linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h
<<
>>
Prefs
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#ifndef KFD_PRIV_H_INCLUDED
  24#define KFD_PRIV_H_INCLUDED
  25
  26#include <linux/hashtable.h>
  27#include <linux/mmu_notifier.h>
  28#include <linux/mutex.h>
  29#include <linux/types.h>
  30#include <linux/atomic.h>
  31#include <linux/workqueue.h>
  32#include <linux/spinlock.h>
  33#include <linux/kfd_ioctl.h>
  34#include <linux/idr.h>
  35#include <linux/kfifo.h>
  36#include <linux/seq_file.h>
  37#include <linux/kref.h>
  38#include <linux/sysfs.h>
  39#include <linux/device_cgroup.h>
  40#include <drm/drm_file.h>
  41#include <drm/drm_drv.h>
  42#include <drm/drm_device.h>
  43#include <drm/drm_ioctl.h>
  44#include <kgd_kfd_interface.h>
  45#include <linux/swap.h>
  46
  47#include "amd_shared.h"
  48
  49#define KFD_MAX_RING_ENTRY_SIZE 8
  50
  51#define KFD_SYSFS_FILE_MODE 0444
  52
  53/* GPU ID hash width in bits */
  54#define KFD_GPU_ID_HASH_WIDTH 16
  55
  56/* Use upper bits of mmap offset to store KFD driver specific information.
  57 * BITS[63:62] - Encode MMAP type
  58 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
  59 * BITS[45:0]  - MMAP offset value
  60 *
  61 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
  62 *  defines are w.r.t to PAGE_SIZE
  63 */
  64#define KFD_MMAP_TYPE_SHIFT     62
  65#define KFD_MMAP_TYPE_MASK      (0x3ULL << KFD_MMAP_TYPE_SHIFT)
  66#define KFD_MMAP_TYPE_DOORBELL  (0x3ULL << KFD_MMAP_TYPE_SHIFT)
  67#define KFD_MMAP_TYPE_EVENTS    (0x2ULL << KFD_MMAP_TYPE_SHIFT)
  68#define KFD_MMAP_TYPE_RESERVED_MEM      (0x1ULL << KFD_MMAP_TYPE_SHIFT)
  69#define KFD_MMAP_TYPE_MMIO      (0x0ULL << KFD_MMAP_TYPE_SHIFT)
  70
  71#define KFD_MMAP_GPU_ID_SHIFT 46
  72#define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
  73                                << KFD_MMAP_GPU_ID_SHIFT)
  74#define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
  75                                & KFD_MMAP_GPU_ID_MASK)
  76#define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
  77                                >> KFD_MMAP_GPU_ID_SHIFT)
  78
  79/*
  80 * When working with cp scheduler we should assign the HIQ manually or via
  81 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
  82 * definitions for Kaveri. In Kaveri only the first ME queues participates
  83 * in the cp scheduling taking that in mind we set the HIQ slot in the
  84 * second ME.
  85 */
  86#define KFD_CIK_HIQ_PIPE 4
  87#define KFD_CIK_HIQ_QUEUE 0
  88
  89/* Macro for allocating structures */
  90#define kfd_alloc_struct(ptr_to_struct) \
  91        ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
  92
  93#define KFD_MAX_NUM_OF_PROCESSES 512
  94#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
  95
  96/*
  97 * Size of the per-process TBA+TMA buffer: 2 pages
  98 *
  99 * The first page is the TBA used for the CWSR ISA code. The second
 100 * page is used as TMA for daisy changing a user-mode trap handler.
 101 */
 102#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
 103#define KFD_CWSR_TMA_OFFSET PAGE_SIZE
 104
 105#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE                \
 106        (KFD_MAX_NUM_OF_PROCESSES *                     \
 107                        KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
 108
 109#define KFD_KERNEL_QUEUE_SIZE 2048
 110
 111#define KFD_UNMAP_LATENCY_MS    (4000)
 112
 113/*
 114 * 512 = 0x200
 115 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
 116 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
 117 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
 118 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
 119 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
 120 */
 121#define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
 122
 123
 124/*
 125 * Kernel module parameter to specify maximum number of supported queues per
 126 * device
 127 */
 128extern int max_num_of_queues_per_device;
 129
 130
 131/* Kernel module parameter to specify the scheduling policy */
 132extern int sched_policy;
 133
 134/*
 135 * Kernel module parameter to specify the maximum process
 136 * number per HW scheduler
 137 */
 138extern int hws_max_conc_proc;
 139
 140extern int cwsr_enable;
 141
 142/*
 143 * Kernel module parameter to specify whether to send sigterm to HSA process on
 144 * unhandled exception
 145 */
 146extern int send_sigterm;
 147
 148/*
 149 * This kernel module is used to simulate large bar machine on non-large bar
 150 * enabled machines.
 151 */
 152extern int debug_largebar;
 153
 154/*
 155 * Ignore CRAT table during KFD initialization, can be used to work around
 156 * broken CRAT tables on some AMD systems
 157 */
 158extern int ignore_crat;
 159
 160/*
 161 * Set sh_mem_config.retry_disable on Vega10
 162 */
 163extern int amdgpu_noretry;
 164
 165/*
 166 * Halt if HWS hang is detected
 167 */
 168extern int halt_if_hws_hang;
 169
 170/*
 171 * Whether MEC FW support GWS barriers
 172 */
 173extern bool hws_gws_support;
 174
 175/*
 176 * Queue preemption timeout in ms
 177 */
 178extern int queue_preemption_timeout_ms;
 179
 180enum cache_policy {
 181        cache_policy_coherent,
 182        cache_policy_noncoherent
 183};
 184
 185#define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
 186
 187struct kfd_event_interrupt_class {
 188        bool (*interrupt_isr)(struct kfd_dev *dev,
 189                        const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
 190                        bool *patched_flag);
 191        void (*interrupt_wq)(struct kfd_dev *dev,
 192                        const uint32_t *ih_ring_entry);
 193};
 194
 195struct kfd_device_info {
 196        enum amd_asic_type asic_family;
 197        const char *asic_name;
 198        const struct kfd_event_interrupt_class *event_interrupt_class;
 199        unsigned int max_pasid_bits;
 200        unsigned int max_no_of_hqd;
 201        unsigned int doorbell_size;
 202        size_t ih_ring_entry_size;
 203        uint8_t num_of_watch_points;
 204        uint16_t mqd_size_aligned;
 205        bool supports_cwsr;
 206        bool needs_iommu_device;
 207        bool needs_pci_atomics;
 208        unsigned int num_sdma_engines;
 209        unsigned int num_xgmi_sdma_engines;
 210        unsigned int num_sdma_queues_per_engine;
 211};
 212
 213struct kfd_mem_obj {
 214        uint32_t range_start;
 215        uint32_t range_end;
 216        uint64_t gpu_addr;
 217        uint32_t *cpu_ptr;
 218        void *gtt_mem;
 219};
 220
 221struct kfd_vmid_info {
 222        uint32_t first_vmid_kfd;
 223        uint32_t last_vmid_kfd;
 224        uint32_t vmid_num_kfd;
 225};
 226
 227struct kfd_dev {
 228        struct kgd_dev *kgd;
 229
 230        const struct kfd_device_info *device_info;
 231        struct pci_dev *pdev;
 232        struct drm_device *ddev;
 233
 234        unsigned int id;                /* topology stub index */
 235
 236        phys_addr_t doorbell_base;      /* Start of actual doorbells used by
 237                                         * KFD. It is aligned for mapping
 238                                         * into user mode
 239                                         */
 240        size_t doorbell_base_dw_offset; /* Offset from the start of the PCI
 241                                         * doorbell BAR to the first KFD
 242                                         * doorbell in dwords. GFX reserves
 243                                         * the segment before this offset.
 244                                         */
 245        u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
 246                                           * page used by kernel queue
 247                                           */
 248
 249        struct kgd2kfd_shared_resources shared_resources;
 250        struct kfd_vmid_info vm_info;
 251
 252        const struct kfd2kgd_calls *kfd2kgd;
 253        struct mutex doorbell_mutex;
 254        DECLARE_BITMAP(doorbell_available_index,
 255                        KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
 256
 257        void *gtt_mem;
 258        uint64_t gtt_start_gpu_addr;
 259        void *gtt_start_cpu_ptr;
 260        void *gtt_sa_bitmap;
 261        struct mutex gtt_sa_lock;
 262        unsigned int gtt_sa_chunk_size;
 263        unsigned int gtt_sa_num_of_chunks;
 264
 265        /* Interrupts */
 266        struct kfifo ih_fifo;
 267        struct workqueue_struct *ih_wq;
 268        struct work_struct interrupt_work;
 269        spinlock_t interrupt_lock;
 270
 271        /* QCM Device instance */
 272        struct device_queue_manager *dqm;
 273
 274        bool init_complete;
 275        /*
 276         * Interrupts of interest to KFD are copied
 277         * from the HW ring into a SW ring.
 278         */
 279        bool interrupts_active;
 280
 281        /* Debug manager */
 282        struct kfd_dbgmgr *dbgmgr;
 283
 284        /* Firmware versions */
 285        uint16_t mec_fw_version;
 286        uint16_t mec2_fw_version;
 287        uint16_t sdma_fw_version;
 288
 289        /* Maximum process number mapped to HW scheduler */
 290        unsigned int max_proc_per_quantum;
 291
 292        /* CWSR */
 293        bool cwsr_enabled;
 294        const void *cwsr_isa;
 295        unsigned int cwsr_isa_size;
 296
 297        /* xGMI */
 298        uint64_t hive_id;
 299    
 300        /* UUID */
 301        uint64_t unique_id;
 302
 303        bool pci_atomic_requested;
 304
 305        /* SRAM ECC flag */
 306        atomic_t sram_ecc_flag;
 307
 308        /* Compute Profile ref. count */
 309        atomic_t compute_profile;
 310
 311        /* Global GWS resource shared b/t processes*/
 312        void *gws;
 313};
 314
 315enum kfd_mempool {
 316        KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
 317        KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
 318        KFD_MEMPOOL_FRAMEBUFFER = 3,
 319};
 320
 321/* Character device interface */
 322int kfd_chardev_init(void);
 323void kfd_chardev_exit(void);
 324struct device *kfd_chardev(void);
 325
 326/**
 327 * enum kfd_unmap_queues_filter
 328 *
 329 * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
 330 *
 331 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
 332 *                                              running queues list.
 333 *
 334 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
 335 *                                              specific process.
 336 *
 337 */
 338enum kfd_unmap_queues_filter {
 339        KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
 340        KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
 341        KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
 342        KFD_UNMAP_QUEUES_FILTER_BY_PASID
 343};
 344
 345/**
 346 * enum kfd_queue_type
 347 *
 348 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
 349 *
 350 * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
 351 *
 352 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
 353 *
 354 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
 355 */
 356enum kfd_queue_type  {
 357        KFD_QUEUE_TYPE_COMPUTE,
 358        KFD_QUEUE_TYPE_SDMA,
 359        KFD_QUEUE_TYPE_HIQ,
 360        KFD_QUEUE_TYPE_DIQ,
 361        KFD_QUEUE_TYPE_SDMA_XGMI
 362};
 363
 364enum kfd_queue_format {
 365        KFD_QUEUE_FORMAT_PM4,
 366        KFD_QUEUE_FORMAT_AQL
 367};
 368
 369enum KFD_QUEUE_PRIORITY {
 370        KFD_QUEUE_PRIORITY_MINIMUM = 0,
 371        KFD_QUEUE_PRIORITY_MAXIMUM = 15
 372};
 373
 374/**
 375 * struct queue_properties
 376 *
 377 * @type: The queue type.
 378 *
 379 * @queue_id: Queue identifier.
 380 *
 381 * @queue_address: Queue ring buffer address.
 382 *
 383 * @queue_size: Queue ring buffer size.
 384 *
 385 * @priority: Defines the queue priority relative to other queues in the
 386 * process.
 387 * This is just an indication and HW scheduling may override the priority as
 388 * necessary while keeping the relative prioritization.
 389 * the priority granularity is from 0 to f which f is the highest priority.
 390 * currently all queues are initialized with the highest priority.
 391 *
 392 * @queue_percent: This field is partially implemented and currently a zero in
 393 * this field defines that the queue is non active.
 394 *
 395 * @read_ptr: User space address which points to the number of dwords the
 396 * cp read from the ring buffer. This field updates automatically by the H/W.
 397 *
 398 * @write_ptr: Defines the number of dwords written to the ring buffer.
 399 *
 400 * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
 401 * the queue ring buffer. This field should be similar to write_ptr and the
 402 * user should update this field after he updated the write_ptr.
 403 *
 404 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
 405 *
 406 * @is_interop: Defines if this is a interop queue. Interop queue means that
 407 * the queue can access both graphics and compute resources.
 408 *
 409 * @is_evicted: Defines if the queue is evicted. Only active queues
 410 * are evicted, rendering them inactive.
 411 *
 412 * @is_active: Defines if the queue is active or not. @is_active and
 413 * @is_evicted are protected by the DQM lock.
 414 *
 415 * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
 416 * @is_gws should be protected by the DQM lock, since changing it can yield the
 417 * possibility of updating DQM state on number of GWS queues.
 418 *
 419 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
 420 * of the queue.
 421 *
 422 * This structure represents the queue properties for each queue no matter if
 423 * it's user mode or kernel mode queue.
 424 *
 425 */
 426struct queue_properties {
 427        enum kfd_queue_type type;
 428        enum kfd_queue_format format;
 429        unsigned int queue_id;
 430        uint64_t queue_address;
 431        uint64_t  queue_size;
 432        uint32_t priority;
 433        uint32_t queue_percent;
 434        uint32_t *read_ptr;
 435        uint32_t *write_ptr;
 436        void __iomem *doorbell_ptr;
 437        uint32_t doorbell_off;
 438        bool is_interop;
 439        bool is_evicted;
 440        bool is_active;
 441        bool is_gws;
 442        /* Not relevant for user mode queues in cp scheduling */
 443        unsigned int vmid;
 444        /* Relevant only for sdma queues*/
 445        uint32_t sdma_engine_id;
 446        uint32_t sdma_queue_id;
 447        uint32_t sdma_vm_addr;
 448        /* Relevant only for VI */
 449        uint64_t eop_ring_buffer_address;
 450        uint32_t eop_ring_buffer_size;
 451        uint64_t ctx_save_restore_area_address;
 452        uint32_t ctx_save_restore_area_size;
 453        uint32_t ctl_stack_size;
 454        uint64_t tba_addr;
 455        uint64_t tma_addr;
 456        /* Relevant for CU */
 457        uint32_t cu_mask_count; /* Must be a multiple of 32 */
 458        uint32_t *cu_mask;
 459};
 460
 461#define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&       \
 462                            (q).queue_address != 0 &&   \
 463                            (q).queue_percent > 0 &&    \
 464                            !(q).is_evicted)
 465
 466/**
 467 * struct queue
 468 *
 469 * @list: Queue linked list.
 470 *
 471 * @mqd: The queue MQD.
 472 *
 473 * @mqd_mem_obj: The MQD local gpu memory object.
 474 *
 475 * @gart_mqd_addr: The MQD gart mc address.
 476 *
 477 * @properties: The queue properties.
 478 *
 479 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
 480 *       that the queue should be execute on.
 481 *
 482 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
 483 *        id.
 484 *
 485 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
 486 *
 487 * @process: The kfd process that created this queue.
 488 *
 489 * @device: The kfd device that created this queue.
 490 *
 491 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
 492 * otherwise.
 493 *
 494 * This structure represents user mode compute queues.
 495 * It contains all the necessary data to handle such queues.
 496 *
 497 */
 498
 499struct queue {
 500        struct list_head list;
 501        void *mqd;
 502        struct kfd_mem_obj *mqd_mem_obj;
 503        uint64_t gart_mqd_addr;
 504        struct queue_properties properties;
 505
 506        uint32_t mec;
 507        uint32_t pipe;
 508        uint32_t queue;
 509
 510        unsigned int sdma_id;
 511        unsigned int doorbell_id;
 512
 513        struct kfd_process      *process;
 514        struct kfd_dev          *device;
 515        void *gws;
 516
 517        /* procfs */
 518        struct kobject kobj;
 519};
 520
 521/*
 522 * Please read the kfd_mqd_manager.h description.
 523 */
 524enum KFD_MQD_TYPE {
 525        KFD_MQD_TYPE_HIQ = 0,           /* for hiq */
 526        KFD_MQD_TYPE_CP,                /* for cp queues and diq */
 527        KFD_MQD_TYPE_SDMA,              /* for sdma queues */
 528        KFD_MQD_TYPE_DIQ,               /* for diq */
 529        KFD_MQD_TYPE_MAX
 530};
 531
 532enum KFD_PIPE_PRIORITY {
 533        KFD_PIPE_PRIORITY_CS_LOW = 0,
 534        KFD_PIPE_PRIORITY_CS_MEDIUM,
 535        KFD_PIPE_PRIORITY_CS_HIGH
 536};
 537
 538struct scheduling_resources {
 539        unsigned int vmid_mask;
 540        enum kfd_queue_type type;
 541        uint64_t queue_mask;
 542        uint64_t gws_mask;
 543        uint32_t oac_mask;
 544        uint32_t gds_heap_base;
 545        uint32_t gds_heap_size;
 546};
 547
 548struct process_queue_manager {
 549        /* data */
 550        struct kfd_process      *process;
 551        struct list_head        queues;
 552        unsigned long           *queue_slot_bitmap;
 553};
 554
 555struct qcm_process_device {
 556        /* The Device Queue Manager that owns this data */
 557        struct device_queue_manager *dqm;
 558        struct process_queue_manager *pqm;
 559        /* Queues list */
 560        struct list_head queues_list;
 561        struct list_head priv_queue_list;
 562
 563        unsigned int queue_count;
 564        unsigned int vmid;
 565        bool is_debug;
 566        unsigned int evicted; /* eviction counter, 0=active */
 567
 568        /* This flag tells if we should reset all wavefronts on
 569         * process termination
 570         */
 571        bool reset_wavefronts;
 572
 573        /* This flag tells us if this process has a GWS-capable
 574         * queue that will be mapped into the runlist. It's
 575         * possible to request a GWS BO, but not have the queue
 576         * currently mapped, and this changes how the MAP_PROCESS
 577         * PM4 packet is configured.
 578         */
 579        bool mapped_gws_queue;
 580
 581        /*
 582         * All the memory management data should be here too
 583         */
 584        uint64_t gds_context_area;
 585        /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
 586        uint64_t page_table_base;
 587        uint32_t sh_mem_config;
 588        uint32_t sh_mem_bases;
 589        uint32_t sh_mem_ape1_base;
 590        uint32_t sh_mem_ape1_limit;
 591        uint32_t gds_size;
 592        uint32_t num_gws;
 593        uint32_t num_oac;
 594        uint32_t sh_hidden_private_base;
 595
 596        /* CWSR memory */
 597        void *cwsr_kaddr;
 598        uint64_t cwsr_base;
 599        uint64_t tba_addr;
 600        uint64_t tma_addr;
 601
 602        /* IB memory */
 603        uint64_t ib_base;
 604        void *ib_kaddr;
 605
 606        /* doorbell resources per process per device */
 607        unsigned long *doorbell_bitmap;
 608};
 609
 610/* KFD Memory Eviction */
 611
 612/* Approx. wait time before attempting to restore evicted BOs */
 613#define PROCESS_RESTORE_TIME_MS 100
 614/* Approx. back off time if restore fails due to lack of memory */
 615#define PROCESS_BACK_OFF_TIME_MS 100
 616/* Approx. time before evicting the process again */
 617#define PROCESS_ACTIVE_TIME_MS 10
 618
 619/* 8 byte handle containing GPU ID in the most significant 4 bytes and
 620 * idr_handle in the least significant 4 bytes
 621 */
 622#define MAKE_HANDLE(gpu_id, idr_handle) \
 623        (((uint64_t)(gpu_id) << 32) + idr_handle)
 624#define GET_GPU_ID(handle) (handle >> 32)
 625#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
 626
 627enum kfd_pdd_bound {
 628        PDD_UNBOUND = 0,
 629        PDD_BOUND,
 630        PDD_BOUND_SUSPENDED,
 631};
 632
 633#define MAX_VRAM_FILENAME_LEN 11
 634
 635/* Data that is per-process-per device. */
 636struct kfd_process_device {
 637        /*
 638         * List of all per-device data for a process.
 639         * Starts from kfd_process.per_device_data.
 640         */
 641        struct list_head per_device_list;
 642
 643        /* The device that owns this data. */
 644        struct kfd_dev *dev;
 645
 646        /* The process that owns this kfd_process_device. */
 647        struct kfd_process *process;
 648
 649        /* per-process-per device QCM data structure */
 650        struct qcm_process_device qpd;
 651
 652        /*Apertures*/
 653        uint64_t lds_base;
 654        uint64_t lds_limit;
 655        uint64_t gpuvm_base;
 656        uint64_t gpuvm_limit;
 657        uint64_t scratch_base;
 658        uint64_t scratch_limit;
 659
 660        /* VM context for GPUVM allocations */
 661        struct file *drm_file;
 662        void *vm;
 663
 664        /* GPUVM allocations storage */
 665        struct idr alloc_idr;
 666
 667        /* Flag used to tell the pdd has dequeued from the dqm.
 668         * This is used to prevent dev->dqm->ops.process_termination() from
 669         * being called twice when it is already called in IOMMU callback
 670         * function.
 671         */
 672        bool already_dequeued;
 673        bool runtime_inuse;
 674
 675        /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
 676        enum kfd_pdd_bound bound;
 677
 678        /* VRAM usage */
 679        uint64_t vram_usage;
 680        struct attribute attr_vram;
 681        char vram_filename[MAX_VRAM_FILENAME_LEN];
 682};
 683
 684#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
 685
 686/* Process data */
 687struct kfd_process {
 688        /*
 689         * kfd_process are stored in an mm_struct*->kfd_process*
 690         * hash table (kfd_processes in kfd_process.c)
 691         */
 692        struct hlist_node kfd_processes;
 693
 694        /*
 695         * Opaque pointer to mm_struct. We don't hold a reference to
 696         * it so it should never be dereferenced from here. This is
 697         * only used for looking up processes by their mm.
 698         */
 699        void *mm;
 700
 701        struct kref ref;
 702        struct work_struct release_work;
 703
 704        struct mutex mutex;
 705
 706        /*
 707         * In any process, the thread that started main() is the lead
 708         * thread and outlives the rest.
 709         * It is here because amd_iommu_bind_pasid wants a task_struct.
 710         * It can also be used for safely getting a reference to the
 711         * mm_struct of the process.
 712         */
 713        struct task_struct *lead_thread;
 714
 715        /* We want to receive a notification when the mm_struct is destroyed */
 716        struct mmu_notifier mmu_notifier;
 717
 718        uint16_t pasid;
 719        unsigned int doorbell_index;
 720
 721        /*
 722         * List of kfd_process_device structures,
 723         * one for each device the process is using.
 724         */
 725        struct list_head per_device_data;
 726
 727        struct process_queue_manager pqm;
 728
 729        /*Is the user space process 32 bit?*/
 730        bool is_32bit_user_mode;
 731
 732        /* Event-related data */
 733        struct mutex event_mutex;
 734        /* Event ID allocator and lookup */
 735        struct idr event_idr;
 736        /* Event page */
 737        struct kfd_signal_page *signal_page;
 738        size_t signal_mapped_size;
 739        size_t signal_event_count;
 740        bool signal_event_limit_reached;
 741
 742        /* Information used for memory eviction */
 743        void *kgd_process_info;
 744        /* Eviction fence that is attached to all the BOs of this process. The
 745         * fence will be triggered during eviction and new one will be created
 746         * during restore
 747         */
 748        struct dma_fence *ef;
 749
 750        /* Work items for evicting and restoring BOs */
 751        struct delayed_work eviction_work;
 752        struct delayed_work restore_work;
 753        /* seqno of the last scheduled eviction */
 754        unsigned int last_eviction_seqno;
 755        /* Approx. the last timestamp (in jiffies) when the process was
 756         * restored after an eviction
 757         */
 758        unsigned long last_restore_timestamp;
 759
 760        /* Kobj for our procfs */
 761        struct kobject *kobj;
 762        struct kobject *kobj_queues;
 763        struct attribute attr_pasid;
 764};
 765
 766#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
 767extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
 768extern struct srcu_struct kfd_processes_srcu;
 769
 770/**
 771 * Ioctl function type.
 772 *
 773 * \param filep pointer to file structure.
 774 * \param p amdkfd process pointer.
 775 * \param data pointer to arg that was copied from user.
 776 */
 777typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
 778                                void *data);
 779
 780struct amdkfd_ioctl_desc {
 781        unsigned int cmd;
 782        int flags;
 783        amdkfd_ioctl_t *func;
 784        unsigned int cmd_drv;
 785        const char *name;
 786};
 787bool kfd_dev_is_large_bar(struct kfd_dev *dev);
 788
 789int kfd_process_create_wq(void);
 790void kfd_process_destroy_wq(void);
 791struct kfd_process *kfd_create_process(struct file *filep);
 792struct kfd_process *kfd_get_process(const struct task_struct *);
 793struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
 794struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
 795void kfd_unref_process(struct kfd_process *p);
 796int kfd_process_evict_queues(struct kfd_process *p);
 797int kfd_process_restore_queues(struct kfd_process *p);
 798void kfd_suspend_all_processes(void);
 799int kfd_resume_all_processes(void);
 800
 801int kfd_process_device_init_vm(struct kfd_process_device *pdd,
 802                               struct file *drm_file);
 803struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
 804                                                struct kfd_process *p);
 805struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
 806                                                        struct kfd_process *p);
 807struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
 808                                                        struct kfd_process *p);
 809
 810int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
 811                          struct vm_area_struct *vma);
 812
 813/* KFD process API for creating and translating handles */
 814int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
 815                                        void *mem);
 816void *kfd_process_device_translate_handle(struct kfd_process_device *p,
 817                                        int handle);
 818void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
 819                                        int handle);
 820
 821/* Process device data iterator */
 822struct kfd_process_device *kfd_get_first_process_device_data(
 823                                                        struct kfd_process *p);
 824struct kfd_process_device *kfd_get_next_process_device_data(
 825                                                struct kfd_process *p,
 826                                                struct kfd_process_device *pdd);
 827bool kfd_has_process_device_data(struct kfd_process *p);
 828
 829/* PASIDs */
 830int kfd_pasid_init(void);
 831void kfd_pasid_exit(void);
 832bool kfd_set_pasid_limit(unsigned int new_limit);
 833unsigned int kfd_get_pasid_limit(void);
 834unsigned int kfd_pasid_alloc(void);
 835void kfd_pasid_free(unsigned int pasid);
 836
 837/* Doorbells */
 838size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
 839int kfd_doorbell_init(struct kfd_dev *kfd);
 840void kfd_doorbell_fini(struct kfd_dev *kfd);
 841int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
 842                      struct vm_area_struct *vma);
 843void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
 844                                        unsigned int *doorbell_off);
 845void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
 846u32 read_kernel_doorbell(u32 __iomem *db);
 847void write_kernel_doorbell(void __iomem *db, u32 value);
 848void write_kernel_doorbell64(void __iomem *db, u64 value);
 849unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
 850                                        struct kfd_process *process,
 851                                        unsigned int doorbell_id);
 852phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
 853                                        struct kfd_process *process);
 854int kfd_alloc_process_doorbells(struct kfd_process *process);
 855void kfd_free_process_doorbells(struct kfd_process *process);
 856
 857/* GTT Sub-Allocator */
 858
 859int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
 860                        struct kfd_mem_obj **mem_obj);
 861
 862int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
 863
 864extern struct device *kfd_device;
 865
 866/* KFD's procfs */
 867void kfd_procfs_init(void);
 868void kfd_procfs_shutdown(void);
 869int kfd_procfs_add_queue(struct queue *q);
 870void kfd_procfs_del_queue(struct queue *q);
 871
 872/* Topology */
 873int kfd_topology_init(void);
 874void kfd_topology_shutdown(void);
 875int kfd_topology_add_device(struct kfd_dev *gpu);
 876int kfd_topology_remove_device(struct kfd_dev *gpu);
 877struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
 878                                                uint32_t proximity_domain);
 879struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
 880struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
 881struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
 882struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
 883int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
 884int kfd_numa_node_to_apic_id(int numa_node_id);
 885
 886/* Interrupts */
 887int kfd_interrupt_init(struct kfd_dev *dev);
 888void kfd_interrupt_exit(struct kfd_dev *dev);
 889bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry);
 890bool interrupt_is_wanted(struct kfd_dev *dev,
 891                                const uint32_t *ih_ring_entry,
 892                                uint32_t *patched_ihre, bool *flag);
 893
 894/* amdkfd Apertures */
 895int kfd_init_apertures(struct kfd_process *process);
 896
 897/* Queue Context Management */
 898int init_queue(struct queue **q, const struct queue_properties *properties);
 899void uninit_queue(struct queue *q);
 900void print_queue_properties(struct queue_properties *q);
 901void print_queue(struct queue *q);
 902
 903struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
 904                struct kfd_dev *dev);
 905struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
 906                struct kfd_dev *dev);
 907struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
 908                struct kfd_dev *dev);
 909struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
 910                struct kfd_dev *dev);
 911struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
 912                struct kfd_dev *dev);
 913struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
 914                struct kfd_dev *dev);
 915struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
 916void device_queue_manager_uninit(struct device_queue_manager *dqm);
 917struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
 918                                        enum kfd_queue_type type);
 919void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
 920int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid);
 921
 922/* Process Queue Manager */
 923struct process_queue_node {
 924        struct queue *q;
 925        struct kernel_queue *kq;
 926        struct list_head process_queue_list;
 927};
 928
 929void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
 930void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
 931int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
 932void pqm_uninit(struct process_queue_manager *pqm);
 933int pqm_create_queue(struct process_queue_manager *pqm,
 934                            struct kfd_dev *dev,
 935                            struct file *f,
 936                            struct queue_properties *properties,
 937                            unsigned int *qid,
 938                            uint32_t *p_doorbell_offset_in_process);
 939int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
 940int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
 941                        struct queue_properties *p);
 942int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
 943                        struct queue_properties *p);
 944int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
 945                        void *gws);
 946struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
 947                                                unsigned int qid);
 948struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
 949                                                unsigned int qid);
 950int pqm_get_wave_state(struct process_queue_manager *pqm,
 951                       unsigned int qid,
 952                       void __user *ctl_stack,
 953                       u32 *ctl_stack_used_size,
 954                       u32 *save_area_used_size);
 955
 956int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
 957                              unsigned int fence_value,
 958                              unsigned int timeout_ms);
 959
 960/* Packet Manager */
 961
 962#define KFD_FENCE_COMPLETED (100)
 963#define KFD_FENCE_INIT   (10)
 964
 965struct packet_manager {
 966        struct device_queue_manager *dqm;
 967        struct kernel_queue *priv_queue;
 968        struct mutex lock;
 969        bool allocated;
 970        struct kfd_mem_obj *ib_buffer_obj;
 971        unsigned int ib_size_bytes;
 972        bool is_over_subscription;
 973
 974        const struct packet_manager_funcs *pmf;
 975};
 976
 977struct packet_manager_funcs {
 978        /* Support ASIC-specific packet formats for PM4 packets */
 979        int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
 980                        struct qcm_process_device *qpd);
 981        int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
 982                        uint64_t ib, size_t ib_size_in_dwords, bool chain);
 983        int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
 984                        struct scheduling_resources *res);
 985        int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
 986                        struct queue *q, bool is_static);
 987        int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
 988                        enum kfd_queue_type type,
 989                        enum kfd_unmap_queues_filter mode,
 990                        uint32_t filter_param, bool reset,
 991                        unsigned int sdma_engine);
 992        int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
 993                        uint64_t fence_address, uint32_t fence_value);
 994        int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
 995
 996        /* Packet sizes */
 997        int map_process_size;
 998        int runlist_size;
 999        int set_resources_size;
1000        int map_queues_size;
1001        int unmap_queues_size;
1002        int query_status_size;
1003        int release_mem_size;
1004};
1005
1006extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1007extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1008
1009int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1010void pm_uninit(struct packet_manager *pm, bool hanging);
1011int pm_send_set_resources(struct packet_manager *pm,
1012                                struct scheduling_resources *res);
1013int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1014int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1015                                uint32_t fence_value);
1016
1017int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1018                        enum kfd_unmap_queues_filter mode,
1019                        uint32_t filter_param, bool reset,
1020                        unsigned int sdma_engine);
1021
1022void pm_release_ib(struct packet_manager *pm);
1023
1024/* Following PM funcs can be shared among VI and AI */
1025unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1026
1027uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1028
1029/* Events */
1030extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1031extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1032
1033extern const struct kfd_device_global_init_class device_global_init_class_cik;
1034
1035void kfd_event_init_process(struct kfd_process *p);
1036void kfd_event_free_process(struct kfd_process *p);
1037int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1038int kfd_wait_on_events(struct kfd_process *p,
1039                       uint32_t num_events, void __user *data,
1040                       bool all, uint32_t user_timeout_ms,
1041                       uint32_t *wait_result);
1042void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
1043                                uint32_t valid_id_bits);
1044void kfd_signal_iommu_event(struct kfd_dev *dev,
1045                unsigned int pasid, unsigned long address,
1046                bool is_write_requested, bool is_execute_requested);
1047void kfd_signal_hw_exception_event(unsigned int pasid);
1048int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1049int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1050int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1051                       uint64_t size);
1052int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1053                     uint32_t event_type, bool auto_reset, uint32_t node_id,
1054                     uint32_t *event_id, uint32_t *event_trigger_data,
1055                     uint64_t *event_page_offset, uint32_t *event_slot_index);
1056int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1057
1058void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
1059                                struct kfd_vm_fault_info *info);
1060
1061void kfd_signal_reset_event(struct kfd_dev *dev);
1062
1063void kfd_flush_tlb(struct kfd_process_device *pdd);
1064
1065int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1066
1067bool kfd_is_locked(void);
1068
1069/* Compute profile */
1070void kfd_inc_compute_active(struct kfd_dev *dev);
1071void kfd_dec_compute_active(struct kfd_dev *dev);
1072
1073/* Cgroup Support */
1074/* Check with device cgroup if @kfd device is accessible */
1075static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1076{
1077#if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1078        struct drm_device *ddev = kfd->ddev;
1079
1080        return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1081                                          ddev->render->index,
1082                                          DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1083#else
1084        return 0;
1085#endif
1086}
1087
1088/* Debugfs */
1089#if defined(CONFIG_DEBUG_FS)
1090
1091void kfd_debugfs_init(void);
1092void kfd_debugfs_fini(void);
1093int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1094int pqm_debugfs_mqds(struct seq_file *m, void *data);
1095int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1096int dqm_debugfs_hqds(struct seq_file *m, void *data);
1097int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1098int pm_debugfs_runlist(struct seq_file *m, void *data);
1099
1100int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1101int pm_debugfs_hang_hws(struct packet_manager *pm);
1102int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1103
1104#else
1105
1106static inline void kfd_debugfs_init(void) {}
1107static inline void kfd_debugfs_fini(void) {}
1108
1109#endif
1110
1111#endif
1112