linux/drivers/gpu/ipu-v3/ipu-image-convert.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2012-2016 Mentor Graphics Inc.
   4 *
   5 * Queued image conversion support, with tiling and rotation.
   6 */
   7
   8#include <linux/interrupt.h>
   9#include <linux/dma-mapping.h>
  10#include <video/imx-ipu-image-convert.h>
  11#include "ipu-prv.h"
  12
  13/*
  14 * The IC Resizer has a restriction that the output frame from the
  15 * resizer must be 1024 or less in both width (pixels) and height
  16 * (lines).
  17 *
  18 * The image converter attempts to split up a conversion when
  19 * the desired output (converted) frame resolution exceeds the
  20 * IC resizer limit of 1024 in either dimension.
  21 *
  22 * If either dimension of the output frame exceeds the limit, the
  23 * dimension is split into 1, 2, or 4 equal stripes, for a maximum
  24 * of 4*4 or 16 tiles. A conversion is then carried out for each
  25 * tile (but taking care to pass the full frame stride length to
  26 * the DMA channel's parameter memory!). IDMA double-buffering is used
  27 * to convert each tile back-to-back when possible (see note below
  28 * when double_buffering boolean is set).
  29 *
  30 * Note that the input frame must be split up into the same number
  31 * of tiles as the output frame:
  32 *
  33 *                       +---------+-----+
  34 *   +-----+---+         |  A      | B   |
  35 *   | A   | B |         |         |     |
  36 *   +-----+---+   -->   +---------+-----+
  37 *   | C   | D |         |  C      | D   |
  38 *   +-----+---+         |         |     |
  39 *                       +---------+-----+
  40 *
  41 * Clockwise 90° rotations are handled by first rescaling into a
  42 * reusable temporary tile buffer and then rotating with the 8x8
  43 * block rotator, writing to the correct destination:
  44 *
  45 *                                         +-----+-----+
  46 *                                         |     |     |
  47 *   +-----+---+         +---------+       | C   | A   |
  48 *   | A   | B |         | A,B, |  |       |     |     |
  49 *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
  50 *   | C   | D |         +---------+       +-----+-----+
  51 *   +-----+---+                           | D   | B   |
  52 *                                         |     |     |
  53 *                                         +-----+-----+
  54 *
  55 * If the 8x8 block rotator is used, horizontal or vertical flipping
  56 * is done during the rotation step, otherwise flipping is done
  57 * during the scaling step.
  58 * With rotation or flipping, tile order changes between input and
  59 * output image. Tiles are numbered row major from top left to bottom
  60 * right for both input and output image.
  61 */
  62
  63#define MAX_STRIPES_W    4
  64#define MAX_STRIPES_H    4
  65#define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
  66
  67#define MIN_W     16
  68#define MIN_H     8
  69#define MAX_W     4096
  70#define MAX_H     4096
  71
  72enum ipu_image_convert_type {
  73        IMAGE_CONVERT_IN = 0,
  74        IMAGE_CONVERT_OUT,
  75};
  76
  77struct ipu_image_convert_dma_buf {
  78        void          *virt;
  79        dma_addr_t    phys;
  80        unsigned long len;
  81};
  82
  83struct ipu_image_convert_dma_chan {
  84        int in;
  85        int out;
  86        int rot_in;
  87        int rot_out;
  88        int vdi_in_p;
  89        int vdi_in;
  90        int vdi_in_n;
  91};
  92
  93/* dimensions of one tile */
  94struct ipu_image_tile {
  95        u32 width;
  96        u32 height;
  97        u32 left;
  98        u32 top;
  99        /* size and strides are in bytes */
 100        u32 size;
 101        u32 stride;
 102        u32 rot_stride;
 103        /* start Y or packed offset of this tile */
 104        u32 offset;
 105        /* offset from start to tile in U plane, for planar formats */
 106        u32 u_off;
 107        /* offset from start to tile in V plane, for planar formats */
 108        u32 v_off;
 109};
 110
 111struct ipu_image_convert_image {
 112        struct ipu_image base;
 113        enum ipu_image_convert_type type;
 114
 115        const struct ipu_image_pixfmt *fmt;
 116        unsigned int stride;
 117
 118        /* # of rows (horizontal stripes) if dest height is > 1024 */
 119        unsigned int num_rows;
 120        /* # of columns (vertical stripes) if dest width is > 1024 */
 121        unsigned int num_cols;
 122
 123        struct ipu_image_tile tile[MAX_TILES];
 124};
 125
 126struct ipu_image_pixfmt {
 127        u32     fourcc;        /* V4L2 fourcc */
 128        int     bpp;           /* total bpp */
 129        int     uv_width_dec;  /* decimation in width for U/V planes */
 130        int     uv_height_dec; /* decimation in height for U/V planes */
 131        bool    planar;        /* planar format */
 132        bool    uv_swapped;    /* U and V planes are swapped */
 133        bool    uv_packed;     /* partial planar (U and V in same plane) */
 134};
 135
 136struct ipu_image_convert_ctx;
 137struct ipu_image_convert_chan;
 138struct ipu_image_convert_priv;
 139
 140struct ipu_image_convert_ctx {
 141        struct ipu_image_convert_chan *chan;
 142
 143        ipu_image_convert_cb_t complete;
 144        void *complete_context;
 145
 146        /* Source/destination image data and rotation mode */
 147        struct ipu_image_convert_image in;
 148        struct ipu_image_convert_image out;
 149        struct ipu_ic_csc csc;
 150        enum ipu_rotate_mode rot_mode;
 151        u32 downsize_coeff_h;
 152        u32 downsize_coeff_v;
 153        u32 image_resize_coeff_h;
 154        u32 image_resize_coeff_v;
 155        u32 resize_coeffs_h[MAX_STRIPES_W];
 156        u32 resize_coeffs_v[MAX_STRIPES_H];
 157
 158        /* intermediate buffer for rotation */
 159        struct ipu_image_convert_dma_buf rot_intermediate[2];
 160
 161        /* current buffer number for double buffering */
 162        int cur_buf_num;
 163
 164        bool aborting;
 165        struct completion aborted;
 166
 167        /* can we use double-buffering for this conversion operation? */
 168        bool double_buffering;
 169        /* num_rows * num_cols */
 170        unsigned int num_tiles;
 171        /* next tile to process */
 172        unsigned int next_tile;
 173        /* where to place converted tile in dest image */
 174        unsigned int out_tile_map[MAX_TILES];
 175
 176        struct list_head list;
 177};
 178
 179struct ipu_image_convert_chan {
 180        struct ipu_image_convert_priv *priv;
 181
 182        enum ipu_ic_task ic_task;
 183        const struct ipu_image_convert_dma_chan *dma_ch;
 184
 185        struct ipu_ic *ic;
 186        struct ipuv3_channel *in_chan;
 187        struct ipuv3_channel *out_chan;
 188        struct ipuv3_channel *rotation_in_chan;
 189        struct ipuv3_channel *rotation_out_chan;
 190
 191        /* the IPU end-of-frame irqs */
 192        int out_eof_irq;
 193        int rot_out_eof_irq;
 194
 195        spinlock_t irqlock;
 196
 197        /* list of convert contexts */
 198        struct list_head ctx_list;
 199        /* queue of conversion runs */
 200        struct list_head pending_q;
 201        /* queue of completed runs */
 202        struct list_head done_q;
 203
 204        /* the current conversion run */
 205        struct ipu_image_convert_run *current_run;
 206};
 207
 208struct ipu_image_convert_priv {
 209        struct ipu_image_convert_chan chan[IC_NUM_TASKS];
 210        struct ipu_soc *ipu;
 211};
 212
 213static const struct ipu_image_convert_dma_chan
 214image_convert_dma_chan[IC_NUM_TASKS] = {
 215        [IC_TASK_VIEWFINDER] = {
 216                .in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
 217                .out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
 218                .rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
 219                .rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
 220                .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
 221                .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
 222                .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
 223        },
 224        [IC_TASK_POST_PROCESSOR] = {
 225                .in = IPUV3_CHANNEL_MEM_IC_PP,
 226                .out = IPUV3_CHANNEL_IC_PP_MEM,
 227                .rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
 228                .rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
 229        },
 230};
 231
 232static const struct ipu_image_pixfmt image_convert_formats[] = {
 233        {
 234                .fourcc = V4L2_PIX_FMT_RGB565,
 235                .bpp    = 16,
 236        }, {
 237                .fourcc = V4L2_PIX_FMT_RGB24,
 238                .bpp    = 24,
 239        }, {
 240                .fourcc = V4L2_PIX_FMT_BGR24,
 241                .bpp    = 24,
 242        }, {
 243                .fourcc = V4L2_PIX_FMT_RGB32,
 244                .bpp    = 32,
 245        }, {
 246                .fourcc = V4L2_PIX_FMT_BGR32,
 247                .bpp    = 32,
 248        }, {
 249                .fourcc = V4L2_PIX_FMT_XRGB32,
 250                .bpp    = 32,
 251        }, {
 252                .fourcc = V4L2_PIX_FMT_XBGR32,
 253                .bpp    = 32,
 254        }, {
 255                .fourcc = V4L2_PIX_FMT_BGRX32,
 256                .bpp    = 32,
 257        }, {
 258                .fourcc = V4L2_PIX_FMT_RGBX32,
 259                .bpp    = 32,
 260        }, {
 261                .fourcc = V4L2_PIX_FMT_YUYV,
 262                .bpp    = 16,
 263                .uv_width_dec = 2,
 264                .uv_height_dec = 1,
 265        }, {
 266                .fourcc = V4L2_PIX_FMT_UYVY,
 267                .bpp    = 16,
 268                .uv_width_dec = 2,
 269                .uv_height_dec = 1,
 270        }, {
 271                .fourcc = V4L2_PIX_FMT_YUV420,
 272                .bpp    = 12,
 273                .planar = true,
 274                .uv_width_dec = 2,
 275                .uv_height_dec = 2,
 276        }, {
 277                .fourcc = V4L2_PIX_FMT_YVU420,
 278                .bpp    = 12,
 279                .planar = true,
 280                .uv_width_dec = 2,
 281                .uv_height_dec = 2,
 282                .uv_swapped = true,
 283        }, {
 284                .fourcc = V4L2_PIX_FMT_NV12,
 285                .bpp    = 12,
 286                .planar = true,
 287                .uv_width_dec = 2,
 288                .uv_height_dec = 2,
 289                .uv_packed = true,
 290        }, {
 291                .fourcc = V4L2_PIX_FMT_YUV422P,
 292                .bpp    = 16,
 293                .planar = true,
 294                .uv_width_dec = 2,
 295                .uv_height_dec = 1,
 296        }, {
 297                .fourcc = V4L2_PIX_FMT_NV16,
 298                .bpp    = 16,
 299                .planar = true,
 300                .uv_width_dec = 2,
 301                .uv_height_dec = 1,
 302                .uv_packed = true,
 303        },
 304};
 305
 306static const struct ipu_image_pixfmt *get_format(u32 fourcc)
 307{
 308        const struct ipu_image_pixfmt *ret = NULL;
 309        unsigned int i;
 310
 311        for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
 312                if (image_convert_formats[i].fourcc == fourcc) {
 313                        ret = &image_convert_formats[i];
 314                        break;
 315                }
 316        }
 317
 318        return ret;
 319}
 320
 321static void dump_format(struct ipu_image_convert_ctx *ctx,
 322                        struct ipu_image_convert_image *ic_image)
 323{
 324        struct ipu_image_convert_chan *chan = ctx->chan;
 325        struct ipu_image_convert_priv *priv = chan->priv;
 326
 327        dev_dbg(priv->ipu->dev,
 328                "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
 329                chan->ic_task, ctx,
 330                ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
 331                ic_image->base.pix.width, ic_image->base.pix.height,
 332                ic_image->num_cols, ic_image->num_rows,
 333                ic_image->fmt->fourcc & 0xff,
 334                (ic_image->fmt->fourcc >> 8) & 0xff,
 335                (ic_image->fmt->fourcc >> 16) & 0xff,
 336                (ic_image->fmt->fourcc >> 24) & 0xff);
 337}
 338
 339int ipu_image_convert_enum_format(int index, u32 *fourcc)
 340{
 341        const struct ipu_image_pixfmt *fmt;
 342
 343        if (index >= (int)ARRAY_SIZE(image_convert_formats))
 344                return -EINVAL;
 345
 346        /* Format found */
 347        fmt = &image_convert_formats[index];
 348        *fourcc = fmt->fourcc;
 349        return 0;
 350}
 351EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
 352
 353static void free_dma_buf(struct ipu_image_convert_priv *priv,
 354                         struct ipu_image_convert_dma_buf *buf)
 355{
 356        if (buf->virt)
 357                dma_free_coherent(priv->ipu->dev,
 358                                  buf->len, buf->virt, buf->phys);
 359        buf->virt = NULL;
 360        buf->phys = 0;
 361}
 362
 363static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
 364                         struct ipu_image_convert_dma_buf *buf,
 365                         int size)
 366{
 367        buf->len = PAGE_ALIGN(size);
 368        buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
 369                                       GFP_DMA | GFP_KERNEL);
 370        if (!buf->virt) {
 371                dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
 372                return -ENOMEM;
 373        }
 374
 375        return 0;
 376}
 377
 378static inline int num_stripes(int dim)
 379{
 380        return (dim - 1) / 1024 + 1;
 381}
 382
 383/*
 384 * Calculate downsizing coefficients, which are the same for all tiles,
 385 * and initial bilinear resizing coefficients, which are used to find the
 386 * best seam positions.
 387 * Also determine the number of tiles necessary to guarantee that no tile
 388 * is larger than 1024 pixels in either dimension at the output and between
 389 * IC downsizing and main processing sections.
 390 */
 391static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
 392                                          struct ipu_image *in,
 393                                          struct ipu_image *out)
 394{
 395        u32 downsized_width = in->rect.width;
 396        u32 downsized_height = in->rect.height;
 397        u32 downsize_coeff_v = 0;
 398        u32 downsize_coeff_h = 0;
 399        u32 resized_width = out->rect.width;
 400        u32 resized_height = out->rect.height;
 401        u32 resize_coeff_h;
 402        u32 resize_coeff_v;
 403        u32 cols;
 404        u32 rows;
 405
 406        if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
 407                resized_width = out->rect.height;
 408                resized_height = out->rect.width;
 409        }
 410
 411        /* Do not let invalid input lead to an endless loop below */
 412        if (WARN_ON(resized_width == 0 || resized_height == 0))
 413                return -EINVAL;
 414
 415        while (downsized_width >= resized_width * 2) {
 416                downsized_width >>= 1;
 417                downsize_coeff_h++;
 418        }
 419
 420        while (downsized_height >= resized_height * 2) {
 421                downsized_height >>= 1;
 422                downsize_coeff_v++;
 423        }
 424
 425        /*
 426         * Calculate the bilinear resizing coefficients that could be used if
 427         * we were converting with a single tile. The bottom right output pixel
 428         * should sample as close as possible to the bottom right input pixel
 429         * out of the decimator, but not overshoot it:
 430         */
 431        resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
 432        resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
 433
 434        /*
 435         * Both the output of the IC downsizing section before being passed to
 436         * the IC main processing section and the final output of the IC main
 437         * processing section must be <= 1024 pixels in both dimensions.
 438         */
 439        cols = num_stripes(max_t(u32, downsized_width, resized_width));
 440        rows = num_stripes(max_t(u32, downsized_height, resized_height));
 441
 442        dev_dbg(ctx->chan->priv->ipu->dev,
 443                "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
 444                __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
 445                resize_coeff_v, cols, rows);
 446
 447        if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
 448            resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
 449                return -EINVAL;
 450
 451        ctx->downsize_coeff_h = downsize_coeff_h;
 452        ctx->downsize_coeff_v = downsize_coeff_v;
 453        ctx->image_resize_coeff_h = resize_coeff_h;
 454        ctx->image_resize_coeff_v = resize_coeff_v;
 455        ctx->in.num_cols = cols;
 456        ctx->in.num_rows = rows;
 457
 458        return 0;
 459}
 460
 461#define round_closest(x, y) round_down((x) + (y)/2, (y))
 462
 463/*
 464 * Find the best aligned seam position for the given column / row index.
 465 * Rotation and image offsets are out of scope.
 466 *
 467 * @index: column / row index, used to calculate valid interval
 468 * @in_edge: input right / bottom edge
 469 * @out_edge: output right / bottom edge
 470 * @in_align: input alignment, either horizontal 8-byte line start address
 471 *            alignment, or pixel alignment due to image format
 472 * @out_align: output alignment, either horizontal 8-byte line start address
 473 *             alignment, or pixel alignment due to image format or rotator
 474 *             block size
 475 * @in_burst: horizontal input burst size in case of horizontal flip
 476 * @out_burst: horizontal output burst size or rotator block size
 477 * @downsize_coeff: downsizing section coefficient
 478 * @resize_coeff: main processing section resizing coefficient
 479 * @_in_seam: aligned input seam position return value
 480 * @_out_seam: aligned output seam position return value
 481 */
 482static void find_best_seam(struct ipu_image_convert_ctx *ctx,
 483                           unsigned int index,
 484                           unsigned int in_edge,
 485                           unsigned int out_edge,
 486                           unsigned int in_align,
 487                           unsigned int out_align,
 488                           unsigned int in_burst,
 489                           unsigned int out_burst,
 490                           unsigned int downsize_coeff,
 491                           unsigned int resize_coeff,
 492                           u32 *_in_seam,
 493                           u32 *_out_seam)
 494{
 495        struct device *dev = ctx->chan->priv->ipu->dev;
 496        unsigned int out_pos;
 497        /* Input / output seam position candidates */
 498        unsigned int out_seam = 0;
 499        unsigned int in_seam = 0;
 500        unsigned int min_diff = UINT_MAX;
 501        unsigned int out_start;
 502        unsigned int out_end;
 503        unsigned int in_start;
 504        unsigned int in_end;
 505
 506        /* Start within 1024 pixels of the right / bottom edge */
 507        out_start = max_t(int, index * out_align, out_edge - 1024);
 508        /* End before having to add more columns to the left / rows above */
 509        out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
 510
 511        /*
 512         * Limit input seam position to make sure that the downsized input tile
 513         * to the right or bottom does not exceed 1024 pixels.
 514         */
 515        in_start = max_t(int, index * in_align,
 516                         in_edge - (1024 << downsize_coeff));
 517        in_end = min_t(unsigned int, in_edge,
 518                       index * (1024 << downsize_coeff) + 1);
 519
 520        /*
 521         * Output tiles must start at a multiple of 8 bytes horizontally and
 522         * possibly at an even line horizontally depending on the pixel format.
 523         * Only consider output aligned positions for the seam.
 524         */
 525        out_start = round_up(out_start, out_align);
 526        for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
 527                unsigned int in_pos;
 528                unsigned int in_pos_aligned;
 529                unsigned int in_pos_rounded;
 530                unsigned int abs_diff;
 531
 532                /*
 533                 * Tiles in the right row / bottom column may not be allowed to
 534                 * overshoot horizontally / vertically. out_burst may be the
 535                 * actual DMA burst size, or the rotator block size.
 536                 */
 537                if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
 538                        continue;
 539
 540                /*
 541                 * Input sample position, corresponding to out_pos, 19.13 fixed
 542                 * point.
 543                 */
 544                in_pos = (out_pos * resize_coeff) << downsize_coeff;
 545                /*
 546                 * The closest input sample position that we could actually
 547                 * start the input tile at, 19.13 fixed point.
 548                 */
 549                in_pos_aligned = round_closest(in_pos, 8192U * in_align);
 550                /* Convert 19.13 fixed point to integer */
 551                in_pos_rounded = in_pos_aligned / 8192U;
 552
 553                if (in_pos_rounded < in_start)
 554                        continue;
 555                if (in_pos_rounded >= in_end)
 556                        break;
 557
 558                if ((in_burst > 1) &&
 559                    (in_edge - in_pos_rounded) % in_burst)
 560                        continue;
 561
 562                if (in_pos < in_pos_aligned)
 563                        abs_diff = in_pos_aligned - in_pos;
 564                else
 565                        abs_diff = in_pos - in_pos_aligned;
 566
 567                if (abs_diff < min_diff) {
 568                        in_seam = in_pos_rounded;
 569                        out_seam = out_pos;
 570                        min_diff = abs_diff;
 571                }
 572        }
 573
 574        *_out_seam = out_seam;
 575        *_in_seam = in_seam;
 576
 577        dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
 578                __func__, out_seam, out_align, out_start, out_end,
 579                in_seam, in_align, in_start, in_end, min_diff / 8192,
 580                DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
 581}
 582
 583/*
 584 * Tile left edges are required to be aligned to multiples of 8 bytes
 585 * by the IDMAC.
 586 */
 587static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
 588{
 589        if (fmt->planar)
 590                return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
 591        else
 592                return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
 593}
 594
 595/*
 596 * Tile top edge alignment is only limited by chroma subsampling.
 597 */
 598static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
 599{
 600        return fmt->uv_height_dec > 1 ? 2 : 1;
 601}
 602
 603static inline u32 tile_width_align(enum ipu_image_convert_type type,
 604                                   const struct ipu_image_pixfmt *fmt,
 605                                   enum ipu_rotate_mode rot_mode)
 606{
 607        if (type == IMAGE_CONVERT_IN) {
 608                /*
 609                 * The IC burst reads 8 pixels at a time. Reading beyond the
 610                 * end of the line is usually acceptable. Those pixels are
 611                 * ignored, unless the IC has to write the scaled line in
 612                 * reverse.
 613                 */
 614                return (!ipu_rot_mode_is_irt(rot_mode) &&
 615                        (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
 616        }
 617
 618        /*
 619         * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
 620         * formats to guarantee 8-byte aligned line start addresses in the
 621         * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
 622         * for all other formats.
 623         */
 624        return (ipu_rot_mode_is_irt(rot_mode) &&
 625                fmt->planar && !fmt->uv_packed) ?
 626                8 * fmt->uv_width_dec : 8;
 627}
 628
 629static inline u32 tile_height_align(enum ipu_image_convert_type type,
 630                                    const struct ipu_image_pixfmt *fmt,
 631                                    enum ipu_rotate_mode rot_mode)
 632{
 633        if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
 634                return 2;
 635
 636        /*
 637         * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
 638         * formats to guarantee 8-byte aligned line start addresses in the
 639         * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
 640         * for all other formats.
 641         */
 642        return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
 643}
 644
 645/*
 646 * Fill in left position and width and for all tiles in an input column, and
 647 * for all corresponding output tiles. If the 90° rotator is used, the output
 648 * tiles are in a row, and output tile top position and height are set.
 649 */
 650static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
 651                             unsigned int col,
 652                             struct ipu_image_convert_image *in,
 653                             unsigned int in_left, unsigned int in_width,
 654                             struct ipu_image_convert_image *out,
 655                             unsigned int out_left, unsigned int out_width)
 656{
 657        unsigned int row, tile_idx;
 658        struct ipu_image_tile *in_tile, *out_tile;
 659
 660        for (row = 0; row < in->num_rows; row++) {
 661                tile_idx = in->num_cols * row + col;
 662                in_tile = &in->tile[tile_idx];
 663                out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
 664
 665                in_tile->left = in_left;
 666                in_tile->width = in_width;
 667
 668                if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
 669                        out_tile->top = out_left;
 670                        out_tile->height = out_width;
 671                } else {
 672                        out_tile->left = out_left;
 673                        out_tile->width = out_width;
 674                }
 675        }
 676}
 677
 678/*
 679 * Fill in top position and height and for all tiles in an input row, and
 680 * for all corresponding output tiles. If the 90° rotator is used, the output
 681 * tiles are in a column, and output tile left position and width are set.
 682 */
 683static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
 684                          struct ipu_image_convert_image *in,
 685                          unsigned int in_top, unsigned int in_height,
 686                          struct ipu_image_convert_image *out,
 687                          unsigned int out_top, unsigned int out_height)
 688{
 689        unsigned int col, tile_idx;
 690        struct ipu_image_tile *in_tile, *out_tile;
 691
 692        for (col = 0; col < in->num_cols; col++) {
 693                tile_idx = in->num_cols * row + col;
 694                in_tile = &in->tile[tile_idx];
 695                out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
 696
 697                in_tile->top = in_top;
 698                in_tile->height = in_height;
 699
 700                if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
 701                        out_tile->left = out_top;
 702                        out_tile->width = out_height;
 703                } else {
 704                        out_tile->top = out_top;
 705                        out_tile->height = out_height;
 706                }
 707        }
 708}
 709
 710/*
 711 * Find the best horizontal and vertical seam positions to split into tiles.
 712 * Minimize the fractional part of the input sampling position for the
 713 * top / left pixels of each tile.
 714 */
 715static void find_seams(struct ipu_image_convert_ctx *ctx,
 716                       struct ipu_image_convert_image *in,
 717                       struct ipu_image_convert_image *out)
 718{
 719        struct device *dev = ctx->chan->priv->ipu->dev;
 720        unsigned int resized_width = out->base.rect.width;
 721        unsigned int resized_height = out->base.rect.height;
 722        unsigned int col;
 723        unsigned int row;
 724        unsigned int in_left_align = tile_left_align(in->fmt);
 725        unsigned int in_top_align = tile_top_align(in->fmt);
 726        unsigned int out_left_align = tile_left_align(out->fmt);
 727        unsigned int out_top_align = tile_top_align(out->fmt);
 728        unsigned int out_width_align = tile_width_align(out->type, out->fmt,
 729                                                        ctx->rot_mode);
 730        unsigned int out_height_align = tile_height_align(out->type, out->fmt,
 731                                                          ctx->rot_mode);
 732        unsigned int in_right = in->base.rect.width;
 733        unsigned int in_bottom = in->base.rect.height;
 734        unsigned int out_right = out->base.rect.width;
 735        unsigned int out_bottom = out->base.rect.height;
 736        unsigned int flipped_out_left;
 737        unsigned int flipped_out_top;
 738
 739        if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
 740                /* Switch width/height and align top left to IRT block size */
 741                resized_width = out->base.rect.height;
 742                resized_height = out->base.rect.width;
 743                out_left_align = out_height_align;
 744                out_top_align = out_width_align;
 745                out_width_align = out_left_align;
 746                out_height_align = out_top_align;
 747                out_right = out->base.rect.height;
 748                out_bottom = out->base.rect.width;
 749        }
 750
 751        for (col = in->num_cols - 1; col > 0; col--) {
 752                bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
 753                                          !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
 754                bool allow_out_overshoot = (col < in->num_cols - 1) &&
 755                                           !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
 756                unsigned int in_left;
 757                unsigned int out_left;
 758
 759                /*
 760                 * Align input width to burst length if the scaling step flips
 761                 * horizontally.
 762                 */
 763
 764                find_best_seam(ctx, col,
 765                               in_right, out_right,
 766                               in_left_align, out_left_align,
 767                               allow_in_overshoot ? 1 : 8 /* burst length */,
 768                               allow_out_overshoot ? 1 : out_width_align,
 769                               ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
 770                               &in_left, &out_left);
 771
 772                if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
 773                        flipped_out_left = resized_width - out_right;
 774                else
 775                        flipped_out_left = out_left;
 776
 777                fill_tile_column(ctx, col, in, in_left, in_right - in_left,
 778                                 out, flipped_out_left, out_right - out_left);
 779
 780                dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
 781                        in_left, in_right - in_left,
 782                        flipped_out_left, out_right - out_left);
 783
 784                in_right = in_left;
 785                out_right = out_left;
 786        }
 787
 788        flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
 789                           resized_width - out_right : 0;
 790
 791        fill_tile_column(ctx, 0, in, 0, in_right,
 792                         out, flipped_out_left, out_right);
 793
 794        dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
 795                in_right, flipped_out_left, out_right);
 796
 797        for (row = in->num_rows - 1; row > 0; row--) {
 798                bool allow_overshoot = row < in->num_rows - 1;
 799                unsigned int in_top;
 800                unsigned int out_top;
 801
 802                find_best_seam(ctx, row,
 803                               in_bottom, out_bottom,
 804                               in_top_align, out_top_align,
 805                               1, allow_overshoot ? 1 : out_height_align,
 806                               ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
 807                               &in_top, &out_top);
 808
 809                if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
 810                    ipu_rot_mode_is_irt(ctx->rot_mode))
 811                        flipped_out_top = resized_height - out_bottom;
 812                else
 813                        flipped_out_top = out_top;
 814
 815                fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
 816                              out, flipped_out_top, out_bottom - out_top);
 817
 818                dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
 819                        in_top, in_bottom - in_top,
 820                        flipped_out_top, out_bottom - out_top);
 821
 822                in_bottom = in_top;
 823                out_bottom = out_top;
 824        }
 825
 826        if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
 827            ipu_rot_mode_is_irt(ctx->rot_mode))
 828                flipped_out_top = resized_height - out_bottom;
 829        else
 830                flipped_out_top = 0;
 831
 832        fill_tile_row(ctx, 0, in, 0, in_bottom,
 833                      out, flipped_out_top, out_bottom);
 834
 835        dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
 836                in_bottom, flipped_out_top, out_bottom);
 837}
 838
 839static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
 840                                struct ipu_image_convert_image *image)
 841{
 842        struct ipu_image_convert_chan *chan = ctx->chan;
 843        struct ipu_image_convert_priv *priv = chan->priv;
 844        unsigned int max_width = 1024;
 845        unsigned int max_height = 1024;
 846        unsigned int i;
 847
 848        if (image->type == IMAGE_CONVERT_IN) {
 849                /* Up to 4096x4096 input tile size */
 850                max_width <<= ctx->downsize_coeff_h;
 851                max_height <<= ctx->downsize_coeff_v;
 852        }
 853
 854        for (i = 0; i < ctx->num_tiles; i++) {
 855                struct ipu_image_tile *tile;
 856                const unsigned int row = i / image->num_cols;
 857                const unsigned int col = i % image->num_cols;
 858
 859                if (image->type == IMAGE_CONVERT_OUT)
 860                        tile = &image->tile[ctx->out_tile_map[i]];
 861                else
 862                        tile = &image->tile[i];
 863
 864                tile->size = ((tile->height * image->fmt->bpp) >> 3) *
 865                        tile->width;
 866
 867                if (image->fmt->planar) {
 868                        tile->stride = tile->width;
 869                        tile->rot_stride = tile->height;
 870                } else {
 871                        tile->stride =
 872                                (image->fmt->bpp * tile->width) >> 3;
 873                        tile->rot_stride =
 874                                (image->fmt->bpp * tile->height) >> 3;
 875                }
 876
 877                dev_dbg(priv->ipu->dev,
 878                        "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
 879                        chan->ic_task, ctx,
 880                        image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
 881                        row, col,
 882                        tile->width, tile->height, tile->left, tile->top);
 883
 884                if (!tile->width || tile->width > max_width ||
 885                    !tile->height || tile->height > max_height) {
 886                        dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
 887                                image->type == IMAGE_CONVERT_IN ? "input" :
 888                                "output", tile->width, tile->height);
 889                        return -EINVAL;
 890                }
 891        }
 892
 893        return 0;
 894}
 895
 896/*
 897 * Use the rotation transformation to find the tile coordinates
 898 * (row, col) of a tile in the destination frame that corresponds
 899 * to the given tile coordinates of a source frame. The destination
 900 * coordinate is then converted to a tile index.
 901 */
 902static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
 903                                int src_row, int src_col)
 904{
 905        struct ipu_image_convert_chan *chan = ctx->chan;
 906        struct ipu_image_convert_priv *priv = chan->priv;
 907        struct ipu_image_convert_image *s_image = &ctx->in;
 908        struct ipu_image_convert_image *d_image = &ctx->out;
 909        int dst_row, dst_col;
 910
 911        /* with no rotation it's a 1:1 mapping */
 912        if (ctx->rot_mode == IPU_ROTATE_NONE)
 913                return src_row * s_image->num_cols + src_col;
 914
 915        /*
 916         * before doing the transform, first we have to translate
 917         * source row,col for an origin in the center of s_image
 918         */
 919        src_row = src_row * 2 - (s_image->num_rows - 1);
 920        src_col = src_col * 2 - (s_image->num_cols - 1);
 921
 922        /* do the rotation transform */
 923        if (ctx->rot_mode & IPU_ROT_BIT_90) {
 924                dst_col = -src_row;
 925                dst_row = src_col;
 926        } else {
 927                dst_col = src_col;
 928                dst_row = src_row;
 929        }
 930
 931        /* apply flip */
 932        if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
 933                dst_col = -dst_col;
 934        if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
 935                dst_row = -dst_row;
 936
 937        dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
 938                chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
 939
 940        /*
 941         * finally translate dest row,col using an origin in upper
 942         * left of d_image
 943         */
 944        dst_row += d_image->num_rows - 1;
 945        dst_col += d_image->num_cols - 1;
 946        dst_row /= 2;
 947        dst_col /= 2;
 948
 949        return dst_row * d_image->num_cols + dst_col;
 950}
 951
 952/*
 953 * Fill the out_tile_map[] with transformed destination tile indeces.
 954 */
 955static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
 956{
 957        struct ipu_image_convert_image *s_image = &ctx->in;
 958        unsigned int row, col, tile = 0;
 959
 960        for (row = 0; row < s_image->num_rows; row++) {
 961                for (col = 0; col < s_image->num_cols; col++) {
 962                        ctx->out_tile_map[tile] =
 963                                transform_tile_index(ctx, row, col);
 964                        tile++;
 965                }
 966        }
 967}
 968
 969static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
 970                                    struct ipu_image_convert_image *image)
 971{
 972        struct ipu_image_convert_chan *chan = ctx->chan;
 973        struct ipu_image_convert_priv *priv = chan->priv;
 974        const struct ipu_image_pixfmt *fmt = image->fmt;
 975        unsigned int row, col, tile = 0;
 976        u32 H, top, y_stride, uv_stride;
 977        u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
 978        u32 y_row_off, y_col_off, y_off;
 979        u32 y_size, uv_size;
 980
 981        /* setup some convenience vars */
 982        H = image->base.pix.height;
 983
 984        y_stride = image->stride;
 985        uv_stride = y_stride / fmt->uv_width_dec;
 986        if (fmt->uv_packed)
 987                uv_stride *= 2;
 988
 989        y_size = H * y_stride;
 990        uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
 991
 992        for (row = 0; row < image->num_rows; row++) {
 993                top = image->tile[tile].top;
 994                y_row_off = top * y_stride;
 995                uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
 996
 997                for (col = 0; col < image->num_cols; col++) {
 998                        y_col_off = image->tile[tile].left;
 999                        uv_col_off = y_col_off / fmt->uv_width_dec;
1000                        if (fmt->uv_packed)
1001                                uv_col_off *= 2;
1002
1003                        y_off = y_row_off + y_col_off;
1004                        uv_off = uv_row_off + uv_col_off;
1005
1006                        u_off = y_size - y_off + uv_off;
1007                        v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1008                        if (fmt->uv_swapped) {
1009                                tmp = u_off;
1010                                u_off = v_off;
1011                                v_off = tmp;
1012                        }
1013
1014                        image->tile[tile].offset = y_off;
1015                        image->tile[tile].u_off = u_off;
1016                        image->tile[tile++].v_off = v_off;
1017
1018                        if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1019                                dev_err(priv->ipu->dev,
1020                                        "task %u: ctx %p: %s@[%d,%d]: "
1021                                        "y_off %08x, u_off %08x, v_off %08x\n",
1022                                        chan->ic_task, ctx,
1023                                        image->type == IMAGE_CONVERT_IN ?
1024                                        "Input" : "Output", row, col,
1025                                        y_off, u_off, v_off);
1026                                return -EINVAL;
1027                        }
1028                }
1029        }
1030
1031        return 0;
1032}
1033
1034static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1035                                    struct ipu_image_convert_image *image)
1036{
1037        struct ipu_image_convert_chan *chan = ctx->chan;
1038        struct ipu_image_convert_priv *priv = chan->priv;
1039        const struct ipu_image_pixfmt *fmt = image->fmt;
1040        unsigned int row, col, tile = 0;
1041        u32 bpp, stride, offset;
1042        u32 row_off, col_off;
1043
1044        /* setup some convenience vars */
1045        stride = image->stride;
1046        bpp = fmt->bpp;
1047
1048        for (row = 0; row < image->num_rows; row++) {
1049                row_off = image->tile[tile].top * stride;
1050
1051                for (col = 0; col < image->num_cols; col++) {
1052                        col_off = (image->tile[tile].left * bpp) >> 3;
1053
1054                        offset = row_off + col_off;
1055
1056                        image->tile[tile].offset = offset;
1057                        image->tile[tile].u_off = 0;
1058                        image->tile[tile++].v_off = 0;
1059
1060                        if (offset & 0x7) {
1061                                dev_err(priv->ipu->dev,
1062                                        "task %u: ctx %p: %s@[%d,%d]: "
1063                                        "phys %08x\n",
1064                                        chan->ic_task, ctx,
1065                                        image->type == IMAGE_CONVERT_IN ?
1066                                        "Input" : "Output", row, col,
1067                                        row_off + col_off);
1068                                return -EINVAL;
1069                        }
1070                }
1071        }
1072
1073        return 0;
1074}
1075
1076static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1077                              struct ipu_image_convert_image *image)
1078{
1079        if (image->fmt->planar)
1080                return calc_tile_offsets_planar(ctx, image);
1081
1082        return calc_tile_offsets_packed(ctx, image);
1083}
1084
1085/*
1086 * Calculate the resizing ratio for the IC main processing section given input
1087 * size, fixed downsizing coefficient, and output size.
1088 * Either round to closest for the next tile's first pixel to minimize seams
1089 * and distortion (for all but right column / bottom row), or round down to
1090 * avoid sampling beyond the edges of the input image for this tile's last
1091 * pixel.
1092 * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1093 */
1094static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1095                             u32 output_size, bool allow_overshoot)
1096{
1097        u32 downsized = input_size >> downsize_coeff;
1098
1099        if (allow_overshoot)
1100                return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1101        else
1102                return 8192 * (downsized - 1) / (output_size - 1);
1103}
1104
1105/*
1106 * Slightly modify resize coefficients per tile to hide the bilinear
1107 * interpolator reset at tile borders, shifting the right / bottom edge
1108 * by up to a half input pixel. This removes noticeable seams between
1109 * tiles at higher upscaling factors.
1110 */
1111static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1112{
1113        struct ipu_image_convert_chan *chan = ctx->chan;
1114        struct ipu_image_convert_priv *priv = chan->priv;
1115        struct ipu_image_tile *in_tile, *out_tile;
1116        unsigned int col, row, tile_idx;
1117        unsigned int last_output;
1118
1119        for (col = 0; col < ctx->in.num_cols; col++) {
1120                bool closest = (col < ctx->in.num_cols - 1) &&
1121                               !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1122                u32 resized_width;
1123                u32 resize_coeff_h;
1124                u32 in_width;
1125
1126                tile_idx = col;
1127                in_tile = &ctx->in.tile[tile_idx];
1128                out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1129
1130                if (ipu_rot_mode_is_irt(ctx->rot_mode))
1131                        resized_width = out_tile->height;
1132                else
1133                        resized_width = out_tile->width;
1134
1135                resize_coeff_h = calc_resize_coeff(in_tile->width,
1136                                                   ctx->downsize_coeff_h,
1137                                                   resized_width, closest);
1138
1139                dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1140                        __func__, col, resize_coeff_h);
1141
1142                /*
1143                 * With the horizontal scaling factor known, round up resized
1144                 * width (output width or height) to burst size.
1145                 */
1146                resized_width = round_up(resized_width, 8);
1147
1148                /*
1149                 * Calculate input width from the last accessed input pixel
1150                 * given resized width and scaling coefficients. Round up to
1151                 * burst size.
1152                 */
1153                last_output = resized_width - 1;
1154                if (closest && ((last_output * resize_coeff_h) % 8192))
1155                        last_output++;
1156                in_width = round_up(
1157                        (DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1158                        << ctx->downsize_coeff_h, 8);
1159
1160                for (row = 0; row < ctx->in.num_rows; row++) {
1161                        tile_idx = row * ctx->in.num_cols + col;
1162                        in_tile = &ctx->in.tile[tile_idx];
1163                        out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1164
1165                        if (ipu_rot_mode_is_irt(ctx->rot_mode))
1166                                out_tile->height = resized_width;
1167                        else
1168                                out_tile->width = resized_width;
1169
1170                        in_tile->width = in_width;
1171                }
1172
1173                ctx->resize_coeffs_h[col] = resize_coeff_h;
1174        }
1175
1176        for (row = 0; row < ctx->in.num_rows; row++) {
1177                bool closest = (row < ctx->in.num_rows - 1) &&
1178                               !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1179                u32 resized_height;
1180                u32 resize_coeff_v;
1181                u32 in_height;
1182
1183                tile_idx = row * ctx->in.num_cols;
1184                in_tile = &ctx->in.tile[tile_idx];
1185                out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1186
1187                if (ipu_rot_mode_is_irt(ctx->rot_mode))
1188                        resized_height = out_tile->width;
1189                else
1190                        resized_height = out_tile->height;
1191
1192                resize_coeff_v = calc_resize_coeff(in_tile->height,
1193                                                   ctx->downsize_coeff_v,
1194                                                   resized_height, closest);
1195
1196                dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1197                        __func__, row, resize_coeff_v);
1198
1199                /*
1200                 * With the vertical scaling factor known, round up resized
1201                 * height (output width or height) to IDMAC limitations.
1202                 */
1203                resized_height = round_up(resized_height, 2);
1204
1205                /*
1206                 * Calculate input width from the last accessed input pixel
1207                 * given resized height and scaling coefficients. Align to
1208                 * IDMAC restrictions.
1209                 */
1210                last_output = resized_height - 1;
1211                if (closest && ((last_output * resize_coeff_v) % 8192))
1212                        last_output++;
1213                in_height = round_up(
1214                        (DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1215                        << ctx->downsize_coeff_v, 2);
1216
1217                for (col = 0; col < ctx->in.num_cols; col++) {
1218                        tile_idx = row * ctx->in.num_cols + col;
1219                        in_tile = &ctx->in.tile[tile_idx];
1220                        out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1221
1222                        if (ipu_rot_mode_is_irt(ctx->rot_mode))
1223                                out_tile->width = resized_height;
1224                        else
1225                                out_tile->height = resized_height;
1226
1227                        in_tile->height = in_height;
1228                }
1229
1230                ctx->resize_coeffs_v[row] = resize_coeff_v;
1231        }
1232}
1233
1234/*
1235 * return the number of runs in given queue (pending_q or done_q)
1236 * for this context. hold irqlock when calling.
1237 */
1238static int get_run_count(struct ipu_image_convert_ctx *ctx,
1239                         struct list_head *q)
1240{
1241        struct ipu_image_convert_run *run;
1242        int count = 0;
1243
1244        lockdep_assert_held(&ctx->chan->irqlock);
1245
1246        list_for_each_entry(run, q, list) {
1247                if (run->ctx == ctx)
1248                        count++;
1249        }
1250
1251        return count;
1252}
1253
1254static void convert_stop(struct ipu_image_convert_run *run)
1255{
1256        struct ipu_image_convert_ctx *ctx = run->ctx;
1257        struct ipu_image_convert_chan *chan = ctx->chan;
1258        struct ipu_image_convert_priv *priv = chan->priv;
1259
1260        dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1261                __func__, chan->ic_task, ctx, run);
1262
1263        /* disable IC tasks and the channels */
1264        ipu_ic_task_disable(chan->ic);
1265        ipu_idmac_disable_channel(chan->in_chan);
1266        ipu_idmac_disable_channel(chan->out_chan);
1267
1268        if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1269                ipu_idmac_disable_channel(chan->rotation_in_chan);
1270                ipu_idmac_disable_channel(chan->rotation_out_chan);
1271                ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1272        }
1273
1274        ipu_ic_disable(chan->ic);
1275}
1276
1277static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1278                               struct ipuv3_channel *channel,
1279                               struct ipu_image_convert_image *image,
1280                               enum ipu_rotate_mode rot_mode,
1281                               bool rot_swap_width_height,
1282                               unsigned int tile)
1283{
1284        struct ipu_image_convert_chan *chan = ctx->chan;
1285        unsigned int burst_size;
1286        u32 width, height, stride;
1287        dma_addr_t addr0, addr1 = 0;
1288        struct ipu_image tile_image;
1289        unsigned int tile_idx[2];
1290
1291        if (image->type == IMAGE_CONVERT_OUT) {
1292                tile_idx[0] = ctx->out_tile_map[tile];
1293                tile_idx[1] = ctx->out_tile_map[1];
1294        } else {
1295                tile_idx[0] = tile;
1296                tile_idx[1] = 1;
1297        }
1298
1299        if (rot_swap_width_height) {
1300                width = image->tile[tile_idx[0]].height;
1301                height = image->tile[tile_idx[0]].width;
1302                stride = image->tile[tile_idx[0]].rot_stride;
1303                addr0 = ctx->rot_intermediate[0].phys;
1304                if (ctx->double_buffering)
1305                        addr1 = ctx->rot_intermediate[1].phys;
1306        } else {
1307                width = image->tile[tile_idx[0]].width;
1308                height = image->tile[tile_idx[0]].height;
1309                stride = image->stride;
1310                addr0 = image->base.phys0 +
1311                        image->tile[tile_idx[0]].offset;
1312                if (ctx->double_buffering)
1313                        addr1 = image->base.phys0 +
1314                                image->tile[tile_idx[1]].offset;
1315        }
1316
1317        ipu_cpmem_zero(channel);
1318
1319        memset(&tile_image, 0, sizeof(tile_image));
1320        tile_image.pix.width = tile_image.rect.width = width;
1321        tile_image.pix.height = tile_image.rect.height = height;
1322        tile_image.pix.bytesperline = stride;
1323        tile_image.pix.pixelformat =  image->fmt->fourcc;
1324        tile_image.phys0 = addr0;
1325        tile_image.phys1 = addr1;
1326        if (image->fmt->planar && !rot_swap_width_height) {
1327                tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1328                tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1329        }
1330
1331        ipu_cpmem_set_image(channel, &tile_image);
1332
1333        if (rot_mode)
1334                ipu_cpmem_set_rotation(channel, rot_mode);
1335
1336        /*
1337         * Skip writing U and V components to odd rows in the output
1338         * channels for planar 4:2:0.
1339         */
1340        if ((channel == chan->out_chan ||
1341             channel == chan->rotation_out_chan) &&
1342            image->fmt->planar && image->fmt->uv_height_dec == 2)
1343                ipu_cpmem_skip_odd_chroma_rows(channel);
1344
1345        if (channel == chan->rotation_in_chan ||
1346            channel == chan->rotation_out_chan) {
1347                burst_size = 8;
1348                ipu_cpmem_set_block_mode(channel);
1349        } else
1350                burst_size = (width % 16) ? 8 : 16;
1351
1352        ipu_cpmem_set_burstsize(channel, burst_size);
1353
1354        ipu_ic_task_idma_init(chan->ic, channel, width, height,
1355                              burst_size, rot_mode);
1356
1357        /*
1358         * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1359         * only do this when there is no PRG present.
1360         */
1361        if (!channel->ipu->prg_priv)
1362                ipu_cpmem_set_axi_id(channel, 1);
1363
1364        ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1365}
1366
1367static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1368{
1369        struct ipu_image_convert_ctx *ctx = run->ctx;
1370        struct ipu_image_convert_chan *chan = ctx->chan;
1371        struct ipu_image_convert_priv *priv = chan->priv;
1372        struct ipu_image_convert_image *s_image = &ctx->in;
1373        struct ipu_image_convert_image *d_image = &ctx->out;
1374        unsigned int dst_tile = ctx->out_tile_map[tile];
1375        unsigned int dest_width, dest_height;
1376        unsigned int col, row;
1377        u32 rsc;
1378        int ret;
1379
1380        dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1381                __func__, chan->ic_task, ctx, run, tile, dst_tile);
1382
1383        if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1384                /* swap width/height for resizer */
1385                dest_width = d_image->tile[dst_tile].height;
1386                dest_height = d_image->tile[dst_tile].width;
1387        } else {
1388                dest_width = d_image->tile[dst_tile].width;
1389                dest_height = d_image->tile[dst_tile].height;
1390        }
1391
1392        row = tile / s_image->num_cols;
1393        col = tile % s_image->num_cols;
1394
1395        rsc =  (ctx->downsize_coeff_v << 30) |
1396               (ctx->resize_coeffs_v[row] << 16) |
1397               (ctx->downsize_coeff_h << 14) |
1398               (ctx->resize_coeffs_h[col]);
1399
1400        dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1401                __func__, s_image->tile[tile].width,
1402                s_image->tile[tile].height, dest_width, dest_height, rsc);
1403
1404        /* setup the IC resizer and CSC */
1405        ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1406                                   s_image->tile[tile].width,
1407                                   s_image->tile[tile].height,
1408                                   dest_width,
1409                                   dest_height,
1410                                   rsc);
1411        if (ret) {
1412                dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1413                return ret;
1414        }
1415
1416        /* init the source MEM-->IC PP IDMAC channel */
1417        init_idmac_channel(ctx, chan->in_chan, s_image,
1418                           IPU_ROTATE_NONE, false, tile);
1419
1420        if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1421                /* init the IC PP-->MEM IDMAC channel */
1422                init_idmac_channel(ctx, chan->out_chan, d_image,
1423                                   IPU_ROTATE_NONE, true, tile);
1424
1425                /* init the MEM-->IC PP ROT IDMAC channel */
1426                init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1427                                   ctx->rot_mode, true, tile);
1428
1429                /* init the destination IC PP ROT-->MEM IDMAC channel */
1430                init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1431                                   IPU_ROTATE_NONE, false, tile);
1432
1433                /* now link IC PP-->MEM to MEM-->IC PP ROT */
1434                ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1435        } else {
1436                /* init the destination IC PP-->MEM IDMAC channel */
1437                init_idmac_channel(ctx, chan->out_chan, d_image,
1438                                   ctx->rot_mode, false, tile);
1439        }
1440
1441        /* enable the IC */
1442        ipu_ic_enable(chan->ic);
1443
1444        /* set buffers ready */
1445        ipu_idmac_select_buffer(chan->in_chan, 0);
1446        ipu_idmac_select_buffer(chan->out_chan, 0);
1447        if (ipu_rot_mode_is_irt(ctx->rot_mode))
1448                ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1449        if (ctx->double_buffering) {
1450                ipu_idmac_select_buffer(chan->in_chan, 1);
1451                ipu_idmac_select_buffer(chan->out_chan, 1);
1452                if (ipu_rot_mode_is_irt(ctx->rot_mode))
1453                        ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1454        }
1455
1456        /* enable the channels! */
1457        ipu_idmac_enable_channel(chan->in_chan);
1458        ipu_idmac_enable_channel(chan->out_chan);
1459        if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1460                ipu_idmac_enable_channel(chan->rotation_in_chan);
1461                ipu_idmac_enable_channel(chan->rotation_out_chan);
1462        }
1463
1464        ipu_ic_task_enable(chan->ic);
1465
1466        ipu_cpmem_dump(chan->in_chan);
1467        ipu_cpmem_dump(chan->out_chan);
1468        if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1469                ipu_cpmem_dump(chan->rotation_in_chan);
1470                ipu_cpmem_dump(chan->rotation_out_chan);
1471        }
1472
1473        ipu_dump(priv->ipu);
1474
1475        return 0;
1476}
1477
1478/* hold irqlock when calling */
1479static int do_run(struct ipu_image_convert_run *run)
1480{
1481        struct ipu_image_convert_ctx *ctx = run->ctx;
1482        struct ipu_image_convert_chan *chan = ctx->chan;
1483
1484        lockdep_assert_held(&chan->irqlock);
1485
1486        ctx->in.base.phys0 = run->in_phys;
1487        ctx->out.base.phys0 = run->out_phys;
1488
1489        ctx->cur_buf_num = 0;
1490        ctx->next_tile = 1;
1491
1492        /* remove run from pending_q and set as current */
1493        list_del(&run->list);
1494        chan->current_run = run;
1495
1496        return convert_start(run, 0);
1497}
1498
1499/* hold irqlock when calling */
1500static void run_next(struct ipu_image_convert_chan *chan)
1501{
1502        struct ipu_image_convert_priv *priv = chan->priv;
1503        struct ipu_image_convert_run *run, *tmp;
1504        int ret;
1505
1506        lockdep_assert_held(&chan->irqlock);
1507
1508        list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1509                /* skip contexts that are aborting */
1510                if (run->ctx->aborting) {
1511                        dev_dbg(priv->ipu->dev,
1512                                "%s: task %u: skipping aborting ctx %p run %p\n",
1513                                __func__, chan->ic_task, run->ctx, run);
1514                        continue;
1515                }
1516
1517                ret = do_run(run);
1518                if (!ret)
1519                        break;
1520
1521                /*
1522                 * something went wrong with start, add the run
1523                 * to done q and continue to the next run in the
1524                 * pending q.
1525                 */
1526                run->status = ret;
1527                list_add_tail(&run->list, &chan->done_q);
1528                chan->current_run = NULL;
1529        }
1530}
1531
1532static void empty_done_q(struct ipu_image_convert_chan *chan)
1533{
1534        struct ipu_image_convert_priv *priv = chan->priv;
1535        struct ipu_image_convert_run *run;
1536        unsigned long flags;
1537
1538        spin_lock_irqsave(&chan->irqlock, flags);
1539
1540        while (!list_empty(&chan->done_q)) {
1541                run = list_entry(chan->done_q.next,
1542                                 struct ipu_image_convert_run,
1543                                 list);
1544
1545                list_del(&run->list);
1546
1547                dev_dbg(priv->ipu->dev,
1548                        "%s: task %u: completing ctx %p run %p with %d\n",
1549                        __func__, chan->ic_task, run->ctx, run, run->status);
1550
1551                /* call the completion callback and free the run */
1552                spin_unlock_irqrestore(&chan->irqlock, flags);
1553                run->ctx->complete(run, run->ctx->complete_context);
1554                spin_lock_irqsave(&chan->irqlock, flags);
1555        }
1556
1557        spin_unlock_irqrestore(&chan->irqlock, flags);
1558}
1559
1560/*
1561 * the bottom half thread clears out the done_q, calling the
1562 * completion handler for each.
1563 */
1564static irqreturn_t do_bh(int irq, void *dev_id)
1565{
1566        struct ipu_image_convert_chan *chan = dev_id;
1567        struct ipu_image_convert_priv *priv = chan->priv;
1568        struct ipu_image_convert_ctx *ctx;
1569        unsigned long flags;
1570
1571        dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1572                chan->ic_task);
1573
1574        empty_done_q(chan);
1575
1576        spin_lock_irqsave(&chan->irqlock, flags);
1577
1578        /*
1579         * the done_q is cleared out, signal any contexts
1580         * that are aborting that abort can complete.
1581         */
1582        list_for_each_entry(ctx, &chan->ctx_list, list) {
1583                if (ctx->aborting) {
1584                        dev_dbg(priv->ipu->dev,
1585                                "%s: task %u: signaling abort for ctx %p\n",
1586                                __func__, chan->ic_task, ctx);
1587                        complete_all(&ctx->aborted);
1588                }
1589        }
1590
1591        spin_unlock_irqrestore(&chan->irqlock, flags);
1592
1593        dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1594                chan->ic_task);
1595
1596        return IRQ_HANDLED;
1597}
1598
1599static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1600{
1601        unsigned int cur_tile = ctx->next_tile - 1;
1602        unsigned int next_tile = ctx->next_tile;
1603
1604        if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1605            ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1606            ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1607            ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1608            ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1609            ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1610            ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1611            ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1612                return true;
1613
1614        return false;
1615}
1616
1617/* hold irqlock when calling */
1618static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1619{
1620        struct ipu_image_convert_ctx *ctx = run->ctx;
1621        struct ipu_image_convert_chan *chan = ctx->chan;
1622        struct ipu_image_tile *src_tile, *dst_tile;
1623        struct ipu_image_convert_image *s_image = &ctx->in;
1624        struct ipu_image_convert_image *d_image = &ctx->out;
1625        struct ipuv3_channel *outch;
1626        unsigned int dst_idx;
1627
1628        lockdep_assert_held(&chan->irqlock);
1629
1630        outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1631                chan->rotation_out_chan : chan->out_chan;
1632
1633        /*
1634         * It is difficult to stop the channel DMA before the channels
1635         * enter the paused state. Without double-buffering the channels
1636         * are always in a paused state when the EOF irq occurs, so it
1637         * is safe to stop the channels now. For double-buffering we
1638         * just ignore the abort until the operation completes, when it
1639         * is safe to shut down.
1640         */
1641        if (ctx->aborting && !ctx->double_buffering) {
1642                convert_stop(run);
1643                run->status = -EIO;
1644                goto done;
1645        }
1646
1647        if (ctx->next_tile == ctx->num_tiles) {
1648                /*
1649                 * the conversion is complete
1650                 */
1651                convert_stop(run);
1652                run->status = 0;
1653                goto done;
1654        }
1655
1656        /*
1657         * not done, place the next tile buffers.
1658         */
1659        if (!ctx->double_buffering) {
1660                if (ic_settings_changed(ctx)) {
1661                        convert_stop(run);
1662                        convert_start(run, ctx->next_tile);
1663                } else {
1664                        src_tile = &s_image->tile[ctx->next_tile];
1665                        dst_idx = ctx->out_tile_map[ctx->next_tile];
1666                        dst_tile = &d_image->tile[dst_idx];
1667
1668                        ipu_cpmem_set_buffer(chan->in_chan, 0,
1669                                             s_image->base.phys0 +
1670                                             src_tile->offset);
1671                        ipu_cpmem_set_buffer(outch, 0,
1672                                             d_image->base.phys0 +
1673                                             dst_tile->offset);
1674                        if (s_image->fmt->planar)
1675                                ipu_cpmem_set_uv_offset(chan->in_chan,
1676                                                        src_tile->u_off,
1677                                                        src_tile->v_off);
1678                        if (d_image->fmt->planar)
1679                                ipu_cpmem_set_uv_offset(outch,
1680                                                        dst_tile->u_off,
1681                                                        dst_tile->v_off);
1682
1683                        ipu_idmac_select_buffer(chan->in_chan, 0);
1684                        ipu_idmac_select_buffer(outch, 0);
1685                }
1686        } else if (ctx->next_tile < ctx->num_tiles - 1) {
1687
1688                src_tile = &s_image->tile[ctx->next_tile + 1];
1689                dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1690                dst_tile = &d_image->tile[dst_idx];
1691
1692                ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1693                                     s_image->base.phys0 + src_tile->offset);
1694                ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1695                                     d_image->base.phys0 + dst_tile->offset);
1696
1697                ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1698                ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1699
1700                ctx->cur_buf_num ^= 1;
1701        }
1702
1703        ctx->next_tile++;
1704        return IRQ_HANDLED;
1705done:
1706        list_add_tail(&run->list, &chan->done_q);
1707        chan->current_run = NULL;
1708        run_next(chan);
1709        return IRQ_WAKE_THREAD;
1710}
1711
1712static irqreturn_t norotate_irq(int irq, void *data)
1713{
1714        struct ipu_image_convert_chan *chan = data;
1715        struct ipu_image_convert_ctx *ctx;
1716        struct ipu_image_convert_run *run;
1717        unsigned long flags;
1718        irqreturn_t ret;
1719
1720        spin_lock_irqsave(&chan->irqlock, flags);
1721
1722        /* get current run and its context */
1723        run = chan->current_run;
1724        if (!run) {
1725                ret = IRQ_NONE;
1726                goto out;
1727        }
1728
1729        ctx = run->ctx;
1730
1731        if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1732                /* this is a rotation operation, just ignore */
1733                spin_unlock_irqrestore(&chan->irqlock, flags);
1734                return IRQ_HANDLED;
1735        }
1736
1737        ret = do_irq(run);
1738out:
1739        spin_unlock_irqrestore(&chan->irqlock, flags);
1740        return ret;
1741}
1742
1743static irqreturn_t rotate_irq(int irq, void *data)
1744{
1745        struct ipu_image_convert_chan *chan = data;
1746        struct ipu_image_convert_priv *priv = chan->priv;
1747        struct ipu_image_convert_ctx *ctx;
1748        struct ipu_image_convert_run *run;
1749        unsigned long flags;
1750        irqreturn_t ret;
1751
1752        spin_lock_irqsave(&chan->irqlock, flags);
1753
1754        /* get current run and its context */
1755        run = chan->current_run;
1756        if (!run) {
1757                ret = IRQ_NONE;
1758                goto out;
1759        }
1760
1761        ctx = run->ctx;
1762
1763        if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1764                /* this was NOT a rotation operation, shouldn't happen */
1765                dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1766                spin_unlock_irqrestore(&chan->irqlock, flags);
1767                return IRQ_HANDLED;
1768        }
1769
1770        ret = do_irq(run);
1771out:
1772        spin_unlock_irqrestore(&chan->irqlock, flags);
1773        return ret;
1774}
1775
1776/*
1777 * try to force the completion of runs for this ctx. Called when
1778 * abort wait times out in ipu_image_convert_abort().
1779 */
1780static void force_abort(struct ipu_image_convert_ctx *ctx)
1781{
1782        struct ipu_image_convert_chan *chan = ctx->chan;
1783        struct ipu_image_convert_run *run;
1784        unsigned long flags;
1785
1786        spin_lock_irqsave(&chan->irqlock, flags);
1787
1788        run = chan->current_run;
1789        if (run && run->ctx == ctx) {
1790                convert_stop(run);
1791                run->status = -EIO;
1792                list_add_tail(&run->list, &chan->done_q);
1793                chan->current_run = NULL;
1794                run_next(chan);
1795        }
1796
1797        spin_unlock_irqrestore(&chan->irqlock, flags);
1798
1799        empty_done_q(chan);
1800}
1801
1802static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1803{
1804        if (chan->out_eof_irq >= 0)
1805                free_irq(chan->out_eof_irq, chan);
1806        if (chan->rot_out_eof_irq >= 0)
1807                free_irq(chan->rot_out_eof_irq, chan);
1808
1809        if (!IS_ERR_OR_NULL(chan->in_chan))
1810                ipu_idmac_put(chan->in_chan);
1811        if (!IS_ERR_OR_NULL(chan->out_chan))
1812                ipu_idmac_put(chan->out_chan);
1813        if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1814                ipu_idmac_put(chan->rotation_in_chan);
1815        if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1816                ipu_idmac_put(chan->rotation_out_chan);
1817        if (!IS_ERR_OR_NULL(chan->ic))
1818                ipu_ic_put(chan->ic);
1819
1820        chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1821                chan->rotation_out_chan = NULL;
1822        chan->out_eof_irq = chan->rot_out_eof_irq = -1;
1823}
1824
1825static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1826{
1827        const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1828        struct ipu_image_convert_priv *priv = chan->priv;
1829        int ret;
1830
1831        /* get IC */
1832        chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1833        if (IS_ERR(chan->ic)) {
1834                dev_err(priv->ipu->dev, "could not acquire IC\n");
1835                ret = PTR_ERR(chan->ic);
1836                goto err;
1837        }
1838
1839        /* get IDMAC channels */
1840        chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1841        chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1842        if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1843                dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1844                ret = -EBUSY;
1845                goto err;
1846        }
1847
1848        chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1849        chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1850        if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1851                dev_err(priv->ipu->dev,
1852                        "could not acquire idmac rotation channels\n");
1853                ret = -EBUSY;
1854                goto err;
1855        }
1856
1857        /* acquire the EOF interrupts */
1858        chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1859                                                  chan->out_chan,
1860                                                  IPU_IRQ_EOF);
1861
1862        ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1863                                   0, "ipu-ic", chan);
1864        if (ret < 0) {
1865                dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1866                         chan->out_eof_irq);
1867                chan->out_eof_irq = -1;
1868                goto err;
1869        }
1870
1871        chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1872                                                     chan->rotation_out_chan,
1873                                                     IPU_IRQ_EOF);
1874
1875        ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1876                                   0, "ipu-ic", chan);
1877        if (ret < 0) {
1878                dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1879                        chan->rot_out_eof_irq);
1880                chan->rot_out_eof_irq = -1;
1881                goto err;
1882        }
1883
1884        return 0;
1885err:
1886        release_ipu_resources(chan);
1887        return ret;
1888}
1889
1890static int fill_image(struct ipu_image_convert_ctx *ctx,
1891                      struct ipu_image_convert_image *ic_image,
1892                      struct ipu_image *image,
1893                      enum ipu_image_convert_type type)
1894{
1895        struct ipu_image_convert_priv *priv = ctx->chan->priv;
1896
1897        ic_image->base = *image;
1898        ic_image->type = type;
1899
1900        ic_image->fmt = get_format(image->pix.pixelformat);
1901        if (!ic_image->fmt) {
1902                dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1903                        type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1904                return -EINVAL;
1905        }
1906
1907        if (ic_image->fmt->planar)
1908                ic_image->stride = ic_image->base.pix.width;
1909        else
1910                ic_image->stride  = ic_image->base.pix.bytesperline;
1911
1912        return 0;
1913}
1914
1915/* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1916static unsigned int clamp_align(unsigned int x, unsigned int min,
1917                                unsigned int max, unsigned int align)
1918{
1919        /* Bits that must be zero to be aligned */
1920        unsigned int mask = ~((1 << align) - 1);
1921
1922        /* Clamp to aligned min and max */
1923        x = clamp(x, (min + ~mask) & mask, max & mask);
1924
1925        /* Round to nearest aligned value */
1926        if (align)
1927                x = (x + (1 << (align - 1))) & mask;
1928
1929        return x;
1930}
1931
1932/* Adjusts input/output images to IPU restrictions */
1933void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1934                              enum ipu_rotate_mode rot_mode)
1935{
1936        const struct ipu_image_pixfmt *infmt, *outfmt;
1937        u32 w_align_out, h_align_out;
1938        u32 w_align_in, h_align_in;
1939
1940        infmt = get_format(in->pix.pixelformat);
1941        outfmt = get_format(out->pix.pixelformat);
1942
1943        /* set some default pixel formats if needed */
1944        if (!infmt) {
1945                in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1946                infmt = get_format(V4L2_PIX_FMT_RGB24);
1947        }
1948        if (!outfmt) {
1949                out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1950                outfmt = get_format(V4L2_PIX_FMT_RGB24);
1951        }
1952
1953        /* image converter does not handle fields */
1954        in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1955
1956        /* resizer cannot downsize more than 4:1 */
1957        if (ipu_rot_mode_is_irt(rot_mode)) {
1958                out->pix.height = max_t(__u32, out->pix.height,
1959                                        in->pix.width / 4);
1960                out->pix.width = max_t(__u32, out->pix.width,
1961                                       in->pix.height / 4);
1962        } else {
1963                out->pix.width = max_t(__u32, out->pix.width,
1964                                       in->pix.width / 4);
1965                out->pix.height = max_t(__u32, out->pix.height,
1966                                        in->pix.height / 4);
1967        }
1968
1969        /* align input width/height */
1970        w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
1971                                            rot_mode));
1972        h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
1973                                             rot_mode));
1974        in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
1975                                    w_align_in);
1976        in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
1977                                     h_align_in);
1978
1979        /* align output width/height */
1980        w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
1981                                             rot_mode));
1982        h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
1983                                              rot_mode));
1984        out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
1985                                     w_align_out);
1986        out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
1987                                      h_align_out);
1988
1989        /* set input/output strides and image sizes */
1990        in->pix.bytesperline = infmt->planar ?
1991                clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
1992                            w_align_in) :
1993                clamp_align((in->pix.width * infmt->bpp) >> 3,
1994                            ((2 << w_align_in) * infmt->bpp) >> 3,
1995                            (MAX_W * infmt->bpp) >> 3,
1996                            w_align_in);
1997        in->pix.sizeimage = infmt->planar ?
1998                (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
1999                in->pix.height * in->pix.bytesperline;
2000        out->pix.bytesperline = outfmt->planar ? out->pix.width :
2001                (out->pix.width * outfmt->bpp) >> 3;
2002        out->pix.sizeimage = outfmt->planar ?
2003                (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2004                out->pix.height * out->pix.bytesperline;
2005}
2006EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2007
2008/*
2009 * this is used by ipu_image_convert_prepare() to verify set input and
2010 * output images are valid before starting the conversion. Clients can
2011 * also call it before calling ipu_image_convert_prepare().
2012 */
2013int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2014                             enum ipu_rotate_mode rot_mode)
2015{
2016        struct ipu_image testin, testout;
2017
2018        testin = *in;
2019        testout = *out;
2020
2021        ipu_image_convert_adjust(&testin, &testout, rot_mode);
2022
2023        if (testin.pix.width != in->pix.width ||
2024            testin.pix.height != in->pix.height ||
2025            testout.pix.width != out->pix.width ||
2026            testout.pix.height != out->pix.height)
2027                return -EINVAL;
2028
2029        return 0;
2030}
2031EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2032
2033/*
2034 * Call ipu_image_convert_prepare() to prepare for the conversion of
2035 * given images and rotation mode. Returns a new conversion context.
2036 */
2037struct ipu_image_convert_ctx *
2038ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2039                          struct ipu_image *in, struct ipu_image *out,
2040                          enum ipu_rotate_mode rot_mode,
2041                          ipu_image_convert_cb_t complete,
2042                          void *complete_context)
2043{
2044        struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2045        struct ipu_image_convert_image *s_image, *d_image;
2046        struct ipu_image_convert_chan *chan;
2047        struct ipu_image_convert_ctx *ctx;
2048        unsigned long flags;
2049        unsigned int i;
2050        bool get_res;
2051        int ret;
2052
2053        if (!in || !out || !complete ||
2054            (ic_task != IC_TASK_VIEWFINDER &&
2055             ic_task != IC_TASK_POST_PROCESSOR))
2056                return ERR_PTR(-EINVAL);
2057
2058        /* verify the in/out images before continuing */
2059        ret = ipu_image_convert_verify(in, out, rot_mode);
2060        if (ret) {
2061                dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2062                        __func__);
2063                return ERR_PTR(ret);
2064        }
2065
2066        chan = &priv->chan[ic_task];
2067
2068        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2069        if (!ctx)
2070                return ERR_PTR(-ENOMEM);
2071
2072        dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2073                chan->ic_task, ctx);
2074
2075        ctx->chan = chan;
2076        init_completion(&ctx->aborted);
2077
2078        ctx->rot_mode = rot_mode;
2079
2080        /* Sets ctx->in.num_rows/cols as well */
2081        ret = calc_image_resize_coefficients(ctx, in, out);
2082        if (ret)
2083                goto out_free;
2084
2085        s_image = &ctx->in;
2086        d_image = &ctx->out;
2087
2088        /* set tiling and rotation */
2089        if (ipu_rot_mode_is_irt(rot_mode)) {
2090                d_image->num_rows = s_image->num_cols;
2091                d_image->num_cols = s_image->num_rows;
2092        } else {
2093                d_image->num_rows = s_image->num_rows;
2094                d_image->num_cols = s_image->num_cols;
2095        }
2096
2097        ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2098
2099        ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2100        if (ret)
2101                goto out_free;
2102        ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2103        if (ret)
2104                goto out_free;
2105
2106        calc_out_tile_map(ctx);
2107
2108        find_seams(ctx, s_image, d_image);
2109
2110        ret = calc_tile_dimensions(ctx, s_image);
2111        if (ret)
2112                goto out_free;
2113
2114        ret = calc_tile_offsets(ctx, s_image);
2115        if (ret)
2116                goto out_free;
2117
2118        calc_tile_dimensions(ctx, d_image);
2119        ret = calc_tile_offsets(ctx, d_image);
2120        if (ret)
2121                goto out_free;
2122
2123        calc_tile_resize_coefficients(ctx);
2124
2125        ret = ipu_ic_calc_csc(&ctx->csc,
2126                        s_image->base.pix.ycbcr_enc,
2127                        s_image->base.pix.quantization,
2128                        ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2129                        d_image->base.pix.ycbcr_enc,
2130                        d_image->base.pix.quantization,
2131                        ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2132        if (ret)
2133                goto out_free;
2134
2135        dump_format(ctx, s_image);
2136        dump_format(ctx, d_image);
2137
2138        ctx->complete = complete;
2139        ctx->complete_context = complete_context;
2140
2141        /*
2142         * Can we use double-buffering for this operation? If there is
2143         * only one tile (the whole image can be converted in a single
2144         * operation) there's no point in using double-buffering. Also,
2145         * the IPU's IDMAC channels allow only a single U and V plane
2146         * offset shared between both buffers, but these offsets change
2147         * for every tile, and therefore would have to be updated for
2148         * each buffer which is not possible. So double-buffering is
2149         * impossible when either the source or destination images are
2150         * a planar format (YUV420, YUV422P, etc.). Further, differently
2151         * sized tiles or different resizing coefficients per tile
2152         * prevent double-buffering as well.
2153         */
2154        ctx->double_buffering = (ctx->num_tiles > 1 &&
2155                                 !s_image->fmt->planar &&
2156                                 !d_image->fmt->planar);
2157        for (i = 1; i < ctx->num_tiles; i++) {
2158                if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2159                    ctx->in.tile[i].height != ctx->in.tile[0].height ||
2160                    ctx->out.tile[i].width != ctx->out.tile[0].width ||
2161                    ctx->out.tile[i].height != ctx->out.tile[0].height) {
2162                        ctx->double_buffering = false;
2163                        break;
2164                }
2165        }
2166        for (i = 1; i < ctx->in.num_cols; i++) {
2167                if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2168                        ctx->double_buffering = false;
2169                        break;
2170                }
2171        }
2172        for (i = 1; i < ctx->in.num_rows; i++) {
2173                if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2174                        ctx->double_buffering = false;
2175                        break;
2176                }
2177        }
2178
2179        if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2180                unsigned long intermediate_size = d_image->tile[0].size;
2181
2182                for (i = 1; i < ctx->num_tiles; i++) {
2183                        if (d_image->tile[i].size > intermediate_size)
2184                                intermediate_size = d_image->tile[i].size;
2185                }
2186
2187                ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2188                                    intermediate_size);
2189                if (ret)
2190                        goto out_free;
2191                if (ctx->double_buffering) {
2192                        ret = alloc_dma_buf(priv,
2193                                            &ctx->rot_intermediate[1],
2194                                            intermediate_size);
2195                        if (ret)
2196                                goto out_free_dmabuf0;
2197                }
2198        }
2199
2200        spin_lock_irqsave(&chan->irqlock, flags);
2201
2202        get_res = list_empty(&chan->ctx_list);
2203
2204        list_add_tail(&ctx->list, &chan->ctx_list);
2205
2206        spin_unlock_irqrestore(&chan->irqlock, flags);
2207
2208        if (get_res) {
2209                ret = get_ipu_resources(chan);
2210                if (ret)
2211                        goto out_free_dmabuf1;
2212        }
2213
2214        return ctx;
2215
2216out_free_dmabuf1:
2217        free_dma_buf(priv, &ctx->rot_intermediate[1]);
2218        spin_lock_irqsave(&chan->irqlock, flags);
2219        list_del(&ctx->list);
2220        spin_unlock_irqrestore(&chan->irqlock, flags);
2221out_free_dmabuf0:
2222        free_dma_buf(priv, &ctx->rot_intermediate[0]);
2223out_free:
2224        kfree(ctx);
2225        return ERR_PTR(ret);
2226}
2227EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2228
2229/*
2230 * Carry out a single image conversion run. Only the physaddr's of the input
2231 * and output image buffers are needed. The conversion context must have
2232 * been created previously with ipu_image_convert_prepare().
2233 */
2234int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2235{
2236        struct ipu_image_convert_chan *chan;
2237        struct ipu_image_convert_priv *priv;
2238        struct ipu_image_convert_ctx *ctx;
2239        unsigned long flags;
2240        int ret = 0;
2241
2242        if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2243                return -EINVAL;
2244
2245        ctx = run->ctx;
2246        chan = ctx->chan;
2247        priv = chan->priv;
2248
2249        dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2250                chan->ic_task, ctx, run);
2251
2252        INIT_LIST_HEAD(&run->list);
2253
2254        spin_lock_irqsave(&chan->irqlock, flags);
2255
2256        if (ctx->aborting) {
2257                ret = -EIO;
2258                goto unlock;
2259        }
2260
2261        list_add_tail(&run->list, &chan->pending_q);
2262
2263        if (!chan->current_run) {
2264                ret = do_run(run);
2265                if (ret)
2266                        chan->current_run = NULL;
2267        }
2268unlock:
2269        spin_unlock_irqrestore(&chan->irqlock, flags);
2270        return ret;
2271}
2272EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2273
2274/* Abort any active or pending conversions for this context */
2275static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2276{
2277        struct ipu_image_convert_chan *chan = ctx->chan;
2278        struct ipu_image_convert_priv *priv = chan->priv;
2279        struct ipu_image_convert_run *run, *active_run, *tmp;
2280        unsigned long flags;
2281        int run_count, ret;
2282
2283        spin_lock_irqsave(&chan->irqlock, flags);
2284
2285        /* move all remaining pending runs in this context to done_q */
2286        list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2287                if (run->ctx != ctx)
2288                        continue;
2289                run->status = -EIO;
2290                list_move_tail(&run->list, &chan->done_q);
2291        }
2292
2293        run_count = get_run_count(ctx, &chan->done_q);
2294        active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2295                chan->current_run : NULL;
2296
2297        if (active_run)
2298                reinit_completion(&ctx->aborted);
2299
2300        ctx->aborting = true;
2301
2302        spin_unlock_irqrestore(&chan->irqlock, flags);
2303
2304        if (!run_count && !active_run) {
2305                dev_dbg(priv->ipu->dev,
2306                        "%s: task %u: no abort needed for ctx %p\n",
2307                        __func__, chan->ic_task, ctx);
2308                return;
2309        }
2310
2311        if (!active_run) {
2312                empty_done_q(chan);
2313                return;
2314        }
2315
2316        dev_dbg(priv->ipu->dev,
2317                "%s: task %u: wait for completion: %d runs\n",
2318                __func__, chan->ic_task, run_count);
2319
2320        ret = wait_for_completion_timeout(&ctx->aborted,
2321                                          msecs_to_jiffies(10000));
2322        if (ret == 0) {
2323                dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2324                force_abort(ctx);
2325        }
2326}
2327
2328void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2329{
2330        __ipu_image_convert_abort(ctx);
2331        ctx->aborting = false;
2332}
2333EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2334
2335/* Unprepare image conversion context */
2336void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2337{
2338        struct ipu_image_convert_chan *chan = ctx->chan;
2339        struct ipu_image_convert_priv *priv = chan->priv;
2340        unsigned long flags;
2341        bool put_res;
2342
2343        /* make sure no runs are hanging around */
2344        __ipu_image_convert_abort(ctx);
2345
2346        dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2347                chan->ic_task, ctx);
2348
2349        spin_lock_irqsave(&chan->irqlock, flags);
2350
2351        list_del(&ctx->list);
2352
2353        put_res = list_empty(&chan->ctx_list);
2354
2355        spin_unlock_irqrestore(&chan->irqlock, flags);
2356
2357        if (put_res)
2358                release_ipu_resources(chan);
2359
2360        free_dma_buf(priv, &ctx->rot_intermediate[1]);
2361        free_dma_buf(priv, &ctx->rot_intermediate[0]);
2362
2363        kfree(ctx);
2364}
2365EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2366
2367/*
2368 * "Canned" asynchronous single image conversion. Allocates and returns
2369 * a new conversion run.  On successful return the caller must free the
2370 * run and call ipu_image_convert_unprepare() after conversion completes.
2371 */
2372struct ipu_image_convert_run *
2373ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2374                  struct ipu_image *in, struct ipu_image *out,
2375                  enum ipu_rotate_mode rot_mode,
2376                  ipu_image_convert_cb_t complete,
2377                  void *complete_context)
2378{
2379        struct ipu_image_convert_ctx *ctx;
2380        struct ipu_image_convert_run *run;
2381        int ret;
2382
2383        ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2384                                        complete, complete_context);
2385        if (IS_ERR(ctx))
2386                return ERR_CAST(ctx);
2387
2388        run = kzalloc(sizeof(*run), GFP_KERNEL);
2389        if (!run) {
2390                ipu_image_convert_unprepare(ctx);
2391                return ERR_PTR(-ENOMEM);
2392        }
2393
2394        run->ctx = ctx;
2395        run->in_phys = in->phys0;
2396        run->out_phys = out->phys0;
2397
2398        ret = ipu_image_convert_queue(run);
2399        if (ret) {
2400                ipu_image_convert_unprepare(ctx);
2401                kfree(run);
2402                return ERR_PTR(ret);
2403        }
2404
2405        return run;
2406}
2407EXPORT_SYMBOL_GPL(ipu_image_convert);
2408
2409/* "Canned" synchronous single image conversion */
2410static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2411                                        void *data)
2412{
2413        struct completion *comp = data;
2414
2415        complete(comp);
2416}
2417
2418int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2419                           struct ipu_image *in, struct ipu_image *out,
2420                           enum ipu_rotate_mode rot_mode)
2421{
2422        struct ipu_image_convert_run *run;
2423        struct completion comp;
2424        int ret;
2425
2426        init_completion(&comp);
2427
2428        run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2429                                image_convert_sync_complete, &comp);
2430        if (IS_ERR(run))
2431                return PTR_ERR(run);
2432
2433        ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2434        ret = (ret == 0) ? -ETIMEDOUT : 0;
2435
2436        ipu_image_convert_unprepare(run->ctx);
2437        kfree(run);
2438
2439        return ret;
2440}
2441EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2442
2443int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2444{
2445        struct ipu_image_convert_priv *priv;
2446        int i;
2447
2448        priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2449        if (!priv)
2450                return -ENOMEM;
2451
2452        ipu->image_convert_priv = priv;
2453        priv->ipu = ipu;
2454
2455        for (i = 0; i < IC_NUM_TASKS; i++) {
2456                struct ipu_image_convert_chan *chan = &priv->chan[i];
2457
2458                chan->ic_task = i;
2459                chan->priv = priv;
2460                chan->dma_ch = &image_convert_dma_chan[i];
2461                chan->out_eof_irq = -1;
2462                chan->rot_out_eof_irq = -1;
2463
2464                spin_lock_init(&chan->irqlock);
2465                INIT_LIST_HEAD(&chan->ctx_list);
2466                INIT_LIST_HEAD(&chan->pending_q);
2467                INIT_LIST_HEAD(&chan->done_q);
2468        }
2469
2470        return 0;
2471}
2472
2473void ipu_image_convert_exit(struct ipu_soc *ipu)
2474{
2475}
2476