linux/arch/x86/mm/pat/set_memory.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2002 Andi Kleen, SuSE Labs.
   4 * Thanks to Ben LaHaise for precious feedback.
   5 */
   6#include <linux/highmem.h>
   7#include <linux/memblock.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/interrupt.h>
  11#include <linux/seq_file.h>
  12#include <linux/debugfs.h>
  13#include <linux/pfn.h>
  14#include <linux/percpu.h>
  15#include <linux/gfp.h>
  16#include <linux/pci.h>
  17#include <linux/vmalloc.h>
  18#include <linux/libnvdimm.h>
  19
  20#include <asm/e820/api.h>
  21#include <asm/processor.h>
  22#include <asm/tlbflush.h>
  23#include <asm/sections.h>
  24#include <asm/setup.h>
  25#include <linux/uaccess.h>
  26#include <asm/pgalloc.h>
  27#include <asm/proto.h>
  28#include <asm/memtype.h>
  29#include <asm/set_memory.h>
  30
  31#include "../mm_internal.h"
  32
  33/*
  34 * The current flushing context - we pass it instead of 5 arguments:
  35 */
  36struct cpa_data {
  37        unsigned long   *vaddr;
  38        pgd_t           *pgd;
  39        pgprot_t        mask_set;
  40        pgprot_t        mask_clr;
  41        unsigned long   numpages;
  42        unsigned long   curpage;
  43        unsigned long   pfn;
  44        unsigned int    flags;
  45        unsigned int    force_split             : 1,
  46                        force_static_prot       : 1,
  47                        force_flush_all         : 1;
  48        struct page     **pages;
  49};
  50
  51enum cpa_warn {
  52        CPA_CONFLICT,
  53        CPA_PROTECT,
  54        CPA_DETECT,
  55};
  56
  57static const int cpa_warn_level = CPA_PROTECT;
  58
  59/*
  60 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  61 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  62 * entries change the page attribute in parallel to some other cpu
  63 * splitting a large page entry along with changing the attribute.
  64 */
  65static DEFINE_SPINLOCK(cpa_lock);
  66
  67#define CPA_FLUSHTLB 1
  68#define CPA_ARRAY 2
  69#define CPA_PAGES_ARRAY 4
  70#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
  71
  72static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
  73{
  74        return __pgprot(cachemode2protval(pcm));
  75}
  76
  77#ifdef CONFIG_PROC_FS
  78static unsigned long direct_pages_count[PG_LEVEL_NUM];
  79
  80void update_page_count(int level, unsigned long pages)
  81{
  82        /* Protect against CPA */
  83        spin_lock(&pgd_lock);
  84        direct_pages_count[level] += pages;
  85        spin_unlock(&pgd_lock);
  86}
  87
  88static void split_page_count(int level)
  89{
  90        if (direct_pages_count[level] == 0)
  91                return;
  92
  93        direct_pages_count[level]--;
  94        direct_pages_count[level - 1] += PTRS_PER_PTE;
  95}
  96
  97void arch_report_meminfo(struct seq_file *m)
  98{
  99        seq_printf(m, "DirectMap4k:    %8lu kB\n",
 100                        direct_pages_count[PG_LEVEL_4K] << 2);
 101#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 102        seq_printf(m, "DirectMap2M:    %8lu kB\n",
 103                        direct_pages_count[PG_LEVEL_2M] << 11);
 104#else
 105        seq_printf(m, "DirectMap4M:    %8lu kB\n",
 106                        direct_pages_count[PG_LEVEL_2M] << 12);
 107#endif
 108        if (direct_gbpages)
 109                seq_printf(m, "DirectMap1G:    %8lu kB\n",
 110                        direct_pages_count[PG_LEVEL_1G] << 20);
 111}
 112#else
 113static inline void split_page_count(int level) { }
 114#endif
 115
 116#ifdef CONFIG_X86_CPA_STATISTICS
 117
 118static unsigned long cpa_1g_checked;
 119static unsigned long cpa_1g_sameprot;
 120static unsigned long cpa_1g_preserved;
 121static unsigned long cpa_2m_checked;
 122static unsigned long cpa_2m_sameprot;
 123static unsigned long cpa_2m_preserved;
 124static unsigned long cpa_4k_install;
 125
 126static inline void cpa_inc_1g_checked(void)
 127{
 128        cpa_1g_checked++;
 129}
 130
 131static inline void cpa_inc_2m_checked(void)
 132{
 133        cpa_2m_checked++;
 134}
 135
 136static inline void cpa_inc_4k_install(void)
 137{
 138        cpa_4k_install++;
 139}
 140
 141static inline void cpa_inc_lp_sameprot(int level)
 142{
 143        if (level == PG_LEVEL_1G)
 144                cpa_1g_sameprot++;
 145        else
 146                cpa_2m_sameprot++;
 147}
 148
 149static inline void cpa_inc_lp_preserved(int level)
 150{
 151        if (level == PG_LEVEL_1G)
 152                cpa_1g_preserved++;
 153        else
 154                cpa_2m_preserved++;
 155}
 156
 157static int cpastats_show(struct seq_file *m, void *p)
 158{
 159        seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
 160        seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
 161        seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
 162        seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
 163        seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
 164        seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
 165        seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
 166        return 0;
 167}
 168
 169static int cpastats_open(struct inode *inode, struct file *file)
 170{
 171        return single_open(file, cpastats_show, NULL);
 172}
 173
 174static const struct file_operations cpastats_fops = {
 175        .open           = cpastats_open,
 176        .read           = seq_read,
 177        .llseek         = seq_lseek,
 178        .release        = single_release,
 179};
 180
 181static int __init cpa_stats_init(void)
 182{
 183        debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
 184                            &cpastats_fops);
 185        return 0;
 186}
 187late_initcall(cpa_stats_init);
 188#else
 189static inline void cpa_inc_1g_checked(void) { }
 190static inline void cpa_inc_2m_checked(void) { }
 191static inline void cpa_inc_4k_install(void) { }
 192static inline void cpa_inc_lp_sameprot(int level) { }
 193static inline void cpa_inc_lp_preserved(int level) { }
 194#endif
 195
 196
 197static inline int
 198within(unsigned long addr, unsigned long start, unsigned long end)
 199{
 200        return addr >= start && addr < end;
 201}
 202
 203static inline int
 204within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
 205{
 206        return addr >= start && addr <= end;
 207}
 208
 209#ifdef CONFIG_X86_64
 210
 211static inline unsigned long highmap_start_pfn(void)
 212{
 213        return __pa_symbol(_text) >> PAGE_SHIFT;
 214}
 215
 216static inline unsigned long highmap_end_pfn(void)
 217{
 218        /* Do not reference physical address outside the kernel. */
 219        return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
 220}
 221
 222static bool __cpa_pfn_in_highmap(unsigned long pfn)
 223{
 224        /*
 225         * Kernel text has an alias mapping at a high address, known
 226         * here as "highmap".
 227         */
 228        return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
 229}
 230
 231#else
 232
 233static bool __cpa_pfn_in_highmap(unsigned long pfn)
 234{
 235        /* There is no highmap on 32-bit */
 236        return false;
 237}
 238
 239#endif
 240
 241/*
 242 * See set_mce_nospec().
 243 *
 244 * Machine check recovery code needs to change cache mode of poisoned pages to
 245 * UC to avoid speculative access logging another error. But passing the
 246 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
 247 * speculative access. So we cheat and flip the top bit of the address. This
 248 * works fine for the code that updates the page tables. But at the end of the
 249 * process we need to flush the TLB and cache and the non-canonical address
 250 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
 251 *
 252 * But in the common case we already have a canonical address. This code
 253 * will fix the top bit if needed and is a no-op otherwise.
 254 */
 255static inline unsigned long fix_addr(unsigned long addr)
 256{
 257#ifdef CONFIG_X86_64
 258        return (long)(addr << 1) >> 1;
 259#else
 260        return addr;
 261#endif
 262}
 263
 264static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
 265{
 266        if (cpa->flags & CPA_PAGES_ARRAY) {
 267                struct page *page = cpa->pages[idx];
 268
 269                if (unlikely(PageHighMem(page)))
 270                        return 0;
 271
 272                return (unsigned long)page_address(page);
 273        }
 274
 275        if (cpa->flags & CPA_ARRAY)
 276                return cpa->vaddr[idx];
 277
 278        return *cpa->vaddr + idx * PAGE_SIZE;
 279}
 280
 281/*
 282 * Flushing functions
 283 */
 284
 285static void clflush_cache_range_opt(void *vaddr, unsigned int size)
 286{
 287        const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
 288        void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
 289        void *vend = vaddr + size;
 290
 291        if (p >= vend)
 292                return;
 293
 294        for (; p < vend; p += clflush_size)
 295                clflushopt(p);
 296}
 297
 298/**
 299 * clflush_cache_range - flush a cache range with clflush
 300 * @vaddr:      virtual start address
 301 * @size:       number of bytes to flush
 302 *
 303 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
 304 * SFENCE to avoid ordering issues.
 305 */
 306void clflush_cache_range(void *vaddr, unsigned int size)
 307{
 308        mb();
 309        clflush_cache_range_opt(vaddr, size);
 310        mb();
 311}
 312EXPORT_SYMBOL_GPL(clflush_cache_range);
 313
 314#ifdef CONFIG_ARCH_HAS_PMEM_API
 315void arch_invalidate_pmem(void *addr, size_t size)
 316{
 317        clflush_cache_range(addr, size);
 318}
 319EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
 320#endif
 321
 322static void __cpa_flush_all(void *arg)
 323{
 324        unsigned long cache = (unsigned long)arg;
 325
 326        /*
 327         * Flush all to work around Errata in early athlons regarding
 328         * large page flushing.
 329         */
 330        __flush_tlb_all();
 331
 332        if (cache && boot_cpu_data.x86 >= 4)
 333                wbinvd();
 334}
 335
 336static void cpa_flush_all(unsigned long cache)
 337{
 338        BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 339
 340        on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 341}
 342
 343static void __cpa_flush_tlb(void *data)
 344{
 345        struct cpa_data *cpa = data;
 346        unsigned int i;
 347
 348        for (i = 0; i < cpa->numpages; i++)
 349                flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
 350}
 351
 352static void cpa_flush(struct cpa_data *data, int cache)
 353{
 354        struct cpa_data *cpa = data;
 355        unsigned int i;
 356
 357        BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 358
 359        if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 360                cpa_flush_all(cache);
 361                return;
 362        }
 363
 364        if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
 365                flush_tlb_all();
 366        else
 367                on_each_cpu(__cpa_flush_tlb, cpa, 1);
 368
 369        if (!cache)
 370                return;
 371
 372        mb();
 373        for (i = 0; i < cpa->numpages; i++) {
 374                unsigned long addr = __cpa_addr(cpa, i);
 375                unsigned int level;
 376
 377                pte_t *pte = lookup_address(addr, &level);
 378
 379                /*
 380                 * Only flush present addresses:
 381                 */
 382                if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 383                        clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
 384        }
 385        mb();
 386}
 387
 388static bool overlaps(unsigned long r1_start, unsigned long r1_end,
 389                     unsigned long r2_start, unsigned long r2_end)
 390{
 391        return (r1_start <= r2_end && r1_end >= r2_start) ||
 392                (r2_start <= r1_end && r2_end >= r1_start);
 393}
 394
 395#ifdef CONFIG_PCI_BIOS
 396/*
 397 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
 398 * based config access (CONFIG_PCI_GOBIOS) support.
 399 */
 400#define BIOS_PFN        PFN_DOWN(BIOS_BEGIN)
 401#define BIOS_PFN_END    PFN_DOWN(BIOS_END - 1)
 402
 403static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 404{
 405        if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
 406                return _PAGE_NX;
 407        return 0;
 408}
 409#else
 410static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 411{
 412        return 0;
 413}
 414#endif
 415
 416/*
 417 * The .rodata section needs to be read-only. Using the pfn catches all
 418 * aliases.  This also includes __ro_after_init, so do not enforce until
 419 * kernel_set_to_readonly is true.
 420 */
 421static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
 422{
 423        unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
 424
 425        /*
 426         * Note: __end_rodata is at page aligned and not inclusive, so
 427         * subtract 1 to get the last enforced PFN in the rodata area.
 428         */
 429        epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
 430
 431        if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
 432                return _PAGE_RW;
 433        return 0;
 434}
 435
 436/*
 437 * Protect kernel text against becoming non executable by forbidding
 438 * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
 439 * out of which the kernel actually executes.  Do not protect the low
 440 * mapping.
 441 *
 442 * This does not cover __inittext since that is gone after boot.
 443 */
 444static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
 445{
 446        unsigned long t_end = (unsigned long)_etext - 1;
 447        unsigned long t_start = (unsigned long)_text;
 448
 449        if (overlaps(start, end, t_start, t_end))
 450                return _PAGE_NX;
 451        return 0;
 452}
 453
 454#if defined(CONFIG_X86_64)
 455/*
 456 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 457 * kernel text mappings for the large page aligned text, rodata sections
 458 * will be always read-only. For the kernel identity mappings covering the
 459 * holes caused by this alignment can be anything that user asks.
 460 *
 461 * This will preserve the large page mappings for kernel text/data at no
 462 * extra cost.
 463 */
 464static pgprotval_t protect_kernel_text_ro(unsigned long start,
 465                                          unsigned long end)
 466{
 467        unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
 468        unsigned long t_start = (unsigned long)_text;
 469        unsigned int level;
 470
 471        if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
 472                return 0;
 473        /*
 474         * Don't enforce the !RW mapping for the kernel text mapping, if
 475         * the current mapping is already using small page mapping.  No
 476         * need to work hard to preserve large page mappings in this case.
 477         *
 478         * This also fixes the Linux Xen paravirt guest boot failure caused
 479         * by unexpected read-only mappings for kernel identity
 480         * mappings. In this paravirt guest case, the kernel text mapping
 481         * and the kernel identity mapping share the same page-table pages,
 482         * so the protections for kernel text and identity mappings have to
 483         * be the same.
 484         */
 485        if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
 486                return _PAGE_RW;
 487        return 0;
 488}
 489#else
 490static pgprotval_t protect_kernel_text_ro(unsigned long start,
 491                                          unsigned long end)
 492{
 493        return 0;
 494}
 495#endif
 496
 497static inline bool conflicts(pgprot_t prot, pgprotval_t val)
 498{
 499        return (pgprot_val(prot) & ~val) != pgprot_val(prot);
 500}
 501
 502static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
 503                                  unsigned long start, unsigned long end,
 504                                  unsigned long pfn, const char *txt)
 505{
 506        static const char *lvltxt[] = {
 507                [CPA_CONFLICT]  = "conflict",
 508                [CPA_PROTECT]   = "protect",
 509                [CPA_DETECT]    = "detect",
 510        };
 511
 512        if (warnlvl > cpa_warn_level || !conflicts(prot, val))
 513                return;
 514
 515        pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
 516                lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
 517                (unsigned long long)val);
 518}
 519
 520/*
 521 * Certain areas of memory on x86 require very specific protection flags,
 522 * for example the BIOS area or kernel text. Callers don't always get this
 523 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 524 * checks and fixes these known static required protection bits.
 525 */
 526static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
 527                                          unsigned long pfn, unsigned long npg,
 528                                          unsigned long lpsize, int warnlvl)
 529{
 530        pgprotval_t forbidden, res;
 531        unsigned long end;
 532
 533        /*
 534         * There is no point in checking RW/NX conflicts when the requested
 535         * mapping is setting the page !PRESENT.
 536         */
 537        if (!(pgprot_val(prot) & _PAGE_PRESENT))
 538                return prot;
 539
 540        /* Operate on the virtual address */
 541        end = start + npg * PAGE_SIZE - 1;
 542
 543        res = protect_kernel_text(start, end);
 544        check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
 545        forbidden = res;
 546
 547        /*
 548         * Special case to preserve a large page. If the change spawns the
 549         * full large page mapping then there is no point to split it
 550         * up. Happens with ftrace and is going to be removed once ftrace
 551         * switched to text_poke().
 552         */
 553        if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
 554                res = protect_kernel_text_ro(start, end);
 555                check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
 556                forbidden |= res;
 557        }
 558
 559        /* Check the PFN directly */
 560        res = protect_pci_bios(pfn, pfn + npg - 1);
 561        check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
 562        forbidden |= res;
 563
 564        res = protect_rodata(pfn, pfn + npg - 1);
 565        check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
 566        forbidden |= res;
 567
 568        return __pgprot(pgprot_val(prot) & ~forbidden);
 569}
 570
 571/*
 572 * Lookup the page table entry for a virtual address in a specific pgd.
 573 * Return a pointer to the entry and the level of the mapping.
 574 */
 575pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 576                             unsigned int *level)
 577{
 578        p4d_t *p4d;
 579        pud_t *pud;
 580        pmd_t *pmd;
 581
 582        *level = PG_LEVEL_NONE;
 583
 584        if (pgd_none(*pgd))
 585                return NULL;
 586
 587        p4d = p4d_offset(pgd, address);
 588        if (p4d_none(*p4d))
 589                return NULL;
 590
 591        *level = PG_LEVEL_512G;
 592        if (p4d_large(*p4d) || !p4d_present(*p4d))
 593                return (pte_t *)p4d;
 594
 595        pud = pud_offset(p4d, address);
 596        if (pud_none(*pud))
 597                return NULL;
 598
 599        *level = PG_LEVEL_1G;
 600        if (pud_large(*pud) || !pud_present(*pud))
 601                return (pte_t *)pud;
 602
 603        pmd = pmd_offset(pud, address);
 604        if (pmd_none(*pmd))
 605                return NULL;
 606
 607        *level = PG_LEVEL_2M;
 608        if (pmd_large(*pmd) || !pmd_present(*pmd))
 609                return (pte_t *)pmd;
 610
 611        *level = PG_LEVEL_4K;
 612
 613        return pte_offset_kernel(pmd, address);
 614}
 615
 616/*
 617 * Lookup the page table entry for a virtual address. Return a pointer
 618 * to the entry and the level of the mapping.
 619 *
 620 * Note: We return pud and pmd either when the entry is marked large
 621 * or when the present bit is not set. Otherwise we would return a
 622 * pointer to a nonexisting mapping.
 623 */
 624pte_t *lookup_address(unsigned long address, unsigned int *level)
 625{
 626        return lookup_address_in_pgd(pgd_offset_k(address), address, level);
 627}
 628EXPORT_SYMBOL_GPL(lookup_address);
 629
 630/*
 631 * Lookup the page table entry for a virtual address in a given mm. Return a
 632 * pointer to the entry and the level of the mapping.
 633 */
 634pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address,
 635                            unsigned int *level)
 636{
 637        return lookup_address_in_pgd(pgd_offset(mm, address), address, level);
 638}
 639EXPORT_SYMBOL_GPL(lookup_address_in_mm);
 640
 641static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
 642                                  unsigned int *level)
 643{
 644        if (cpa->pgd)
 645                return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
 646                                               address, level);
 647
 648        return lookup_address(address, level);
 649}
 650
 651/*
 652 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 653 * or NULL if not present.
 654 */
 655pmd_t *lookup_pmd_address(unsigned long address)
 656{
 657        pgd_t *pgd;
 658        p4d_t *p4d;
 659        pud_t *pud;
 660
 661        pgd = pgd_offset_k(address);
 662        if (pgd_none(*pgd))
 663                return NULL;
 664
 665        p4d = p4d_offset(pgd, address);
 666        if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
 667                return NULL;
 668
 669        pud = pud_offset(p4d, address);
 670        if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
 671                return NULL;
 672
 673        return pmd_offset(pud, address);
 674}
 675
 676/*
 677 * This is necessary because __pa() does not work on some
 678 * kinds of memory, like vmalloc() or the alloc_remap()
 679 * areas on 32-bit NUMA systems.  The percpu areas can
 680 * end up in this kind of memory, for instance.
 681 *
 682 * This could be optimized, but it is only intended to be
 683 * used at inititalization time, and keeping it
 684 * unoptimized should increase the testing coverage for
 685 * the more obscure platforms.
 686 */
 687phys_addr_t slow_virt_to_phys(void *__virt_addr)
 688{
 689        unsigned long virt_addr = (unsigned long)__virt_addr;
 690        phys_addr_t phys_addr;
 691        unsigned long offset;
 692        enum pg_level level;
 693        pte_t *pte;
 694
 695        pte = lookup_address(virt_addr, &level);
 696        BUG_ON(!pte);
 697
 698        /*
 699         * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
 700         * before being left-shifted PAGE_SHIFT bits -- this trick is to
 701         * make 32-PAE kernel work correctly.
 702         */
 703        switch (level) {
 704        case PG_LEVEL_1G:
 705                phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
 706                offset = virt_addr & ~PUD_PAGE_MASK;
 707                break;
 708        case PG_LEVEL_2M:
 709                phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
 710                offset = virt_addr & ~PMD_PAGE_MASK;
 711                break;
 712        default:
 713                phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
 714                offset = virt_addr & ~PAGE_MASK;
 715        }
 716
 717        return (phys_addr_t)(phys_addr | offset);
 718}
 719EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 720
 721/*
 722 * Set the new pmd in all the pgds we know about:
 723 */
 724static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 725{
 726        /* change init_mm */
 727        set_pte_atomic(kpte, pte);
 728#ifdef CONFIG_X86_32
 729        if (!SHARED_KERNEL_PMD) {
 730                struct page *page;
 731
 732                list_for_each_entry(page, &pgd_list, lru) {
 733                        pgd_t *pgd;
 734                        p4d_t *p4d;
 735                        pud_t *pud;
 736                        pmd_t *pmd;
 737
 738                        pgd = (pgd_t *)page_address(page) + pgd_index(address);
 739                        p4d = p4d_offset(pgd, address);
 740                        pud = pud_offset(p4d, address);
 741                        pmd = pmd_offset(pud, address);
 742                        set_pte_atomic((pte_t *)pmd, pte);
 743                }
 744        }
 745#endif
 746}
 747
 748static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
 749{
 750        /*
 751         * _PAGE_GLOBAL means "global page" for present PTEs.
 752         * But, it is also used to indicate _PAGE_PROTNONE
 753         * for non-present PTEs.
 754         *
 755         * This ensures that a _PAGE_GLOBAL PTE going from
 756         * present to non-present is not confused as
 757         * _PAGE_PROTNONE.
 758         */
 759        if (!(pgprot_val(prot) & _PAGE_PRESENT))
 760                pgprot_val(prot) &= ~_PAGE_GLOBAL;
 761
 762        return prot;
 763}
 764
 765static int __should_split_large_page(pte_t *kpte, unsigned long address,
 766                                     struct cpa_data *cpa)
 767{
 768        unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
 769        pgprot_t old_prot, new_prot, req_prot, chk_prot;
 770        pte_t new_pte, *tmp;
 771        enum pg_level level;
 772
 773        /*
 774         * Check for races, another CPU might have split this page
 775         * up already:
 776         */
 777        tmp = _lookup_address_cpa(cpa, address, &level);
 778        if (tmp != kpte)
 779                return 1;
 780
 781        switch (level) {
 782        case PG_LEVEL_2M:
 783                old_prot = pmd_pgprot(*(pmd_t *)kpte);
 784                old_pfn = pmd_pfn(*(pmd_t *)kpte);
 785                cpa_inc_2m_checked();
 786                break;
 787        case PG_LEVEL_1G:
 788                old_prot = pud_pgprot(*(pud_t *)kpte);
 789                old_pfn = pud_pfn(*(pud_t *)kpte);
 790                cpa_inc_1g_checked();
 791                break;
 792        default:
 793                return -EINVAL;
 794        }
 795
 796        psize = page_level_size(level);
 797        pmask = page_level_mask(level);
 798
 799        /*
 800         * Calculate the number of pages, which fit into this large
 801         * page starting at address:
 802         */
 803        lpaddr = (address + psize) & pmask;
 804        numpages = (lpaddr - address) >> PAGE_SHIFT;
 805        if (numpages < cpa->numpages)
 806                cpa->numpages = numpages;
 807
 808        /*
 809         * We are safe now. Check whether the new pgprot is the same:
 810         * Convert protection attributes to 4k-format, as cpa->mask* are set
 811         * up accordingly.
 812         */
 813
 814        /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
 815        req_prot = pgprot_large_2_4k(old_prot);
 816
 817        pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 818        pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 819
 820        /*
 821         * req_prot is in format of 4k pages. It must be converted to large
 822         * page format: the caching mode includes the PAT bit located at
 823         * different bit positions in the two formats.
 824         */
 825        req_prot = pgprot_4k_2_large(req_prot);
 826        req_prot = pgprot_clear_protnone_bits(req_prot);
 827        if (pgprot_val(req_prot) & _PAGE_PRESENT)
 828                pgprot_val(req_prot) |= _PAGE_PSE;
 829
 830        /*
 831         * old_pfn points to the large page base pfn. So we need to add the
 832         * offset of the virtual address:
 833         */
 834        pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
 835        cpa->pfn = pfn;
 836
 837        /*
 838         * Calculate the large page base address and the number of 4K pages
 839         * in the large page
 840         */
 841        lpaddr = address & pmask;
 842        numpages = psize >> PAGE_SHIFT;
 843
 844        /*
 845         * Sanity check that the existing mapping is correct versus the static
 846         * protections. static_protections() guards against !PRESENT, so no
 847         * extra conditional required here.
 848         */
 849        chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
 850                                      psize, CPA_CONFLICT);
 851
 852        if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
 853                /*
 854                 * Split the large page and tell the split code to
 855                 * enforce static protections.
 856                 */
 857                cpa->force_static_prot = 1;
 858                return 1;
 859        }
 860
 861        /*
 862         * Optimization: If the requested pgprot is the same as the current
 863         * pgprot, then the large page can be preserved and no updates are
 864         * required independent of alignment and length of the requested
 865         * range. The above already established that the current pgprot is
 866         * correct, which in consequence makes the requested pgprot correct
 867         * as well if it is the same. The static protection scan below will
 868         * not come to a different conclusion.
 869         */
 870        if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
 871                cpa_inc_lp_sameprot(level);
 872                return 0;
 873        }
 874
 875        /*
 876         * If the requested range does not cover the full page, split it up
 877         */
 878        if (address != lpaddr || cpa->numpages != numpages)
 879                return 1;
 880
 881        /*
 882         * Check whether the requested pgprot is conflicting with a static
 883         * protection requirement in the large page.
 884         */
 885        new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
 886                                      psize, CPA_DETECT);
 887
 888        /*
 889         * If there is a conflict, split the large page.
 890         *
 891         * There used to be a 4k wise evaluation trying really hard to
 892         * preserve the large pages, but experimentation has shown, that this
 893         * does not help at all. There might be corner cases which would
 894         * preserve one large page occasionally, but it's really not worth the
 895         * extra code and cycles for the common case.
 896         */
 897        if (pgprot_val(req_prot) != pgprot_val(new_prot))
 898                return 1;
 899
 900        /* All checks passed. Update the large page mapping. */
 901        new_pte = pfn_pte(old_pfn, new_prot);
 902        __set_pmd_pte(kpte, address, new_pte);
 903        cpa->flags |= CPA_FLUSHTLB;
 904        cpa_inc_lp_preserved(level);
 905        return 0;
 906}
 907
 908static int should_split_large_page(pte_t *kpte, unsigned long address,
 909                                   struct cpa_data *cpa)
 910{
 911        int do_split;
 912
 913        if (cpa->force_split)
 914                return 1;
 915
 916        spin_lock(&pgd_lock);
 917        do_split = __should_split_large_page(kpte, address, cpa);
 918        spin_unlock(&pgd_lock);
 919
 920        return do_split;
 921}
 922
 923static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
 924                          pgprot_t ref_prot, unsigned long address,
 925                          unsigned long size)
 926{
 927        unsigned int npg = PFN_DOWN(size);
 928        pgprot_t prot;
 929
 930        /*
 931         * If should_split_large_page() discovered an inconsistent mapping,
 932         * remove the invalid protection in the split mapping.
 933         */
 934        if (!cpa->force_static_prot)
 935                goto set;
 936
 937        /* Hand in lpsize = 0 to enforce the protection mechanism */
 938        prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
 939
 940        if (pgprot_val(prot) == pgprot_val(ref_prot))
 941                goto set;
 942
 943        /*
 944         * If this is splitting a PMD, fix it up. PUD splits cannot be
 945         * fixed trivially as that would require to rescan the newly
 946         * installed PMD mappings after returning from split_large_page()
 947         * so an eventual further split can allocate the necessary PTE
 948         * pages. Warn for now and revisit it in case this actually
 949         * happens.
 950         */
 951        if (size == PAGE_SIZE)
 952                ref_prot = prot;
 953        else
 954                pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
 955set:
 956        set_pte(pte, pfn_pte(pfn, ref_prot));
 957}
 958
 959static int
 960__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
 961                   struct page *base)
 962{
 963        unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
 964        pte_t *pbase = (pte_t *)page_address(base);
 965        unsigned int i, level;
 966        pgprot_t ref_prot;
 967        pte_t *tmp;
 968
 969        spin_lock(&pgd_lock);
 970        /*
 971         * Check for races, another CPU might have split this page
 972         * up for us already:
 973         */
 974        tmp = _lookup_address_cpa(cpa, address, &level);
 975        if (tmp != kpte) {
 976                spin_unlock(&pgd_lock);
 977                return 1;
 978        }
 979
 980        paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 981
 982        switch (level) {
 983        case PG_LEVEL_2M:
 984                ref_prot = pmd_pgprot(*(pmd_t *)kpte);
 985                /*
 986                 * Clear PSE (aka _PAGE_PAT) and move
 987                 * PAT bit to correct position.
 988                 */
 989                ref_prot = pgprot_large_2_4k(ref_prot);
 990                ref_pfn = pmd_pfn(*(pmd_t *)kpte);
 991                lpaddr = address & PMD_MASK;
 992                lpinc = PAGE_SIZE;
 993                break;
 994
 995        case PG_LEVEL_1G:
 996                ref_prot = pud_pgprot(*(pud_t *)kpte);
 997                ref_pfn = pud_pfn(*(pud_t *)kpte);
 998                pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 999                lpaddr = address & PUD_MASK;
1000                lpinc = PMD_SIZE;
1001                /*
1002                 * Clear the PSE flags if the PRESENT flag is not set
1003                 * otherwise pmd_present/pmd_huge will return true
1004                 * even on a non present pmd.
1005                 */
1006                if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1007                        pgprot_val(ref_prot) &= ~_PAGE_PSE;
1008                break;
1009
1010        default:
1011                spin_unlock(&pgd_lock);
1012                return 1;
1013        }
1014
1015        ref_prot = pgprot_clear_protnone_bits(ref_prot);
1016
1017        /*
1018         * Get the target pfn from the original entry:
1019         */
1020        pfn = ref_pfn;
1021        for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1022                split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1023
1024        if (virt_addr_valid(address)) {
1025                unsigned long pfn = PFN_DOWN(__pa(address));
1026
1027                if (pfn_range_is_mapped(pfn, pfn + 1))
1028                        split_page_count(level);
1029        }
1030
1031        /*
1032         * Install the new, split up pagetable.
1033         *
1034         * We use the standard kernel pagetable protections for the new
1035         * pagetable protections, the actual ptes set above control the
1036         * primary protection behavior:
1037         */
1038        __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1039
1040        /*
1041         * Do a global flush tlb after splitting the large page
1042         * and before we do the actual change page attribute in the PTE.
1043         *
1044         * Without this, we violate the TLB application note, that says:
1045         * "The TLBs may contain both ordinary and large-page
1046         *  translations for a 4-KByte range of linear addresses. This
1047         *  may occur if software modifies the paging structures so that
1048         *  the page size used for the address range changes. If the two
1049         *  translations differ with respect to page frame or attributes
1050         *  (e.g., permissions), processor behavior is undefined and may
1051         *  be implementation-specific."
1052         *
1053         * We do this global tlb flush inside the cpa_lock, so that we
1054         * don't allow any other cpu, with stale tlb entries change the
1055         * page attribute in parallel, that also falls into the
1056         * just split large page entry.
1057         */
1058        flush_tlb_all();
1059        spin_unlock(&pgd_lock);
1060
1061        return 0;
1062}
1063
1064static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1065                            unsigned long address)
1066{
1067        struct page *base;
1068
1069        if (!debug_pagealloc_enabled())
1070                spin_unlock(&cpa_lock);
1071        base = alloc_pages(GFP_KERNEL, 0);
1072        if (!debug_pagealloc_enabled())
1073                spin_lock(&cpa_lock);
1074        if (!base)
1075                return -ENOMEM;
1076
1077        if (__split_large_page(cpa, kpte, address, base))
1078                __free_page(base);
1079
1080        return 0;
1081}
1082
1083static bool try_to_free_pte_page(pte_t *pte)
1084{
1085        int i;
1086
1087        for (i = 0; i < PTRS_PER_PTE; i++)
1088                if (!pte_none(pte[i]))
1089                        return false;
1090
1091        free_page((unsigned long)pte);
1092        return true;
1093}
1094
1095static bool try_to_free_pmd_page(pmd_t *pmd)
1096{
1097        int i;
1098
1099        for (i = 0; i < PTRS_PER_PMD; i++)
1100                if (!pmd_none(pmd[i]))
1101                        return false;
1102
1103        free_page((unsigned long)pmd);
1104        return true;
1105}
1106
1107static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1108{
1109        pte_t *pte = pte_offset_kernel(pmd, start);
1110
1111        while (start < end) {
1112                set_pte(pte, __pte(0));
1113
1114                start += PAGE_SIZE;
1115                pte++;
1116        }
1117
1118        if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1119                pmd_clear(pmd);
1120                return true;
1121        }
1122        return false;
1123}
1124
1125static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1126                              unsigned long start, unsigned long end)
1127{
1128        if (unmap_pte_range(pmd, start, end))
1129                if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1130                        pud_clear(pud);
1131}
1132
1133static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1134{
1135        pmd_t *pmd = pmd_offset(pud, start);
1136
1137        /*
1138         * Not on a 2MB page boundary?
1139         */
1140        if (start & (PMD_SIZE - 1)) {
1141                unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1142                unsigned long pre_end = min_t(unsigned long, end, next_page);
1143
1144                __unmap_pmd_range(pud, pmd, start, pre_end);
1145
1146                start = pre_end;
1147                pmd++;
1148        }
1149
1150        /*
1151         * Try to unmap in 2M chunks.
1152         */
1153        while (end - start >= PMD_SIZE) {
1154                if (pmd_large(*pmd))
1155                        pmd_clear(pmd);
1156                else
1157                        __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1158
1159                start += PMD_SIZE;
1160                pmd++;
1161        }
1162
1163        /*
1164         * 4K leftovers?
1165         */
1166        if (start < end)
1167                return __unmap_pmd_range(pud, pmd, start, end);
1168
1169        /*
1170         * Try again to free the PMD page if haven't succeeded above.
1171         */
1172        if (!pud_none(*pud))
1173                if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1174                        pud_clear(pud);
1175}
1176
1177static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1178{
1179        pud_t *pud = pud_offset(p4d, start);
1180
1181        /*
1182         * Not on a GB page boundary?
1183         */
1184        if (start & (PUD_SIZE - 1)) {
1185                unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1186                unsigned long pre_end   = min_t(unsigned long, end, next_page);
1187
1188                unmap_pmd_range(pud, start, pre_end);
1189
1190                start = pre_end;
1191                pud++;
1192        }
1193
1194        /*
1195         * Try to unmap in 1G chunks?
1196         */
1197        while (end - start >= PUD_SIZE) {
1198
1199                if (pud_large(*pud))
1200                        pud_clear(pud);
1201                else
1202                        unmap_pmd_range(pud, start, start + PUD_SIZE);
1203
1204                start += PUD_SIZE;
1205                pud++;
1206        }
1207
1208        /*
1209         * 2M leftovers?
1210         */
1211        if (start < end)
1212                unmap_pmd_range(pud, start, end);
1213
1214        /*
1215         * No need to try to free the PUD page because we'll free it in
1216         * populate_pgd's error path
1217         */
1218}
1219
1220static int alloc_pte_page(pmd_t *pmd)
1221{
1222        pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1223        if (!pte)
1224                return -1;
1225
1226        set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1227        return 0;
1228}
1229
1230static int alloc_pmd_page(pud_t *pud)
1231{
1232        pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1233        if (!pmd)
1234                return -1;
1235
1236        set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1237        return 0;
1238}
1239
1240static void populate_pte(struct cpa_data *cpa,
1241                         unsigned long start, unsigned long end,
1242                         unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1243{
1244        pte_t *pte;
1245
1246        pte = pte_offset_kernel(pmd, start);
1247
1248        pgprot = pgprot_clear_protnone_bits(pgprot);
1249
1250        while (num_pages-- && start < end) {
1251                set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1252
1253                start    += PAGE_SIZE;
1254                cpa->pfn++;
1255                pte++;
1256        }
1257}
1258
1259static long populate_pmd(struct cpa_data *cpa,
1260                         unsigned long start, unsigned long end,
1261                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1262{
1263        long cur_pages = 0;
1264        pmd_t *pmd;
1265        pgprot_t pmd_pgprot;
1266
1267        /*
1268         * Not on a 2M boundary?
1269         */
1270        if (start & (PMD_SIZE - 1)) {
1271                unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1272                unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1273
1274                pre_end   = min_t(unsigned long, pre_end, next_page);
1275                cur_pages = (pre_end - start) >> PAGE_SHIFT;
1276                cur_pages = min_t(unsigned int, num_pages, cur_pages);
1277
1278                /*
1279                 * Need a PTE page?
1280                 */
1281                pmd = pmd_offset(pud, start);
1282                if (pmd_none(*pmd))
1283                        if (alloc_pte_page(pmd))
1284                                return -1;
1285
1286                populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1287
1288                start = pre_end;
1289        }
1290
1291        /*
1292         * We mapped them all?
1293         */
1294        if (num_pages == cur_pages)
1295                return cur_pages;
1296
1297        pmd_pgprot = pgprot_4k_2_large(pgprot);
1298
1299        while (end - start >= PMD_SIZE) {
1300
1301                /*
1302                 * We cannot use a 1G page so allocate a PMD page if needed.
1303                 */
1304                if (pud_none(*pud))
1305                        if (alloc_pmd_page(pud))
1306                                return -1;
1307
1308                pmd = pmd_offset(pud, start);
1309
1310                set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1311                                        canon_pgprot(pmd_pgprot))));
1312
1313                start     += PMD_SIZE;
1314                cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1315                cur_pages += PMD_SIZE >> PAGE_SHIFT;
1316        }
1317
1318        /*
1319         * Map trailing 4K pages.
1320         */
1321        if (start < end) {
1322                pmd = pmd_offset(pud, start);
1323                if (pmd_none(*pmd))
1324                        if (alloc_pte_page(pmd))
1325                                return -1;
1326
1327                populate_pte(cpa, start, end, num_pages - cur_pages,
1328                             pmd, pgprot);
1329        }
1330        return num_pages;
1331}
1332
1333static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1334                        pgprot_t pgprot)
1335{
1336        pud_t *pud;
1337        unsigned long end;
1338        long cur_pages = 0;
1339        pgprot_t pud_pgprot;
1340
1341        end = start + (cpa->numpages << PAGE_SHIFT);
1342
1343        /*
1344         * Not on a Gb page boundary? => map everything up to it with
1345         * smaller pages.
1346         */
1347        if (start & (PUD_SIZE - 1)) {
1348                unsigned long pre_end;
1349                unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1350
1351                pre_end   = min_t(unsigned long, end, next_page);
1352                cur_pages = (pre_end - start) >> PAGE_SHIFT;
1353                cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1354
1355                pud = pud_offset(p4d, start);
1356
1357                /*
1358                 * Need a PMD page?
1359                 */
1360                if (pud_none(*pud))
1361                        if (alloc_pmd_page(pud))
1362                                return -1;
1363
1364                cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1365                                         pud, pgprot);
1366                if (cur_pages < 0)
1367                        return cur_pages;
1368
1369                start = pre_end;
1370        }
1371
1372        /* We mapped them all? */
1373        if (cpa->numpages == cur_pages)
1374                return cur_pages;
1375
1376        pud = pud_offset(p4d, start);
1377        pud_pgprot = pgprot_4k_2_large(pgprot);
1378
1379        /*
1380         * Map everything starting from the Gb boundary, possibly with 1G pages
1381         */
1382        while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1383                set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1384                                   canon_pgprot(pud_pgprot))));
1385
1386                start     += PUD_SIZE;
1387                cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1388                cur_pages += PUD_SIZE >> PAGE_SHIFT;
1389                pud++;
1390        }
1391
1392        /* Map trailing leftover */
1393        if (start < end) {
1394                long tmp;
1395
1396                pud = pud_offset(p4d, start);
1397                if (pud_none(*pud))
1398                        if (alloc_pmd_page(pud))
1399                                return -1;
1400
1401                tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1402                                   pud, pgprot);
1403                if (tmp < 0)
1404                        return cur_pages;
1405
1406                cur_pages += tmp;
1407        }
1408        return cur_pages;
1409}
1410
1411/*
1412 * Restrictions for kernel page table do not necessarily apply when mapping in
1413 * an alternate PGD.
1414 */
1415static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1416{
1417        pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1418        pud_t *pud = NULL;      /* shut up gcc */
1419        p4d_t *p4d;
1420        pgd_t *pgd_entry;
1421        long ret;
1422
1423        pgd_entry = cpa->pgd + pgd_index(addr);
1424
1425        if (pgd_none(*pgd_entry)) {
1426                p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1427                if (!p4d)
1428                        return -1;
1429
1430                set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1431        }
1432
1433        /*
1434         * Allocate a PUD page and hand it down for mapping.
1435         */
1436        p4d = p4d_offset(pgd_entry, addr);
1437        if (p4d_none(*p4d)) {
1438                pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1439                if (!pud)
1440                        return -1;
1441
1442                set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1443        }
1444
1445        pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1446        pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1447
1448        ret = populate_pud(cpa, addr, p4d, pgprot);
1449        if (ret < 0) {
1450                /*
1451                 * Leave the PUD page in place in case some other CPU or thread
1452                 * already found it, but remove any useless entries we just
1453                 * added to it.
1454                 */
1455                unmap_pud_range(p4d, addr,
1456                                addr + (cpa->numpages << PAGE_SHIFT));
1457                return ret;
1458        }
1459
1460        cpa->numpages = ret;
1461        return 0;
1462}
1463
1464static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1465                               int primary)
1466{
1467        if (cpa->pgd) {
1468                /*
1469                 * Right now, we only execute this code path when mapping
1470                 * the EFI virtual memory map regions, no other users
1471                 * provide a ->pgd value. This may change in the future.
1472                 */
1473                return populate_pgd(cpa, vaddr);
1474        }
1475
1476        /*
1477         * Ignore all non primary paths.
1478         */
1479        if (!primary) {
1480                cpa->numpages = 1;
1481                return 0;
1482        }
1483
1484        /*
1485         * Ignore the NULL PTE for kernel identity mapping, as it is expected
1486         * to have holes.
1487         * Also set numpages to '1' indicating that we processed cpa req for
1488         * one virtual address page and its pfn. TBD: numpages can be set based
1489         * on the initial value and the level returned by lookup_address().
1490         */
1491        if (within(vaddr, PAGE_OFFSET,
1492                   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1493                cpa->numpages = 1;
1494                cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1495                return 0;
1496
1497        } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1498                /* Faults in the highmap are OK, so do not warn: */
1499                return -EFAULT;
1500        } else {
1501                WARN(1, KERN_WARNING "CPA: called for zero pte. "
1502                        "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1503                        *cpa->vaddr);
1504
1505                return -EFAULT;
1506        }
1507}
1508
1509static int __change_page_attr(struct cpa_data *cpa, int primary)
1510{
1511        unsigned long address;
1512        int do_split, err;
1513        unsigned int level;
1514        pte_t *kpte, old_pte;
1515
1516        address = __cpa_addr(cpa, cpa->curpage);
1517repeat:
1518        kpte = _lookup_address_cpa(cpa, address, &level);
1519        if (!kpte)
1520                return __cpa_process_fault(cpa, address, primary);
1521
1522        old_pte = *kpte;
1523        if (pte_none(old_pte))
1524                return __cpa_process_fault(cpa, address, primary);
1525
1526        if (level == PG_LEVEL_4K) {
1527                pte_t new_pte;
1528                pgprot_t new_prot = pte_pgprot(old_pte);
1529                unsigned long pfn = pte_pfn(old_pte);
1530
1531                pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1532                pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1533
1534                cpa_inc_4k_install();
1535                /* Hand in lpsize = 0 to enforce the protection mechanism */
1536                new_prot = static_protections(new_prot, address, pfn, 1, 0,
1537                                              CPA_PROTECT);
1538
1539                new_prot = pgprot_clear_protnone_bits(new_prot);
1540
1541                /*
1542                 * We need to keep the pfn from the existing PTE,
1543                 * after all we're only going to change it's attributes
1544                 * not the memory it points to
1545                 */
1546                new_pte = pfn_pte(pfn, new_prot);
1547                cpa->pfn = pfn;
1548                /*
1549                 * Do we really change anything ?
1550                 */
1551                if (pte_val(old_pte) != pte_val(new_pte)) {
1552                        set_pte_atomic(kpte, new_pte);
1553                        cpa->flags |= CPA_FLUSHTLB;
1554                }
1555                cpa->numpages = 1;
1556                return 0;
1557        }
1558
1559        /*
1560         * Check, whether we can keep the large page intact
1561         * and just change the pte:
1562         */
1563        do_split = should_split_large_page(kpte, address, cpa);
1564        /*
1565         * When the range fits into the existing large page,
1566         * return. cp->numpages and cpa->tlbflush have been updated in
1567         * try_large_page:
1568         */
1569        if (do_split <= 0)
1570                return do_split;
1571
1572        /*
1573         * We have to split the large page:
1574         */
1575        err = split_large_page(cpa, kpte, address);
1576        if (!err)
1577                goto repeat;
1578
1579        return err;
1580}
1581
1582static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1583
1584static int cpa_process_alias(struct cpa_data *cpa)
1585{
1586        struct cpa_data alias_cpa;
1587        unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1588        unsigned long vaddr;
1589        int ret;
1590
1591        if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1592                return 0;
1593
1594        /*
1595         * No need to redo, when the primary call touched the direct
1596         * mapping already:
1597         */
1598        vaddr = __cpa_addr(cpa, cpa->curpage);
1599        if (!(within(vaddr, PAGE_OFFSET,
1600                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1601
1602                alias_cpa = *cpa;
1603                alias_cpa.vaddr = &laddr;
1604                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1605                alias_cpa.curpage = 0;
1606
1607                cpa->force_flush_all = 1;
1608
1609                ret = __change_page_attr_set_clr(&alias_cpa, 0);
1610                if (ret)
1611                        return ret;
1612        }
1613
1614#ifdef CONFIG_X86_64
1615        /*
1616         * If the primary call didn't touch the high mapping already
1617         * and the physical address is inside the kernel map, we need
1618         * to touch the high mapped kernel as well:
1619         */
1620        if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1621            __cpa_pfn_in_highmap(cpa->pfn)) {
1622                unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1623                                               __START_KERNEL_map - phys_base;
1624                alias_cpa = *cpa;
1625                alias_cpa.vaddr = &temp_cpa_vaddr;
1626                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1627                alias_cpa.curpage = 0;
1628
1629                cpa->force_flush_all = 1;
1630                /*
1631                 * The high mapping range is imprecise, so ignore the
1632                 * return value.
1633                 */
1634                __change_page_attr_set_clr(&alias_cpa, 0);
1635        }
1636#endif
1637
1638        return 0;
1639}
1640
1641static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1642{
1643        unsigned long numpages = cpa->numpages;
1644        unsigned long rempages = numpages;
1645        int ret = 0;
1646
1647        while (rempages) {
1648                /*
1649                 * Store the remaining nr of pages for the large page
1650                 * preservation check.
1651                 */
1652                cpa->numpages = rempages;
1653                /* for array changes, we can't use large page */
1654                if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1655                        cpa->numpages = 1;
1656
1657                if (!debug_pagealloc_enabled())
1658                        spin_lock(&cpa_lock);
1659                ret = __change_page_attr(cpa, checkalias);
1660                if (!debug_pagealloc_enabled())
1661                        spin_unlock(&cpa_lock);
1662                if (ret)
1663                        goto out;
1664
1665                if (checkalias) {
1666                        ret = cpa_process_alias(cpa);
1667                        if (ret)
1668                                goto out;
1669                }
1670
1671                /*
1672                 * Adjust the number of pages with the result of the
1673                 * CPA operation. Either a large page has been
1674                 * preserved or a single page update happened.
1675                 */
1676                BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1677                rempages -= cpa->numpages;
1678                cpa->curpage += cpa->numpages;
1679        }
1680
1681out:
1682        /* Restore the original numpages */
1683        cpa->numpages = numpages;
1684        return ret;
1685}
1686
1687static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1688                                    pgprot_t mask_set, pgprot_t mask_clr,
1689                                    int force_split, int in_flag,
1690                                    struct page **pages)
1691{
1692        struct cpa_data cpa;
1693        int ret, cache, checkalias;
1694
1695        memset(&cpa, 0, sizeof(cpa));
1696
1697        /*
1698         * Check, if we are requested to set a not supported
1699         * feature.  Clearing non-supported features is OK.
1700         */
1701        mask_set = canon_pgprot(mask_set);
1702
1703        if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1704                return 0;
1705
1706        /* Ensure we are PAGE_SIZE aligned */
1707        if (in_flag & CPA_ARRAY) {
1708                int i;
1709                for (i = 0; i < numpages; i++) {
1710                        if (addr[i] & ~PAGE_MASK) {
1711                                addr[i] &= PAGE_MASK;
1712                                WARN_ON_ONCE(1);
1713                        }
1714                }
1715        } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1716                /*
1717                 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1718                 * No need to check in that case
1719                 */
1720                if (*addr & ~PAGE_MASK) {
1721                        *addr &= PAGE_MASK;
1722                        /*
1723                         * People should not be passing in unaligned addresses:
1724                         */
1725                        WARN_ON_ONCE(1);
1726                }
1727        }
1728
1729        /* Must avoid aliasing mappings in the highmem code */
1730        kmap_flush_unused();
1731
1732        vm_unmap_aliases();
1733
1734        cpa.vaddr = addr;
1735        cpa.pages = pages;
1736        cpa.numpages = numpages;
1737        cpa.mask_set = mask_set;
1738        cpa.mask_clr = mask_clr;
1739        cpa.flags = 0;
1740        cpa.curpage = 0;
1741        cpa.force_split = force_split;
1742
1743        if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1744                cpa.flags |= in_flag;
1745
1746        /* No alias checking for _NX bit modifications */
1747        checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1748        /* Has caller explicitly disabled alias checking? */
1749        if (in_flag & CPA_NO_CHECK_ALIAS)
1750                checkalias = 0;
1751
1752        ret = __change_page_attr_set_clr(&cpa, checkalias);
1753
1754        /*
1755         * Check whether we really changed something:
1756         */
1757        if (!(cpa.flags & CPA_FLUSHTLB))
1758                goto out;
1759
1760        /*
1761         * No need to flush, when we did not set any of the caching
1762         * attributes:
1763         */
1764        cache = !!pgprot2cachemode(mask_set);
1765
1766        /*
1767         * On error; flush everything to be sure.
1768         */
1769        if (ret) {
1770                cpa_flush_all(cache);
1771                goto out;
1772        }
1773
1774        cpa_flush(&cpa, cache);
1775out:
1776        return ret;
1777}
1778
1779static inline int change_page_attr_set(unsigned long *addr, int numpages,
1780                                       pgprot_t mask, int array)
1781{
1782        return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1783                (array ? CPA_ARRAY : 0), NULL);
1784}
1785
1786static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1787                                         pgprot_t mask, int array)
1788{
1789        return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1790                (array ? CPA_ARRAY : 0), NULL);
1791}
1792
1793static inline int cpa_set_pages_array(struct page **pages, int numpages,
1794                                       pgprot_t mask)
1795{
1796        return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1797                CPA_PAGES_ARRAY, pages);
1798}
1799
1800static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1801                                         pgprot_t mask)
1802{
1803        return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1804                CPA_PAGES_ARRAY, pages);
1805}
1806
1807/*
1808 * _set_memory_prot is an internal helper for callers that have been passed
1809 * a pgprot_t value from upper layers and a reservation has already been taken.
1810 * If you want to set the pgprot to a specific page protocol, use the
1811 * set_memory_xx() functions.
1812 */
1813int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1814{
1815        return change_page_attr_set_clr(&addr, numpages, prot,
1816                                        __pgprot(~pgprot_val(prot)), 0, 0,
1817                                        NULL);
1818}
1819
1820int _set_memory_uc(unsigned long addr, int numpages)
1821{
1822        /*
1823         * for now UC MINUS. see comments in ioremap()
1824         * If you really need strong UC use ioremap_uc(), but note
1825         * that you cannot override IO areas with set_memory_*() as
1826         * these helpers cannot work with IO memory.
1827         */
1828        return change_page_attr_set(&addr, numpages,
1829                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1830                                    0);
1831}
1832
1833int set_memory_uc(unsigned long addr, int numpages)
1834{
1835        int ret;
1836
1837        /*
1838         * for now UC MINUS. see comments in ioremap()
1839         */
1840        ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1841                              _PAGE_CACHE_MODE_UC_MINUS, NULL);
1842        if (ret)
1843                goto out_err;
1844
1845        ret = _set_memory_uc(addr, numpages);
1846        if (ret)
1847                goto out_free;
1848
1849        return 0;
1850
1851out_free:
1852        memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1853out_err:
1854        return ret;
1855}
1856EXPORT_SYMBOL(set_memory_uc);
1857
1858int _set_memory_wc(unsigned long addr, int numpages)
1859{
1860        int ret;
1861
1862        ret = change_page_attr_set(&addr, numpages,
1863                                   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1864                                   0);
1865        if (!ret) {
1866                ret = change_page_attr_set_clr(&addr, numpages,
1867                                               cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1868                                               __pgprot(_PAGE_CACHE_MASK),
1869                                               0, 0, NULL);
1870        }
1871        return ret;
1872}
1873
1874int set_memory_wc(unsigned long addr, int numpages)
1875{
1876        int ret;
1877
1878        ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1879                _PAGE_CACHE_MODE_WC, NULL);
1880        if (ret)
1881                return ret;
1882
1883        ret = _set_memory_wc(addr, numpages);
1884        if (ret)
1885                memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1886
1887        return ret;
1888}
1889EXPORT_SYMBOL(set_memory_wc);
1890
1891int _set_memory_wt(unsigned long addr, int numpages)
1892{
1893        return change_page_attr_set(&addr, numpages,
1894                                    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1895}
1896
1897int _set_memory_wb(unsigned long addr, int numpages)
1898{
1899        /* WB cache mode is hard wired to all cache attribute bits being 0 */
1900        return change_page_attr_clear(&addr, numpages,
1901                                      __pgprot(_PAGE_CACHE_MASK), 0);
1902}
1903
1904int set_memory_wb(unsigned long addr, int numpages)
1905{
1906        int ret;
1907
1908        ret = _set_memory_wb(addr, numpages);
1909        if (ret)
1910                return ret;
1911
1912        memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1913        return 0;
1914}
1915EXPORT_SYMBOL(set_memory_wb);
1916
1917int set_memory_x(unsigned long addr, int numpages)
1918{
1919        if (!(__supported_pte_mask & _PAGE_NX))
1920                return 0;
1921
1922        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1923}
1924
1925int set_memory_nx(unsigned long addr, int numpages)
1926{
1927        if (!(__supported_pte_mask & _PAGE_NX))
1928                return 0;
1929
1930        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1931}
1932
1933int set_memory_ro(unsigned long addr, int numpages)
1934{
1935        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1936}
1937
1938int set_memory_rw(unsigned long addr, int numpages)
1939{
1940        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1941}
1942
1943int set_memory_np(unsigned long addr, int numpages)
1944{
1945        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1946}
1947
1948int set_memory_np_noalias(unsigned long addr, int numpages)
1949{
1950        int cpa_flags = CPA_NO_CHECK_ALIAS;
1951
1952        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1953                                        __pgprot(_PAGE_PRESENT), 0,
1954                                        cpa_flags, NULL);
1955}
1956
1957int set_memory_4k(unsigned long addr, int numpages)
1958{
1959        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1960                                        __pgprot(0), 1, 0, NULL);
1961}
1962
1963int set_memory_nonglobal(unsigned long addr, int numpages)
1964{
1965        return change_page_attr_clear(&addr, numpages,
1966                                      __pgprot(_PAGE_GLOBAL), 0);
1967}
1968
1969int set_memory_global(unsigned long addr, int numpages)
1970{
1971        return change_page_attr_set(&addr, numpages,
1972                                    __pgprot(_PAGE_GLOBAL), 0);
1973}
1974
1975static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1976{
1977        struct cpa_data cpa;
1978        int ret;
1979
1980        /* Nothing to do if memory encryption is not active */
1981        if (!mem_encrypt_active())
1982                return 0;
1983
1984        /* Should not be working on unaligned addresses */
1985        if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1986                addr &= PAGE_MASK;
1987
1988        memset(&cpa, 0, sizeof(cpa));
1989        cpa.vaddr = &addr;
1990        cpa.numpages = numpages;
1991        cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1992        cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1993        cpa.pgd = init_mm.pgd;
1994
1995        /* Must avoid aliasing mappings in the highmem code */
1996        kmap_flush_unused();
1997        vm_unmap_aliases();
1998
1999        /*
2000         * Before changing the encryption attribute, we need to flush caches.
2001         */
2002        cpa_flush(&cpa, 1);
2003
2004        ret = __change_page_attr_set_clr(&cpa, 1);
2005
2006        /*
2007         * After changing the encryption attribute, we need to flush TLBs again
2008         * in case any speculative TLB caching occurred (but no need to flush
2009         * caches again).  We could just use cpa_flush_all(), but in case TLB
2010         * flushing gets optimized in the cpa_flush() path use the same logic
2011         * as above.
2012         */
2013        cpa_flush(&cpa, 0);
2014
2015        return ret;
2016}
2017
2018int set_memory_encrypted(unsigned long addr, int numpages)
2019{
2020        return __set_memory_enc_dec(addr, numpages, true);
2021}
2022EXPORT_SYMBOL_GPL(set_memory_encrypted);
2023
2024int set_memory_decrypted(unsigned long addr, int numpages)
2025{
2026        return __set_memory_enc_dec(addr, numpages, false);
2027}
2028EXPORT_SYMBOL_GPL(set_memory_decrypted);
2029
2030int set_pages_uc(struct page *page, int numpages)
2031{
2032        unsigned long addr = (unsigned long)page_address(page);
2033
2034        return set_memory_uc(addr, numpages);
2035}
2036EXPORT_SYMBOL(set_pages_uc);
2037
2038static int _set_pages_array(struct page **pages, int numpages,
2039                enum page_cache_mode new_type)
2040{
2041        unsigned long start;
2042        unsigned long end;
2043        enum page_cache_mode set_type;
2044        int i;
2045        int free_idx;
2046        int ret;
2047
2048        for (i = 0; i < numpages; i++) {
2049                if (PageHighMem(pages[i]))
2050                        continue;
2051                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2052                end = start + PAGE_SIZE;
2053                if (memtype_reserve(start, end, new_type, NULL))
2054                        goto err_out;
2055        }
2056
2057        /* If WC, set to UC- first and then WC */
2058        set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2059                                _PAGE_CACHE_MODE_UC_MINUS : new_type;
2060
2061        ret = cpa_set_pages_array(pages, numpages,
2062                                  cachemode2pgprot(set_type));
2063        if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2064                ret = change_page_attr_set_clr(NULL, numpages,
2065                                               cachemode2pgprot(
2066                                                _PAGE_CACHE_MODE_WC),
2067                                               __pgprot(_PAGE_CACHE_MASK),
2068                                               0, CPA_PAGES_ARRAY, pages);
2069        if (ret)
2070                goto err_out;
2071        return 0; /* Success */
2072err_out:
2073        free_idx = i;
2074        for (i = 0; i < free_idx; i++) {
2075                if (PageHighMem(pages[i]))
2076                        continue;
2077                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2078                end = start + PAGE_SIZE;
2079                memtype_free(start, end);
2080        }
2081        return -EINVAL;
2082}
2083
2084int set_pages_array_uc(struct page **pages, int numpages)
2085{
2086        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2087}
2088EXPORT_SYMBOL(set_pages_array_uc);
2089
2090int set_pages_array_wc(struct page **pages, int numpages)
2091{
2092        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2093}
2094EXPORT_SYMBOL(set_pages_array_wc);
2095
2096int set_pages_array_wt(struct page **pages, int numpages)
2097{
2098        return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2099}
2100EXPORT_SYMBOL_GPL(set_pages_array_wt);
2101
2102int set_pages_wb(struct page *page, int numpages)
2103{
2104        unsigned long addr = (unsigned long)page_address(page);
2105
2106        return set_memory_wb(addr, numpages);
2107}
2108EXPORT_SYMBOL(set_pages_wb);
2109
2110int set_pages_array_wb(struct page **pages, int numpages)
2111{
2112        int retval;
2113        unsigned long start;
2114        unsigned long end;
2115        int i;
2116
2117        /* WB cache mode is hard wired to all cache attribute bits being 0 */
2118        retval = cpa_clear_pages_array(pages, numpages,
2119                        __pgprot(_PAGE_CACHE_MASK));
2120        if (retval)
2121                return retval;
2122
2123        for (i = 0; i < numpages; i++) {
2124                if (PageHighMem(pages[i]))
2125                        continue;
2126                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2127                end = start + PAGE_SIZE;
2128                memtype_free(start, end);
2129        }
2130
2131        return 0;
2132}
2133EXPORT_SYMBOL(set_pages_array_wb);
2134
2135int set_pages_ro(struct page *page, int numpages)
2136{
2137        unsigned long addr = (unsigned long)page_address(page);
2138
2139        return set_memory_ro(addr, numpages);
2140}
2141
2142int set_pages_rw(struct page *page, int numpages)
2143{
2144        unsigned long addr = (unsigned long)page_address(page);
2145
2146        return set_memory_rw(addr, numpages);
2147}
2148
2149static int __set_pages_p(struct page *page, int numpages)
2150{
2151        unsigned long tempaddr = (unsigned long) page_address(page);
2152        struct cpa_data cpa = { .vaddr = &tempaddr,
2153                                .pgd = NULL,
2154                                .numpages = numpages,
2155                                .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2156                                .mask_clr = __pgprot(0),
2157                                .flags = 0};
2158
2159        /*
2160         * No alias checking needed for setting present flag. otherwise,
2161         * we may need to break large pages for 64-bit kernel text
2162         * mappings (this adds to complexity if we want to do this from
2163         * atomic context especially). Let's keep it simple!
2164         */
2165        return __change_page_attr_set_clr(&cpa, 0);
2166}
2167
2168static int __set_pages_np(struct page *page, int numpages)
2169{
2170        unsigned long tempaddr = (unsigned long) page_address(page);
2171        struct cpa_data cpa = { .vaddr = &tempaddr,
2172                                .pgd = NULL,
2173                                .numpages = numpages,
2174                                .mask_set = __pgprot(0),
2175                                .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2176                                .flags = 0};
2177
2178        /*
2179         * No alias checking needed for setting not present flag. otherwise,
2180         * we may need to break large pages for 64-bit kernel text
2181         * mappings (this adds to complexity if we want to do this from
2182         * atomic context especially). Let's keep it simple!
2183         */
2184        return __change_page_attr_set_clr(&cpa, 0);
2185}
2186
2187int set_direct_map_invalid_noflush(struct page *page)
2188{
2189        return __set_pages_np(page, 1);
2190}
2191
2192int set_direct_map_default_noflush(struct page *page)
2193{
2194        return __set_pages_p(page, 1);
2195}
2196
2197void __kernel_map_pages(struct page *page, int numpages, int enable)
2198{
2199        if (PageHighMem(page))
2200                return;
2201        if (!enable) {
2202                debug_check_no_locks_freed(page_address(page),
2203                                           numpages * PAGE_SIZE);
2204        }
2205
2206        /*
2207         * The return value is ignored as the calls cannot fail.
2208         * Large pages for identity mappings are not used at boot time
2209         * and hence no memory allocations during large page split.
2210         */
2211        if (enable)
2212                __set_pages_p(page, numpages);
2213        else
2214                __set_pages_np(page, numpages);
2215
2216        /*
2217         * We should perform an IPI and flush all tlbs,
2218         * but that can deadlock->flush only current cpu.
2219         * Preemption needs to be disabled around __flush_tlb_all() due to
2220         * CR3 reload in __native_flush_tlb().
2221         */
2222        preempt_disable();
2223        __flush_tlb_all();
2224        preempt_enable();
2225
2226        arch_flush_lazy_mmu_mode();
2227}
2228
2229#ifdef CONFIG_HIBERNATION
2230bool kernel_page_present(struct page *page)
2231{
2232        unsigned int level;
2233        pte_t *pte;
2234
2235        if (PageHighMem(page))
2236                return false;
2237
2238        pte = lookup_address((unsigned long)page_address(page), &level);
2239        return (pte_val(*pte) & _PAGE_PRESENT);
2240}
2241#endif /* CONFIG_HIBERNATION */
2242
2243int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2244                                   unsigned numpages, unsigned long page_flags)
2245{
2246        int retval = -EINVAL;
2247
2248        struct cpa_data cpa = {
2249                .vaddr = &address,
2250                .pfn = pfn,
2251                .pgd = pgd,
2252                .numpages = numpages,
2253                .mask_set = __pgprot(0),
2254                .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2255                .flags = 0,
2256        };
2257
2258        WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2259
2260        if (!(__supported_pte_mask & _PAGE_NX))
2261                goto out;
2262
2263        if (!(page_flags & _PAGE_ENC))
2264                cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2265
2266        cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2267
2268        retval = __change_page_attr_set_clr(&cpa, 0);
2269        __flush_tlb_all();
2270
2271out:
2272        return retval;
2273}
2274
2275/*
2276 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2277 * function shouldn't be used in an SMP environment. Presently, it's used only
2278 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2279 */
2280int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2281                                     unsigned long numpages)
2282{
2283        int retval;
2284
2285        /*
2286         * The typical sequence for unmapping is to find a pte through
2287         * lookup_address_in_pgd() (ideally, it should never return NULL because
2288         * the address is already mapped) and change it's protections. As pfn is
2289         * the *target* of a mapping, it's not useful while unmapping.
2290         */
2291        struct cpa_data cpa = {
2292                .vaddr          = &address,
2293                .pfn            = 0,
2294                .pgd            = pgd,
2295                .numpages       = numpages,
2296                .mask_set       = __pgprot(0),
2297                .mask_clr       = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2298                .flags          = 0,
2299        };
2300
2301        WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2302
2303        retval = __change_page_attr_set_clr(&cpa, 0);
2304        __flush_tlb_all();
2305
2306        return retval;
2307}
2308
2309/*
2310 * The testcases use internal knowledge of the implementation that shouldn't
2311 * be exposed to the rest of the kernel. Include these directly here.
2312 */
2313#ifdef CONFIG_CPA_DEBUG
2314#include "cpa-test.c"
2315#endif
2316