linux/drivers/block/null_blk_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
   4 * Shaohua Li <shli@fb.com>
   5 */
   6#include <linux/module.h>
   7
   8#include <linux/moduleparam.h>
   9#include <linux/sched.h>
  10#include <linux/fs.h>
  11#include <linux/init.h>
  12#include "null_blk.h"
  13
  14#define PAGE_SECTORS_SHIFT      (PAGE_SHIFT - SECTOR_SHIFT)
  15#define PAGE_SECTORS            (1 << PAGE_SECTORS_SHIFT)
  16#define SECTOR_MASK             (PAGE_SECTORS - 1)
  17
  18#define FREE_BATCH              16
  19
  20#define TICKS_PER_SEC           50ULL
  21#define TIMER_INTERVAL          (NSEC_PER_SEC / TICKS_PER_SEC)
  22
  23#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
  24static DECLARE_FAULT_ATTR(null_timeout_attr);
  25static DECLARE_FAULT_ATTR(null_requeue_attr);
  26static DECLARE_FAULT_ATTR(null_init_hctx_attr);
  27#endif
  28
  29static inline u64 mb_per_tick(int mbps)
  30{
  31        return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
  32}
  33
  34/*
  35 * Status flags for nullb_device.
  36 *
  37 * CONFIGURED:  Device has been configured and turned on. Cannot reconfigure.
  38 * UP:          Device is currently on and visible in userspace.
  39 * THROTTLED:   Device is being throttled.
  40 * CACHE:       Device is using a write-back cache.
  41 */
  42enum nullb_device_flags {
  43        NULLB_DEV_FL_CONFIGURED = 0,
  44        NULLB_DEV_FL_UP         = 1,
  45        NULLB_DEV_FL_THROTTLED  = 2,
  46        NULLB_DEV_FL_CACHE      = 3,
  47};
  48
  49#define MAP_SZ          ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
  50/*
  51 * nullb_page is a page in memory for nullb devices.
  52 *
  53 * @page:       The page holding the data.
  54 * @bitmap:     The bitmap represents which sector in the page has data.
  55 *              Each bit represents one block size. For example, sector 8
  56 *              will use the 7th bit
  57 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
  58 * page is being flushing to storage. FREE means the cache page is freed and
  59 * should be skipped from flushing to storage. Please see
  60 * null_make_cache_space
  61 */
  62struct nullb_page {
  63        struct page *page;
  64        DECLARE_BITMAP(bitmap, MAP_SZ);
  65};
  66#define NULLB_PAGE_LOCK (MAP_SZ - 1)
  67#define NULLB_PAGE_FREE (MAP_SZ - 2)
  68
  69static LIST_HEAD(nullb_list);
  70static struct mutex lock;
  71static int null_major;
  72static DEFINE_IDA(nullb_indexes);
  73static struct blk_mq_tag_set tag_set;
  74
  75enum {
  76        NULL_IRQ_NONE           = 0,
  77        NULL_IRQ_SOFTIRQ        = 1,
  78        NULL_IRQ_TIMER          = 2,
  79};
  80
  81enum {
  82        NULL_Q_BIO              = 0,
  83        NULL_Q_RQ               = 1,
  84        NULL_Q_MQ               = 2,
  85};
  86
  87static int g_no_sched;
  88module_param_named(no_sched, g_no_sched, int, 0444);
  89MODULE_PARM_DESC(no_sched, "No io scheduler");
  90
  91static int g_submit_queues = 1;
  92module_param_named(submit_queues, g_submit_queues, int, 0444);
  93MODULE_PARM_DESC(submit_queues, "Number of submission queues");
  94
  95static int g_home_node = NUMA_NO_NODE;
  96module_param_named(home_node, g_home_node, int, 0444);
  97MODULE_PARM_DESC(home_node, "Home node for the device");
  98
  99#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
 100/*
 101 * For more details about fault injection, please refer to
 102 * Documentation/fault-injection/fault-injection.rst.
 103 */
 104static char g_timeout_str[80];
 105module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
 106MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
 107
 108static char g_requeue_str[80];
 109module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
 110MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
 111
 112static char g_init_hctx_str[80];
 113module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
 114MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
 115#endif
 116
 117static int g_queue_mode = NULL_Q_MQ;
 118
 119static int null_param_store_val(const char *str, int *val, int min, int max)
 120{
 121        int ret, new_val;
 122
 123        ret = kstrtoint(str, 10, &new_val);
 124        if (ret)
 125                return -EINVAL;
 126
 127        if (new_val < min || new_val > max)
 128                return -EINVAL;
 129
 130        *val = new_val;
 131        return 0;
 132}
 133
 134static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
 135{
 136        return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
 137}
 138
 139static const struct kernel_param_ops null_queue_mode_param_ops = {
 140        .set    = null_set_queue_mode,
 141        .get    = param_get_int,
 142};
 143
 144device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
 145MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
 146
 147static int g_gb = 250;
 148module_param_named(gb, g_gb, int, 0444);
 149MODULE_PARM_DESC(gb, "Size in GB");
 150
 151static int g_bs = 512;
 152module_param_named(bs, g_bs, int, 0444);
 153MODULE_PARM_DESC(bs, "Block size (in bytes)");
 154
 155static unsigned int nr_devices = 1;
 156module_param(nr_devices, uint, 0444);
 157MODULE_PARM_DESC(nr_devices, "Number of devices to register");
 158
 159static bool g_blocking;
 160module_param_named(blocking, g_blocking, bool, 0444);
 161MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
 162
 163static bool shared_tags;
 164module_param(shared_tags, bool, 0444);
 165MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
 166
 167static int g_irqmode = NULL_IRQ_SOFTIRQ;
 168
 169static int null_set_irqmode(const char *str, const struct kernel_param *kp)
 170{
 171        return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
 172                                        NULL_IRQ_TIMER);
 173}
 174
 175static const struct kernel_param_ops null_irqmode_param_ops = {
 176        .set    = null_set_irqmode,
 177        .get    = param_get_int,
 178};
 179
 180device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
 181MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
 182
 183static unsigned long g_completion_nsec = 10000;
 184module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
 185MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
 186
 187static int g_hw_queue_depth = 64;
 188module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
 189MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
 190
 191static bool g_use_per_node_hctx;
 192module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
 193MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
 194
 195static bool g_zoned;
 196module_param_named(zoned, g_zoned, bool, S_IRUGO);
 197MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
 198
 199static unsigned long g_zone_size = 256;
 200module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
 201MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
 202
 203static unsigned int g_zone_nr_conv;
 204module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
 205MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
 206
 207static struct nullb_device *null_alloc_dev(void);
 208static void null_free_dev(struct nullb_device *dev);
 209static void null_del_dev(struct nullb *nullb);
 210static int null_add_dev(struct nullb_device *dev);
 211static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
 212
 213static inline struct nullb_device *to_nullb_device(struct config_item *item)
 214{
 215        return item ? container_of(item, struct nullb_device, item) : NULL;
 216}
 217
 218static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
 219{
 220        return snprintf(page, PAGE_SIZE, "%u\n", val);
 221}
 222
 223static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
 224        char *page)
 225{
 226        return snprintf(page, PAGE_SIZE, "%lu\n", val);
 227}
 228
 229static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
 230{
 231        return snprintf(page, PAGE_SIZE, "%u\n", val);
 232}
 233
 234static ssize_t nullb_device_uint_attr_store(unsigned int *val,
 235        const char *page, size_t count)
 236{
 237        unsigned int tmp;
 238        int result;
 239
 240        result = kstrtouint(page, 0, &tmp);
 241        if (result < 0)
 242                return result;
 243
 244        *val = tmp;
 245        return count;
 246}
 247
 248static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
 249        const char *page, size_t count)
 250{
 251        int result;
 252        unsigned long tmp;
 253
 254        result = kstrtoul(page, 0, &tmp);
 255        if (result < 0)
 256                return result;
 257
 258        *val = tmp;
 259        return count;
 260}
 261
 262static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
 263        size_t count)
 264{
 265        bool tmp;
 266        int result;
 267
 268        result = kstrtobool(page,  &tmp);
 269        if (result < 0)
 270                return result;
 271
 272        *val = tmp;
 273        return count;
 274}
 275
 276/* The following macro should only be used with TYPE = {uint, ulong, bool}. */
 277#define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)                            \
 278static ssize_t                                                          \
 279nullb_device_##NAME##_show(struct config_item *item, char *page)        \
 280{                                                                       \
 281        return nullb_device_##TYPE##_attr_show(                         \
 282                                to_nullb_device(item)->NAME, page);     \
 283}                                                                       \
 284static ssize_t                                                          \
 285nullb_device_##NAME##_store(struct config_item *item, const char *page, \
 286                            size_t count)                               \
 287{                                                                       \
 288        int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
 289        struct nullb_device *dev = to_nullb_device(item);               \
 290        TYPE new_value = 0;                                             \
 291        int ret;                                                        \
 292                                                                        \
 293        ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
 294        if (ret < 0)                                                    \
 295                return ret;                                             \
 296        if (apply_fn)                                                   \
 297                ret = apply_fn(dev, new_value);                         \
 298        else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags))        \
 299                ret = -EBUSY;                                           \
 300        if (ret < 0)                                                    \
 301                return ret;                                             \
 302        dev->NAME = new_value;                                          \
 303        return count;                                                   \
 304}                                                                       \
 305CONFIGFS_ATTR(nullb_device_, NAME);
 306
 307static int nullb_apply_submit_queues(struct nullb_device *dev,
 308                                     unsigned int submit_queues)
 309{
 310        struct nullb *nullb = dev->nullb;
 311        struct blk_mq_tag_set *set;
 312
 313        if (!nullb)
 314                return 0;
 315
 316        /*
 317         * Make sure that null_init_hctx() does not access nullb->queues[] past
 318         * the end of that array.
 319         */
 320        if (submit_queues > nr_cpu_ids)
 321                return -EINVAL;
 322        set = nullb->tag_set;
 323        blk_mq_update_nr_hw_queues(set, submit_queues);
 324        return set->nr_hw_queues == submit_queues ? 0 : -ENOMEM;
 325}
 326
 327NULLB_DEVICE_ATTR(size, ulong, NULL);
 328NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
 329NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
 330NULLB_DEVICE_ATTR(home_node, uint, NULL);
 331NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
 332NULLB_DEVICE_ATTR(blocksize, uint, NULL);
 333NULLB_DEVICE_ATTR(irqmode, uint, NULL);
 334NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
 335NULLB_DEVICE_ATTR(index, uint, NULL);
 336NULLB_DEVICE_ATTR(blocking, bool, NULL);
 337NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
 338NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
 339NULLB_DEVICE_ATTR(discard, bool, NULL);
 340NULLB_DEVICE_ATTR(mbps, uint, NULL);
 341NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
 342NULLB_DEVICE_ATTR(zoned, bool, NULL);
 343NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
 344NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
 345
 346static ssize_t nullb_device_power_show(struct config_item *item, char *page)
 347{
 348        return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
 349}
 350
 351static ssize_t nullb_device_power_store(struct config_item *item,
 352                                     const char *page, size_t count)
 353{
 354        struct nullb_device *dev = to_nullb_device(item);
 355        bool newp = false;
 356        ssize_t ret;
 357
 358        ret = nullb_device_bool_attr_store(&newp, page, count);
 359        if (ret < 0)
 360                return ret;
 361
 362        if (!dev->power && newp) {
 363                if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
 364                        return count;
 365                if (null_add_dev(dev)) {
 366                        clear_bit(NULLB_DEV_FL_UP, &dev->flags);
 367                        return -ENOMEM;
 368                }
 369
 370                set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
 371                dev->power = newp;
 372        } else if (dev->power && !newp) {
 373                if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
 374                        mutex_lock(&lock);
 375                        dev->power = newp;
 376                        null_del_dev(dev->nullb);
 377                        mutex_unlock(&lock);
 378                }
 379                clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
 380        }
 381
 382        return count;
 383}
 384
 385CONFIGFS_ATTR(nullb_device_, power);
 386
 387static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
 388{
 389        struct nullb_device *t_dev = to_nullb_device(item);
 390
 391        return badblocks_show(&t_dev->badblocks, page, 0);
 392}
 393
 394static ssize_t nullb_device_badblocks_store(struct config_item *item,
 395                                     const char *page, size_t count)
 396{
 397        struct nullb_device *t_dev = to_nullb_device(item);
 398        char *orig, *buf, *tmp;
 399        u64 start, end;
 400        int ret;
 401
 402        orig = kstrndup(page, count, GFP_KERNEL);
 403        if (!orig)
 404                return -ENOMEM;
 405
 406        buf = strstrip(orig);
 407
 408        ret = -EINVAL;
 409        if (buf[0] != '+' && buf[0] != '-')
 410                goto out;
 411        tmp = strchr(&buf[1], '-');
 412        if (!tmp)
 413                goto out;
 414        *tmp = '\0';
 415        ret = kstrtoull(buf + 1, 0, &start);
 416        if (ret)
 417                goto out;
 418        ret = kstrtoull(tmp + 1, 0, &end);
 419        if (ret)
 420                goto out;
 421        ret = -EINVAL;
 422        if (start > end)
 423                goto out;
 424        /* enable badblocks */
 425        cmpxchg(&t_dev->badblocks.shift, -1, 0);
 426        if (buf[0] == '+')
 427                ret = badblocks_set(&t_dev->badblocks, start,
 428                        end - start + 1, 1);
 429        else
 430                ret = badblocks_clear(&t_dev->badblocks, start,
 431                        end - start + 1);
 432        if (ret == 0)
 433                ret = count;
 434out:
 435        kfree(orig);
 436        return ret;
 437}
 438CONFIGFS_ATTR(nullb_device_, badblocks);
 439
 440static struct configfs_attribute *nullb_device_attrs[] = {
 441        &nullb_device_attr_size,
 442        &nullb_device_attr_completion_nsec,
 443        &nullb_device_attr_submit_queues,
 444        &nullb_device_attr_home_node,
 445        &nullb_device_attr_queue_mode,
 446        &nullb_device_attr_blocksize,
 447        &nullb_device_attr_irqmode,
 448        &nullb_device_attr_hw_queue_depth,
 449        &nullb_device_attr_index,
 450        &nullb_device_attr_blocking,
 451        &nullb_device_attr_use_per_node_hctx,
 452        &nullb_device_attr_power,
 453        &nullb_device_attr_memory_backed,
 454        &nullb_device_attr_discard,
 455        &nullb_device_attr_mbps,
 456        &nullb_device_attr_cache_size,
 457        &nullb_device_attr_badblocks,
 458        &nullb_device_attr_zoned,
 459        &nullb_device_attr_zone_size,
 460        &nullb_device_attr_zone_nr_conv,
 461        NULL,
 462};
 463
 464static void nullb_device_release(struct config_item *item)
 465{
 466        struct nullb_device *dev = to_nullb_device(item);
 467
 468        null_free_device_storage(dev, false);
 469        null_free_dev(dev);
 470}
 471
 472static struct configfs_item_operations nullb_device_ops = {
 473        .release        = nullb_device_release,
 474};
 475
 476static const struct config_item_type nullb_device_type = {
 477        .ct_item_ops    = &nullb_device_ops,
 478        .ct_attrs       = nullb_device_attrs,
 479        .ct_owner       = THIS_MODULE,
 480};
 481
 482static struct
 483config_item *nullb_group_make_item(struct config_group *group, const char *name)
 484{
 485        struct nullb_device *dev;
 486
 487        dev = null_alloc_dev();
 488        if (!dev)
 489                return ERR_PTR(-ENOMEM);
 490
 491        config_item_init_type_name(&dev->item, name, &nullb_device_type);
 492
 493        return &dev->item;
 494}
 495
 496static void
 497nullb_group_drop_item(struct config_group *group, struct config_item *item)
 498{
 499        struct nullb_device *dev = to_nullb_device(item);
 500
 501        if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
 502                mutex_lock(&lock);
 503                dev->power = false;
 504                null_del_dev(dev->nullb);
 505                mutex_unlock(&lock);
 506        }
 507
 508        config_item_put(item);
 509}
 510
 511static ssize_t memb_group_features_show(struct config_item *item, char *page)
 512{
 513        return snprintf(page, PAGE_SIZE, "memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size,zone_nr_conv\n");
 514}
 515
 516CONFIGFS_ATTR_RO(memb_group_, features);
 517
 518static struct configfs_attribute *nullb_group_attrs[] = {
 519        &memb_group_attr_features,
 520        NULL,
 521};
 522
 523static struct configfs_group_operations nullb_group_ops = {
 524        .make_item      = nullb_group_make_item,
 525        .drop_item      = nullb_group_drop_item,
 526};
 527
 528static const struct config_item_type nullb_group_type = {
 529        .ct_group_ops   = &nullb_group_ops,
 530        .ct_attrs       = nullb_group_attrs,
 531        .ct_owner       = THIS_MODULE,
 532};
 533
 534static struct configfs_subsystem nullb_subsys = {
 535        .su_group = {
 536                .cg_item = {
 537                        .ci_namebuf = "nullb",
 538                        .ci_type = &nullb_group_type,
 539                },
 540        },
 541};
 542
 543static inline int null_cache_active(struct nullb *nullb)
 544{
 545        return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
 546}
 547
 548static struct nullb_device *null_alloc_dev(void)
 549{
 550        struct nullb_device *dev;
 551
 552        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 553        if (!dev)
 554                return NULL;
 555        INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
 556        INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
 557        if (badblocks_init(&dev->badblocks, 0)) {
 558                kfree(dev);
 559                return NULL;
 560        }
 561
 562        dev->size = g_gb * 1024;
 563        dev->completion_nsec = g_completion_nsec;
 564        dev->submit_queues = g_submit_queues;
 565        dev->home_node = g_home_node;
 566        dev->queue_mode = g_queue_mode;
 567        dev->blocksize = g_bs;
 568        dev->irqmode = g_irqmode;
 569        dev->hw_queue_depth = g_hw_queue_depth;
 570        dev->blocking = g_blocking;
 571        dev->use_per_node_hctx = g_use_per_node_hctx;
 572        dev->zoned = g_zoned;
 573        dev->zone_size = g_zone_size;
 574        dev->zone_nr_conv = g_zone_nr_conv;
 575        return dev;
 576}
 577
 578static void null_free_dev(struct nullb_device *dev)
 579{
 580        if (!dev)
 581                return;
 582
 583        null_free_zoned_dev(dev);
 584        badblocks_exit(&dev->badblocks);
 585        kfree(dev);
 586}
 587
 588static void put_tag(struct nullb_queue *nq, unsigned int tag)
 589{
 590        clear_bit_unlock(tag, nq->tag_map);
 591
 592        if (waitqueue_active(&nq->wait))
 593                wake_up(&nq->wait);
 594}
 595
 596static unsigned int get_tag(struct nullb_queue *nq)
 597{
 598        unsigned int tag;
 599
 600        do {
 601                tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
 602                if (tag >= nq->queue_depth)
 603                        return -1U;
 604        } while (test_and_set_bit_lock(tag, nq->tag_map));
 605
 606        return tag;
 607}
 608
 609static void free_cmd(struct nullb_cmd *cmd)
 610{
 611        put_tag(cmd->nq, cmd->tag);
 612}
 613
 614static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
 615
 616static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
 617{
 618        struct nullb_cmd *cmd;
 619        unsigned int tag;
 620
 621        tag = get_tag(nq);
 622        if (tag != -1U) {
 623                cmd = &nq->cmds[tag];
 624                cmd->tag = tag;
 625                cmd->error = BLK_STS_OK;
 626                cmd->nq = nq;
 627                if (nq->dev->irqmode == NULL_IRQ_TIMER) {
 628                        hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
 629                                     HRTIMER_MODE_REL);
 630                        cmd->timer.function = null_cmd_timer_expired;
 631                }
 632                return cmd;
 633        }
 634
 635        return NULL;
 636}
 637
 638static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait)
 639{
 640        struct nullb_cmd *cmd;
 641        DEFINE_WAIT(wait);
 642
 643        cmd = __alloc_cmd(nq);
 644        if (cmd || !can_wait)
 645                return cmd;
 646
 647        do {
 648                prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
 649                cmd = __alloc_cmd(nq);
 650                if (cmd)
 651                        break;
 652
 653                io_schedule();
 654        } while (1);
 655
 656        finish_wait(&nq->wait, &wait);
 657        return cmd;
 658}
 659
 660static void end_cmd(struct nullb_cmd *cmd)
 661{
 662        int queue_mode = cmd->nq->dev->queue_mode;
 663
 664        switch (queue_mode)  {
 665        case NULL_Q_MQ:
 666                blk_mq_end_request(cmd->rq, cmd->error);
 667                return;
 668        case NULL_Q_BIO:
 669                cmd->bio->bi_status = cmd->error;
 670                bio_endio(cmd->bio);
 671                break;
 672        }
 673
 674        free_cmd(cmd);
 675}
 676
 677static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
 678{
 679        end_cmd(container_of(timer, struct nullb_cmd, timer));
 680
 681        return HRTIMER_NORESTART;
 682}
 683
 684static void null_cmd_end_timer(struct nullb_cmd *cmd)
 685{
 686        ktime_t kt = cmd->nq->dev->completion_nsec;
 687
 688        hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
 689}
 690
 691static void null_complete_rq(struct request *rq)
 692{
 693        end_cmd(blk_mq_rq_to_pdu(rq));
 694}
 695
 696static struct nullb_page *null_alloc_page(gfp_t gfp_flags)
 697{
 698        struct nullb_page *t_page;
 699
 700        t_page = kmalloc(sizeof(struct nullb_page), gfp_flags);
 701        if (!t_page)
 702                goto out;
 703
 704        t_page->page = alloc_pages(gfp_flags, 0);
 705        if (!t_page->page)
 706                goto out_freepage;
 707
 708        memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
 709        return t_page;
 710out_freepage:
 711        kfree(t_page);
 712out:
 713        return NULL;
 714}
 715
 716static void null_free_page(struct nullb_page *t_page)
 717{
 718        __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
 719        if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
 720                return;
 721        __free_page(t_page->page);
 722        kfree(t_page);
 723}
 724
 725static bool null_page_empty(struct nullb_page *page)
 726{
 727        int size = MAP_SZ - 2;
 728
 729        return find_first_bit(page->bitmap, size) == size;
 730}
 731
 732static void null_free_sector(struct nullb *nullb, sector_t sector,
 733        bool is_cache)
 734{
 735        unsigned int sector_bit;
 736        u64 idx;
 737        struct nullb_page *t_page, *ret;
 738        struct radix_tree_root *root;
 739
 740        root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
 741        idx = sector >> PAGE_SECTORS_SHIFT;
 742        sector_bit = (sector & SECTOR_MASK);
 743
 744        t_page = radix_tree_lookup(root, idx);
 745        if (t_page) {
 746                __clear_bit(sector_bit, t_page->bitmap);
 747
 748                if (null_page_empty(t_page)) {
 749                        ret = radix_tree_delete_item(root, idx, t_page);
 750                        WARN_ON(ret != t_page);
 751                        null_free_page(ret);
 752                        if (is_cache)
 753                                nullb->dev->curr_cache -= PAGE_SIZE;
 754                }
 755        }
 756}
 757
 758static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
 759        struct nullb_page *t_page, bool is_cache)
 760{
 761        struct radix_tree_root *root;
 762
 763        root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
 764
 765        if (radix_tree_insert(root, idx, t_page)) {
 766                null_free_page(t_page);
 767                t_page = radix_tree_lookup(root, idx);
 768                WARN_ON(!t_page || t_page->page->index != idx);
 769        } else if (is_cache)
 770                nullb->dev->curr_cache += PAGE_SIZE;
 771
 772        return t_page;
 773}
 774
 775static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
 776{
 777        unsigned long pos = 0;
 778        int nr_pages;
 779        struct nullb_page *ret, *t_pages[FREE_BATCH];
 780        struct radix_tree_root *root;
 781
 782        root = is_cache ? &dev->cache : &dev->data;
 783
 784        do {
 785                int i;
 786
 787                nr_pages = radix_tree_gang_lookup(root,
 788                                (void **)t_pages, pos, FREE_BATCH);
 789
 790                for (i = 0; i < nr_pages; i++) {
 791                        pos = t_pages[i]->page->index;
 792                        ret = radix_tree_delete_item(root, pos, t_pages[i]);
 793                        WARN_ON(ret != t_pages[i]);
 794                        null_free_page(ret);
 795                }
 796
 797                pos++;
 798        } while (nr_pages == FREE_BATCH);
 799
 800        if (is_cache)
 801                dev->curr_cache = 0;
 802}
 803
 804static struct nullb_page *__null_lookup_page(struct nullb *nullb,
 805        sector_t sector, bool for_write, bool is_cache)
 806{
 807        unsigned int sector_bit;
 808        u64 idx;
 809        struct nullb_page *t_page;
 810        struct radix_tree_root *root;
 811
 812        idx = sector >> PAGE_SECTORS_SHIFT;
 813        sector_bit = (sector & SECTOR_MASK);
 814
 815        root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
 816        t_page = radix_tree_lookup(root, idx);
 817        WARN_ON(t_page && t_page->page->index != idx);
 818
 819        if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
 820                return t_page;
 821
 822        return NULL;
 823}
 824
 825static struct nullb_page *null_lookup_page(struct nullb *nullb,
 826        sector_t sector, bool for_write, bool ignore_cache)
 827{
 828        struct nullb_page *page = NULL;
 829
 830        if (!ignore_cache)
 831                page = __null_lookup_page(nullb, sector, for_write, true);
 832        if (page)
 833                return page;
 834        return __null_lookup_page(nullb, sector, for_write, false);
 835}
 836
 837static struct nullb_page *null_insert_page(struct nullb *nullb,
 838                                           sector_t sector, bool ignore_cache)
 839        __releases(&nullb->lock)
 840        __acquires(&nullb->lock)
 841{
 842        u64 idx;
 843        struct nullb_page *t_page;
 844
 845        t_page = null_lookup_page(nullb, sector, true, ignore_cache);
 846        if (t_page)
 847                return t_page;
 848
 849        spin_unlock_irq(&nullb->lock);
 850
 851        t_page = null_alloc_page(GFP_NOIO);
 852        if (!t_page)
 853                goto out_lock;
 854
 855        if (radix_tree_preload(GFP_NOIO))
 856                goto out_freepage;
 857
 858        spin_lock_irq(&nullb->lock);
 859        idx = sector >> PAGE_SECTORS_SHIFT;
 860        t_page->page->index = idx;
 861        t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
 862        radix_tree_preload_end();
 863
 864        return t_page;
 865out_freepage:
 866        null_free_page(t_page);
 867out_lock:
 868        spin_lock_irq(&nullb->lock);
 869        return null_lookup_page(nullb, sector, true, ignore_cache);
 870}
 871
 872static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
 873{
 874        int i;
 875        unsigned int offset;
 876        u64 idx;
 877        struct nullb_page *t_page, *ret;
 878        void *dst, *src;
 879
 880        idx = c_page->page->index;
 881
 882        t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
 883
 884        __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
 885        if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
 886                null_free_page(c_page);
 887                if (t_page && null_page_empty(t_page)) {
 888                        ret = radix_tree_delete_item(&nullb->dev->data,
 889                                idx, t_page);
 890                        null_free_page(t_page);
 891                }
 892                return 0;
 893        }
 894
 895        if (!t_page)
 896                return -ENOMEM;
 897
 898        src = kmap_atomic(c_page->page);
 899        dst = kmap_atomic(t_page->page);
 900
 901        for (i = 0; i < PAGE_SECTORS;
 902                        i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
 903                if (test_bit(i, c_page->bitmap)) {
 904                        offset = (i << SECTOR_SHIFT);
 905                        memcpy(dst + offset, src + offset,
 906                                nullb->dev->blocksize);
 907                        __set_bit(i, t_page->bitmap);
 908                }
 909        }
 910
 911        kunmap_atomic(dst);
 912        kunmap_atomic(src);
 913
 914        ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
 915        null_free_page(ret);
 916        nullb->dev->curr_cache -= PAGE_SIZE;
 917
 918        return 0;
 919}
 920
 921static int null_make_cache_space(struct nullb *nullb, unsigned long n)
 922{
 923        int i, err, nr_pages;
 924        struct nullb_page *c_pages[FREE_BATCH];
 925        unsigned long flushed = 0, one_round;
 926
 927again:
 928        if ((nullb->dev->cache_size * 1024 * 1024) >
 929             nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
 930                return 0;
 931
 932        nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
 933                        (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
 934        /*
 935         * nullb_flush_cache_page could unlock before using the c_pages. To
 936         * avoid race, we don't allow page free
 937         */
 938        for (i = 0; i < nr_pages; i++) {
 939                nullb->cache_flush_pos = c_pages[i]->page->index;
 940                /*
 941                 * We found the page which is being flushed to disk by other
 942                 * threads
 943                 */
 944                if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
 945                        c_pages[i] = NULL;
 946                else
 947                        __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
 948        }
 949
 950        one_round = 0;
 951        for (i = 0; i < nr_pages; i++) {
 952                if (c_pages[i] == NULL)
 953                        continue;
 954                err = null_flush_cache_page(nullb, c_pages[i]);
 955                if (err)
 956                        return err;
 957                one_round++;
 958        }
 959        flushed += one_round << PAGE_SHIFT;
 960
 961        if (n > flushed) {
 962                if (nr_pages == 0)
 963                        nullb->cache_flush_pos = 0;
 964                if (one_round == 0) {
 965                        /* give other threads a chance */
 966                        spin_unlock_irq(&nullb->lock);
 967                        spin_lock_irq(&nullb->lock);
 968                }
 969                goto again;
 970        }
 971        return 0;
 972}
 973
 974static int copy_to_nullb(struct nullb *nullb, struct page *source,
 975        unsigned int off, sector_t sector, size_t n, bool is_fua)
 976{
 977        size_t temp, count = 0;
 978        unsigned int offset;
 979        struct nullb_page *t_page;
 980        void *dst, *src;
 981
 982        while (count < n) {
 983                temp = min_t(size_t, nullb->dev->blocksize, n - count);
 984
 985                if (null_cache_active(nullb) && !is_fua)
 986                        null_make_cache_space(nullb, PAGE_SIZE);
 987
 988                offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
 989                t_page = null_insert_page(nullb, sector,
 990                        !null_cache_active(nullb) || is_fua);
 991                if (!t_page)
 992                        return -ENOSPC;
 993
 994                src = kmap_atomic(source);
 995                dst = kmap_atomic(t_page->page);
 996                memcpy(dst + offset, src + off + count, temp);
 997                kunmap_atomic(dst);
 998                kunmap_atomic(src);
 999
1000                __set_bit(sector & SECTOR_MASK, t_page->bitmap);
1001
1002                if (is_fua)
1003                        null_free_sector(nullb, sector, true);
1004
1005                count += temp;
1006                sector += temp >> SECTOR_SHIFT;
1007        }
1008        return 0;
1009}
1010
1011static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1012        unsigned int off, sector_t sector, size_t n)
1013{
1014        size_t temp, count = 0;
1015        unsigned int offset;
1016        struct nullb_page *t_page;
1017        void *dst, *src;
1018
1019        while (count < n) {
1020                temp = min_t(size_t, nullb->dev->blocksize, n - count);
1021
1022                offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1023                t_page = null_lookup_page(nullb, sector, false,
1024                        !null_cache_active(nullb));
1025
1026                dst = kmap_atomic(dest);
1027                if (!t_page) {
1028                        memset(dst + off + count, 0, temp);
1029                        goto next;
1030                }
1031                src = kmap_atomic(t_page->page);
1032                memcpy(dst + off + count, src + offset, temp);
1033                kunmap_atomic(src);
1034next:
1035                kunmap_atomic(dst);
1036
1037                count += temp;
1038                sector += temp >> SECTOR_SHIFT;
1039        }
1040        return 0;
1041}
1042
1043static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1044                               unsigned int len, unsigned int off)
1045{
1046        void *dst;
1047
1048        dst = kmap_atomic(page);
1049        memset(dst + off, 0xFF, len);
1050        kunmap_atomic(dst);
1051}
1052
1053static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n)
1054{
1055        size_t temp;
1056
1057        spin_lock_irq(&nullb->lock);
1058        while (n > 0) {
1059                temp = min_t(size_t, n, nullb->dev->blocksize);
1060                null_free_sector(nullb, sector, false);
1061                if (null_cache_active(nullb))
1062                        null_free_sector(nullb, sector, true);
1063                sector += temp >> SECTOR_SHIFT;
1064                n -= temp;
1065        }
1066        spin_unlock_irq(&nullb->lock);
1067}
1068
1069static int null_handle_flush(struct nullb *nullb)
1070{
1071        int err;
1072
1073        if (!null_cache_active(nullb))
1074                return 0;
1075
1076        spin_lock_irq(&nullb->lock);
1077        while (true) {
1078                err = null_make_cache_space(nullb,
1079                        nullb->dev->cache_size * 1024 * 1024);
1080                if (err || nullb->dev->curr_cache == 0)
1081                        break;
1082        }
1083
1084        WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1085        spin_unlock_irq(&nullb->lock);
1086        return err;
1087}
1088
1089static int null_transfer(struct nullb *nullb, struct page *page,
1090        unsigned int len, unsigned int off, bool is_write, sector_t sector,
1091        bool is_fua)
1092{
1093        struct nullb_device *dev = nullb->dev;
1094        unsigned int valid_len = len;
1095        int err = 0;
1096
1097        if (!is_write) {
1098                if (dev->zoned)
1099                        valid_len = null_zone_valid_read_len(nullb,
1100                                sector, len);
1101
1102                if (valid_len) {
1103                        err = copy_from_nullb(nullb, page, off,
1104                                sector, valid_len);
1105                        off += valid_len;
1106                        len -= valid_len;
1107                }
1108
1109                if (len)
1110                        nullb_fill_pattern(nullb, page, len, off);
1111                flush_dcache_page(page);
1112        } else {
1113                flush_dcache_page(page);
1114                err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1115        }
1116
1117        return err;
1118}
1119
1120static int null_handle_rq(struct nullb_cmd *cmd)
1121{
1122        struct request *rq = cmd->rq;
1123        struct nullb *nullb = cmd->nq->dev->nullb;
1124        int err;
1125        unsigned int len;
1126        sector_t sector;
1127        struct req_iterator iter;
1128        struct bio_vec bvec;
1129
1130        sector = blk_rq_pos(rq);
1131
1132        if (req_op(rq) == REQ_OP_DISCARD) {
1133                null_handle_discard(nullb, sector, blk_rq_bytes(rq));
1134                return 0;
1135        }
1136
1137        spin_lock_irq(&nullb->lock);
1138        rq_for_each_segment(bvec, rq, iter) {
1139                len = bvec.bv_len;
1140                err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1141                                     op_is_write(req_op(rq)), sector,
1142                                     req_op(rq) & REQ_FUA);
1143                if (err) {
1144                        spin_unlock_irq(&nullb->lock);
1145                        return err;
1146                }
1147                sector += len >> SECTOR_SHIFT;
1148        }
1149        spin_unlock_irq(&nullb->lock);
1150
1151        return 0;
1152}
1153
1154static int null_handle_bio(struct nullb_cmd *cmd)
1155{
1156        struct bio *bio = cmd->bio;
1157        struct nullb *nullb = cmd->nq->dev->nullb;
1158        int err;
1159        unsigned int len;
1160        sector_t sector;
1161        struct bio_vec bvec;
1162        struct bvec_iter iter;
1163
1164        sector = bio->bi_iter.bi_sector;
1165
1166        if (bio_op(bio) == REQ_OP_DISCARD) {
1167                null_handle_discard(nullb, sector,
1168                        bio_sectors(bio) << SECTOR_SHIFT);
1169                return 0;
1170        }
1171
1172        spin_lock_irq(&nullb->lock);
1173        bio_for_each_segment(bvec, bio, iter) {
1174                len = bvec.bv_len;
1175                err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1176                                     op_is_write(bio_op(bio)), sector,
1177                                     bio->bi_opf & REQ_FUA);
1178                if (err) {
1179                        spin_unlock_irq(&nullb->lock);
1180                        return err;
1181                }
1182                sector += len >> SECTOR_SHIFT;
1183        }
1184        spin_unlock_irq(&nullb->lock);
1185        return 0;
1186}
1187
1188static void null_stop_queue(struct nullb *nullb)
1189{
1190        struct request_queue *q = nullb->q;
1191
1192        if (nullb->dev->queue_mode == NULL_Q_MQ)
1193                blk_mq_stop_hw_queues(q);
1194}
1195
1196static void null_restart_queue_async(struct nullb *nullb)
1197{
1198        struct request_queue *q = nullb->q;
1199
1200        if (nullb->dev->queue_mode == NULL_Q_MQ)
1201                blk_mq_start_stopped_hw_queues(q, true);
1202}
1203
1204static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1205{
1206        struct nullb_device *dev = cmd->nq->dev;
1207        struct nullb *nullb = dev->nullb;
1208        blk_status_t sts = BLK_STS_OK;
1209        struct request *rq = cmd->rq;
1210
1211        if (!hrtimer_active(&nullb->bw_timer))
1212                hrtimer_restart(&nullb->bw_timer);
1213
1214        if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1215                null_stop_queue(nullb);
1216                /* race with timer */
1217                if (atomic_long_read(&nullb->cur_bytes) > 0)
1218                        null_restart_queue_async(nullb);
1219                /* requeue request */
1220                sts = BLK_STS_DEV_RESOURCE;
1221        }
1222        return sts;
1223}
1224
1225static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1226                                                 sector_t sector,
1227                                                 sector_t nr_sectors)
1228{
1229        struct badblocks *bb = &cmd->nq->dev->badblocks;
1230        sector_t first_bad;
1231        int bad_sectors;
1232
1233        if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1234                return BLK_STS_IOERR;
1235
1236        return BLK_STS_OK;
1237}
1238
1239static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1240                                                     enum req_opf op)
1241{
1242        struct nullb_device *dev = cmd->nq->dev;
1243        int err;
1244
1245        if (dev->queue_mode == NULL_Q_BIO)
1246                err = null_handle_bio(cmd);
1247        else
1248                err = null_handle_rq(cmd);
1249
1250        return errno_to_blk_status(err);
1251}
1252
1253static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1254{
1255        struct nullb_device *dev = cmd->nq->dev;
1256        struct bio *bio;
1257
1258        if (dev->memory_backed)
1259                return;
1260
1261        if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
1262                zero_fill_bio(cmd->bio);
1263        } else if (req_op(cmd->rq) == REQ_OP_READ) {
1264                __rq_for_each_bio(bio, cmd->rq)
1265                        zero_fill_bio(bio);
1266        }
1267}
1268
1269static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1270{
1271        /*
1272         * Since root privileges are required to configure the null_blk
1273         * driver, it is fine that this driver does not initialize the
1274         * data buffers of read commands. Zero-initialize these buffers
1275         * anyway if KMSAN is enabled to prevent that KMSAN complains
1276         * about null_blk not initializing read data buffers.
1277         */
1278        if (IS_ENABLED(CONFIG_KMSAN))
1279                nullb_zero_read_cmd_buffer(cmd);
1280
1281        /* Complete IO by inline, softirq or timer */
1282        switch (cmd->nq->dev->irqmode) {
1283        case NULL_IRQ_SOFTIRQ:
1284                switch (cmd->nq->dev->queue_mode) {
1285                case NULL_Q_MQ:
1286                        blk_mq_complete_request(cmd->rq);
1287                        break;
1288                case NULL_Q_BIO:
1289                        /*
1290                         * XXX: no proper submitting cpu information available.
1291                         */
1292                        end_cmd(cmd);
1293                        break;
1294                }
1295                break;
1296        case NULL_IRQ_NONE:
1297                end_cmd(cmd);
1298                break;
1299        case NULL_IRQ_TIMER:
1300                null_cmd_end_timer(cmd);
1301                break;
1302        }
1303}
1304
1305blk_status_t null_process_cmd(struct nullb_cmd *cmd,
1306                              enum req_opf op, sector_t sector,
1307                              unsigned int nr_sectors)
1308{
1309        struct nullb_device *dev = cmd->nq->dev;
1310        blk_status_t ret;
1311
1312        if (dev->badblocks.shift != -1) {
1313                ret = null_handle_badblocks(cmd, sector, nr_sectors);
1314                if (ret != BLK_STS_OK)
1315                        return ret;
1316        }
1317
1318        if (dev->memory_backed)
1319                return null_handle_memory_backed(cmd, op);
1320
1321        return BLK_STS_OK;
1322}
1323
1324static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1325                                    sector_t nr_sectors, enum req_opf op)
1326{
1327        struct nullb_device *dev = cmd->nq->dev;
1328        struct nullb *nullb = dev->nullb;
1329        blk_status_t sts;
1330
1331        if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
1332                sts = null_handle_throttled(cmd);
1333                if (sts != BLK_STS_OK)
1334                        return sts;
1335        }
1336
1337        if (op == REQ_OP_FLUSH) {
1338                cmd->error = errno_to_blk_status(null_handle_flush(nullb));
1339                goto out;
1340        }
1341
1342        if (dev->zoned)
1343                cmd->error = null_process_zoned_cmd(cmd, op,
1344                                                    sector, nr_sectors);
1345        else
1346                cmd->error = null_process_cmd(cmd, op, sector, nr_sectors);
1347
1348out:
1349        nullb_complete_cmd(cmd);
1350        return BLK_STS_OK;
1351}
1352
1353static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1354{
1355        struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1356        ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1357        unsigned int mbps = nullb->dev->mbps;
1358
1359        if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1360                return HRTIMER_NORESTART;
1361
1362        atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1363        null_restart_queue_async(nullb);
1364
1365        hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1366
1367        return HRTIMER_RESTART;
1368}
1369
1370static void nullb_setup_bwtimer(struct nullb *nullb)
1371{
1372        ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1373
1374        hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1375        nullb->bw_timer.function = nullb_bwtimer_fn;
1376        atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1377        hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1378}
1379
1380static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
1381{
1382        int index = 0;
1383
1384        if (nullb->nr_queues != 1)
1385                index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
1386
1387        return &nullb->queues[index];
1388}
1389
1390static blk_qc_t null_queue_bio(struct request_queue *q, struct bio *bio)
1391{
1392        sector_t sector = bio->bi_iter.bi_sector;
1393        sector_t nr_sectors = bio_sectors(bio);
1394        struct nullb *nullb = q->queuedata;
1395        struct nullb_queue *nq = nullb_to_queue(nullb);
1396        struct nullb_cmd *cmd;
1397
1398        cmd = alloc_cmd(nq, 1);
1399        cmd->bio = bio;
1400
1401        null_handle_cmd(cmd, sector, nr_sectors, bio_op(bio));
1402        return BLK_QC_T_NONE;
1403}
1404
1405static bool should_timeout_request(struct request *rq)
1406{
1407#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1408        if (g_timeout_str[0])
1409                return should_fail(&null_timeout_attr, 1);
1410#endif
1411        return false;
1412}
1413
1414static bool should_requeue_request(struct request *rq)
1415{
1416#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1417        if (g_requeue_str[0])
1418                return should_fail(&null_requeue_attr, 1);
1419#endif
1420        return false;
1421}
1422
1423static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
1424{
1425        pr_info("rq %p timed out\n", rq);
1426        blk_mq_force_complete_rq(rq);
1427        return BLK_EH_DONE;
1428}
1429
1430static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1431                         const struct blk_mq_queue_data *bd)
1432{
1433        struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1434        struct nullb_queue *nq = hctx->driver_data;
1435        sector_t nr_sectors = blk_rq_sectors(bd->rq);
1436        sector_t sector = blk_rq_pos(bd->rq);
1437
1438        might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1439
1440        if (nq->dev->irqmode == NULL_IRQ_TIMER) {
1441                hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1442                cmd->timer.function = null_cmd_timer_expired;
1443        }
1444        cmd->rq = bd->rq;
1445        cmd->error = BLK_STS_OK;
1446        cmd->nq = nq;
1447
1448        blk_mq_start_request(bd->rq);
1449
1450        if (should_requeue_request(bd->rq)) {
1451                /*
1452                 * Alternate between hitting the core BUSY path, and the
1453                 * driver driven requeue path
1454                 */
1455                nq->requeue_selection++;
1456                if (nq->requeue_selection & 1)
1457                        return BLK_STS_RESOURCE;
1458                else {
1459                        blk_mq_requeue_request(bd->rq, true);
1460                        return BLK_STS_OK;
1461                }
1462        }
1463        if (should_timeout_request(bd->rq))
1464                return BLK_STS_OK;
1465
1466        return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
1467}
1468
1469static void cleanup_queue(struct nullb_queue *nq)
1470{
1471        kfree(nq->tag_map);
1472        kfree(nq->cmds);
1473}
1474
1475static void cleanup_queues(struct nullb *nullb)
1476{
1477        int i;
1478
1479        for (i = 0; i < nullb->nr_queues; i++)
1480                cleanup_queue(&nullb->queues[i]);
1481
1482        kfree(nullb->queues);
1483}
1484
1485static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1486{
1487        struct nullb_queue *nq = hctx->driver_data;
1488        struct nullb *nullb = nq->dev->nullb;
1489
1490        nullb->nr_queues--;
1491}
1492
1493static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1494{
1495        init_waitqueue_head(&nq->wait);
1496        nq->queue_depth = nullb->queue_depth;
1497        nq->dev = nullb->dev;
1498}
1499
1500static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1501                          unsigned int hctx_idx)
1502{
1503        struct nullb *nullb = hctx->queue->queuedata;
1504        struct nullb_queue *nq;
1505
1506#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1507        if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
1508                return -EFAULT;
1509#endif
1510
1511        nq = &nullb->queues[hctx_idx];
1512        hctx->driver_data = nq;
1513        null_init_queue(nullb, nq);
1514        nullb->nr_queues++;
1515
1516        return 0;
1517}
1518
1519static const struct blk_mq_ops null_mq_ops = {
1520        .queue_rq       = null_queue_rq,
1521        .complete       = null_complete_rq,
1522        .timeout        = null_timeout_rq,
1523        .init_hctx      = null_init_hctx,
1524        .exit_hctx      = null_exit_hctx,
1525};
1526
1527static void null_del_dev(struct nullb *nullb)
1528{
1529        struct nullb_device *dev;
1530
1531        if (!nullb)
1532                return;
1533
1534        dev = nullb->dev;
1535
1536        ida_simple_remove(&nullb_indexes, nullb->index);
1537
1538        list_del_init(&nullb->list);
1539
1540        del_gendisk(nullb->disk);
1541
1542        if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1543                hrtimer_cancel(&nullb->bw_timer);
1544                atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1545                null_restart_queue_async(nullb);
1546        }
1547
1548        blk_cleanup_queue(nullb->q);
1549        if (dev->queue_mode == NULL_Q_MQ &&
1550            nullb->tag_set == &nullb->__tag_set)
1551                blk_mq_free_tag_set(nullb->tag_set);
1552        put_disk(nullb->disk);
1553        cleanup_queues(nullb);
1554        if (null_cache_active(nullb))
1555                null_free_device_storage(nullb->dev, true);
1556        kfree(nullb);
1557        dev->nullb = NULL;
1558}
1559
1560static void null_config_discard(struct nullb *nullb)
1561{
1562        if (nullb->dev->discard == false)
1563                return;
1564
1565        if (nullb->dev->zoned) {
1566                nullb->dev->discard = false;
1567                pr_info("discard option is ignored in zoned mode\n");
1568                return;
1569        }
1570
1571        nullb->q->limits.discard_granularity = nullb->dev->blocksize;
1572        nullb->q->limits.discard_alignment = nullb->dev->blocksize;
1573        blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
1574        blk_queue_flag_set(QUEUE_FLAG_DISCARD, nullb->q);
1575}
1576
1577static const struct block_device_operations null_ops = {
1578        .owner          = THIS_MODULE,
1579        .report_zones   = null_report_zones,
1580};
1581
1582static int setup_commands(struct nullb_queue *nq)
1583{
1584        struct nullb_cmd *cmd;
1585        int i, tag_size;
1586
1587        nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
1588        if (!nq->cmds)
1589                return -ENOMEM;
1590
1591        tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
1592        nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
1593        if (!nq->tag_map) {
1594                kfree(nq->cmds);
1595                return -ENOMEM;
1596        }
1597
1598        for (i = 0; i < nq->queue_depth; i++) {
1599                cmd = &nq->cmds[i];
1600                cmd->tag = -1U;
1601        }
1602
1603        return 0;
1604}
1605
1606static int setup_queues(struct nullb *nullb)
1607{
1608        nullb->queues = kcalloc(nr_cpu_ids, sizeof(struct nullb_queue),
1609                                GFP_KERNEL);
1610        if (!nullb->queues)
1611                return -ENOMEM;
1612
1613        nullb->queue_depth = nullb->dev->hw_queue_depth;
1614
1615        return 0;
1616}
1617
1618static int init_driver_queues(struct nullb *nullb)
1619{
1620        struct nullb_queue *nq;
1621        int i, ret = 0;
1622
1623        for (i = 0; i < nullb->dev->submit_queues; i++) {
1624                nq = &nullb->queues[i];
1625
1626                null_init_queue(nullb, nq);
1627
1628                ret = setup_commands(nq);
1629                if (ret)
1630                        return ret;
1631                nullb->nr_queues++;
1632        }
1633        return 0;
1634}
1635
1636static int null_gendisk_register(struct nullb *nullb)
1637{
1638        sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
1639        struct gendisk *disk;
1640
1641        disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node);
1642        if (!disk)
1643                return -ENOMEM;
1644        set_capacity(disk, size);
1645
1646        disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO;
1647        disk->major             = null_major;
1648        disk->first_minor       = nullb->index;
1649        disk->fops              = &null_ops;
1650        disk->private_data      = nullb;
1651        disk->queue             = nullb->q;
1652        strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1653
1654        if (nullb->dev->zoned) {
1655                int ret = null_register_zoned_dev(nullb);
1656
1657                if (ret)
1658                        return ret;
1659        }
1660
1661        add_disk(disk);
1662        return 0;
1663}
1664
1665static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
1666{
1667        set->ops = &null_mq_ops;
1668        set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
1669                                                g_submit_queues;
1670        set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
1671                                                g_hw_queue_depth;
1672        set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
1673        set->cmd_size   = sizeof(struct nullb_cmd);
1674        set->flags = BLK_MQ_F_SHOULD_MERGE;
1675        if (g_no_sched)
1676                set->flags |= BLK_MQ_F_NO_SCHED;
1677        set->driver_data = NULL;
1678
1679        if ((nullb && nullb->dev->blocking) || g_blocking)
1680                set->flags |= BLK_MQ_F_BLOCKING;
1681
1682        return blk_mq_alloc_tag_set(set);
1683}
1684
1685static int null_validate_conf(struct nullb_device *dev)
1686{
1687        dev->blocksize = round_down(dev->blocksize, 512);
1688        dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1689
1690        if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
1691                if (dev->submit_queues != nr_online_nodes)
1692                        dev->submit_queues = nr_online_nodes;
1693        } else if (dev->submit_queues > nr_cpu_ids)
1694                dev->submit_queues = nr_cpu_ids;
1695        else if (dev->submit_queues == 0)
1696                dev->submit_queues = 1;
1697
1698        dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
1699        dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1700
1701        /* Do memory allocation, so set blocking */
1702        if (dev->memory_backed)
1703                dev->blocking = true;
1704        else /* cache is meaningless */
1705                dev->cache_size = 0;
1706        dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1707                                                dev->cache_size);
1708        dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1709        /* can not stop a queue */
1710        if (dev->queue_mode == NULL_Q_BIO)
1711                dev->mbps = 0;
1712
1713        if (dev->zoned &&
1714            (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1715                pr_err("zone_size must be power-of-two\n");
1716                return -EINVAL;
1717        }
1718
1719        return 0;
1720}
1721
1722#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1723static bool __null_setup_fault(struct fault_attr *attr, char *str)
1724{
1725        if (!str[0])
1726                return true;
1727
1728        if (!setup_fault_attr(attr, str))
1729                return false;
1730
1731        attr->verbose = 0;
1732        return true;
1733}
1734#endif
1735
1736static bool null_setup_fault(void)
1737{
1738#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1739        if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1740                return false;
1741        if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1742                return false;
1743        if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1744                return false;
1745#endif
1746        return true;
1747}
1748
1749static int null_add_dev(struct nullb_device *dev)
1750{
1751        struct nullb *nullb;
1752        int rv;
1753
1754        rv = null_validate_conf(dev);
1755        if (rv)
1756                return rv;
1757
1758        nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1759        if (!nullb) {
1760                rv = -ENOMEM;
1761                goto out;
1762        }
1763        nullb->dev = dev;
1764        dev->nullb = nullb;
1765
1766        spin_lock_init(&nullb->lock);
1767
1768        rv = setup_queues(nullb);
1769        if (rv)
1770                goto out_free_nullb;
1771
1772        if (dev->queue_mode == NULL_Q_MQ) {
1773                if (shared_tags) {
1774                        nullb->tag_set = &tag_set;
1775                        rv = 0;
1776                } else {
1777                        nullb->tag_set = &nullb->__tag_set;
1778                        rv = null_init_tag_set(nullb, nullb->tag_set);
1779                }
1780
1781                if (rv)
1782                        goto out_cleanup_queues;
1783
1784                if (!null_setup_fault())
1785                        goto out_cleanup_queues;
1786
1787                nullb->tag_set->timeout = 5 * HZ;
1788                nullb->q = blk_mq_init_queue_data(nullb->tag_set, nullb);
1789                if (IS_ERR(nullb->q)) {
1790                        rv = -ENOMEM;
1791                        goto out_cleanup_tags;
1792                }
1793        } else if (dev->queue_mode == NULL_Q_BIO) {
1794                nullb->q = blk_alloc_queue(null_queue_bio, dev->home_node);
1795                if (!nullb->q) {
1796                        rv = -ENOMEM;
1797                        goto out_cleanup_queues;
1798                }
1799                rv = init_driver_queues(nullb);
1800                if (rv)
1801                        goto out_cleanup_blk_queue;
1802        }
1803
1804        if (dev->mbps) {
1805                set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1806                nullb_setup_bwtimer(nullb);
1807        }
1808
1809        if (dev->cache_size > 0) {
1810                set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1811                blk_queue_write_cache(nullb->q, true, true);
1812        }
1813
1814        if (dev->zoned) {
1815                rv = null_init_zoned_dev(dev, nullb->q);
1816                if (rv)
1817                        goto out_cleanup_blk_queue;
1818        }
1819
1820        nullb->q->queuedata = nullb;
1821        blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1822        blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
1823
1824        mutex_lock(&lock);
1825        nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
1826        dev->index = nullb->index;
1827        mutex_unlock(&lock);
1828
1829        blk_queue_logical_block_size(nullb->q, dev->blocksize);
1830        blk_queue_physical_block_size(nullb->q, dev->blocksize);
1831
1832        null_config_discard(nullb);
1833
1834        sprintf(nullb->disk_name, "nullb%d", nullb->index);
1835
1836        rv = null_gendisk_register(nullb);
1837        if (rv)
1838                goto out_cleanup_zone;
1839
1840        mutex_lock(&lock);
1841        list_add_tail(&nullb->list, &nullb_list);
1842        mutex_unlock(&lock);
1843
1844        return 0;
1845out_cleanup_zone:
1846        null_free_zoned_dev(dev);
1847out_cleanup_blk_queue:
1848        blk_cleanup_queue(nullb->q);
1849out_cleanup_tags:
1850        if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
1851                blk_mq_free_tag_set(nullb->tag_set);
1852out_cleanup_queues:
1853        cleanup_queues(nullb);
1854out_free_nullb:
1855        kfree(nullb);
1856        dev->nullb = NULL;
1857out:
1858        return rv;
1859}
1860
1861static int __init null_init(void)
1862{
1863        int ret = 0;
1864        unsigned int i;
1865        struct nullb *nullb;
1866        struct nullb_device *dev;
1867
1868        if (g_bs > PAGE_SIZE) {
1869                pr_warn("invalid block size\n");
1870                pr_warn("defaults block size to %lu\n", PAGE_SIZE);
1871                g_bs = PAGE_SIZE;
1872        }
1873
1874        if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
1875                pr_err("invalid home_node value\n");
1876                g_home_node = NUMA_NO_NODE;
1877        }
1878
1879        if (g_queue_mode == NULL_Q_RQ) {
1880                pr_err("legacy IO path no longer available\n");
1881                return -EINVAL;
1882        }
1883        if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
1884                if (g_submit_queues != nr_online_nodes) {
1885                        pr_warn("submit_queues param is set to %u.\n",
1886                                                        nr_online_nodes);
1887                        g_submit_queues = nr_online_nodes;
1888                }
1889        } else if (g_submit_queues > nr_cpu_ids)
1890                g_submit_queues = nr_cpu_ids;
1891        else if (g_submit_queues <= 0)
1892                g_submit_queues = 1;
1893
1894        if (g_queue_mode == NULL_Q_MQ && shared_tags) {
1895                ret = null_init_tag_set(NULL, &tag_set);
1896                if (ret)
1897                        return ret;
1898        }
1899
1900        config_group_init(&nullb_subsys.su_group);
1901        mutex_init(&nullb_subsys.su_mutex);
1902
1903        ret = configfs_register_subsystem(&nullb_subsys);
1904        if (ret)
1905                goto err_tagset;
1906
1907        mutex_init(&lock);
1908
1909        null_major = register_blkdev(0, "nullb");
1910        if (null_major < 0) {
1911                ret = null_major;
1912                goto err_conf;
1913        }
1914
1915        for (i = 0; i < nr_devices; i++) {
1916                dev = null_alloc_dev();
1917                if (!dev) {
1918                        ret = -ENOMEM;
1919                        goto err_dev;
1920                }
1921                ret = null_add_dev(dev);
1922                if (ret) {
1923                        null_free_dev(dev);
1924                        goto err_dev;
1925                }
1926        }
1927
1928        pr_info("module loaded\n");
1929        return 0;
1930
1931err_dev:
1932        while (!list_empty(&nullb_list)) {
1933                nullb = list_entry(nullb_list.next, struct nullb, list);
1934                dev = nullb->dev;
1935                null_del_dev(nullb);
1936                null_free_dev(dev);
1937        }
1938        unregister_blkdev(null_major, "nullb");
1939err_conf:
1940        configfs_unregister_subsystem(&nullb_subsys);
1941err_tagset:
1942        if (g_queue_mode == NULL_Q_MQ && shared_tags)
1943                blk_mq_free_tag_set(&tag_set);
1944        return ret;
1945}
1946
1947static void __exit null_exit(void)
1948{
1949        struct nullb *nullb;
1950
1951        configfs_unregister_subsystem(&nullb_subsys);
1952
1953        unregister_blkdev(null_major, "nullb");
1954
1955        mutex_lock(&lock);
1956        while (!list_empty(&nullb_list)) {
1957                struct nullb_device *dev;
1958
1959                nullb = list_entry(nullb_list.next, struct nullb, list);
1960                dev = nullb->dev;
1961                null_del_dev(nullb);
1962                null_free_dev(dev);
1963        }
1964        mutex_unlock(&lock);
1965
1966        if (g_queue_mode == NULL_Q_MQ && shared_tags)
1967                blk_mq_free_tag_set(&tag_set);
1968}
1969
1970module_init(null_init);
1971module_exit(null_exit);
1972
1973MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
1974MODULE_LICENSE("GPL");
1975