_area *control = &svm->vmcb->control;
 708        int old = control->pause_filter_count;
 709
 710        control->pause_filter_count = __grow_ple_window(old,
 711                                                        pause_filter_count,
 712                                                        pause_filter_count_grow,
 713                                                        pause_filter_count_max);
 714
 715        if (control->pause_filter_count != old) {
 716                mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 717                trace_kvm_ple_window_update(vcpu->vcpu_id,
 718                                            control->pause_filter_count, old);
 719        }
 720}
 721
 722static void shrink_ple_window(struct kvm_vcpu *vcpu)
 723{
 724        struct vcpu_svm *svm = to_svm(vcpu);
 725        struct vmcb_control_area *control = &svm->vmcb->control;
 726        int old = control->pause_filter_count;
 727
 728        control->pause_filter_count =
 729                                __shrink_ple_window(old,
 730                                                    pause_filter_count,
 731                                                    pause_filter_count_shrink,
 732                                                    pause_filter_count);
 733        if (control->pause_filter_count != old) {
 734                mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 735                trace_kvm_ple_window_update(vcpu->vcpu_id,
 736                                            control->pause_filter_count, old);
 737        }
 738}
 739
 740/*
 741 * The default MMIO mask is a single bit (excluding the present bit),
 742 * which could conflict with the memory encryption bit. Check for
 743 * memory encryption support and override the default MMIO mask if
 744 * memory encryption is enabled.
 745 */
 746static __init void svm_adjust_mmio_mask(void)
 747{
 748        unsigned int enc_bit, mask_bit;
 749        u64 msr, mask;
 750
 751        /* If there is no memory encryption support, use existing mask */
 752        if (cpuid_eax(0x80000000) < 0x8000001f)
 753                return;
 754
 755        /* If memory encryption is not enabled, use existing mask */
 756        rdmsrl(MSR_K8_SYSCFG, msr);
 757        if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
 758                return;
 759
 760        enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
 761        mask_bit = boot_cpu_data.x86_phys_bits;
 762
 763        /* Increment the mask bit if it is the same as the encryption bit */
 764        if (enc_bit == mask_bit)
 765                mask_bit++;
 766
 767        /*
 768         * If the mask bit location is below 52, then some bits above the
 769         * physical addressing limit will always be reserved, so use the
 770         * rsvd_bits() function to generate the mask. This mask, along with
 771         * the present bit, will be used to generate a page fault with
 772         * PFER.RSV = 1.
 773         *
 774         * If the mask bit location is 52 (or above), then clear the mask.
 775         */
 776        mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
 777
 778        kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
 779}
 780
 781static void svm_hardware_teardown(void)
 782{
 783        int cpu;
 784
 785        if (svm_sev_enabled())
 786                sev_hardware_teardown();
 787
 788        for_each_possible_cpu(cpu)
 789                svm_cpu_uninit(cpu);
 790
 791        __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
 792        iopm_base = 0;
 793}
 794
 795static __init void svm_set_cpu_caps(void)
 796{
 797        kvm_set_cpu_caps();
 798
 799        supported_xss = 0;
 800
 801        /* CPUID 0x80000001 and 0x8000000A (SVM features) */
 802        if (nested) {
 803                kvm_cpu_cap_set(X86_FEATURE_SVM);
 804
 805                if (nrips)
 806                        kvm_cpu_cap_set(X86_FEATURE_NRIPS);
 807
 808                if (npt_enabled)
 809                        kvm_cpu_cap_set(X86_FEATURE_NPT);
 810        }
 811
 812        /* CPUID 0x80000008 */
 813        if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
 814            boot_cpu_has(X86_FEATURE_AMD_SSBD))
 815                kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 816}
 817
 818static __init int svm_hardware_setup(void)
 819{
 820        int cpu;
 821        struct page *iopm_pages;
 822        void *iopm_va;
 823        int r;
 824
 825        iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
 826
 827        if (!iopm_pages)
 828                return -ENOMEM;
 829
 830        iopm_va = page_address(iopm_pages);
 831        memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
 832        iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
 833
 834        init_msrpm_offsets();
 835
 836        supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
 837
 838        if (boot_cpu_has(X86_FEATURE_NX))
 839                kvm_enable_efer_bits(EFER_NX);
 840
 841        if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
 842                kvm_enable_efer_bits(EFER_FFXSR);
 843
 844        if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 845                kvm_has_tsc_control = true;
 846                kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
 847                kvm_tsc_scaling_ratio_frac_bits = 32;
 848        }
 849
 850        /* Check for pause filtering support */
 851        if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
 852                pause_filter_count = 0;
 853                pause_filter_thresh = 0;
 854        } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
 855                pause_filter_thresh = 0;
 856        }
 857
 858        if (nested) {
 859                printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
 860                kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
 861        }
 862
 863        if (sev) {
 864                if (boot_cpu_has(X86_FEATURE_SEV) &&
 865                    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
 866                        r = sev_hardware_setup();
 867                        if (r)
 868                                sev = false;
 869                } else {
 870                        sev = false;
 871                }
 872        }
 873
 874        svm_adjust_mmio_mask();
 875
 876        for_each_possible_cpu(cpu) {
 877                r = svm_cpu_init(cpu);
 878                if (r)
 879                        goto err;
 880        }
 881
 882        if (!boot_cpu_has(X86_FEATURE_NPT))
 883                npt_enabled = false;
 884
 885        if (npt_enabled && !npt)
 886                npt_enabled = false;
 887
 888        kvm_configure_mmu(npt_enabled, PG_LEVEL_1G);
 889        pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
 890
 891        if (nrips) {
 892                if (!boot_cpu_has(X86_FEATURE_NRIPS))
 893                        nrips = false;
 894        }
 895
 896        if (avic) {
 897                if (!npt_enabled ||
 898                    !boot_cpu_has(X86_FEATURE_AVIC) ||
 899                    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
 900                        avic = false;
 901                } else {
 902                        pr_info("AVIC enabled\n");
 903
 904                        amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
 905                }
 906        }
 907
 908        if (vls) {
 909                if (!npt_enabled ||
 910                    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
 911                    !IS_ENABLED(CONFIG_X86_64)) {
 912                        vls = false;
 913                } else {
 914                        pr_info("Virtual VMLOAD VMSAVE supported\n");
 915                }
 916        }
 917
 918        if (vgif) {
 919                if (!boot_cpu_has(X86_FEATURE_VGIF))
 920                        vgif = false;
 921                else
 922                        pr_info("Virtual GIF supported\n");
 923        }
 924
 925        svm_set_cpu_caps();
 926
 927        return 0;
 928
 929err:
 930        svm_hardware_teardown();
 931        return r;
 932}
 933
 934static void init_seg(struct vmcb_seg *seg)
 935{
 936        seg->selector = 0;
 937        seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
 938                      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
 939        seg->limit = 0xffff;
 940        seg->base = 0;
 941}
 942
 943static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
 944{
 945        seg->selector = 0;
 946        seg->attrib = SVM_SELECTOR_P_MASK | type;
 947        seg->limit = 0xffff;
 948        seg->base = 0;
 949}
 950
 951static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
 952{
 953        struct vcpu_svm *svm = to_svm(vcpu);
 954        u64 g_tsc_offset = 0;
 955
 956        if (is_guest_mode(vcpu)) {
 957                /* Write L1's TSC offset.  */
 958                g_tsc_offset = svm->vmcb->control.tsc_offset -
 959                               svm->nested.hsave->control.tsc_offset;
 960                svm->nested.hsave->control.tsc_offset = offset;
 961        }
 962
 963        trace_kvm_write_tsc_offset(vcpu->vcpu_id,
 964                                   svm->vmcb->control.tsc_offset - g_tsc_offset,
 965                                   offset);
 966
 967        svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
 968
 969        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 970        return svm->vmcb->control.tsc_offset;
 971}
 972
 973static void init_vmcb(struct vcpu_svm *svm)
 974{
 975        struct vmcb_control_area *control = &svm->vmcb->control;
 976        struct vmcb_save_area *save = &svm->vmcb->save;
 977
 978        svm->vcpu.arch.hflags = 0;
 979
 980        set_cr_intercept(svm, INTERCEPT_CR0_READ);
 981        set_cr_intercept(svm, INTERCEPT_CR3_READ);
 982        set_cr_intercept(svm, INTERCEPT_CR4_READ);
 983        set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
 984        set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
 985        set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
 986        if (!kvm_vcpu_apicv_active(&svm->vcpu))
 987                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
 988
 989        set_dr_intercepts(svm);
 990
 991        set_exception_intercept(svm, PF_VECTOR);
 992        set_exception_intercept(svm, UD_VECTOR);
 993        set_exception_intercept(svm, MC_VECTOR);
 994        set_exception_intercept(svm, AC_VECTOR);
 995        set_exception_intercept(svm, DB_VECTOR);
 996        /*
 997         * Guest access to VMware backdoor ports could legitimately
 998         * trigger #GP because of TSS I/O permission bitmap.
 999         * We intercept those #GP and allow access to them anyway
1000         * as VMware does.
1001         */
1002        if (enable_vmware_backdoor)
1003                set_exception_intercept(svm, GP_VECTOR);
1004
1005        set_intercept(svm, INTERCEPT_INTR);
1006        set_intercept(svm, INTERCEPT_NMI);
1007        set_intercept(svm, INTERCEPT_SMI);
1008        set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1009        set_intercept(svm, INTERCEPT_RDPMC);
1010        set_intercept(svm, INTERCEPT_CPUID);
1011        set_intercept(svm, INTERCEPT_INVD);
1012        set_intercept(svm, INTERCEPT_INVLPG);
1013        set_intercept(svm, INTERCEPT_INVLPGA);
1014        set_intercept(svm, INTERCEPT_IOIO_PROT);
1015        set_intercept(svm, INTERCEPT_MSR_PROT);
1016        set_intercept(svm, INTERCEPT_TASK_SWITCH);
1017        set_intercept(svm, INTERCEPT_SHUTDOWN);
1018        set_intercept(svm, INTERCEPT_VMRUN);
1019        set_intercept(svm, INTERCEPT_VMMCALL);
1020        set_intercept(svm, INTERCEPT_VMLOAD);
1021        set_intercept(svm, INTERCEPT_VMSAVE);
1022        set_intercept(svm, INTERCEPT_STGI);
1023        set_intercept(svm, INTERCEPT_CLGI);
1024        set_intercept(svm, INTERCEPT_SKINIT);
1025        set_intercept(svm, INTERCEPT_WBINVD);
1026        set_intercept(svm, INTERCEPT_XSETBV);
1027        set_intercept(svm, INTERCEPT_RDPRU);
1028        set_intercept(svm, INTERCEPT_RSM);
1029
1030        if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1031                set_intercept(svm, INTERCEPT_MONITOR);
1032                set_intercept(svm, INTERCEPT_MWAIT);
1033        }
1034
1035        if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1036                set_intercept(svm, INTERCEPT_HLT);
1037
1038        control->iopm_base_pa = __sme_set(iopm_base);
1039        control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1040        control->int_ctl = V_INTR_MASKING_MASK;
1041
1042        init_seg(&save->es);
1043        init_seg(&save->ss);
1044        init_seg(&save->ds);
1045        init_seg(&save->fs);
1046        init_seg(&save->gs);
1047
1048        save->cs.selector = 0xf000;
1049        save->cs.base = 0xffff0000;
1050        /* Executable/Readable Code Segment */
1051        save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1052                SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1053        save->cs.limit = 0xffff;
1054
1055        save->gdtr.limit = 0xffff;
1056        save->idtr.limit = 0xffff;
1057
1058        init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1059        init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1060
1061        svm_set_efer(&svm->vcpu, 0);
1062        save->dr6 = 0xffff0ff0;
1063        kvm_set_rflags(&svm->vcpu, 2);
1064        save->rip = 0x0000fff0;
1065        svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1066
1067        /*
1068         * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1069         * It also updates the guest-visible cr0 value.
1070         */
1071        svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1072        kvm_mmu_reset_context(&svm->vcpu);
1073
1074        save->cr4 = X86_CR4_PAE;
1075        /* rdx = ?? */
1076
1077        if (npt_enabled) {
1078                /* Setup VMCB for Nested Paging */
1079                control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1080                clr_intercept(svm, INTERCEPT_INVLPG);
1081                clr_exception_intercept(svm, PF_VECTOR);
1082                clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1083                clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1084                save->g_pat = svm->vcpu.arch.pat;
1085                save->cr3 = 0;
1086                save->cr4 = 0;
1087        }
1088        svm->asid_generation = 0;
1089
1090        svm->nested.vmcb = 0;
1091        svm->vcpu.arch.hflags = 0;
1092
1093        if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1094                control->pause_filter_count = pause_filter_count;
1095                if (pause_filter_thresh)
1096                        control->pause_filter_thresh = pause_filter_thresh;
1097                set_intercept(svm, INTERCEPT_PAUSE);
1098        } else {
1099                clr_intercept(svm, INTERCEPT_PAUSE);
1100        }
1101
1102        if (kvm_vcpu_apicv_active(&svm->vcpu))
1103                avic_init_vmcb(svm);
1104
1105        /*
1106         * If hardware supports Virtual VMLOAD VMSAVE then enable it
1107         * in VMCB and clear intercepts to avoid #VMEXIT.
1108         */
1109        if (vls) {
1110                clr_intercept(svm, INTERCEPT_VMLOAD);
1111                clr_intercept(svm, INTERCEPT_VMSAVE);
1112                svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1113        }
1114
1115        if (vgif) {
1116                clr_intercept(svm, INTERCEPT_STGI);
1117                clr_intercept(svm, INTERCEPT_CLGI);
1118                svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1119        }
1120
1121        if (sev_guest(svm->vcpu.kvm)) {
1122                svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1123                clr_exception_intercept(svm, UD_VECTOR);
1124        }
1125
1126        mark_all_dirty(svm->vmcb);
1127
1128        enable_gif(svm);
1129
1130}
1131
1132static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1133{
1134        struct vcpu_svm *svm = to_svm(vcpu);
1135        u32 dummy;
1136        u32 eax = 1;
1137
1138        svm->spec_ctrl = 0;
1139        svm->virt_spec_ctrl = 0;
1140
1141        if (!init_event) {
1142                svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1143                                           MSR_IA32_APICBASE_ENABLE;
1144                if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1145                        svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1146        }
1147        init_vmcb(svm);
1148
1149        kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1150        kvm_rdx_write(vcpu, eax);
1151
1152        if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1153                avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1154}
1155
1156static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1157{
1158        struct vcpu_svm *svm;
1159        struct page *page;
1160        struct page *msrpm_pages;
1161        struct page *hsave_page;
1162        struct page *nested_msrpm_pages;
1163        int err;
1164
1165        BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1166        svm = to_svm(vcpu);
1167
1168        err = -ENOMEM;
1169        page = alloc_page(GFP_KERNEL_ACCOUNT);
1170        if (!page)
1171                goto out;
1172
1173        msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1174        if (!msrpm_pages)
1175                goto free_page1;
1176
1177        nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1178        if (!nested_msrpm_pages)
1179                goto free_page2;
1180
1181        hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
1182        if (!hsave_page)
1183                goto free_page3;
1184
1185        err = avic_init_vcpu(svm);
1186        if (err)
1187                goto free_page4;
1188
1189        /* We initialize this flag to true to make sure that the is_running
1190         * bit would be set the first time the vcpu is loaded.
1191         */
1192        if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1193                svm->avic_is_running = true;
1194
1195        svm->nested.hsave = page_address(hsave_page);
1196        clear_page(svm->nested.hsave);
1197
1198        svm->msrpm = page_address(msrpm_pages);
1199        svm_vcpu_init_msrpm(svm->msrpm);
1200
1201        svm->nested.msrpm = page_address(nested_msrpm_pages);
1202        svm_vcpu_init_msrpm(svm->nested.msrpm);
1203
1204        svm->vmcb = page_address(page);
1205        clear_page(svm->vmcb);
1206        svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1207        svm->asid_generation = 0;
1208        init_vmcb(svm);
1209
1210        svm_init_osvw(vcpu);
1211        vcpu->arch.microcode_version = 0x01000065;
1212
1213        return 0;
1214
1215free_page4:
1216        __free_page(hsave_page);
1217free_page3:
1218        __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1219free_page2:
1220        __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1221free_page1:
1222        __free_page(page);
1223out:
1224        return err;
1225}
1226
1227static void svm_clear_current_vmcb(struct vmcb *vmcb)
1228{
1229        int i;
1230
1231        for_each_online_cpu(i)
1232                cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1233}
1234
1235static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1236{
1237        struct vcpu_svm *svm = to_svm(vcpu);
1238
1239        /*
1240         * The vmcb page can be recycled, causing a false negative in
1241         * svm_vcpu_load(). So, ensure that no logical CPU has this
1242         * vmcb page recorded as its current vmcb.
1243         */
1244        svm_clear_current_vmcb(svm->vmcb);
1245
1246        __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1247        __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1248        __free_page(virt_to_page(svm->nested.hsave));
1249        __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1250}
1251
1252static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1253{
1254        struct vcpu_svm *svm = to_svm(vcpu);
1255        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1256        int i;
1257
1258        if (unlikely(cpu != vcpu->cpu)) {
1259                svm->asid_generation = 0;
1260                mark_all_dirty(svm->vmcb);
1261        }
1262
1263#ifdef CONFIG_X86_64
1264        rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1265#endif
1266        savesegment(fs, svm->host.fs);
1267        savesegment(gs, svm->host.gs);
1268        svm->host.ldt = kvm_read_ldt();
1269
1270        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1271                rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1272
1273        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1274                u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1275                if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1276                        __this_cpu_write(current_tsc_ratio, tsc_ratio);
1277                        wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1278                }
1279        }
1280        /* This assumes that the kernel never uses MSR_TSC_AUX */
1281        if (static_cpu_has(X86_FEATURE_RDTSCP))
1282                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1283
1284        if (sd->current_vmcb != svm->vmcb) {
1285                sd->current_vmcb = svm->vmcb;
1286                indirect_branch_prediction_barrier();
1287        }
1288        avic_vcpu_load(vcpu, cpu);
1289}
1290
1291static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1292{
1293        struct vcpu_svm *svm = to_svm(vcpu);
1294        int i;
1295
1296        avic_vcpu_put(vcpu);
1297
1298        ++vcpu->stat.host_state_reload;
1299        kvm_load_ldt(svm->host.ldt);
1300#ifdef CONFIG_X86_64
1301        loadsegment(fs, svm->host.fs);
1302        wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1303        load_gs_index(svm->host.gs);
1304#else
1305#ifdef CONFIG_X86_32_LAZY_GS
1306        loadsegment(gs, svm->host.gs);
1307#endif
1308#endif
1309        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1310                wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1311}
1312
1313static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1314{
1315        struct vcpu_svm *svm = to_svm(vcpu);
1316        unsigned long rflags = svm->vmcb->save.rflags;
1317
1318        if (svm->nmi_singlestep) {
1319                /* Hide our flags if they were not set by the guest */
1320                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1321                        rflags &= ~X86_EFLAGS_TF;
1322                if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1323                        rflags &= ~X86_EFLAGS_RF;
1324        }
1325        return rflags;
1326}
1327
1328static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1329{
1330        if (to_svm(vcpu)->nmi_singlestep)
1331                rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1332
1333       /*
1334        * Any change of EFLAGS.VM is accompanied by a reload of SS
1335        * (caused by either a task switch or an inter-privilege IRET),
1336        * so we do not need to update the CPL here.
1337        */
1338        to_svm(vcpu)->vmcb->save.rflags = rflags;
1339}
1340
1341static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1342{
1343        switch (reg) {
1344        case VCPU_EXREG_PDPTR:
1345                BUG_ON(!npt_enabled);
1346                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1347                break;
1348        default:
1349                WARN_ON_ONCE(1);
1350        }
1351}
1352
1353static void svm_set_vintr(struct vcpu_svm *svm)
1354{
1355        struct vmcb_control_area *control;
1356
1357        /* The following fields are ignored when AVIC is enabled */
1358        WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1359        set_intercept(svm, INTERCEPT_VINTR);
1360
1361        /*
1362         * This is just a dummy VINTR to actually cause a vmexit to happen.
1363         * Actual injection of virtual interrupts happens through EVENTINJ.
1364         */
1365        control = &svm->vmcb->control;
1366        control->int_vector = 0x0;
1367        control->int_ctl &= ~V_INTR_PRIO_MASK;
1368        control->int_ctl |= V_IRQ_MASK |
1369                ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1370        mark_dirty(svm->vmcb, VMCB_INTR);
1371}
1372
1373static void svm_clear_vintr(struct vcpu_svm *svm)
1374{
1375        const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1376        clr_intercept(svm, INTERCEPT_VINTR);
1377
1378        /* Drop int_ctl fields related to VINTR injection.  */
1379        svm->vmcb->control.int_ctl &= mask;
1380        if (is_guest_mode(&svm->vcpu)) {
1381                svm->nested.hsave->control.int_ctl &= mask;
1382
1383                WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1384                        (svm->nested.ctl.int_ctl & V_TPR_MASK));
1385                svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1386        }
1387
1388        mark_dirty(svm->vmcb, VMCB_INTR);
1389}
1390
1391static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1392{
1393        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1394
1395        switch (seg) {
1396        case VCPU_SREG_CS: return &save->cs;
1397        case VCPU_SREG_DS: return &save->ds;
1398        case VCPU_SREG_ES: return &save->es;
1399        case VCPU_SREG_FS: return &save->fs;
1400        case VCPU_SREG_GS: return &save->gs;
1401        case VCPU_SREG_SS: return &save->ss;
1402        case VCPU_SREG_TR: return &save->tr;
1403        case VCPU_SREG_LDTR: return &save->ldtr;
1404        }
1405        BUG();
1406        return NULL;
1407}
1408
1409static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1410{
1411        struct vmcb_seg *s = svm_seg(vcpu, seg);
1412
1413        return s->base;
1414}
1415
1416static void svm_get_segment(struct kvm_vcpu *vcpu,
1417                            struct kvm_segment *var, int seg)
1418{
1419        struct vmcb_seg *s = svm_seg(vcpu, seg);
1420
1421        var->base = s->base;
1422        var->limit = s->limit;
1423        var->selector = s->selector;
1424        var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1425        var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1426        var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1427        var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1428        var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1429        var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1430        var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1431
1432        /*
1433         * AMD CPUs circa 2014 track the G bit for all segments except CS.
1434         * However, the SVM spec states that the G bit is not observed by the
1435         * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1436         * So let's synthesize a legal G bit for all segments, this helps
1437         * running KVM nested. It also helps cross-vendor migration, because
1438         * Intel's vmentry has a check on the 'G' bit.
1439         */
1440        var->g = s->limit > 0xfffff;
1441
1442        /*
1443         * AMD's VMCB does not have an explicit unusable field, so emulate it
1444         * for cross vendor migration purposes by "not present"
1445         */
1446        var->unusable = !var->present;
1447
1448        switch (seg) {
1449        case VCPU_SREG_TR:
1450                /*
1451                 * Work around a bug where the busy flag in the tr selector
1452                 * isn't exposed
1453                 */
1454                var->type |= 0x2;
1455                break;
1456        case VCPU_SREG_DS:
1457        case VCPU_SREG_ES:
1458        case VCPU_SREG_FS:
1459        case VCPU_SREG_GS:
1460                /*
1461                 * The accessed bit must always be set in the segment
1462                 * descriptor cache, although it can be cleared in the
1463                 * descriptor, the cached bit always remains at 1. Since
1464                 * Intel has a check on this, set it here to support
1465                 * cross-vendor migration.
1466                 */
1467                if (!var->unusable)
1468                        var->type |= 0x1;
1469                break;
1470        case VCPU_SREG_SS:
1471                /*
1472                 * On AMD CPUs sometimes the DB bit in the segment
1473                 * descriptor is left as 1, although the whole segment has
1474                 * been made unusable. Clear it here to pass an Intel VMX
1475                 * entry check when cross vendor migrating.
1476                 */
1477                if (var->unusable)
1478                        var->db = 0;
1479                /* This is symmetric with svm_set_segment() */
1480                var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1481                break;
1482        }
1483}
1484
1485static int svm_get_cpl(struct kvm_vcpu *vcpu)
1486{
1487        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1488
1489        return save->cpl;
1490}
1491
1492static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1493{
1494        struct vcpu_svm *svm = to_svm(vcpu);
1495
1496        dt->size = svm->vmcb->save.idtr.limit;
1497        dt->address = svm->vmcb->save.idtr.base;
1498}
1499
1500static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1501{
1502        struct vcpu_svm *svm = to_svm(vcpu);
1503
1504        svm->vmcb->save.idtr.limit = dt->size;
1505        svm->vmcb->save.idtr.base = dt->address ;
1506        mark_dirty(svm->vmcb, VMCB_DT);
1507}
1508
1509static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1510{
1511        struct vcpu_svm *svm = to_svm(vcpu);
1512
1513        dt->size = svm->vmcb->save.gdtr.limit;
1514        dt->address = svm->vmcb->save.gdtr.base;
1515}
1516
1517static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1518{
1519        struct vcpu_svm *svm = to_svm(vcpu);
1520
1521        svm->vmcb->save.gdtr.limit = dt->size;
1522        svm->vmcb->save.gdtr.base = dt->address ;
1523        mark_dirty(svm->vmcb, VMCB_DT);
1524}
1525
1526static void update_cr0_intercept(struct vcpu_svm *svm)
1527{
1528        ulong gcr0 = svm->vcpu.arch.cr0;
1529        u64 *hcr0 = &svm->vmcb->save.cr0;
1530
1531        *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1532                | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1533
1534        mark_dirty(svm->vmcb, VMCB_CR);
1535
1536        if (gcr0 == *hcr0) {
1537                clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1538                clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1539        } else {
1540                set_cr_intercept(svm, INTERCEPT_CR0_READ);
1541                set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1542        }
1543}
1544
1545void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1546{
1547        struct vcpu_svm *svm = to_svm(vcpu);
1548
1549#ifdef CONFIG_X86_64
1550        if (vcpu->arch.efer & EFER_LME) {
1551                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1552                        vcpu->arch.efer |= EFER_LMA;
1553                        svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1554                }
1555
1556                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1557                        vcpu->arch.efer &= ~EFER_LMA;
1558                        svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1559                }
1560        }
1561#endif
1562        vcpu->arch.cr0 = cr0;
1563
1564        if (!npt_enabled)
1565                cr0 |= X86_CR0_PG | X86_CR0_WP;
1566
1567        /*
1568         * re-enable caching here because the QEMU bios
1569         * does not do it - this results in some delay at
1570         * reboot
1571         */
1572        if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1573                cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1574        svm->vmcb->save.cr0 = cr0;
1575        mark_dirty(svm->vmcb, VMCB_CR);
1576        update_cr0_intercept(svm);
1577}
1578
1579int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1580{
1581        unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1582        unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1583
1584        if (cr4 & X86_CR4_VMXE)
1585                return 1;
1586
1587        if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1588                svm_flush_tlb(vcpu);
1589
1590        vcpu->arch.cr4 = cr4;
1591        if (!npt_enabled)
1592                cr4 |= X86_CR4_PAE;
1593        cr4 |= host_cr4_mce;
1594        to_svm(vcpu)->vmcb->save.cr4 = cr4;
1595        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1596        return 0;
1597}
1598
1599static void svm_set_segment(struct kvm_vcpu *vcpu,
1600                            struct kvm_segment *var, int seg)
1601{
1602        struct vcpu_svm *svm = to_svm(vcpu);
1603        struct vmcb_seg *s = svm_seg(vcpu, seg);
1604
1605        s->base = var->base;
1606        s->limit = var->limit;
1607        s->selector = var->selector;
1608        s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1609        s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1610        s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1611        s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1612        s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1613        s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1614        s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1615        s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1616
1617        /*
1618         * This is always accurate, except if SYSRET returned to a segment
1619         * with SS.DPL != 3.  Intel does not have this quirk, and always
1620         * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1621         * would entail passing the CPL to userspace and back.
1622         */
1623        if (seg == VCPU_SREG_SS)
1624                /* This is symmetric with svm_get_segment() */
1625                svm->vmcb->save.cpl = (var->dpl & 3);
1626
1627        mark_dirty(svm->vmcb, VMCB_SEG);
1628}
1629
1630static void update_bp_intercept(struct kvm_vcpu *vcpu)
1631{
1632        struct vcpu_svm *svm = to_svm(vcpu);
1633
1634        clr_exception_intercept(svm, BP_VECTOR);
1635
1636        if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1637                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1638                        set_exception_intercept(svm, BP_VECTOR);
1639        } else
1640                vcpu->guest_debug = 0;
1641}
1642
1643static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1644{
1645        if (sd->next_asid > sd->max_asid) {
1646                ++sd->asid_generation;
1647                sd->next_asid = sd->min_asid;
1648                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1649        }
1650
1651        svm->asid_generation = sd->asid_generation;
1652        svm->vmcb->control.asid = sd->next_asid++;
1653
1654        mark_dirty(svm->vmcb, VMCB_ASID);
1655}
1656
1657static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1658{
1659        struct vmcb *vmcb = svm->vmcb;
1660
1661        if (unlikely(value != vmcb->save.dr6)) {
1662                vmcb->save.dr6 = value;
1663                mark_dirty(vmcb, VMCB_DR);
1664        }
1665}
1666
1667static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1668{
1669        struct vcpu_svm *svm = to_svm(vcpu);
1670
1671        get_debugreg(vcpu->arch.db[0], 0);
1672        get_debugreg(vcpu->arch.db[1], 1);
1673        get_debugreg(vcpu->arch.db[2], 2);
1674        get_debugreg(vcpu->arch.db[3], 3);
1675        /*
1676         * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1677         * because db_interception might need it.  We can do it before vmentry.
1678         */
1679        vcpu->arch.dr6 = svm->vmcb->save.dr6;
1680        vcpu->arch.dr7 = svm->vmcb->save.dr7;
1681        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1682        set_dr_intercepts(svm);
1683}
1684
1685static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1686{
1687        struct vcpu_svm *svm = to_svm(vcpu);
1688
1689        svm->vmcb->save.dr7 = value;
1690        mark_dirty(svm->vmcb, VMCB_DR);
1691}
1692
1693static int pf_interception(struct vcpu_svm *svm)
1694{
1695        u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1696        u64 error_code = svm->vmcb->control.exit_info_1;
1697
1698        return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1699                        static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1700                        svm->vmcb->control.insn_bytes : NULL,
1701                        svm->vmcb->control.insn_len);
1702}
1703
1704static int npf_interception(struct vcpu_svm *svm)
1705{
1706        u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1707        u64 error_code = svm->vmcb->control.exit_info_1;
1708
1709        trace_kvm_page_fault(fault_address, error_code);
1710        return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1711                        static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1712                        svm->vmcb->control.insn_bytes : NULL,
1713                        svm->vmcb->control.insn_len);
1714}
1715
1716static int db_interception(struct vcpu_svm *svm)
1717{
1718        struct kvm_run *kvm_run = svm->vcpu.run;
1719        struct kvm_vcpu *vcpu = &svm->vcpu;
1720
1721        if (!(svm->vcpu.guest_debug &
1722              (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1723                !svm->nmi_singlestep) {
1724                u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1725                kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1726                return 1;
1727        }
1728
1729        if (svm->nmi_singlestep) {
1730                disable_nmi_singlestep(svm);
1731                /* Make sure we check for pending NMIs upon entry */
1732                kvm_make_request(KVM_REQ_EVENT, vcpu);
1733        }
1734
1735        if (svm->vcpu.guest_debug &
1736            (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1737                kvm_run->exit_reason = KVM_EXIT_DEBUG;
1738                kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1739                kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1740                kvm_run->debug.arch.pc =
1741                        svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1742                kvm_run->debug.arch.exception = DB_VECTOR;
1743                return 0;
1744        }
1745
1746        return 1;
1747}
1748
1749static int bp_interception(struct vcpu_svm *svm)
1750{
1751        struct kvm_run *kvm_run = svm->vcpu.run;
1752
1753        kvm_run->exit_reason = KVM_EXIT_DEBUG;
1754        kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1755        kvm_run->debug.arch.exception = BP_VECTOR;
1756        return 0;
1757}
1758
1759static int ud_interception(struct vcpu_svm *svm)
1760{
1761        return handle_ud(&svm->vcpu);
1762}
1763
1764static int ac_interception(struct vcpu_svm *svm)
1765{
1766        kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1767        return 1;
1768}
1769
1770static int gp_interception(struct vcpu_svm *svm)
1771{
1772        struct kvm_vcpu *vcpu = &svm->vcpu;
1773        u32 error_code = svm->vmcb->control.exit_info_1;
1774
1775        WARN_ON_ONCE(!enable_vmware_backdoor);
1776
1777        /*
1778         * VMware backdoor emulation on #GP interception only handles IN{S},
1779         * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1780         */
1781        if (error_code) {
1782                kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1783                return 1;
1784        }
1785        return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1786}
1787
1788static bool is_erratum_383(void)
1789{
1790        int err, i;
1791        u64 value;
1792
1793        if (!erratum_383_found)
1794                return false;
1795
1796        value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1797        if (err)
1798                return false;
1799
1800        /* Bit 62 may or may not be set for this mce */
1801        value &= ~(1ULL << 62);
1802
1803        if (value != 0xb600000000010015ULL)
1804                return false;
1805
1806        /* Clear MCi_STATUS registers */
1807        for (i = 0; i < 6; ++i)
1808                native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1809
1810        value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1811        if (!err) {
1812                u32 low, high;
1813
1814                value &= ~(1ULL << 2);
1815                low    = lower_32_bits(value);
1816                high   = upper_32_bits(value);
1817
1818                native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1819        }
1820
1821        /* Flush tlb to evict multi-match entries */
1822        __flush_tlb_all();
1823
1824        return true;
1825}
1826
1827/*
1828 * Trigger machine check on the host. We assume all the MSRs are already set up
1829 * by the CPU and that we still run on the same CPU as the MCE occurred on.
1830 * We pass a fake environment to the machine check handler because we want
1831 * the guest to be always treated like user space, no matter what context
1832 * it used internally.
1833 */
1834static void kvm_machine_check(void)
1835{
1836#if defined(CONFIG_X86_MCE)
1837        struct pt_regs regs = {
1838                .cs = 3, /* Fake ring 3 no matter what the guest ran on */
1839                .flags = X86_EFLAGS_IF,
1840        };
1841
1842        do_machine_check(&regs);
1843#endif
1844}
1845
1846static void svm_handle_mce(struct vcpu_svm *svm)
1847{
1848        if (is_erratum_383()) {
1849                /*
1850                 * Erratum 383 triggered. Guest state is corrupt so kill the
1851                 * guest.
1852                 */
1853                pr_err("KVM: Guest triggered AMD Erratum 383\n");
1854
1855                kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1856
1857                return;
1858        }
1859
1860        /*
1861         * On an #MC intercept the MCE handler is not called automatically in
1862         * the host. So do it by hand here.
1863         */
1864        kvm_machine_check();
1865}
1866
1867static int mc_interception(struct vcpu_svm *svm)
1868{
1869        return 1;
1870}
1871
1872static int shutdown_interception(struct vcpu_svm *svm)
1873{
1874        struct kvm_run *kvm_run = svm->vcpu.run;
1875
1876        /*
1877         * VMCB is undefined after a SHUTDOWN intercept
1878         * so reinitialize it.
1879         */
1880        clear_page(svm->vmcb);
1881        init_vmcb(svm);
1882
1883        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1884        return 0;
1885}
1886
1887static int io_interception(struct vcpu_svm *svm)
1888{
1889        struct kvm_vcpu *vcpu = &svm->vcpu;
1890        u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1891        int size, in, string;
1892        unsigned port;
1893
1894        ++svm->vcpu.stat.io_exits;
1895        string = (io_info & SVM_IOIO_STR_MASK) != 0;
1896        in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1897        if (string)
1898                return kvm_emulate_instruction(vcpu, 0);
1899
1900        port = io_info >> 16;
1901        size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1902        svm->next_rip = svm->vmcb->control.exit_info_2;
1903
1904        return kvm_fast_pio(&svm->vcpu, size, port, in);
1905}
1906
1907static int nmi_interception(struct vcpu_svm *svm)
1908{
1909        return 1;
1910}
1911
1912static int intr_interception(struct vcpu_svm *svm)
1913{
1914        ++svm->vcpu.stat.irq_exits;
1915        return 1;
1916}
1917
1918static int nop_on_interception(struct vcpu_svm *svm)
1919{
1920        return 1;
1921}
1922
1923static int halt_interception(struct vcpu_svm *svm)
1924{
1925        return kvm_emulate_halt(&svm->vcpu);
1926}
1927
1928static int vmmcall_interception(struct vcpu_svm *svm)
1929{
1930        return kvm_emulate_hypercall(&svm->vcpu);
1931}
1932
1933static int vmload_interception(struct vcpu_svm *svm)
1934{
1935        struct vmcb *nested_vmcb;
1936        struct kvm_host_map map;
1937        int ret;
1938
1939        if (nested_svm_check_permissions(svm))
1940                return 1;
1941
1942        ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1943        if (ret) {
1944                if (ret == -EINVAL)
1945                        kvm_inject_gp(&svm->vcpu, 0);
1946                return 1;
1947        }
1948
1949        nested_vmcb = map.hva;
1950
1951        ret = kvm_skip_emulated_instruction(&svm->vcpu);
1952
1953        nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1954        kvm_vcpu_unmap(&svm->vcpu, &map, true);
1955
1956        return ret;
1957}
1958
1959static int vmsave_interception(struct vcpu_svm *svm)
1960{
1961        struct vmcb *nested_vmcb;
1962        struct kvm_host_map map;
1963        int ret;
1964
1965        if (nested_svm_check_permissions(svm))
1966                return 1;
1967
1968        ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1969        if (ret) {
1970                if (ret == -EINVAL)
1971                        kvm_inject_gp(&svm->vcpu, 0);
1972                return 1;
1973        }
1974
1975        nested_vmcb = map.hva;
1976
1977        ret = kvm_skip_emulated_instruction(&svm->vcpu);
1978
1979        nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1980        kvm_vcpu_unmap(&svm->vcpu, &map, true);
1981
1982        return ret;
1983}
1984
1985static int vmrun_interception(struct vcpu_svm *svm)
1986{
1987        if (nested_svm_check_permissions(svm))
1988                return 1;
1989
1990        return nested_svm_vmrun(svm);
1991}
1992
1993void svm_set_gif(struct vcpu_svm *svm, bool value)
1994{
1995        if (value) {
1996                /*
1997                 * If VGIF is enabled, the STGI intercept is only added to
1998                 * detect the opening of the SMI/NMI window; remove it now.
1999                 * Likewise, clear the VINTR intercept, we will set it
2000                 * again while processing KVM_REQ_EVENT if needed.
2001                 */
2002                if (vgif_enabled(svm))
2003                        clr_intercept(svm, INTERCEPT_STGI);
2004                if (is_intercept(svm, INTERCEPT_VINTR))
2005                        svm_clear_vintr(svm);
2006
2007                enable_gif(svm);
2008                if (svm->vcpu.arch.smi_pending ||
2009                    svm->vcpu.arch.nmi_pending ||
2010                    kvm_cpu_has_injectable_intr(&svm->vcpu))
2011                        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2012        } else {
2013                disable_gif(svm);
2014
2015                /*
2016                 * After a CLGI no interrupts should come.  But if vGIF is
2017                 * in use, we still rely on the VINTR intercept (rather than
2018                 * STGI) to detect an open interrupt window.
2019                */
2020                if (!vgif_enabled(svm))
2021                        svm_clear_vintr(svm);
2022        }
2023}
2024
2025static int stgi_interception(struct vcpu_svm *svm)
2026{
2027        int ret;
2028
2029        if (nested_svm_check_permissions(svm))
2030                return 1;
2031
2032        ret = kvm_skip_emulated_instruction(&svm->vcpu);
2033        svm_set_gif(svm, true);
2034        return ret;
2035}
2036
2037static int clgi_interception(struct vcpu_svm *svm)
2038{
2039        int ret;
2040
2041        if (nested_svm_check_permissions(svm))
2042                return 1;
2043
2044        ret = kvm_skip_emulated_instruction(&svm->vcpu);
2045        svm_set_gif(svm, false);
2046        return ret;
2047}
2048
2049static int invlpga_interception(struct vcpu_svm *svm)
2050{
2051        struct kvm_vcpu *vcpu = &svm->vcpu;
2052
2053        trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2054                          kvm_rax_read(&svm->vcpu));
2055
2056        /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2057        kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2058
2059        return kvm_skip_emulated_instruction(&svm->vcpu);
2060}
2061
2062static int skinit_interception(struct vcpu_svm *svm)
2063{
2064        trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2065
2066        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2067        return 1;
2068}
2069
2070static int wbinvd_interception(struct vcpu_svm *svm)
2071{
2072        return kvm_emulate_wbinvd(&svm->vcpu);
2073}
2074
2075static int xsetbv_interception(struct vcpu_svm *svm)
2076{
2077        u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2078        u32 index = kvm_rcx_read(&svm->vcpu);
2079
2080        if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2081                return kvm_skip_emulated_instruction(&svm->vcpu);
2082        }
2083
2084        return 1;
2085}
2086
2087static int rdpru_interception(struct vcpu_svm *svm)
2088{
2089        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2090        return 1;
2091}
2092
2093static int task_switch_interception(struct vcpu_svm *svm)
2094{
2095        u16 tss_selector;
2096        int reason;
2097        int int_type = svm->vmcb->control.exit_int_info &
2098                SVM_EXITINTINFO_TYPE_MASK;
2099        int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2100        uint32_t type =
2101                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2102        uint32_t idt_v =
2103                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2104        bool has_error_code = false;
2105        u32 error_code = 0;
2106
2107        tss_selector = (u16)svm->vmcb->control.exit_info_1;
2108
2109        if (svm->vmcb->control.exit_info_2 &
2110            (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2111                reason = TASK_SWITCH_IRET;
2112        else if (svm->vmcb->control.exit_info_2 &
2113                 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2114                reason = TASK_SWITCH_JMP;
2115        else if (idt_v)
2116                reason = TASK_SWITCH_GATE;
2117        else
2118                reason = TASK_SWITCH_CALL;
2119
2120        if (reason == TASK_SWITCH_GATE) {
2121                switch (type) {
2122                case SVM_EXITINTINFO_TYPE_NMI:
2123                        svm->vcpu.arch.nmi_injected = false;
2124                        break;
2125                case SVM_EXITINTINFO_TYPE_EXEPT:
2126                        if (svm->vmcb->control.exit_info_2 &
2127                            (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2128                                has_error_code = true;
2129                                error_code =
2130                                        (u32)svm->vmcb->control.exit_info_2;
2131                        }
2132                        kvm_clear_exception_queue(&svm->vcpu);
2133                        break;
2134                case SVM_EXITINTINFO_TYPE_INTR:
2135                        kvm_clear_interrupt_queue(&svm->vcpu);
2136                        break;
2137                default:
2138                        break;
2139                }
2140        }
2141
2142        if (reason != TASK_SWITCH_GATE ||
2143            int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2144            (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2145             (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2146                if (!skip_emulated_instruction(&svm->vcpu))
2147                        return 0;
2148        }
2149
2150        if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2151                int_vec = -1;
2152
2153        return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2154                               has_error_code, error_code);
2155}
2156
2157static int cpuid_interception(struct vcpu_svm *svm)
2158{
2159        return kvm_emulate_cpuid(&svm->vcpu);
2160}
2161
2162static int iret_interception(struct vcpu_svm *svm)
2163{
2164        ++svm->vcpu.stat.nmi_window_exits;
2165        clr_intercept(svm, INTERCEPT_IRET);
2166        svm->vcpu.arch.hflags |= HF_IRET_MASK;
2167        svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2168        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2169        return 1;
2170}
2171
2172static int invlpg_interception(struct vcpu_svm *svm)
2173{
2174        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2175                return kvm_emulate_instruction(&svm->vcpu, 0);
2176
2177        kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2178        return kvm_skip_emulated_instruction(&svm->vcpu);
2179}
2180
2181static int emulate_on_interception(struct vcpu_svm *svm)
2182{
2183        return kvm_emulate_instruction(&svm->vcpu, 0);
2184}
2185
2186static int rsm_interception(struct vcpu_svm *svm)
2187{
2188        return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2189}
2190
2191static int rdpmc_interception(struct vcpu_svm *svm)
2192{
2193        int err;
2194
2195        if (!nrips)
2196                return emulate_on_interception(svm);
2197
2198        err = kvm_rdpmc(&svm->vcpu);
2199        return kvm_complete_insn_gp(&svm->vcpu, err);
2200}
2201
2202static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2203                                            unsigned long val)
2204{
2205        unsigned long cr0 = svm->vcpu.arch.cr0;
2206        bool ret = false;
2207        u64 intercept;
2208
2209        intercept = svm->nested.ctl.intercept;
2210
2211        if (!is_guest_mode(&svm->vcpu) ||
2212            (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2213                return false;
2214
2215        cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2216        val &= ~SVM_CR0_SELECTIVE_MASK;
2217
2218        if (cr0 ^ val) {
2219                svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2220                ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2221        }
2222
2223        return ret;
2224}
2225
2226#define CR_VALID (1ULL << 63)
2227
2228static int cr_interception(struct vcpu_svm *svm)
2229{
2230        int reg, cr;
2231        unsigned long val;
2232        int err;
2233
2234        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2235                return emulate_on_interception(svm);
2236
2237        if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2238                return emulate_on_interception(svm);
2239
2240        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2241        if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2242                cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2243        else
2244                cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2245
2246        err = 0;
2247        if (cr >= 16) { /* mov to cr */
2248                cr -= 16;
2249                val = kvm_register_read(&svm->vcpu, reg);
2250                switch (cr) {
2251                case 0:
2252                        if (!check_selective_cr0_intercepted(svm, val))
2253                                err = kvm_set_cr0(&svm->vcpu, val);
2254                        else
2255                                return 1;
2256
2257                        break;
2258                case 3:
2259                        err = kvm_set_cr3(&svm->vcpu, val);
2260                        break;
2261                case 4:
2262                        err = kvm_set_cr4(&svm->vcpu, val);
2263                        break;
2264                case 8:
2265                        err = kvm_set_cr8(&svm->vcpu, val);
2266                        break;
2267                default:
2268                        WARN(1, "unhandled write to CR%d", cr);
2269                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2270                        return 1;
2271                }
2272        } else { /* mov from cr */
2273                switch (cr) {
2274                case 0:
2275                        val = kvm_read_cr0(&svm->vcpu);
2276                        break;
2277                case 2:
2278                        val = svm->vcpu.arch.cr2;
2279                        break;
2280                case 3:
2281                        val = kvm_read_cr3(&svm->vcpu);
2282                        break;
2283                case 4:
2284                        val = kvm_read_cr4(&svm->vcpu);
2285                        break;
2286                case 8:
2287                        val = kvm_get_cr8(&svm->vcpu);
2288                        break;
2289                default:
2290                        WARN(1, "unhandled read from CR%d", cr);
2291                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2292                        return 1;
2293                }
2294                kvm_register_write(&svm->vcpu, reg, val);
2295        }
2296        return kvm_complete_insn_gp(&svm->vcpu, err);
2297}
2298
2299static int dr_interception(struct vcpu_svm *svm)
2300{
2301        int reg, dr;
2302        unsigned long val;
2303
2304        if (svm->vcpu.guest_debug == 0) {
2305                /*
2306                 * No more DR vmexits; force a reload of the debug registers
2307                 * and reenter on this instruction.  The next vmexit will
2308                 * retrieve the full state of the debug registers.
2309                 */
2310                clr_dr_intercepts(svm);
2311                svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2312                return 1;
2313        }
2314
2315        if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2316                return emulate_on_interception(svm);
2317
2318        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2319        dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2320
2321        if (dr >= 16) { /* mov to DRn */
2322                if (!kvm_require_dr(&svm->vcpu, dr - 16))
2323                        return 1;
2324                val = kvm_register_read(&svm->vcpu, reg);
2325                kvm_set_dr(&svm->vcpu, dr - 16, val);
2326        } else {
2327                if (!kvm_require_dr(&svm->vcpu, dr))
2328                        return 1;
2329                kvm_get_dr(&svm->vcpu, dr, &val);
2330                kvm_register_write(&svm->vcpu, reg, val);
2331        }
2332
2333        return kvm_skip_emulated_instruction(&svm->vcpu);
2334}
2335
2336static int cr8_write_interception(struct vcpu_svm *svm)
2337{
2338        struct kvm_run *kvm_run = svm->vcpu.run;
2339        int r;
2340
2341        u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2342        /* instruction emulation calls kvm_set_cr8() */
2343        r = cr_interception(svm);
2344        if (lapic_in_kernel(&svm->vcpu))
2345                return r;
2346        if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2347                return r;
2348        kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2349        return 0;
2350}
2351
2352static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2353{
2354        msr->data = 0;
2355
2356        switch (msr->index) {
2357        case MSR_F10H_DECFG:
2358                if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2359                        msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2360                break;
2361        default:
2362                return 1;
2363        }
2364
2365        return 0;
2366}
2367
2368static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2369{
2370        struct vcpu_svm *svm = to_svm(vcpu);
2371
2372        switch (msr_info->index) {
2373        case MSR_STAR:
2374                msr_info->data = svm->vmcb->save.star;
2375                break;
2376#ifdef CONFIG_X86_64
2377        case MSR_LSTAR:
2378                msr_info->data = svm->vmcb->save.lstar;
2379                break;
2380        case MSR_CSTAR:
2381                msr_info->data = svm->vmcb->save.cstar;
2382                break;
2383        case MSR_KERNEL_GS_BASE:
2384                msr_info->data = svm->vmcb->save.kernel_gs_base;
2385                break;
2386        case MSR_SYSCALL_MASK:
2387                msr_info->data = svm->vmcb->save.sfmask;
2388                break;
2389#endif
2390        case MSR_IA32_SYSENTER_CS:
2391                msr_info->data = svm->vmcb->save.sysenter_cs;
2392                break;
2393        case MSR_IA32_SYSENTER_EIP:
2394                msr_info->data = svm->sysenter_eip;
2395                break;
2396        case MSR_IA32_SYSENTER_ESP:
2397                msr_info->data = svm->sysenter_esp;
2398                break;
2399        case MSR_TSC_AUX:
2400                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2401                        return 1;
2402                msr_info->data = svm->tsc_aux;
2403                break;
2404        /*
2405         * Nobody will change the following 5 values in the VMCB so we can
2406         * safely return them on rdmsr. They will always be 0 until LBRV is
2407         * implemented.
2408         */
2409        case MSR_IA32_DEBUGCTLMSR:
2410                msr_info->data = svm->vmcb->save.dbgctl;
2411                break;
2412        case MSR_IA32_LASTBRANCHFROMIP:
2413                msr_info->data = svm->vmcb->save.br_from;
2414                break;
2415        case MSR_IA32_LASTBRANCHTOIP:
2416                msr_info->data = svm->vmcb->save.br_to;
2417                break;
2418        case MSR_IA32_LASTINTFROMIP:
2419                msr_info->data = svm->vmcb->save.last_excp_from;
2420                break;
2421        case MSR_IA32_LASTINTTOIP:
2422                msr_info->data = svm->vmcb->save.last_excp_to;
2423                break;
2424        case MSR_VM_HSAVE_PA:
2425                msr_info->data = svm->nested.hsave_msr;
2426                break;
2427        case MSR_VM_CR:
2428                msr_info->data = svm->nested.vm_cr_msr;
2429                break;
2430        case MSR_IA32_SPEC_CTRL:
2431                if (!msr_info->host_initiated &&
2432                    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2433                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2434                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2435                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2436                        return 1;
2437
2438                msr_info->data = svm->spec_ctrl;
2439                break;
2440        case MSR_AMD64_VIRT_SPEC_CTRL:
2441                if (!msr_info->host_initiated &&
2442                    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2443                        return 1;
2444
2445                msr_info->data = svm->virt_spec_ctrl;
2446                break;
2447        case MSR_F15H_IC_CFG: {
2448
2449                int family, model;
2450
2451                family = guest_cpuid_family(vcpu);
2452                model  = guest_cpuid_model(vcpu);
2453
2454                if (family < 0 || model < 0)
2455                        return kvm_get_msr_common(vcpu, msr_info);
2456
2457                msr_info->data = 0;
2458
2459                if (family == 0x15 &&
2460                    (model >= 0x2 && model < 0x20))
2461                        msr_info->data = 0x1E;
2462                }
2463                break;
2464        case MSR_F10H_DECFG:
2465                msr_info->data = svm->msr_decfg;
2466                break;
2467        default:
2468                return kvm_get_msr_common(vcpu, msr_info);
2469        }
2470        return 0;
2471}
2472
2473static int rdmsr_interception(struct vcpu_svm *svm)
2474{
2475        return kvm_emulate_rdmsr(&svm->vcpu);
2476}
2477
2478static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2479{
2480        struct vcpu_svm *svm = to_svm(vcpu);
2481        int svm_dis, chg_mask;
2482
2483        if (data & ~SVM_VM_CR_VALID_MASK)
2484                return 1;
2485
2486        chg_mask = SVM_VM_CR_VALID_MASK;
2487
2488        if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2489                chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2490
2491        svm->nested.vm_cr_msr &= ~chg_mask;
2492        svm->nested.vm_cr_msr |= (data & chg_mask);
2493
2494        svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2495
2496        /* check for svm_disable while efer.svme is set */
2497        if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2498                return 1;
2499
2500        return 0;
2501}
2502
2503static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2504{
2505        struct vcpu_svm *svm = to_svm(vcpu);
2506
2507        u32 ecx = msr->index;
2508        u64 data = msr->data;
2509        switch (ecx) {
2510        case MSR_IA32_CR_PAT:
2511                if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2512                        return 1;
2513                vcpu->arch.pat = data;
2514                svm->vmcb->save.g_pat = data;
2515                mark_dirty(svm->vmcb, VMCB_NPT);
2516                break;
2517        case MSR_IA32_SPEC_CTRL:
2518                if (!msr->host_initiated &&
2519                    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2520                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2521                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2522                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2523                        return 1;
2524
2525                if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2526                        return 1;
2527
2528                svm->spec_ctrl = data;
2529                if (!data)
2530                        break;
2531
2532                /*
2533                 * For non-nested:
2534                 * When it's written (to non-zero) for the first time, pass
2535                 * it through.
2536                 *
2537                 * For nested:
2538                 * The handling of the MSR bitmap for L2 guests is done in
2539                 * nested_svm_vmrun_msrpm.
2540                 * We update the L1 MSR bit as well since it will end up
2541                 * touching the MSR anyway now.
2542                 */
2543                set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2544                break;
2545        case MSR_IA32_PRED_CMD:
2546                if (!msr->host_initiated &&
2547                    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
2548                        return 1;
2549
2550                if (data & ~PRED_CMD_IBPB)
2551                        return 1;
2552                if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
2553                        return 1;
2554                if (!data)
2555                        break;
2556
2557                wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2558                set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2559                break;
2560        case MSR_AMD64_VIRT_SPEC_CTRL:
2561                if (!msr->host_initiated &&
2562                    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2563                        return 1;
2564
2565                if (data & ~SPEC_CTRL_SSBD)
2566                        return 1;
2567
2568                svm->virt_spec_ctrl = data;
2569                break;
2570        case MSR_STAR:
2571                svm->vmcb->save.star = data;
2572                break;
2573#ifdef CONFIG_X86_64
2574        case MSR_LSTAR:
2575                svm->vmcb->save.lstar = data;
2576                break;
2577        case MSR_CSTAR:
2578                svm->vmcb->save.cstar = data;
2579                break;
2580        case MSR_KERNEL_GS_BASE:
2581                svm->vmcb->save.kernel_gs_base = data;
2582                break;
2583        case MSR_SYSCALL_MASK:
2584                svm->vmcb->save.sfmask = data;
2585                break;
2586#endif
2587        case MSR_IA32_SYSENTER_CS:
2588                svm->vmcb->save.sysenter_cs = data;
2589                break;
2590        case MSR_IA32_SYSENTER_EIP:
2591                svm->sysenter_eip = data;
2592                svm->vmcb->save.sysenter_eip = data;
2593                break;
2594        case MSR_IA32_SYSENTER_ESP:
2595                svm->sysenter_esp = data;
2596                svm->vmcb->save.sysenter_esp = data;
2597                break;
2598        case MSR_TSC_AUX:
2599                if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2600                        return 1;
2601
2602                /*
2603                 * This is rare, so we update the MSR here instead of using
2604                 * direct_access_msrs.  Doing that would require a rdmsr in
2605                 * svm_vcpu_put.
2606                 */
2607                svm->tsc_aux = data;
2608                wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2609                break;
2610        case MSR_IA32_DEBUGCTLMSR:
2611                if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2612                        vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2613                                    __func__, data);
2614                        break;
2615                }
2616                if (data & DEBUGCTL_RESERVED_BITS)
2617                        return 1;
2618
2619                svm->vmcb->save.dbgctl = data;
2620                mark_dirty(svm->vmcb, VMCB_LBR);
2621                if (data & (1ULL<<0))
2622                        svm_enable_lbrv(svm);
2623                else
2624                        svm_disable_lbrv(svm);
2625                break;
2626        case MSR_VM_HSAVE_PA:
2627                svm->nested.hsave_msr = data;
2628                break;
2629        case MSR_VM_CR:
2630                return svm_set_vm_cr(vcpu, data);
2631        case MSR_VM_IGNNE:
2632                vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2633                break;
2634        case MSR_F10H_DECFG: {
2635                struct kvm_msr_entry msr_entry;
2636
2637                msr_entry.index = msr->index;
2638                if (svm_get_msr_feature(&msr_entry))
2639                        return 1;
2640
2641                /* Check the supported bits */
2642                if (data & ~msr_entry.data)
2643                        return 1;
2644
2645                /* Don't allow the guest to change a bit, #GP */
2646                if (!msr->host_initiated && (data ^ msr_entry.data))
2647                        return 1;
2648
2649                svm->msr_decfg = data;
2650                break;
2651        }
2652        case MSR_IA32_APICBASE:
2653                if (kvm_vcpu_apicv_active(vcpu))
2654                        avic_update_vapic_bar(to_svm(vcpu), data);
2655                /* Fall through */
2656        default:
2657                return kvm_set_msr_common(vcpu, msr);
2658        }
2659        return 0;
2660}
2661
2662static int wrmsr_interception(struct vcpu_svm *svm)
2663{
2664        return kvm_emulate_wrmsr(&svm->vcpu);
2665}
2666
2667static int msr_interception(struct vcpu_svm *svm)
2668{
2669        if (svm->vmcb->control.exit_info_1)
2670                return wrmsr_interception(svm);
2671        else
2672                return rdmsr_interception(svm);
2673}
2674
2675static int interrupt_window_interception(struct vcpu_svm *svm)
2676{
2677        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2678        svm_clear_vintr(svm);
2679
2680        /*
2681         * For AVIC, the only reason to end up here is ExtINTs.
2682         * In this case AVIC was temporarily disabled for
2683         * requesting the IRQ window and we have to re-enable it.
2684         */
2685        svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2686
2687        ++svm->vcpu.stat.irq_window_exits;
2688        return 1;
2689}
2690
2691static int pause_interception(struct vcpu_svm *svm)
2692{
2693        struct kvm_vcpu *vcpu = &svm->vcpu;
2694        bool in_kernel = (svm_get_cpl(vcpu) == 0);
2695
2696        if (!kvm_pause_in_guest(vcpu->kvm))
2697                grow_ple_window(vcpu);
2698
2699        kvm_vcpu_on_spin(vcpu, in_kernel);
2700        return 1;
2701}
2702
2703static int nop_interception(struct vcpu_svm *svm)
2704{
2705        return kvm_skip_emulated_instruction(&(svm->vcpu));
2706}
2707
2708static int monitor_interception(struct vcpu_svm *svm)
2709{
2710        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2711        return nop_interception(svm);
2712}
2713
2714static int mwait_interception(struct vcpu_svm *svm)
2715{
2716        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2717        return nop_interception(svm);
2718}
2719
2720static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2721        [SVM_EXIT_READ_CR0]                     = cr_interception,
2722        [SVM_EXIT_READ_CR3]                     = cr_interception,
2723        [SVM_EXIT_READ_CR4]                     = cr_interception,
2724        [SVM_EXIT_READ_CR8]                     = cr_interception,
2725        [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
2726        [SVM_EXIT_WRITE_CR0]                    = cr_interception,
2727        [SVM_EXIT_WRITE_CR3]                    = cr_interception,
2728        [SVM_EXIT_WRITE_CR4]                    = cr_interception,
2729        [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2730        [SVM_EXIT_READ_DR0]                     = dr_interception,
2731        [SVM_EXIT_READ_DR1]                     = dr_interception,
2732        [SVM_EXIT_READ_DR2]                     = dr_interception,
2733        [SVM_EXIT_READ_DR3]                     = dr_interception,
2734        [SVM_EXIT_READ_DR4]                     = dr_interception,
2735        [SVM_EXIT_READ_DR5]                     = dr_interception,
2736        [SVM_EXIT_READ_DR6]                     = dr_interception,
2737        [SVM_EXIT_READ_DR7]                     = dr_interception,
2738        [SVM_EXIT_WRITE_DR0]                    = dr_interception,
2739        [SVM_EXIT_WRITE_DR1]                    = dr_interception,
2740        [SVM_EXIT_WRITE_DR2]                    = dr_interception,
2741        [SVM_EXIT_WRITE_DR3]                    = dr_interception,
2742        [SVM_EXIT_WRITE_DR4]                    = dr_interception,
2743        [SVM_EXIT_WRITE_DR5]                    = dr_interception,
2744        [SVM_EXIT_WRITE_DR6]                    = dr_interception,
2745        [SVM_EXIT_WRITE_DR7]                    = dr_interception,
2746        [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2747        [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2748        [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2749        [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2750        [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2751        [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
2752        [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
2753        [SVM_EXIT_INTR]                         = intr_interception,
2754        [SVM_EXIT_NMI]                          = nmi_interception,
2755        [SVM_EXIT_SMI]                          = nop_on_interception,
2756        [SVM_EXIT_INIT]                         = nop_on_interception,
2757        [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2758        [SVM_EXIT_RDPMC]                        = rdpmc_interception,
2759        [SVM_EXIT_CPUID]                        = cpuid_interception,
2760        [SVM_EXIT_IRET]                         = iret_interception,
2761        [SVM_EXIT_INVD]                         = emulate_on_interception,
2762        [SVM_EXIT_PAUSE]                        = pause_interception,
2763        [SVM_EXIT_HLT]                          = halt_interception,
2764        [SVM_EXIT_INVLPG]                       = invlpg_interception,
2765        [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2766        [SVM_EXIT_IOIO]                         = io_interception,
2767        [SVM_EXIT_MSR]                          = msr_interception,
2768        [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2769        [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2770        [SVM_EXIT_VMRUN]                        = vmrun_interception,
2771        [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2772        [SVM_EXIT_VMLOAD]                       = vmload_interception,
2773        [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2774        [SVM_EXIT_STGI]                         = stgi_interception,
2775        [SVM_EXIT_CLGI]                         = clgi_interception,
2776        [SVM_EXIT_SKINIT]                       = skinit_interception,
2777        [SVM_EXIT_WBINVD]                       = wbinvd_interception,
2778        [SVM_EXIT_MONITOR]                      = monitor_interception,
2779        [SVM_EXIT_MWAIT]                        = mwait_interception,
2780        [SVM_EXIT_XSETBV]                       = xsetbv_interception,
2781        [SVM_EXIT_RDPRU]                        = rdpru_interception,
2782        [SVM_EXIT_NPF]                          = npf_interception,
2783        [SVM_EXIT_RSM]                          = rsm_interception,
2784        [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
2785        [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
2786};
2787
2788static void dump_vmcb(struct kvm_vcpu *vcpu)
2789{
2790        struct vcpu_svm *svm = to_svm(vcpu);
2791        struct vmcb_control_area *control = &svm->vmcb->control;
2792        struct vmcb_save_area *save = &svm->vmcb->save;
2793
2794        if (!dump_invalid_vmcb) {
2795                pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2796                return;
2797        }
2798
2799        pr_err("VMCB Control Area:\n");
2800        pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
2801        pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
2802        pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
2803        pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
2804        pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
2805        pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
2806        pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2807        pr_err("%-20s%d\n", "pause filter threshold:",
2808               control->pause_filter_thresh);
2809        pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2810        pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
2811        pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
2812        pr_err("%-20s%d\n", "asid:", control->asid);
2813        pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
2814        pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
2815        pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
2816        pr_err("%-20s%08x\n", "int_state:", control->int_state);
2817        pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
2818        pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
2819        pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
2820        pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
2821        pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
2822        pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
2823        pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
2824        pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
2825        pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
2826        pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
2827        pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
2828        pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
2829        pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
2830        pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
2831        pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
2832        pr_err("VMCB State Save Area:\n");
2833        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2834               "es:",
2835               save->es.selector, save->es.attrib,
2836               save->es.limit, save->es.base);
2837        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2838               "cs:",
2839               save->cs.selector, save->cs.attrib,
2840               save->cs.limit, save->cs.base);
2841        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2842               "ss:",
2843               save->ss.selector, save->ss.attrib,
2844               save->ss.limit, save->ss.base);
2845        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2846               "ds:",
2847               save->ds.selector, save->ds.attrib,
2848               save->ds.limit, save->ds.base);
2849        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2850               "fs:",
2851               save->fs.selector, save->fs.attrib,
2852               save->fs.limit, save->fs.base);
2853        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2854               "gs:",
2855               save->gs.selector, save->gs.attrib,
2856               save->gs.limit, save->gs.base);
2857        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2858               "gdtr:",
2859               save->gdtr.selector, save->gdtr.attrib,
2860               save->gdtr.limit, save->gdtr.base);
2861        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2862               "ldtr:",
2863               save->ldtr.selector, save->ldtr.attrib,
2864               save->ldtr.limit, save->ldtr.base);
2865        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2866               "idtr:",
2867               save->idtr.selector, save->idtr.attrib,
2868               save->idtr.limit, save->idtr.base);
2869        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2870               "tr:",
2871               save->tr.selector, save->tr.attrib,
2872               save->tr.limit, save->tr.base);
2873        pr_err("cpl:            %d                efer:         %016llx\n",
2874                save->cpl, save->efer);
2875        pr_err("%-15s %016llx %-13s %016llx\n",
2876               "cr0:", save->cr0, "cr2:", save->cr2);
2877        pr_err("%-15s %016llx %-13s %016llx\n",
2878               "cr3:", save->cr3, "cr4:", save->cr4);
2879        pr_err("%-15s %016llx %-13s %016llx\n",
2880               "dr6:", save->dr6, "dr7:", save->dr7);
2881        pr_err("%-15s %016llx %-13s %016llx\n",
2882               "rip:", save->rip, "rflags:", save->rflags);
2883        pr_err("%-15s %016llx %-13s %016llx\n",
2884               "rsp:", save->rsp, "rax:", save->rax);
2885        pr_err("%-15s %016llx %-13s %016llx\n",
2886               "star:", save->star, "lstar:", save->lstar);
2887        pr_err("%-15s %016llx %-13s %016llx\n",
2888               "cstar:", save->cstar, "sfmask:", save->sfmask);
2889        pr_err("%-15s %016llx %-13s %016llx\n",
2890               "kernel_gs_base:", save->kernel_gs_base,
2891               "sysenter_cs:", save->sysenter_cs);
2892        pr_err("%-15s %016llx %-13s %016llx\n",
2893               "sysenter_esp:", save->sysenter_esp,
2894               "sysenter_eip:", save->sysenter_eip);
2895        pr_err("%-15s %016llx %-13s %016llx\n",
2896               "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
2897        pr_err("%-15s %016llx %-13s %016llx\n",
2898               "br_from:", save->br_from, "br_to:", save->br_to);
2899        pr_err("%-15s %016llx %-13s %016llx\n",
2900               "excp_from:", save->last_excp_from,
2901               "excp_to:", save->last_excp_to);
2902}
2903
2904static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
2905{
2906        struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
2907
2908        *info1 = control->exit_info_1;
2909        *info2 = control->exit_info_2;
2910}
2911
2912static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
2913{
2914        struct vcpu_svm *svm = to_svm(vcpu);
2915        struct kvm_run *kvm_run = vcpu->run;
2916        u32 exit_code = svm->vmcb->control.exit_code;
2917
2918        trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
2919
2920        if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
2921                vcpu->arch.cr0 = svm->vmcb->save.cr0;
2922        if (npt_enabled)
2923                vcpu->arch.cr3 = svm->vmcb->save.cr3;
2924
2925        svm_complete_interrupts(svm);
2926
2927        if (is_guest_mode(vcpu)) {
2928                int vmexit;
2929
2930                trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2931                                        svm->vmcb->control.exit_info_1,
2932                                        svm->vmcb->control.exit_info_2,
2933                                        svm->vmcb->control.exit_int_info,
2934                                        svm->vmcb->control.exit_int_info_err,
2935                                        KVM_ISA_SVM);
2936
2937                vmexit = nested_svm_exit_special(svm);
2938
2939                if (vmexit == NESTED_EXIT_CONTINUE)
2940                        vmexit = nested_svm_exit_handled(svm);
2941
2942                if (vmexit == NESTED_EXIT_DONE)
2943                        return 1;
2944        }
2945
2946        if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2947                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2948                kvm_run->fail_entry.hardware_entry_failure_reason
2949                        = svm->vmcb->control.exit_code;
2950                dump_vmcb(vcpu);
2951                return 0;
2952        }
2953
2954        if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2955            exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2956            exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
2957            exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
2958                printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
2959                       "exit_code 0x%x\n",
2960                       __func__, svm->vmcb->control.exit_int_info,
2961                       exit_code);
2962
2963        if (exit_fastpath != EXIT_FASTPATH_NONE)
2964                return 1;
2965
2966        if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2967            || !svm_exit_handlers[exit_code]) {
2968                vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
2969                dump_vmcb(vcpu);
2970                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2971                vcpu->run->internal.suberror =
2972                        KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2973                vcpu->run->internal.ndata = 1;
2974                vcpu->run->internal.data[0] = exit_code;
2975                return 0;
2976        }
2977
2978#ifdef CONFIG_RETPOLINE
2979        if (exit_code == SVM_EXIT_MSR)
2980                return msr_interception(svm);
2981        else if (exit_code == SVM_EXIT_VINTR)
2982                return interrupt_window_interception(svm);
2983        else if (exit_code == SVM_EXIT_INTR)
2984                return intr_interception(svm);
2985        else if (exit_code == SVM_EXIT_HLT)
2986                return halt_interception(svm);
2987        else if (exit_code == SVM_EXIT_NPF)
2988                return npf_interception(svm);
2989#endif
2990        return svm_exit_handlers[exit_code](svm);
2991}
2992
2993static void reload_tss(struct kvm_vcpu *vcpu)
2994{
2995        int cpu = raw_smp_processor_id();
2996
2997        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2998        sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2999        load_TR_desc();
3000}
3001
3002static void pre_svm_run(struct vcpu_svm *svm)
3003{
3004        int cpu = raw_smp_processor_id();
3005
3006        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3007
3008        if (sev_guest(svm->vcpu.kvm))
3009                return pre_sev_run(svm, cpu);
3010
3011        /* FIXME: handle wraparound of asid_generation */
3012        if (svm->asid_generation != sd->asid_generation)
3013                new_asid(svm, sd);
3014}
3015
3016static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3017{
3018        struct vcpu_svm *svm = to_svm(vcpu);
3019
3020        svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3021        vcpu->arch.hflags |= HF_NMI_MASK;
3022        set_intercept(svm, INTERCEPT_IRET);
3023        ++vcpu->stat.nmi_injections;
3024}
3025
3026static void svm_set_irq(struct kvm_vcpu *vcpu)
3027{
3028        struct vcpu_svm *svm = to_svm(vcpu);
3029
3030        BUG_ON(!(gif_set(svm)));
3031
3032        trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3033        ++vcpu->stat.irq_injections;
3034
3035        svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3036                SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3037}
3038
3039static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3040{
3041        struct vcpu_svm *svm = to_svm(vcpu);
3042
3043        if (svm_nested_virtualize_tpr(vcpu))
3044                return;
3045
3046        clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3047
3048        if (irr == -1)
3049                return;
3050
3051        if (tpr >= irr)
3052                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3053}
3054
3055bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3056{
3057        struct vcpu_svm *svm = to_svm(vcpu);
3058        struct vmcb *vmcb = svm->vmcb;
3059        bool ret;
3060
3061        if (!gif_set(svm))
3062                return true;
3063
3064        if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3065                return false;
3066
3067        ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3068              (svm->vcpu.arch.hflags & HF_NMI_MASK);
3069
3070        return ret;
3071}
3072
3073static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3074{
3075        struct vcpu_svm *svm = to_svm(vcpu);
3076        if (svm->nested.nested_run_pending)
3077                return -EBUSY;
3078
3079        /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3080        if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3081                return -EBUSY;
3082
3083        return !svm_nmi_blocked(vcpu);
3084}
3085
3086static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3087{
3088        struct vcpu_svm *svm = to_svm(vcpu);
3089
3090        return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3091}
3092
3093static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3094{
3095        struct vcpu_svm *svm = to_svm(vcpu);
3096
3097        if (masked) {
3098                svm->vcpu.arch.hflags |= HF_NMI_MASK;
3099                set_intercept(svm, INTERCEPT_IRET);
3100        } else {
3101                svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3102                clr_intercept(svm, INTERCEPT_IRET);
3103        }
3104}
3105
3106bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3107{
3108        struct vcpu_svm *svm = to_svm(vcpu);
3109        struct vmcb *vmcb = svm->vmcb;
3110
3111        if (!gif_set(svm))
3112                return true;
3113
3114        if (is_guest_mode(vcpu)) {
3115                /* As long as interrupts are being delivered...  */
3116                if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3117                    ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3118                    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3119                        return true;
3120
3121                /* ... vmexits aren't blocked by the interrupt shadow  */
3122                if (nested_exit_on_intr(svm))
3123                        return false;
3124        } else {
3125                if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3126                        return true;
3127        }
3128
3129        return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3130}
3131
3132static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3133{
3134        struct vcpu_svm *svm = to_svm(vcpu);
3135        if (svm->nested.nested_run_pending)
3136                return -EBUSY;
3137
3138        /*
3139         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3140         * e.g. if the IRQ arrived asynchronously after checking nested events.
3141         */
3142        if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3143                return -EBUSY;
3144
3145        return !svm_interrupt_blocked(vcpu);
3146}
3147
3148static void enable_irq_window(struct kvm_vcpu *vcpu)
3149{
3150        struct vcpu_svm *svm = to_svm(vcpu);
3151
3152        /*
3153         * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3154         * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3155         * get that intercept, this function will be called again though and
3156         * we'll get the vintr intercept. However, if the vGIF feature is
3157         * enabled, the STGI interception will not occur. Enable the irq
3158         * window under the assumption that the hardware will set the GIF.
3159         */
3160        if (vgif_enabled(svm) || gif_set(svm)) {
3161                /*
3162                 * IRQ window is not needed when AVIC is enabled,
3163                 * unless we have pending ExtINT since it cannot be injected
3164                 * via AVIC. In such case, we need to temporarily disable AVIC,
3165                 * and fallback to injecting IRQ via V_IRQ.
3166                 */
3167                svm_toggle_avic_for_irq_window(vcpu, false);
3168                svm_set_vintr(svm);
3169        }
3170}
3171
3172static void enable_nmi_window(struct kvm_vcpu *vcpu)
3173{
3174        struct vcpu_svm *svm = to_svm(vcpu);
3175
3176        if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3177            == HF_NMI_MASK)
3178                return; /* IRET will cause a vm exit */
3179
3180        if (!gif_set(svm)) {
3181                if (vgif_enabled(svm))
3182                        set_intercept(svm, INTERCEPT_STGI);
3183                return; /* STGI will cause a vm exit */
3184        }
3185
3186        /*
3187         * Something prevents NMI from been injected. Single step over possible
3188         * problem (IRET or exception injection or interrupt shadow)
3189         */
3190        svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3191        svm->nmi_singlestep = true;
3192        svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3193}
3194
3195static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3196{
3197        return 0;
3198}
3199
3200static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3201{
3202        return 0;
3203}
3204
3205void svm_flush_tlb(struct kvm_vcpu *vcpu)
3206{
3207        struct vcpu_svm *svm = to_svm(vcpu);
3208
3209        /*
3210         * Flush only the current ASID even if the TLB flush was invoked via
3211         * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3212         * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3213         * unconditionally does a TLB flush on both nested VM-Enter and nested
3214         * VM-Exit (via kvm_mmu_reset_context()).
3215         */
3216        if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3217                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3218        else
3219                svm->asid_generation--;
3220}
3221
3222static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3223{
3224        struct vcpu_svm *svm = to_svm(vcpu);
3225
3226        invlpga(gva, svm->vmcb->control.asid);
3227}
3228
3229static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3230{
3231}
3232
3233static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3234{
3235        struct vcpu_svm *svm = to_svm(vcpu);
3236
3237        if (svm_nested_virtualize_tpr(vcpu))
3238                return;
3239
3240        if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3241                int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3242                kvm_set_cr8(vcpu, cr8);
3243        }
3244}
3245
3246static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3247{
3248        struct vcpu_svm *svm = to_svm(vcpu);
3249        u64 cr8;
3250
3251        if (svm_nested_virtualize_tpr(vcpu) ||
3252            kvm_vcpu_apicv_active(vcpu))
3253                return;
3254
3255        cr8 = kvm_get_cr8(vcpu);
3256        svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3257        svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3258}
3259
3260static void svm_complete_interrupts(struct vcpu_svm *svm)
3261{
3262        u8 vector;
3263        int type;
3264        u32 exitintinfo = svm->vmcb->control.exit_int_info;
3265        unsigned int3_injected = svm->int3_injected;
3266
3267        svm->int3_injected = 0;
3268
3269        /*
3270         * If we've made progress since setting HF_IRET_MASK, we've
3271         * executed an IRET and can allow NMI injection.
3272         */
3273        if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3274            && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3275                svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3276                kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3277        }
3278
3279        svm->vcpu.arch.nmi_injected = false;
3280        kvm_clear_exception_queue(&svm->vcpu);
3281        kvm_clear_interrupt_queue(&svm->vcpu);
3282
3283        if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3284                return;
3285
3286        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3287
3288        vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3289        type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3290
3291        switch (type) {
3292        case SVM_EXITINTINFO_TYPE_NMI:
3293                svm->vcpu.arch.nmi_injected = true;
3294                break;
3295        case SVM_EXITINTINFO_TYPE_EXEPT:
3296                /*
3297                 * In case of software exceptions, do not reinject the vector,
3298                 * but re-execute the instruction instead. Rewind RIP first
3299                 * if we emulated INT3 before.
3300                 */
3301                if (kvm_exception_is_soft(vector)) {
3302                        if (vector == BP_VECTOR && int3_injected &&
3303                            kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3304                                kvm_rip_write(&svm->vcpu,
3305                                              kvm_rip_read(&svm->vcpu) -
3306                                              int3_injected);
3307                        break;
3308                }
3309                if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3310                        u32 err = svm->vmcb->control.exit_int_info_err;
3311                        kvm_requeue_exception_e(&svm->vcpu, vector, err);
3312
3313                } else
3314                        kvm_requeue_exception(&svm->vcpu, vector);
3315                break;
3316        case SVM_EXITINTINFO_TYPE_INTR:
3317                kvm_queue_interrupt(&svm->vcpu, vector, false);
3318                break;
3319        default:
3320                break;
3321        }
3322}
3323
3324static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3325{
3326        struct vcpu_svm *svm = to_svm(vcpu);
3327        struct vmcb_control_area *control = &svm->vmcb->control;
3328
3329        control->exit_int_info = control->event_inj;
3330        control->exit_int_info_err = control->event_inj_err;
3331        control->event_inj = 0;
3332        svm_complete_interrupts(svm);
3333}
3334
3335static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3336{
3337        if (!is_guest_mode(vcpu) &&
3338            to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3339            to_svm(vcpu)->vmcb->control.exit_info_1)
3340                return handle_fastpath_set_msr_irqoff(vcpu);
3341
3342        return EXIT_FASTPATH_NONE;
3343}
3344
3345void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3346
3347static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3348{
3349        fastpath_t exit_fastpath;
3350        struct vcpu_svm *svm = to_svm(vcpu);
3351
3352        svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3353        svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3354        svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3355
3356        /*
3357         * Disable singlestep if we're injecting an interrupt/exception.
3358         * We don't want our modified rflags to be pushed on the stack where
3359         * we might not be able to easily reset them if we disabled NMI
3360         * singlestep later.
3361         */
3362        if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3363                /*
3364                 * Event injection happens before external interrupts cause a
3365                 * vmexit and interrupts are disabled here, so smp_send_reschedule
3366                 * is enough to force an immediate vmexit.
3367                 */
3368                disable_nmi_singlestep(svm);
3369                smp_send_reschedule(vcpu->cpu);
3370        }
3371
3372        pre_svm_run(svm);
3373
3374        sync_lapic_to_cr8(vcpu);
3375
3376        svm->vmcb->save.cr2 = vcpu->arch.cr2;
3377
3378        /*
3379         * Run with all-zero DR6 unless needed, so that we can get the exact cause
3380         * of a #DB.
3381         */
3382        if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3383                svm_set_dr6(svm, vcpu->arch.dr6);
3384        else
3385                svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3386
3387        clgi();
3388        kvm_load_guest_xsave_state(vcpu);
3389
3390        if (lapic_in_kernel(vcpu) &&
3391                vcpu->arch.apic->lapic_timer.timer_advance_ns)
3392                kvm_wait_lapic_expire(vcpu);
3393
3394        /*
3395         * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3396         * it's non-zero. Since vmentry is serialising on affected CPUs, there
3397         * is no need to worry about the conditional branch over the wrmsr
3398         * being speculatively taken.
3399         */
3400        x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3401
3402        __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3403
3404#ifdef CONFIG_X86_64
3405        wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3406#else
3407        loadsegment(fs, svm->host.fs);
3408#ifndef CONFIG_X86_32_LAZY_GS
3409        loadsegment(gs, svm->host.gs);
3410#endif
3411#endif
3412
3413        /*
3414         * We do not use IBRS in the kernel. If this vCPU has used the
3415         * SPEC_CTRL MSR it may have left it on; save the value and
3416         * turn it off. This is much more efficient than blindly adding
3417         * it to the atomic save/restore list. Especially as the former
3418         * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3419         *
3420         * For non-nested case:
3421         * If the L01 MSR bitmap does not intercept the MSR, then we need to
3422         * save it.
3423         *
3424         * For nested case:
3425         * If the L02 MSR bitmap does not intercept the MSR, then we need to
3426         * save it.
3427         */
3428        if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3429                svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3430
3431        reload_tss(vcpu);
3432
3433        x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3434
3435        vcpu->arch.cr2 = svm->vmcb->save.cr2;
3436        vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3437        vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3438        vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3439
3440        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3441                kvm_before_interrupt(&svm->vcpu);
3442
3443        kvm_load_host_xsave_state(vcpu);
3444        stgi();
3445
3446        /* Any pending NMI will happen here */
3447        exit_fastpath = svm_exit_handlers_fastpath(vcpu);
3448
3449        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3450                kvm_after_interrupt(&svm->vcpu);
3451
3452        sync_cr8_to_lapic(vcpu);
3453
3454        svm->next_rip = 0;
3455        if (is_guest_mode(&svm->vcpu)) {
3456                sync_nested_vmcb_control(svm);
3457                svm->nested.nested_run_pending = 0;
3458        }
3459
3460        svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3461
3462        /* if exit due to PF check for async PF */
3463        if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3464                svm->vcpu.arch.apf.host_apf_flags =
3465                        kvm_read_and_reset_apf_flags();
3466
3467        if (npt_enabled) {
3468                vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3469                vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3470        }
3471
3472        /*
3473         * We need to handle MC intercepts here before the vcpu has a chance to
3474         * change the physical cpu
3475         */
3476        if (unlikely(svm->vmcb->control.exit_code ==
3477                     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3478                svm_handle_mce(svm);
3479
3480        mark_all_clean(svm->vmcb);
3481        return exit_fastpath;
3482}
3483
3484static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root)
3485{
3486        struct vcpu_svm *svm = to_svm(vcpu);
3487        unsigned long cr3;
3488
3489        cr3 = __sme_set(root);
3490        if (npt_enabled) {
3491                svm->vmcb->control.nested_cr3 = cr3;
3492                mark_dirty(svm->vmcb, VMCB_NPT);
3493
3494                /* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3495                if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3496                        return;
3497                cr3 = vcpu->arch.cr3;
3498        }
3499
3500        svm->vmcb->save.cr3 = cr3;
3501        mark_dirty(svm->vmcb, VMCB_CR);
3502}
3503
3504static int is_disabled(void)
3505{
3506        u64 vm_cr;
3507
3508        rdmsrl(MSR_VM_CR, vm_cr);
3509        if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3510                return 1;
3511
3512        return 0;
3513}
3514
3515static void
3516svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3517{
3518        /*
3519         * Patch in the VMMCALL instruction:
3520         */
3521        hypercall[0] = 0x0f;
3522        hypercall[1] = 0x01;
3523        hypercall[2] = 0xd9;
3524}
3525
3526static int __init svm_check_processor_compat(void)
3527{
3528        return 0;
3529}
3530
3531static bool svm_cpu_has_accelerated_tpr(void)
3532{
3533        return false;
3534}
3535
3536static bool svm_has_emulated_msr(u32 index)
3537{
3538        switch (index) {
3539        case MSR_IA32_MCG_EXT_CTL:
3540        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3541                return false;
3542        default:
3543                break;
3544        }
3545
3546        return true;
3547}
3548
3549static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3550{
3551        return 0;
3552}
3553
3554static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3555{
3556        struct vcpu_svm *svm = to_svm(vcpu);
3557
3558        vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3559                                    boot_cpu_has(X86_FEATURE_XSAVE) &&
3560                                    boot_cpu_has(X86_FEATURE_XSAVES);
3561
3562        /* Update nrips enabled cache */
3563        svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3564                             guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3565
3566        if (!kvm_vcpu_apicv_active(vcpu))
3567                return;
3568
3569        /*
3570         * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3571         * is exposed to the guest, disable AVIC.
3572         */
3573        if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3574                kvm_request_apicv_update(vcpu->kvm, false,
3575                                         APICV_INHIBIT_REASON_X2APIC);
3576
3577        /*
3578         * Currently, AVIC does not work with nested virtualization.
3579         * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3580         */
3581        if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3582                kvm_request_apicv_update(vcpu->kvm, false,
3583                                         APICV_INHIBIT_REASON_NESTED);
3584}
3585
3586static bool svm_has_wbinvd_exit(void)
3587{
3588        return true;
3589}
3590
3591#define PRE_EX(exit)  { .exit_code = (exit), \
3592                        .stage = X86_ICPT_PRE_EXCEPT, }
3593#define POST_EX(exit) { .exit_code = (exit), \
3594                        .stage = X86_ICPT_POST_EXCEPT, }
3595#define POST_MEM(exit) { .exit_code = (exit), \
3596                        .stage = X86_ICPT_POST_MEMACCESS, }
3597
3598static const struct __x86_intercept {
3599        u32 exit_code;
3600        enum x86_intercept_stage stage;
3601} x86_intercept_map[] = {
3602        [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
3603        [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
3604        [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
3605        [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
3606        [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
3607        [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
3608        [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
3609        [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
3610        [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
3611        [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
3612        [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
3613        [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
3614        [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
3615        [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
3616        [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
3617        [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
3618        [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
3619        [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
3620        [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
3621        [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
3622        [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
3623        [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
3624        [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
3625        [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
3626        [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
3627        [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
3628        [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
3629        [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
3630        [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
3631        [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
3632        [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
3633        [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
3634        [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
3635        [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
3636        [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
3637        [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
3638        [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
3639        [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
3640        [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
3641        [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
3642        [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
3643        [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
3644        [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
3645        [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
3646        [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
3647        [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
3648        [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
3649};
3650
3651#undef PRE_EX
3652#undef POST_EX
3653#undef POST_MEM
3654
3655static int svm_check_intercept(struct kvm_vcpu *vcpu,
3656                               struct x86_instruction_info *info,
3657                               enum x86_intercept_stage stage,
3658                               struct x86_exception *exception)
3659{
3660        struct vcpu_svm *svm = to_svm(vcpu);
3661        int vmexit, ret = X86EMUL_CONTINUE;
3662        struct __x86_intercept icpt_info;
3663        struct vmcb *vmcb = svm->vmcb;
3664
3665        if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3666                goto out;
3667
3668        icpt_info = x86_intercept_map[info->intercept];
3669
3670        if (stage != icpt_info.stage)
3671                goto out;
3672
3673        switch (icpt_info.exit_code) {
3674        case SVM_EXIT_READ_CR0:
3675                if (info->intercept == x86_intercept_cr_read)
3676                        icpt_info.exit_code += info->modrm_reg;
3677                break;
3678        case SVM_EXIT_WRITE_CR0: {
3679                unsigned long cr0, val;
3680                u64 intercept;
3681
3682                if (info->intercept == x86_intercept_cr_write)
3683                        icpt_info.exit_code += info->modrm_reg;
3684
3685                if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3686                    info->intercept == x86_intercept_clts)
3687                        break;
3688
3689                intercept = svm->nested.ctl.intercept;
3690
3691                if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
3692                        break;
3693
3694                cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3695                val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
3696
3697                if (info->intercept == x86_intercept_lmsw) {
3698                        cr0 &= 0xfUL;
3699                        val &= 0xfUL;
3700                        /* lmsw can't clear PE - catch this here */
3701                        if (cr0 & X86_CR0_PE)
3702                                val |= X86_CR0_PE;
3703                }
3704
3705                if (cr0 ^ val)
3706                        icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3707
3708                break;
3709        }
3710        case SVM_EXIT_READ_DR0:
3711        case SVM_EXIT_WRITE_DR0:
3712                icpt_info.exit_code += info->modrm_reg;
3713                break;
3714        case SVM_EXIT_MSR:
3715                if (info->intercept == x86_intercept_wrmsr)
3716                        vmcb->control.exit_info_1 = 1;
3717                else
3718                        vmcb->control.exit_info_1 = 0;
3719                break;
3720        case SVM_EXIT_PAUSE:
3721                /*
3722                 * We get this for NOP only, but pause
3723                 * is rep not, check this here
3724                 */
3725                if (info->rep_prefix != REPE_PREFIX)
3726                        goto out;
3727                break;
3728        case SVM_EXIT_IOIO: {
3729                u64 exit_info;
3730                u32 bytes;
3731
3732                if (info->intercept == x86_intercept_in ||
3733                    info->intercept == x86_intercept_ins) {
3734                        exit_info = ((info->src_val & 0xffff) << 16) |
3735                                SVM_IOIO_TYPE_MASK;
3736                        bytes = info->dst_bytes;
3737                } else {
3738                        exit_info = (info->dst_val & 0xffff) << 16;
3739                        bytes = info->src_bytes;
3740                }
3741
3742                if (info->intercept == x86_intercept_outs ||
3743                    info->intercept == x86_intercept_ins)
3744                        exit_info |= SVM_IOIO_STR_MASK;
3745
3746                if (info->rep_prefix)
3747                        exit_info |= SVM_IOIO_REP_MASK;
3748
3749                bytes = min(bytes, 4u);
3750
3751                exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
3752
3753                exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
3754
3755                vmcb->control.exit_info_1 = exit_info;
3756                vmcb->control.exit_info_2 = info->next_rip;
3757
3758                break;
3759        }
3760        default:
3761                break;
3762        }
3763
3764        /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3765        if (static_cpu_has(X86_FEATURE_NRIPS))
3766                vmcb->control.next_rip  = info->next_rip;
3767        vmcb->control.exit_code = icpt_info.exit_code;
3768        vmexit = nested_svm_exit_handled(svm);
3769
3770        ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
3771                                           : X86EMUL_CONTINUE;
3772
3773out:
3774        return ret;
3775}
3776
3777static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
3778{
3779}
3780
3781static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
3782{
3783        if (!kvm_pause_in_guest(vcpu->kvm))
3784                shrink_ple_window(vcpu);
3785}
3786
3787static void svm_setup_mce(struct kvm_vcpu *vcpu)
3788{
3789        /* [63:9] are reserved. */
3790        vcpu->arch.mcg_cap &= 0x1ff;
3791}
3792
3793bool svm_smi_blocked(struct kvm_vcpu *vcpu)
3794{
3795        struct vcpu_svm *svm = to_svm(vcpu);
3796
3797        /* Per APM Vol.2 15.22.2 "Response to SMI" */
3798        if (!gif_set(svm))
3799                return true;
3800
3801        return is_smm(vcpu);
3802}
3803
3804static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3805{
3806        struct vcpu_svm *svm = to_svm(vcpu);
3807        if (svm->nested.nested_run_pending)
3808                return -EBUSY;
3809
3810        /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
3811        if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
3812                return -EBUSY;
3813
3814        return !svm_smi_blocked(vcpu);
3815}
3816
3817static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
3818{
3819        struct vcpu_svm *svm = to_svm(vcpu);
3820        int ret;
3821
3822        if (is_guest_mode(vcpu)) {
3823                /* FED8h - SVM Guest */
3824                put_smstate(u64, smstate, 0x7ed8, 1);
3825                /* FEE0h - SVM Guest VMCB Physical Address */
3826                put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
3827
3828                svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3829                svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3830                svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3831
3832                ret = nested_svm_vmexit(svm);
3833                if (ret)
3834                        return ret;
3835        }
3836        return 0;
3837}
3838
3839static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
3840{
3841        struct vcpu_svm *svm = to_svm(vcpu);
3842        struct vmcb *nested_vmcb;
3843        struct kvm_host_map map;
3844        u64 guest;
3845        u64 vmcb;
3846
3847        guest = GET_SMSTATE(u64, smstate, 0x7ed8);
3848        vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
3849
3850        if (guest) {
3851                if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
3852                        return 1;
3853                nested_vmcb = map.hva;
3854                enter_svm_guest_mode(svm, vmcb, nested_vmcb);
3855                kvm_vcpu_unmap(&svm->vcpu, &map, true);
3856        }
3857        return 0;
3858}
3859
3860static void enable_smi_window(struct kvm_vcpu *vcpu)
3861{
3862        struct vcpu_svm *svm = to_svm(vcpu);
3863
3864        if (!gif_set(svm)) {
3865                if (vgif_enabled(svm))
3866                        set_intercept(svm, INTERCEPT_STGI);
3867                /* STGI will cause a vm exit */
3868        } else {
3869                /* We must be in SMM; RSM will cause a vmexit anyway.  */
3870        }
3871}
3872
3873static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
3874{
3875        unsigned long cr4 = kvm_read_cr4(vcpu);
3876        bool smep = cr4 & X86_CR4_SMEP;
3877        bool smap = cr4 & X86_CR4_SMAP;
3878        bool is_user = svm_get_cpl(vcpu) == 3;
3879
3880        /*
3881         * If RIP is invalid, go ahead with emulation which will cause an
3882         * internal error exit.
3883         */
3884        if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
3885                return true;
3886
3887        /*
3888         * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
3889         *
3890         * Errata:
3891         * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
3892         * possible that CPU microcode implementing DecodeAssist will fail
3893         * to read bytes of instruction which caused #NPF. In this case,
3894         * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
3895         * return 0 instead of the correct guest instruction bytes.
3896         *
3897         * This happens because CPU microcode reading instruction bytes
3898         * uses a special opcode which attempts to read data using CPL=0
3899         * priviledges. The microcode reads CS:RIP and if it hits a SMAP
3900         * fault, it gives up and returns no instruction bytes.
3901         *
3902         * Detection:
3903         * We reach here in case CPU supports DecodeAssist, raised #NPF and
3904         * returned 0 in GuestIntrBytes field of the VMCB.
3905         * First, errata can only be triggered in case vCPU CR4.SMAP=1.
3906         * Second, if vCPU CR4.SMEP=1, errata could only be triggered
3907         * in case vCPU CPL==3 (Because otherwise guest would have triggered
3908         * a SMEP fault instead of #NPF).
3909         * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
3910         * As most guests enable SMAP if they have also enabled SMEP, use above
3911         * logic in order to attempt minimize false-positive of detecting errata
3912         * while still preserving all cases semantic correctness.
3913         *
3914         * Workaround:
3915         * To determine what instruction the guest was executing, the hypervisor
3916         * will have to decode the instruction at the instruction pointer.
3917         *
3918         * In non SEV guest, hypervisor will be able to read the guest
3919         * memory to decode the instruction pointer when insn_len is zero
3920         * so we return true to indicate that decoding is possible.
3921         *
3922         * But in the SEV guest, the guest memory is encrypted with the
3923         * guest specific key and hypervisor will not be able to decode the
3924         * instruction pointer so we will not able to workaround it. Lets
3925         * print the error and request to kill the guest.
3926         */
3927        if (smap && (!smep || is_user)) {
3928                if (!sev_guest(vcpu->kvm))
3929                        return true;
3930
3931                pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
3932                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3933        }
3934
3935        return false;
3936}
3937
3938static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
3939{
3940        struct vcpu_svm *svm = to_svm(vcpu);
3941
3942        /*
3943         * TODO: Last condition latch INIT signals on vCPU when
3944         * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
3945         * To properly emulate the INIT intercept,
3946         * svm_check_nested_events() should call nested_svm_vmexit()
3947         * if an INIT signal is pending.
3948         */
3949        return !gif_set(svm) ||
3950                   (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
3951}
3952
3953static void svm_vm_destroy(struct kvm *kvm)
3954{
3955        avic_vm_destroy(kvm);
3956        sev_vm_destroy(kvm);
3957}
3958
3959static int svm_vm_init(struct kvm *kvm)
3960{
3961        if (!pause_filter_count || !pause_filter_thresh)
3962                kvm->arch.pause_in_guest = true;
3963
3964        if (avic) {
3965                int ret = avic_vm_init(kvm);
3966                if (ret)
3967                        return ret;
3968        }
3969
3970        kvm_apicv_init(kvm, avic);
3971        return 0;
3972}
3973
3974static struct kvm_x86_ops svm_x86_ops __initdata = {
3975        .hardware_unsetup = svm_hardware_teardown,
3976        .hardware_enable = svm_hardware_enable,
3977        .hardware_disable = svm_hardware_disable,
3978        .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3979        .has_emulated_msr = svm_has_emulated_msr,
3980
3981        .vcpu_create = svm_create_vcpu,
3982        .vcpu_free = svm_free_vcpu,
3983        .vcpu_reset = svm_vcpu_reset,
3984
3985        .vm_size = sizeof(struct kvm_svm),
3986        .vm_init = svm_vm_init,
3987        .vm_destroy = svm_vm_destroy,
3988
3989        .prepare_guest_switch = svm_prepare_guest_switch,
3990        .vcpu_load = svm_vcpu_load,
3991        .vcpu_put = svm_vcpu_put,
3992        .vcpu_blocking = svm_vcpu_blocking,
3993        .vcpu_unblocking = svm_vcpu_unblocking,
3994
3995        .update_bp_intercept = update_bp_intercept,
3996        .get_msr_feature = svm_get_msr_feature,
3997        .get_msr = svm_get_msr,
3998        .set_msr = svm_set_msr,
3999        .get_segment_base = svm_get_segment_base,
4000        .get_segment = svm_get_segment,
4001        .set_segment = svm_set_segment,
4002        .get_cpl = svm_get_cpl,
4003        .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4004        .set_cr0 = svm_set_cr0,
4005        .set_cr4 = svm_set_cr4,
4006        .set_efer = svm_set_efer,
4007        .get_idt = svm_get_idt,
4008        .set_idt = svm_set_idt,
4009        .get_gdt = svm_get_gdt,
4010        .set_gdt = svm_set_gdt,
4011        .set_dr7 = svm_set_dr7,
4012        .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4013        .cache_reg = svm_cache_reg,
4014        .get_rflags = svm_get_rflags,
4015        .set_rflags = svm_set_rflags,
4016
4017        .tlb_flush_all = svm_flush_tlb,
4018        .tlb_flush_current = svm_flush_tlb,
4019        .tlb_flush_gva = svm_flush_tlb_gva,
4020        .tlb_flush_guest = svm_flush_tlb,
4021
4022        .run = svm_vcpu_run,
4023        .handle_exit = handle_exit,
4024        .skip_emulated_instruction = skip_emulated_instruction,
4025        .update_emulated_instruction = NULL,
4026        .set_interrupt_shadow = svm_set_interrupt_shadow,
4027        .get_interrupt_shadow = svm_get_interrupt_shadow,
4028        .patch_hypercall = svm_patch_hypercall,
4029        .set_irq = svm_set_irq,
4030        .set_nmi = svm_inject_nmi,
4031        .queue_exception = svm_queue_exception,
4032        .cancel_injection = svm_cancel_injection,
4033        .interrupt_allowed = svm_interrupt_allowed,
4034        .nmi_allowed = svm_nmi_allowed,
4035        .get_nmi_mask = svm_get_nmi_mask,
4036        .set_nmi_mask = svm_set_nmi_mask,
4037        .enable_nmi_window = enable_nmi_window,
4038        .enable_irq_window = enable_irq_window,
4039        .update_cr8_intercept = update_cr8_intercept,
4040        .set_virtual_apic_mode = svm_set_virtual_apic_mode,
4041        .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4042        .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4043        .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4044        .load_eoi_exitmap = svm_load_eoi_exitmap,
4045        .hwapic_irr_update = svm_hwapic_irr_update,
4046        .hwapic_isr_update = svm_hwapic_isr_update,
4047        .sync_pir_to_irr = kvm_lapic_find_highest_irr,
4048        .apicv_post_state_restore = avic_post_state_restore,
4049
4050        .set_tss_addr = svm_set_tss_addr,
4051        .set_identity_map_addr = svm_set_identity_map_addr,
4052        .get_tdp_level = get_npt_level,
4053        .get_mt_mask = svm_get_mt_mask,
4054
4055        .get_exit_info = svm_get_exit_info,
4056
4057        .cpuid_update = svm_cpuid_update,
4058
4059        .has_wbinvd_exit = svm_has_wbinvd_exit,
4060
4061        .write_l1_tsc_offset = svm_write_l1_tsc_offset,
4062
4063        .load_mmu_pgd = svm_load_mmu_pgd,
4064
4065        .check_intercept = svm_check_intercept,
4066        .handle_exit_irqoff = svm_handle_exit_irqoff,
4067
4068        .request_immediate_exit = __kvm_request_immediate_exit,
4069
4070        .sched_in = svm_sched_in,
4071
4072        .pmu_ops = &amd_pmu_ops,
4073        .nested_ops = &svm_nested_ops,
4074
4075        .deliver_posted_interrupt = svm_deliver_avic_intr,
4076        .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4077        .update_pi_irte = svm_update_pi_irte,
4078        .setup_mce = svm_setup_mce,
4079
4080        .smi_allowed = svm_smi_allowed,
4081        .pre_enter_smm = svm_pre_enter_smm,
4082        .pre_leave_smm = svm_pre_leave_smm,
4083        .enable_smi_window = enable_smi_window,
4084
4085        .mem_enc_op = svm_mem_enc_op,
4086        .mem_enc_reg_region = svm_register_enc_region,
4087        .mem_enc_unreg_region = svm_unregister_enc_region,
4088
4089        .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
4090
4091        .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4092};
4093
4094static struct kvm_x86_init_ops svm_init_ops __initdata = {
4095        .cpu_has_kvm_support = has_svm,
4096        .disabled_by_bios = is_disabled,
4097        .hardware_setup = svm_hardware_setup,
4098        .check_processor_compatibility = svm_check_processor_compat,
4099
4100        .runtime_ops = &svm_x86_ops,
4101};
4102
4103static int __init svm_init(void)
4104{
4105        return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4106                        __alignof__(struct vcpu_svm), THIS_MODULE);
4107}
4108
4109static void __exit svm_exit(void)
4110{
4111        kvm_exit();
4112}
4113
4114module_init(svm_init)
4115module_exit(svm_exit)
4116