linux/drivers/base/regmap/regmap-irq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// regmap based irq_chip
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/irqdomain.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17
  18#include "internal.h"
  19
  20struct regmap_irq_chip_data {
  21        struct mutex lock;
  22        struct irq_chip irq_chip;
  23
  24        struct regmap *map;
  25        const struct regmap_irq_chip *chip;
  26
  27        int irq_base;
  28        struct irq_domain *domain;
  29
  30        int irq;
  31        int wake_count;
  32
  33        void *status_reg_buf;
  34        unsigned int *main_status_buf;
  35        unsigned int *status_buf;
  36        unsigned int *mask_buf;
  37        unsigned int *mask_buf_def;
  38        unsigned int *wake_buf;
  39        unsigned int *type_buf;
  40        unsigned int *type_buf_def;
  41
  42        unsigned int irq_reg_stride;
  43        unsigned int type_reg_stride;
  44
  45        bool clear_status:1;
  46};
  47
  48static inline const
  49struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
  50                                     int irq)
  51{
  52        return &data->chip->irqs[irq];
  53}
  54
  55static void regmap_irq_lock(struct irq_data *data)
  56{
  57        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  58
  59        mutex_lock(&d->lock);
  60}
  61
  62static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
  63                                  unsigned int reg, unsigned int mask,
  64                                  unsigned int val)
  65{
  66        if (d->chip->mask_writeonly)
  67                return regmap_write_bits(d->map, reg, mask, val);
  68        else
  69                return regmap_update_bits(d->map, reg, mask, val);
  70}
  71
  72static void regmap_irq_sync_unlock(struct irq_data *data)
  73{
  74        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  75        struct regmap *map = d->map;
  76        int i, ret;
  77        u32 reg;
  78        u32 unmask_offset;
  79        u32 val;
  80
  81        if (d->chip->runtime_pm) {
  82                ret = pm_runtime_get_sync(map->dev);
  83                if (ret < 0)
  84                        dev_err(map->dev, "IRQ sync failed to resume: %d\n",
  85                                ret);
  86        }
  87
  88        if (d->clear_status) {
  89                for (i = 0; i < d->chip->num_regs; i++) {
  90                        reg = d->chip->status_base +
  91                                (i * map->reg_stride * d->irq_reg_stride);
  92
  93                        ret = regmap_read(map, reg, &val);
  94                        if (ret)
  95                                dev_err(d->map->dev,
  96                                        "Failed to clear the interrupt status bits\n");
  97                }
  98
  99                d->clear_status = false;
 100        }
 101
 102        /*
 103         * If there's been a change in the mask write it back to the
 104         * hardware.  We rely on the use of the regmap core cache to
 105         * suppress pointless writes.
 106         */
 107        for (i = 0; i < d->chip->num_regs; i++) {
 108                if (!d->chip->mask_base)
 109                        continue;
 110
 111                reg = d->chip->mask_base +
 112                        (i * map->reg_stride * d->irq_reg_stride);
 113                if (d->chip->mask_invert) {
 114                        ret = regmap_irq_update_bits(d, reg,
 115                                         d->mask_buf_def[i], ~d->mask_buf[i]);
 116                } else if (d->chip->unmask_base) {
 117                        /* set mask with mask_base register */
 118                        ret = regmap_irq_update_bits(d, reg,
 119                                        d->mask_buf_def[i], ~d->mask_buf[i]);
 120                        if (ret < 0)
 121                                dev_err(d->map->dev,
 122                                        "Failed to sync unmasks in %x\n",
 123                                        reg);
 124                        unmask_offset = d->chip->unmask_base -
 125                                                        d->chip->mask_base;
 126                        /* clear mask with unmask_base register */
 127                        ret = regmap_irq_update_bits(d,
 128                                        reg + unmask_offset,
 129                                        d->mask_buf_def[i],
 130                                        d->mask_buf[i]);
 131                } else {
 132                        ret = regmap_irq_update_bits(d, reg,
 133                                         d->mask_buf_def[i], d->mask_buf[i]);
 134                }
 135                if (ret != 0)
 136                        dev_err(d->map->dev, "Failed to sync masks in %x\n",
 137                                reg);
 138
 139                reg = d->chip->wake_base +
 140                        (i * map->reg_stride * d->irq_reg_stride);
 141                if (d->wake_buf) {
 142                        if (d->chip->wake_invert)
 143                                ret = regmap_irq_update_bits(d, reg,
 144                                                         d->mask_buf_def[i],
 145                                                         ~d->wake_buf[i]);
 146                        else
 147                                ret = regmap_irq_update_bits(d, reg,
 148                                                         d->mask_buf_def[i],
 149                                                         d->wake_buf[i]);
 150                        if (ret != 0)
 151                                dev_err(d->map->dev,
 152                                        "Failed to sync wakes in %x: %d\n",
 153                                        reg, ret);
 154                }
 155
 156                if (!d->chip->init_ack_masked)
 157                        continue;
 158                /*
 159                 * Ack all the masked interrupts unconditionally,
 160                 * OR if there is masked interrupt which hasn't been Acked,
 161                 * it'll be ignored in irq handler, then may introduce irq storm
 162                 */
 163                if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
 164                        reg = d->chip->ack_base +
 165                                (i * map->reg_stride * d->irq_reg_stride);
 166                        /* some chips ack by write 0 */
 167                        if (d->chip->ack_invert)
 168                                ret = regmap_write(map, reg, ~d->mask_buf[i]);
 169                        else
 170                                ret = regmap_write(map, reg, d->mask_buf[i]);
 171                        if (ret != 0)
 172                                dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
 173                                        reg, ret);
 174                }
 175        }
 176
 177        /* Don't update the type bits if we're using mask bits for irq type. */
 178        if (!d->chip->type_in_mask) {
 179                for (i = 0; i < d->chip->num_type_reg; i++) {
 180                        if (!d->type_buf_def[i])
 181                                continue;
 182                        reg = d->chip->type_base +
 183                                (i * map->reg_stride * d->type_reg_stride);
 184                        if (d->chip->type_invert)
 185                                ret = regmap_irq_update_bits(d, reg,
 186                                        d->type_buf_def[i], ~d->type_buf[i]);
 187                        else
 188                                ret = regmap_irq_update_bits(d, reg,
 189                                        d->type_buf_def[i], d->type_buf[i]);
 190                        if (ret != 0)
 191                                dev_err(d->map->dev, "Failed to sync type in %x\n",
 192                                        reg);
 193                }
 194        }
 195
 196        if (d->chip->runtime_pm)
 197                pm_runtime_put(map->dev);
 198
 199        /* If we've changed our wakeup count propagate it to the parent */
 200        if (d->wake_count < 0)
 201                for (i = d->wake_count; i < 0; i++)
 202                        irq_set_irq_wake(d->irq, 0);
 203        else if (d->wake_count > 0)
 204                for (i = 0; i < d->wake_count; i++)
 205                        irq_set_irq_wake(d->irq, 1);
 206
 207        d->wake_count = 0;
 208
 209        mutex_unlock(&d->lock);
 210}
 211
 212static void regmap_irq_enable(struct irq_data *data)
 213{
 214        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 215        struct regmap *map = d->map;
 216        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 217        unsigned int mask, type;
 218
 219        type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
 220
 221        /*
 222         * The type_in_mask flag means that the underlying hardware uses
 223         * separate mask bits for rising and falling edge interrupts, but
 224         * we want to make them into a single virtual interrupt with
 225         * configurable edge.
 226         *
 227         * If the interrupt we're enabling defines the falling or rising
 228         * masks then instead of using the regular mask bits for this
 229         * interrupt, use the value previously written to the type buffer
 230         * at the corresponding offset in regmap_irq_set_type().
 231         */
 232        if (d->chip->type_in_mask && type)
 233                mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
 234        else
 235                mask = irq_data->mask;
 236
 237        if (d->chip->clear_on_unmask)
 238                d->clear_status = true;
 239
 240        d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
 241}
 242
 243static void regmap_irq_disable(struct irq_data *data)
 244{
 245        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 246        struct regmap *map = d->map;
 247        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 248
 249        d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
 250}
 251
 252static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
 253{
 254        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 255        struct regmap *map = d->map;
 256        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 257        int reg;
 258        const struct regmap_irq_type *t = &irq_data->type;
 259
 260        if ((t->types_supported & type) != type)
 261                return 0;
 262
 263        reg = t->type_reg_offset / map->reg_stride;
 264
 265        if (t->type_reg_mask)
 266                d->type_buf[reg] &= ~t->type_reg_mask;
 267        else
 268                d->type_buf[reg] &= ~(t->type_falling_val |
 269                                      t->type_rising_val |
 270                                      t->type_level_low_val |
 271                                      t->type_level_high_val);
 272        switch (type) {
 273        case IRQ_TYPE_EDGE_FALLING:
 274                d->type_buf[reg] |= t->type_falling_val;
 275                break;
 276
 277        case IRQ_TYPE_EDGE_RISING:
 278                d->type_buf[reg] |= t->type_rising_val;
 279                break;
 280
 281        case IRQ_TYPE_EDGE_BOTH:
 282                d->type_buf[reg] |= (t->type_falling_val |
 283                                        t->type_rising_val);
 284                break;
 285
 286        case IRQ_TYPE_LEVEL_HIGH:
 287                d->type_buf[reg] |= t->type_level_high_val;
 288                break;
 289
 290        case IRQ_TYPE_LEVEL_LOW:
 291                d->type_buf[reg] |= t->type_level_low_val;
 292                break;
 293        default:
 294                return -EINVAL;
 295        }
 296        return 0;
 297}
 298
 299static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
 300{
 301        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 302        struct regmap *map = d->map;
 303        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 304
 305        if (on) {
 306                if (d->wake_buf)
 307                        d->wake_buf[irq_data->reg_offset / map->reg_stride]
 308                                &= ~irq_data->mask;
 309                d->wake_count++;
 310        } else {
 311                if (d->wake_buf)
 312                        d->wake_buf[irq_data->reg_offset / map->reg_stride]
 313                                |= irq_data->mask;
 314                d->wake_count--;
 315        }
 316
 317        return 0;
 318}
 319
 320static const struct irq_chip regmap_irq_chip = {
 321        .irq_bus_lock           = regmap_irq_lock,
 322        .irq_bus_sync_unlock    = regmap_irq_sync_unlock,
 323        .irq_disable            = regmap_irq_disable,
 324        .irq_enable             = regmap_irq_enable,
 325        .irq_set_type           = regmap_irq_set_type,
 326        .irq_set_wake           = regmap_irq_set_wake,
 327};
 328
 329static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
 330                                           unsigned int b)
 331{
 332        const struct regmap_irq_chip *chip = data->chip;
 333        struct regmap *map = data->map;
 334        struct regmap_irq_sub_irq_map *subreg;
 335        int i, ret = 0;
 336
 337        if (!chip->sub_reg_offsets) {
 338                /* Assume linear mapping */
 339                ret = regmap_read(map, chip->status_base +
 340                                  (b * map->reg_stride * data->irq_reg_stride),
 341                                   &data->status_buf[b]);
 342        } else {
 343                subreg = &chip->sub_reg_offsets[b];
 344                for (i = 0; i < subreg->num_regs; i++) {
 345                        unsigned int offset = subreg->offset[i];
 346
 347                        ret = regmap_read(map, chip->status_base + offset,
 348                                          &data->status_buf[offset]);
 349                        if (ret)
 350                                break;
 351                }
 352        }
 353        return ret;
 354}
 355
 356static irqreturn_t regmap_irq_thread(int irq, void *d)
 357{
 358        struct regmap_irq_chip_data *data = d;
 359        const struct regmap_irq_chip *chip = data->chip;
 360        struct regmap *map = data->map;
 361        int ret, i;
 362        bool handled = false;
 363        u32 reg;
 364
 365        if (chip->handle_pre_irq)
 366                chip->handle_pre_irq(chip->irq_drv_data);
 367
 368        if (chip->runtime_pm) {
 369                ret = pm_runtime_get_sync(map->dev);
 370                if (ret < 0) {
 371                        dev_err(map->dev, "IRQ thread failed to resume: %d\n",
 372                                ret);
 373                        goto exit;
 374                }
 375        }
 376
 377        /*
 378         * Read only registers with active IRQs if the chip has 'main status
 379         * register'. Else read in the statuses, using a single bulk read if
 380         * possible in order to reduce the I/O overheads.
 381         */
 382
 383        if (chip->num_main_regs) {
 384                unsigned int max_main_bits;
 385                unsigned long size;
 386
 387                size = chip->num_regs * sizeof(unsigned int);
 388
 389                max_main_bits = (chip->num_main_status_bits) ?
 390                                 chip->num_main_status_bits : chip->num_regs;
 391                /* Clear the status buf as we don't read all status regs */
 392                memset(data->status_buf, 0, size);
 393
 394                /* We could support bulk read for main status registers
 395                 * but I don't expect to see devices with really many main
 396                 * status registers so let's only support single reads for the
 397                 * sake of simplicity. and add bulk reads only if needed
 398                 */
 399                for (i = 0; i < chip->num_main_regs; i++) {
 400                        ret = regmap_read(map, chip->main_status +
 401                                  (i * map->reg_stride
 402                                   * data->irq_reg_stride),
 403                                  &data->main_status_buf[i]);
 404                        if (ret) {
 405                                dev_err(map->dev,
 406                                        "Failed to read IRQ status %d\n",
 407                                        ret);
 408                                goto exit;
 409                        }
 410                }
 411
 412                /* Read sub registers with active IRQs */
 413                for (i = 0; i < chip->num_main_regs; i++) {
 414                        unsigned int b;
 415                        const unsigned long mreg = data->main_status_buf[i];
 416
 417                        for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
 418                                if (i * map->format.val_bytes * 8 + b >
 419                                    max_main_bits)
 420                                        break;
 421                                ret = read_sub_irq_data(data, b);
 422
 423                                if (ret != 0) {
 424                                        dev_err(map->dev,
 425                                                "Failed to read IRQ status %d\n",
 426                                                ret);
 427                                        goto exit;
 428                                }
 429                        }
 430
 431                }
 432        } else if (!map->use_single_read && map->reg_stride == 1 &&
 433                   data->irq_reg_stride == 1) {
 434
 435                u8 *buf8 = data->status_reg_buf;
 436                u16 *buf16 = data->status_reg_buf;
 437                u32 *buf32 = data->status_reg_buf;
 438
 439                BUG_ON(!data->status_reg_buf);
 440
 441                ret = regmap_bulk_read(map, chip->status_base,
 442                                       data->status_reg_buf,
 443                                       chip->num_regs);
 444                if (ret != 0) {
 445                        dev_err(map->dev, "Failed to read IRQ status: %d\n",
 446                                ret);
 447                        goto exit;
 448                }
 449
 450                for (i = 0; i < data->chip->num_regs; i++) {
 451                        switch (map->format.val_bytes) {
 452                        case 1:
 453                                data->status_buf[i] = buf8[i];
 454                                break;
 455                        case 2:
 456                                data->status_buf[i] = buf16[i];
 457                                break;
 458                        case 4:
 459                                data->status_buf[i] = buf32[i];
 460                                break;
 461                        default:
 462                                BUG();
 463                                goto exit;
 464                        }
 465                }
 466
 467        } else {
 468                for (i = 0; i < data->chip->num_regs; i++) {
 469                        ret = regmap_read(map, chip->status_base +
 470                                          (i * map->reg_stride
 471                                           * data->irq_reg_stride),
 472                                          &data->status_buf[i]);
 473
 474                        if (ret != 0) {
 475                                dev_err(map->dev,
 476                                        "Failed to read IRQ status: %d\n",
 477                                        ret);
 478                                goto exit;
 479                        }
 480                }
 481        }
 482
 483        /*
 484         * Ignore masked IRQs and ack if we need to; we ack early so
 485         * there is no race between handling and acknowleding the
 486         * interrupt.  We assume that typically few of the interrupts
 487         * will fire simultaneously so don't worry about overhead from
 488         * doing a write per register.
 489         */
 490        for (i = 0; i < data->chip->num_regs; i++) {
 491                data->status_buf[i] &= ~data->mask_buf[i];
 492
 493                if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 494                        reg = chip->ack_base +
 495                                (i * map->reg_stride * data->irq_reg_stride);
 496                        ret = regmap_write(map, reg, data->status_buf[i]);
 497                        if (ret != 0)
 498                                dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 499                                        reg, ret);
 500                }
 501        }
 502
 503        for (i = 0; i < chip->num_irqs; i++) {
 504                if (data->status_buf[chip->irqs[i].reg_offset /
 505                                     map->reg_stride] & chip->irqs[i].mask) {
 506                        handle_nested_irq(irq_find_mapping(data->domain, i));
 507                        handled = true;
 508                }
 509        }
 510
 511exit:
 512        if (chip->runtime_pm)
 513                pm_runtime_put(map->dev);
 514
 515        if (chip->handle_post_irq)
 516                chip->handle_post_irq(chip->irq_drv_data);
 517
 518        if (handled)
 519                return IRQ_HANDLED;
 520        else
 521                return IRQ_NONE;
 522}
 523
 524static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
 525                          irq_hw_number_t hw)
 526{
 527        struct regmap_irq_chip_data *data = h->host_data;
 528
 529        irq_set_chip_data(virq, data);
 530        irq_set_chip(virq, &data->irq_chip);
 531        irq_set_nested_thread(virq, 1);
 532        irq_set_parent(virq, data->irq);
 533        irq_set_noprobe(virq);
 534
 535        return 0;
 536}
 537
 538static const struct irq_domain_ops regmap_domain_ops = {
 539        .map    = regmap_irq_map,
 540        .xlate  = irq_domain_xlate_onetwocell,
 541};
 542
 543/**
 544 * regmap_add_irq_chip_np() - Use standard regmap IRQ controller handling
 545 *
 546 * @np: The device_node where the IRQ domain should be added to.
 547 * @map: The regmap for the device.
 548 * @irq: The IRQ the device uses to signal interrupts.
 549 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 550 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 551 * @chip: Configuration for the interrupt controller.
 552 * @data: Runtime data structure for the controller, allocated on success.
 553 *
 554 * Returns 0 on success or an errno on failure.
 555 *
 556 * In order for this to be efficient the chip really should use a
 557 * register cache.  The chip driver is responsible for restoring the
 558 * register values used by the IRQ controller over suspend and resume.
 559 */
 560int regmap_add_irq_chip_np(struct device_node *np, struct regmap *map, int irq,
 561                           int irq_flags, int irq_base,
 562                           const struct regmap_irq_chip *chip,
 563                           struct regmap_irq_chip_data **data)
 564{
 565        struct regmap_irq_chip_data *d;
 566        int i;
 567        int ret = -ENOMEM;
 568        int num_type_reg;
 569        u32 reg;
 570        u32 unmask_offset;
 571
 572        if (chip->num_regs <= 0)
 573                return -EINVAL;
 574
 575        if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
 576                return -EINVAL;
 577
 578        for (i = 0; i < chip->num_irqs; i++) {
 579                if (chip->irqs[i].reg_offset % map->reg_stride)
 580                        return -EINVAL;
 581                if (chip->irqs[i].reg_offset / map->reg_stride >=
 582                    chip->num_regs)
 583                        return -EINVAL;
 584        }
 585
 586        if (irq_base) {
 587                irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
 588                if (irq_base < 0) {
 589                        dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
 590                                 irq_base);
 591                        return irq_base;
 592                }
 593        }
 594
 595        d = kzalloc(sizeof(*d), GFP_KERNEL);
 596        if (!d)
 597                return -ENOMEM;
 598
 599        if (chip->num_main_regs) {
 600                d->main_status_buf = kcalloc(chip->num_main_regs,
 601                                             sizeof(unsigned int),
 602                                             GFP_KERNEL);
 603
 604                if (!d->main_status_buf)
 605                        goto err_alloc;
 606        }
 607
 608        d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 609                                GFP_KERNEL);
 610        if (!d->status_buf)
 611                goto err_alloc;
 612
 613        d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 614                              GFP_KERNEL);
 615        if (!d->mask_buf)
 616                goto err_alloc;
 617
 618        d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
 619                                  GFP_KERNEL);
 620        if (!d->mask_buf_def)
 621                goto err_alloc;
 622
 623        if (chip->wake_base) {
 624                d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 625                                      GFP_KERNEL);
 626                if (!d->wake_buf)
 627                        goto err_alloc;
 628        }
 629
 630        num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
 631        if (num_type_reg) {
 632                d->type_buf_def = kcalloc(num_type_reg,
 633                                          sizeof(unsigned int), GFP_KERNEL);
 634                if (!d->type_buf_def)
 635                        goto err_alloc;
 636
 637                d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
 638                                      GFP_KERNEL);
 639                if (!d->type_buf)
 640                        goto err_alloc;
 641        }
 642
 643        d->irq_chip = regmap_irq_chip;
 644        d->irq_chip.name = chip->name;
 645        d->irq = irq;
 646        d->map = map;
 647        d->chip = chip;
 648        d->irq_base = irq_base;
 649
 650        if (chip->irq_reg_stride)
 651                d->irq_reg_stride = chip->irq_reg_stride;
 652        else
 653                d->irq_reg_stride = 1;
 654
 655        if (chip->type_reg_stride)
 656                d->type_reg_stride = chip->type_reg_stride;
 657        else
 658                d->type_reg_stride = 1;
 659
 660        if (!map->use_single_read && map->reg_stride == 1 &&
 661            d->irq_reg_stride == 1) {
 662                d->status_reg_buf = kmalloc_array(chip->num_regs,
 663                                                  map->format.val_bytes,
 664                                                  GFP_KERNEL);
 665                if (!d->status_reg_buf)
 666                        goto err_alloc;
 667        }
 668
 669        mutex_init(&d->lock);
 670
 671        for (i = 0; i < chip->num_irqs; i++)
 672                d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
 673                        |= chip->irqs[i].mask;
 674
 675        /* Mask all the interrupts by default */
 676        for (i = 0; i < chip->num_regs; i++) {
 677                d->mask_buf[i] = d->mask_buf_def[i];
 678                if (!chip->mask_base)
 679                        continue;
 680
 681                reg = chip->mask_base +
 682                        (i * map->reg_stride * d->irq_reg_stride);
 683                if (chip->mask_invert)
 684                        ret = regmap_irq_update_bits(d, reg,
 685                                         d->mask_buf[i], ~d->mask_buf[i]);
 686                else if (d->chip->unmask_base) {
 687                        unmask_offset = d->chip->unmask_base -
 688                                        d->chip->mask_base;
 689                        ret = regmap_irq_update_bits(d,
 690                                        reg + unmask_offset,
 691                                        d->mask_buf[i],
 692                                        d->mask_buf[i]);
 693                } else
 694                        ret = regmap_irq_update_bits(d, reg,
 695                                         d->mask_buf[i], d->mask_buf[i]);
 696                if (ret != 0) {
 697                        dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 698                                reg, ret);
 699                        goto err_alloc;
 700                }
 701
 702                if (!chip->init_ack_masked)
 703                        continue;
 704
 705                /* Ack masked but set interrupts */
 706                reg = chip->status_base +
 707                        (i * map->reg_stride * d->irq_reg_stride);
 708                ret = regmap_read(map, reg, &d->status_buf[i]);
 709                if (ret != 0) {
 710                        dev_err(map->dev, "Failed to read IRQ status: %d\n",
 711                                ret);
 712                        goto err_alloc;
 713                }
 714
 715                if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 716                        reg = chip->ack_base +
 717                                (i * map->reg_stride * d->irq_reg_stride);
 718                        if (chip->ack_invert)
 719                                ret = regmap_write(map, reg,
 720                                        ~(d->status_buf[i] & d->mask_buf[i]));
 721                        else
 722                                ret = regmap_write(map, reg,
 723                                        d->status_buf[i] & d->mask_buf[i]);
 724                        if (ret != 0) {
 725                                dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 726                                        reg, ret);
 727                                goto err_alloc;
 728                        }
 729                }
 730        }
 731
 732        /* Wake is disabled by default */
 733        if (d->wake_buf) {
 734                for (i = 0; i < chip->num_regs; i++) {
 735                        d->wake_buf[i] = d->mask_buf_def[i];
 736                        reg = chip->wake_base +
 737                                (i * map->reg_stride * d->irq_reg_stride);
 738
 739                        if (chip->wake_invert)
 740                                ret = regmap_irq_update_bits(d, reg,
 741                                                         d->mask_buf_def[i],
 742                                                         0);
 743                        else
 744                                ret = regmap_irq_update_bits(d, reg,
 745                                                         d->mask_buf_def[i],
 746                                                         d->wake_buf[i]);
 747                        if (ret != 0) {
 748                                dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 749                                        reg, ret);
 750                                goto err_alloc;
 751                        }
 752                }
 753        }
 754
 755        if (chip->num_type_reg && !chip->type_in_mask) {
 756                for (i = 0; i < chip->num_type_reg; ++i) {
 757                        reg = chip->type_base +
 758                                (i * map->reg_stride * d->type_reg_stride);
 759
 760                        ret = regmap_read(map, reg, &d->type_buf_def[i]);
 761
 762                        if (d->chip->type_invert)
 763                                d->type_buf_def[i] = ~d->type_buf_def[i];
 764
 765                        if (ret) {
 766                                dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
 767                                        reg, ret);
 768                                goto err_alloc;
 769                        }
 770                }
 771        }
 772
 773        if (irq_base)
 774                d->domain = irq_domain_add_legacy(np, chip->num_irqs, irq_base,
 775                                                  0, &regmap_domain_ops, d);
 776        else
 777                d->domain = irq_domain_add_linear(np, chip->num_irqs,
 778                                                  &regmap_domain_ops, d);
 779        if (!d->domain) {
 780                dev_err(map->dev, "Failed to create IRQ domain\n");
 781                ret = -ENOMEM;
 782                goto err_alloc;
 783        }
 784
 785        ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
 786                                   irq_flags | IRQF_ONESHOT,
 787                                   chip->name, d);
 788        if (ret != 0) {
 789                dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
 790                        irq, chip->name, ret);
 791                goto err_domain;
 792        }
 793
 794        *data = d;
 795
 796        return 0;
 797
 798err_domain:
 799        /* Should really dispose of the domain but... */
 800err_alloc:
 801        kfree(d->type_buf);
 802        kfree(d->type_buf_def);
 803        kfree(d->wake_buf);
 804        kfree(d->mask_buf_def);
 805        kfree(d->mask_buf);
 806        kfree(d->status_buf);
 807        kfree(d->status_reg_buf);
 808        kfree(d);
 809        return ret;
 810}
 811EXPORT_SYMBOL_GPL(regmap_add_irq_chip_np);
 812
 813/**
 814 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 815 *
 816 * @map: The regmap for the device.
 817 * @irq: The IRQ the device uses to signal interrupts.
 818 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 819 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 820 * @chip: Configuration for the interrupt controller.
 821 * @data: Runtime data structure for the controller, allocated on success.
 822 *
 823 * Returns 0 on success or an errno on failure.
 824 *
 825 * This is the same as regmap_add_irq_chip_np, except that the device
 826 * node of the regmap is used.
 827 */
 828int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
 829                        int irq_base, const struct regmap_irq_chip *chip,
 830                        struct regmap_irq_chip_data **data)
 831{
 832        return regmap_add_irq_chip_np(map->dev->of_node, map, irq, irq_flags,
 833                                      irq_base, chip, data);
 834}
 835EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
 836
 837/**
 838 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
 839 *
 840 * @irq: Primary IRQ for the device
 841 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
 842 *
 843 * This function also disposes of all mapped IRQs on the chip.
 844 */
 845void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
 846{
 847        unsigned int virq;
 848        int hwirq;
 849
 850        if (!d)
 851                return;
 852
 853        free_irq(irq, d);
 854
 855        /* Dispose all virtual irq from irq domain before removing it */
 856        for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
 857                /* Ignore hwirq if holes in the IRQ list */
 858                if (!d->chip->irqs[hwirq].mask)
 859                        continue;
 860
 861                /*
 862                 * Find the virtual irq of hwirq on chip and if it is
 863                 * there then dispose it
 864                 */
 865                virq = irq_find_mapping(d->domain, hwirq);
 866                if (virq)
 867                        irq_dispose_mapping(virq);
 868        }
 869
 870        irq_domain_remove(d->domain);
 871        kfree(d->type_buf);
 872        kfree(d->type_buf_def);
 873        kfree(d->wake_buf);
 874        kfree(d->mask_buf_def);
 875        kfree(d->mask_buf);
 876        kfree(d->status_reg_buf);
 877        kfree(d->status_buf);
 878        kfree(d);
 879}
 880EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
 881
 882static void devm_regmap_irq_chip_release(struct device *dev, void *res)
 883{
 884        struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
 885
 886        regmap_del_irq_chip(d->irq, d);
 887}
 888
 889static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
 890
 891{
 892        struct regmap_irq_chip_data **r = res;
 893
 894        if (!r || !*r) {
 895                WARN_ON(!r || !*r);
 896                return 0;
 897        }
 898        return *r == data;
 899}
 900
 901/**
 902 * devm_regmap_add_irq_chip_np() - Resource manager regmap_add_irq_chip_np()
 903 *
 904 * @dev: The device pointer on which irq_chip belongs to.
 905 * @np: The device_node where the IRQ domain should be added to.
 906 * @map: The regmap for the device.
 907 * @irq: The IRQ the device uses to signal interrupts
 908 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 909 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 910 * @chip: Configuration for the interrupt controller.
 911 * @data: Runtime data structure for the controller, allocated on success
 912 *
 913 * Returns 0 on success or an errno on failure.
 914 *
 915 * The &regmap_irq_chip_data will be automatically released when the device is
 916 * unbound.
 917 */
 918int devm_regmap_add_irq_chip_np(struct device *dev, struct device_node *np,
 919                                struct regmap *map, int irq, int irq_flags,
 920                                int irq_base,
 921                                const struct regmap_irq_chip *chip,
 922                                struct regmap_irq_chip_data **data)
 923{
 924        struct regmap_irq_chip_data **ptr, *d;
 925        int ret;
 926
 927        ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
 928                           GFP_KERNEL);
 929        if (!ptr)
 930                return -ENOMEM;
 931
 932        ret = regmap_add_irq_chip_np(np, map, irq, irq_flags, irq_base,
 933                                     chip, &d);
 934        if (ret < 0) {
 935                devres_free(ptr);
 936                return ret;
 937        }
 938
 939        *ptr = d;
 940        devres_add(dev, ptr);
 941        *data = d;
 942        return 0;
 943}
 944EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_np);
 945
 946/**
 947 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
 948 *
 949 * @dev: The device pointer on which irq_chip belongs to.
 950 * @map: The regmap for the device.
 951 * @irq: The IRQ the device uses to signal interrupts
 952 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 953 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 954 * @chip: Configuration for the interrupt controller.
 955 * @data: Runtime data structure for the controller, allocated on success
 956 *
 957 * Returns 0 on success or an errno on failure.
 958 *
 959 * The &regmap_irq_chip_data will be automatically released when the device is
 960 * unbound.
 961 */
 962int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
 963                             int irq_flags, int irq_base,
 964                             const struct regmap_irq_chip *chip,
 965                             struct regmap_irq_chip_data **data)
 966{
 967        return devm_regmap_add_irq_chip_np(dev, map->dev->of_node, map, irq,
 968                                           irq_flags, irq_base, chip, data);
 969}
 970EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
 971
 972/**
 973 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
 974 *
 975 * @dev: Device for which which resource was allocated.
 976 * @irq: Primary IRQ for the device.
 977 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
 978 *
 979 * A resource managed version of regmap_del_irq_chip().
 980 */
 981void devm_regmap_del_irq_chip(struct device *dev, int irq,
 982                              struct regmap_irq_chip_data *data)
 983{
 984        int rc;
 985
 986        WARN_ON(irq != data->irq);
 987        rc = devres_release(dev, devm_regmap_irq_chip_release,
 988                            devm_regmap_irq_chip_match, data);
 989
 990        if (rc != 0)
 991                WARN_ON(rc);
 992}
 993EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
 994
 995/**
 996 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
 997 *
 998 * @data: regmap irq controller to operate on.
 999 *
1000 * Useful for drivers to request their own IRQs.
1001 */
1002int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1003{
1004        WARN_ON(!data->irq_base);
1005        return data->irq_base;
1006}
1007EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1008
1009/**
1010 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1011 *
1012 * @data: regmap irq controller to operate on.
1013 * @irq: index of the interrupt requested in the chip IRQs.
1014 *
1015 * Useful for drivers to request their own IRQs.
1016 */
1017int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1018{
1019        /* Handle holes in the IRQ list */
1020        if (!data->chip->irqs[irq].mask)
1021                return -EINVAL;
1022
1023        return irq_create_mapping(data->domain, irq);
1024}
1025EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1026
1027/**
1028 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1029 *
1030 * @data: regmap_irq controller to operate on.
1031 *
1032 * Useful for drivers to request their own IRQs and for integration
1033 * with subsystems.  For ease of integration NULL is accepted as a
1034 * domain, allowing devices to just call this even if no domain is
1035 * allocated.
1036 */
1037struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1038{
1039        if (data)
1040                return data->domain;
1041        else
1042                return NULL;
1043}
1044EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1045