linux/drivers/hv/hv_balloon.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2012, Microsoft Corporation.
   4 *
   5 * Author:
   6 *   K. Y. Srinivasan <kys@microsoft.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/jiffies.h>
  13#include <linux/mman.h>
  14#include <linux/delay.h>
  15#include <linux/init.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/kthread.h>
  19#include <linux/completion.h>
  20#include <linux/memory_hotplug.h>
  21#include <linux/memory.h>
  22#include <linux/notifier.h>
  23#include <linux/percpu_counter.h>
  24
  25#include <linux/hyperv.h>
  26#include <asm/hyperv-tlfs.h>
  27
  28#include <asm/mshyperv.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include "hv_trace_balloon.h"
  32
  33/*
  34 * We begin with definitions supporting the Dynamic Memory protocol
  35 * with the host.
  36 *
  37 * Begin protocol definitions.
  38 */
  39
  40
  41
  42/*
  43 * Protocol versions. The low word is the minor version, the high word the major
  44 * version.
  45 *
  46 * History:
  47 * Initial version 1.0
  48 * Changed to 0.1 on 2009/03/25
  49 * Changes to 0.2 on 2009/05/14
  50 * Changes to 0.3 on 2009/12/03
  51 * Changed to 1.0 on 2011/04/05
  52 */
  53
  54#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
  55#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
  56#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
  57
  58enum {
  59        DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
  60        DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
  61        DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
  62
  63        DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
  64        DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
  65        DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
  66
  67        DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
  68};
  69
  70
  71
  72/*
  73 * Message Types
  74 */
  75
  76enum dm_message_type {
  77        /*
  78         * Version 0.3
  79         */
  80        DM_ERROR                        = 0,
  81        DM_VERSION_REQUEST              = 1,
  82        DM_VERSION_RESPONSE             = 2,
  83        DM_CAPABILITIES_REPORT          = 3,
  84        DM_CAPABILITIES_RESPONSE        = 4,
  85        DM_STATUS_REPORT                = 5,
  86        DM_BALLOON_REQUEST              = 6,
  87        DM_BALLOON_RESPONSE             = 7,
  88        DM_UNBALLOON_REQUEST            = 8,
  89        DM_UNBALLOON_RESPONSE           = 9,
  90        DM_MEM_HOT_ADD_REQUEST          = 10,
  91        DM_MEM_HOT_ADD_RESPONSE         = 11,
  92        DM_VERSION_03_MAX               = 11,
  93        /*
  94         * Version 1.0.
  95         */
  96        DM_INFO_MESSAGE                 = 12,
  97        DM_VERSION_1_MAX                = 12
  98};
  99
 100
 101/*
 102 * Structures defining the dynamic memory management
 103 * protocol.
 104 */
 105
 106union dm_version {
 107        struct {
 108                __u16 minor_version;
 109                __u16 major_version;
 110        };
 111        __u32 version;
 112} __packed;
 113
 114
 115union dm_caps {
 116        struct {
 117                __u64 balloon:1;
 118                __u64 hot_add:1;
 119                /*
 120                 * To support guests that may have alignment
 121                 * limitations on hot-add, the guest can specify
 122                 * its alignment requirements; a value of n
 123                 * represents an alignment of 2^n in mega bytes.
 124                 */
 125                __u64 hot_add_alignment:4;
 126                __u64 reservedz:58;
 127        } cap_bits;
 128        __u64 caps;
 129} __packed;
 130
 131union dm_mem_page_range {
 132        struct  {
 133                /*
 134                 * The PFN number of the first page in the range.
 135                 * 40 bits is the architectural limit of a PFN
 136                 * number for AMD64.
 137                 */
 138                __u64 start_page:40;
 139                /*
 140                 * The number of pages in the range.
 141                 */
 142                __u64 page_cnt:24;
 143        } finfo;
 144        __u64  page_range;
 145} __packed;
 146
 147
 148
 149/*
 150 * The header for all dynamic memory messages:
 151 *
 152 * type: Type of the message.
 153 * size: Size of the message in bytes; including the header.
 154 * trans_id: The guest is responsible for manufacturing this ID.
 155 */
 156
 157struct dm_header {
 158        __u16 type;
 159        __u16 size;
 160        __u32 trans_id;
 161} __packed;
 162
 163/*
 164 * A generic message format for dynamic memory.
 165 * Specific message formats are defined later in the file.
 166 */
 167
 168struct dm_message {
 169        struct dm_header hdr;
 170        __u8 data[]; /* enclosed message */
 171} __packed;
 172
 173
 174/*
 175 * Specific message types supporting the dynamic memory protocol.
 176 */
 177
 178/*
 179 * Version negotiation message. Sent from the guest to the host.
 180 * The guest is free to try different versions until the host
 181 * accepts the version.
 182 *
 183 * dm_version: The protocol version requested.
 184 * is_last_attempt: If TRUE, this is the last version guest will request.
 185 * reservedz: Reserved field, set to zero.
 186 */
 187
 188struct dm_version_request {
 189        struct dm_header hdr;
 190        union dm_version version;
 191        __u32 is_last_attempt:1;
 192        __u32 reservedz:31;
 193} __packed;
 194
 195/*
 196 * Version response message; Host to Guest and indicates
 197 * if the host has accepted the version sent by the guest.
 198 *
 199 * is_accepted: If TRUE, host has accepted the version and the guest
 200 * should proceed to the next stage of the protocol. FALSE indicates that
 201 * guest should re-try with a different version.
 202 *
 203 * reservedz: Reserved field, set to zero.
 204 */
 205
 206struct dm_version_response {
 207        struct dm_header hdr;
 208        __u64 is_accepted:1;
 209        __u64 reservedz:63;
 210} __packed;
 211
 212/*
 213 * Message reporting capabilities. This is sent from the guest to the
 214 * host.
 215 */
 216
 217struct dm_capabilities {
 218        struct dm_header hdr;
 219        union dm_caps caps;
 220        __u64 min_page_cnt;
 221        __u64 max_page_number;
 222} __packed;
 223
 224/*
 225 * Response to the capabilities message. This is sent from the host to the
 226 * guest. This message notifies if the host has accepted the guest's
 227 * capabilities. If the host has not accepted, the guest must shutdown
 228 * the service.
 229 *
 230 * is_accepted: Indicates if the host has accepted guest's capabilities.
 231 * reservedz: Must be 0.
 232 */
 233
 234struct dm_capabilities_resp_msg {
 235        struct dm_header hdr;
 236        __u64 is_accepted:1;
 237        __u64 reservedz:63;
 238} __packed;
 239
 240/*
 241 * This message is used to report memory pressure from the guest.
 242 * This message is not part of any transaction and there is no
 243 * response to this message.
 244 *
 245 * num_avail: Available memory in pages.
 246 * num_committed: Committed memory in pages.
 247 * page_file_size: The accumulated size of all page files
 248 *                 in the system in pages.
 249 * zero_free: The nunber of zero and free pages.
 250 * page_file_writes: The writes to the page file in pages.
 251 * io_diff: An indicator of file cache efficiency or page file activity,
 252 *          calculated as File Cache Page Fault Count - Page Read Count.
 253 *          This value is in pages.
 254 *
 255 * Some of these metrics are Windows specific and fortunately
 256 * the algorithm on the host side that computes the guest memory
 257 * pressure only uses num_committed value.
 258 */
 259
 260struct dm_status {
 261        struct dm_header hdr;
 262        __u64 num_avail;
 263        __u64 num_committed;
 264        __u64 page_file_size;
 265        __u64 zero_free;
 266        __u32 page_file_writes;
 267        __u32 io_diff;
 268} __packed;
 269
 270
 271/*
 272 * Message to ask the guest to allocate memory - balloon up message.
 273 * This message is sent from the host to the guest. The guest may not be
 274 * able to allocate as much memory as requested.
 275 *
 276 * num_pages: number of pages to allocate.
 277 */
 278
 279struct dm_balloon {
 280        struct dm_header hdr;
 281        __u32 num_pages;
 282        __u32 reservedz;
 283} __packed;
 284
 285
 286/*
 287 * Balloon response message; this message is sent from the guest
 288 * to the host in response to the balloon message.
 289 *
 290 * reservedz: Reserved; must be set to zero.
 291 * more_pages: If FALSE, this is the last message of the transaction.
 292 * if TRUE there will atleast one more message from the guest.
 293 *
 294 * range_count: The number of ranges in the range array.
 295 *
 296 * range_array: An array of page ranges returned to the host.
 297 *
 298 */
 299
 300struct dm_balloon_response {
 301        struct dm_header hdr;
 302        __u32 reservedz;
 303        __u32 more_pages:1;
 304        __u32 range_count:31;
 305        union dm_mem_page_range range_array[];
 306} __packed;
 307
 308/*
 309 * Un-balloon message; this message is sent from the host
 310 * to the guest to give guest more memory.
 311 *
 312 * more_pages: If FALSE, this is the last message of the transaction.
 313 * if TRUE there will atleast one more message from the guest.
 314 *
 315 * reservedz: Reserved; must be set to zero.
 316 *
 317 * range_count: The number of ranges in the range array.
 318 *
 319 * range_array: An array of page ranges returned to the host.
 320 *
 321 */
 322
 323struct dm_unballoon_request {
 324        struct dm_header hdr;
 325        __u32 more_pages:1;
 326        __u32 reservedz:31;
 327        __u32 range_count;
 328        union dm_mem_page_range range_array[];
 329} __packed;
 330
 331/*
 332 * Un-balloon response message; this message is sent from the guest
 333 * to the host in response to an unballoon request.
 334 *
 335 */
 336
 337struct dm_unballoon_response {
 338        struct dm_header hdr;
 339} __packed;
 340
 341
 342/*
 343 * Hot add request message. Message sent from the host to the guest.
 344 *
 345 * mem_range: Memory range to hot add.
 346 *
 347 */
 348
 349struct dm_hot_add {
 350        struct dm_header hdr;
 351        union dm_mem_page_range range;
 352} __packed;
 353
 354/*
 355 * Hot add response message.
 356 * This message is sent by the guest to report the status of a hot add request.
 357 * If page_count is less than the requested page count, then the host should
 358 * assume all further hot add requests will fail, since this indicates that
 359 * the guest has hit an upper physical memory barrier.
 360 *
 361 * Hot adds may also fail due to low resources; in this case, the guest must
 362 * not complete this message until the hot add can succeed, and the host must
 363 * not send a new hot add request until the response is sent.
 364 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
 365 * times it fails the request.
 366 *
 367 *
 368 * page_count: number of pages that were successfully hot added.
 369 *
 370 * result: result of the operation 1: success, 0: failure.
 371 *
 372 */
 373
 374struct dm_hot_add_response {
 375        struct dm_header hdr;
 376        __u32 page_count;
 377        __u32 result;
 378} __packed;
 379
 380/*
 381 * Types of information sent from host to the guest.
 382 */
 383
 384enum dm_info_type {
 385        INFO_TYPE_MAX_PAGE_CNT = 0,
 386        MAX_INFO_TYPE
 387};
 388
 389
 390/*
 391 * Header for the information message.
 392 */
 393
 394struct dm_info_header {
 395        enum dm_info_type type;
 396        __u32 data_size;
 397} __packed;
 398
 399/*
 400 * This message is sent from the host to the guest to pass
 401 * some relevant information (win8 addition).
 402 *
 403 * reserved: no used.
 404 * info_size: size of the information blob.
 405 * info: information blob.
 406 */
 407
 408struct dm_info_msg {
 409        struct dm_header hdr;
 410        __u32 reserved;
 411        __u32 info_size;
 412        __u8  info[];
 413};
 414
 415/*
 416 * End protocol definitions.
 417 */
 418
 419/*
 420 * State to manage hot adding memory into the guest.
 421 * The range start_pfn : end_pfn specifies the range
 422 * that the host has asked us to hot add. The range
 423 * start_pfn : ha_end_pfn specifies the range that we have
 424 * currently hot added. We hot add in multiples of 128M
 425 * chunks; it is possible that we may not be able to bring
 426 * online all the pages in the region. The range
 427 * covered_start_pfn:covered_end_pfn defines the pages that can
 428 * be brough online.
 429 */
 430
 431struct hv_hotadd_state {
 432        struct list_head list;
 433        unsigned long start_pfn;
 434        unsigned long covered_start_pfn;
 435        unsigned long covered_end_pfn;
 436        unsigned long ha_end_pfn;
 437        unsigned long end_pfn;
 438        /*
 439         * A list of gaps.
 440         */
 441        struct list_head gap_list;
 442};
 443
 444struct hv_hotadd_gap {
 445        struct list_head list;
 446        unsigned long start_pfn;
 447        unsigned long end_pfn;
 448};
 449
 450struct balloon_state {
 451        __u32 num_pages;
 452        struct work_struct wrk;
 453};
 454
 455struct hot_add_wrk {
 456        union dm_mem_page_range ha_page_range;
 457        union dm_mem_page_range ha_region_range;
 458        struct work_struct wrk;
 459};
 460
 461static bool allow_hibernation;
 462static bool hot_add = true;
 463static bool do_hot_add;
 464/*
 465 * Delay reporting memory pressure by
 466 * the specified number of seconds.
 467 */
 468static uint pressure_report_delay = 45;
 469
 470/*
 471 * The last time we posted a pressure report to host.
 472 */
 473static unsigned long last_post_time;
 474
 475module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
 476MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
 477
 478module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
 479MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
 480static atomic_t trans_id = ATOMIC_INIT(0);
 481
 482static int dm_ring_size = 20 * 1024;
 483
 484/*
 485 * Driver specific state.
 486 */
 487
 488enum hv_dm_state {
 489        DM_INITIALIZING = 0,
 490        DM_INITIALIZED,
 491        DM_BALLOON_UP,
 492        DM_BALLOON_DOWN,
 493        DM_HOT_ADD,
 494        DM_INIT_ERROR
 495};
 496
 497
 498static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
 499static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
 500#define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
 501#define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
 502
 503struct hv_dynmem_device {
 504        struct hv_device *dev;
 505        enum hv_dm_state state;
 506        struct completion host_event;
 507        struct completion config_event;
 508
 509        /*
 510         * Number of pages we have currently ballooned out.
 511         */
 512        unsigned int num_pages_ballooned;
 513        unsigned int num_pages_onlined;
 514        unsigned int num_pages_added;
 515
 516        /*
 517         * State to manage the ballooning (up) operation.
 518         */
 519        struct balloon_state balloon_wrk;
 520
 521        /*
 522         * State to execute the "hot-add" operation.
 523         */
 524        struct hot_add_wrk ha_wrk;
 525
 526        /*
 527         * This state tracks if the host has specified a hot-add
 528         * region.
 529         */
 530        bool host_specified_ha_region;
 531
 532        /*
 533         * State to synchronize hot-add.
 534         */
 535        struct completion  ol_waitevent;
 536        /*
 537         * This thread handles hot-add
 538         * requests from the host as well as notifying
 539         * the host with regards to memory pressure in
 540         * the guest.
 541         */
 542        struct task_struct *thread;
 543
 544        /*
 545         * Protects ha_region_list, num_pages_onlined counter and individual
 546         * regions from ha_region_list.
 547         */
 548        spinlock_t ha_lock;
 549
 550        /*
 551         * A list of hot-add regions.
 552         */
 553        struct list_head ha_region_list;
 554
 555        /*
 556         * We start with the highest version we can support
 557         * and downgrade based on the host; we save here the
 558         * next version to try.
 559         */
 560        __u32 next_version;
 561
 562        /*
 563         * The negotiated version agreed by host.
 564         */
 565        __u32 version;
 566};
 567
 568static struct hv_dynmem_device dm_device;
 569
 570static void post_status(struct hv_dynmem_device *dm);
 571
 572#ifdef CONFIG_MEMORY_HOTPLUG
 573static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
 574                                     unsigned long pfn)
 575{
 576        struct hv_hotadd_gap *gap;
 577
 578        /* The page is not backed. */
 579        if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
 580                return false;
 581
 582        /* Check for gaps. */
 583        list_for_each_entry(gap, &has->gap_list, list) {
 584                if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
 585                        return false;
 586        }
 587
 588        return true;
 589}
 590
 591static unsigned long hv_page_offline_check(unsigned long start_pfn,
 592                                           unsigned long nr_pages)
 593{
 594        unsigned long pfn = start_pfn, count = 0;
 595        struct hv_hotadd_state *has;
 596        bool found;
 597
 598        while (pfn < start_pfn + nr_pages) {
 599                /*
 600                 * Search for HAS which covers the pfn and when we find one
 601                 * count how many consequitive PFNs are covered.
 602                 */
 603                found = false;
 604                list_for_each_entry(has, &dm_device.ha_region_list, list) {
 605                        while ((pfn >= has->start_pfn) &&
 606                               (pfn < has->end_pfn) &&
 607                               (pfn < start_pfn + nr_pages)) {
 608                                found = true;
 609                                if (has_pfn_is_backed(has, pfn))
 610                                        count++;
 611                                pfn++;
 612                        }
 613                }
 614
 615                /*
 616                 * This PFN is not in any HAS (e.g. we're offlining a region
 617                 * which was present at boot), no need to account for it. Go
 618                 * to the next one.
 619                 */
 620                if (!found)
 621                        pfn++;
 622        }
 623
 624        return count;
 625}
 626
 627static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
 628                              void *v)
 629{
 630        struct memory_notify *mem = (struct memory_notify *)v;
 631        unsigned long flags, pfn_count;
 632
 633        switch (val) {
 634        case MEM_ONLINE:
 635        case MEM_CANCEL_ONLINE:
 636                complete(&dm_device.ol_waitevent);
 637                break;
 638
 639        case MEM_OFFLINE:
 640                spin_lock_irqsave(&dm_device.ha_lock, flags);
 641                pfn_count = hv_page_offline_check(mem->start_pfn,
 642                                                  mem->nr_pages);
 643                if (pfn_count <= dm_device.num_pages_onlined) {
 644                        dm_device.num_pages_onlined -= pfn_count;
 645                } else {
 646                        /*
 647                         * We're offlining more pages than we managed to online.
 648                         * This is unexpected. In any case don't let
 649                         * num_pages_onlined wrap around zero.
 650                         */
 651                        WARN_ON_ONCE(1);
 652                        dm_device.num_pages_onlined = 0;
 653                }
 654                spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 655                break;
 656        case MEM_GOING_ONLINE:
 657        case MEM_GOING_OFFLINE:
 658        case MEM_CANCEL_OFFLINE:
 659                break;
 660        }
 661        return NOTIFY_OK;
 662}
 663
 664static struct notifier_block hv_memory_nb = {
 665        .notifier_call = hv_memory_notifier,
 666        .priority = 0
 667};
 668
 669/* Check if the particular page is backed and can be onlined and online it. */
 670static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
 671{
 672        if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
 673                if (!PageOffline(pg))
 674                        __SetPageOffline(pg);
 675                return;
 676        }
 677        if (PageOffline(pg))
 678                __ClearPageOffline(pg);
 679
 680        /* This frame is currently backed; online the page. */
 681        generic_online_page(pg, 0);
 682
 683        lockdep_assert_held(&dm_device.ha_lock);
 684        dm_device.num_pages_onlined++;
 685}
 686
 687static void hv_bring_pgs_online(struct hv_hotadd_state *has,
 688                                unsigned long start_pfn, unsigned long size)
 689{
 690        int i;
 691
 692        pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
 693        for (i = 0; i < size; i++)
 694                hv_page_online_one(has, pfn_to_page(start_pfn + i));
 695}
 696
 697static void hv_mem_hot_add(unsigned long start, unsigned long size,
 698                                unsigned long pfn_count,
 699                                struct hv_hotadd_state *has)
 700{
 701        int ret = 0;
 702        int i, nid;
 703        unsigned long start_pfn;
 704        unsigned long processed_pfn;
 705        unsigned long total_pfn = pfn_count;
 706        unsigned long flags;
 707
 708        for (i = 0; i < (size/HA_CHUNK); i++) {
 709                start_pfn = start + (i * HA_CHUNK);
 710
 711                spin_lock_irqsave(&dm_device.ha_lock, flags);
 712                has->ha_end_pfn +=  HA_CHUNK;
 713
 714                if (total_pfn > HA_CHUNK) {
 715                        processed_pfn = HA_CHUNK;
 716                        total_pfn -= HA_CHUNK;
 717                } else {
 718                        processed_pfn = total_pfn;
 719                        total_pfn = 0;
 720                }
 721
 722                has->covered_end_pfn +=  processed_pfn;
 723                spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 724
 725                reinit_completion(&dm_device.ol_waitevent);
 726
 727                nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
 728                ret = add_memory(nid, PFN_PHYS((start_pfn)),
 729                                (HA_CHUNK << PAGE_SHIFT));
 730
 731                if (ret) {
 732                        pr_err("hot_add memory failed error is %d\n", ret);
 733                        if (ret == -EEXIST) {
 734                                /*
 735                                 * This error indicates that the error
 736                                 * is not a transient failure. This is the
 737                                 * case where the guest's physical address map
 738                                 * precludes hot adding memory. Stop all further
 739                                 * memory hot-add.
 740                                 */
 741                                do_hot_add = false;
 742                        }
 743                        spin_lock_irqsave(&dm_device.ha_lock, flags);
 744                        has->ha_end_pfn -= HA_CHUNK;
 745                        has->covered_end_pfn -=  processed_pfn;
 746                        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 747                        break;
 748                }
 749
 750                /*
 751                 * Wait for memory to get onlined. If the kernel onlined the
 752                 * memory when adding it, this will return directly. Otherwise,
 753                 * it will wait for user space to online the memory. This helps
 754                 * to avoid adding memory faster than it is getting onlined. As
 755                 * adding succeeded, it is ok to proceed even if the memory was
 756                 * not onlined in time.
 757                 */
 758                wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
 759                post_status(&dm_device);
 760        }
 761}
 762
 763static void hv_online_page(struct page *pg, unsigned int order)
 764{
 765        struct hv_hotadd_state *has;
 766        unsigned long flags;
 767        unsigned long pfn = page_to_pfn(pg);
 768
 769        spin_lock_irqsave(&dm_device.ha_lock, flags);
 770        list_for_each_entry(has, &dm_device.ha_region_list, list) {
 771                /* The page belongs to a different HAS. */
 772                if ((pfn < has->start_pfn) ||
 773                                (pfn + (1UL << order) > has->end_pfn))
 774                        continue;
 775
 776                hv_bring_pgs_online(has, pfn, 1UL << order);
 777                break;
 778        }
 779        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 780}
 781
 782static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
 783{
 784        struct hv_hotadd_state *has;
 785        struct hv_hotadd_gap *gap;
 786        unsigned long residual, new_inc;
 787        int ret = 0;
 788        unsigned long flags;
 789
 790        spin_lock_irqsave(&dm_device.ha_lock, flags);
 791        list_for_each_entry(has, &dm_device.ha_region_list, list) {
 792                /*
 793                 * If the pfn range we are dealing with is not in the current
 794                 * "hot add block", move on.
 795                 */
 796                if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 797                        continue;
 798
 799                /*
 800                 * If the current start pfn is not where the covered_end
 801                 * is, create a gap and update covered_end_pfn.
 802                 */
 803                if (has->covered_end_pfn != start_pfn) {
 804                        gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
 805                        if (!gap) {
 806                                ret = -ENOMEM;
 807                                break;
 808                        }
 809
 810                        INIT_LIST_HEAD(&gap->list);
 811                        gap->start_pfn = has->covered_end_pfn;
 812                        gap->end_pfn = start_pfn;
 813                        list_add_tail(&gap->list, &has->gap_list);
 814
 815                        has->covered_end_pfn = start_pfn;
 816                }
 817
 818                /*
 819                 * If the current hot add-request extends beyond
 820                 * our current limit; extend it.
 821                 */
 822                if ((start_pfn + pfn_cnt) > has->end_pfn) {
 823                        residual = (start_pfn + pfn_cnt - has->end_pfn);
 824                        /*
 825                         * Extend the region by multiples of HA_CHUNK.
 826                         */
 827                        new_inc = (residual / HA_CHUNK) * HA_CHUNK;
 828                        if (residual % HA_CHUNK)
 829                                new_inc += HA_CHUNK;
 830
 831                        has->end_pfn += new_inc;
 832                }
 833
 834                ret = 1;
 835                break;
 836        }
 837        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 838
 839        return ret;
 840}
 841
 842static unsigned long handle_pg_range(unsigned long pg_start,
 843                                        unsigned long pg_count)
 844{
 845        unsigned long start_pfn = pg_start;
 846        unsigned long pfn_cnt = pg_count;
 847        unsigned long size;
 848        struct hv_hotadd_state *has;
 849        unsigned long pgs_ol = 0;
 850        unsigned long old_covered_state;
 851        unsigned long res = 0, flags;
 852
 853        pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
 854                pg_start);
 855
 856        spin_lock_irqsave(&dm_device.ha_lock, flags);
 857        list_for_each_entry(has, &dm_device.ha_region_list, list) {
 858                /*
 859                 * If the pfn range we are dealing with is not in the current
 860                 * "hot add block", move on.
 861                 */
 862                if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 863                        continue;
 864
 865                old_covered_state = has->covered_end_pfn;
 866
 867                if (start_pfn < has->ha_end_pfn) {
 868                        /*
 869                         * This is the case where we are backing pages
 870                         * in an already hot added region. Bring
 871                         * these pages online first.
 872                         */
 873                        pgs_ol = has->ha_end_pfn - start_pfn;
 874                        if (pgs_ol > pfn_cnt)
 875                                pgs_ol = pfn_cnt;
 876
 877                        has->covered_end_pfn +=  pgs_ol;
 878                        pfn_cnt -= pgs_ol;
 879                        /*
 880                         * Check if the corresponding memory block is already
 881                         * online. It is possible to observe struct pages still
 882                         * being uninitialized here so check section instead.
 883                         * In case the section is online we need to bring the
 884                         * rest of pfns (which were not backed previously)
 885                         * online too.
 886                         */
 887                        if (start_pfn > has->start_pfn &&
 888                            online_section_nr(pfn_to_section_nr(start_pfn)))
 889                                hv_bring_pgs_online(has, start_pfn, pgs_ol);
 890
 891                }
 892
 893                if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
 894                        /*
 895                         * We have some residual hot add range
 896                         * that needs to be hot added; hot add
 897                         * it now. Hot add a multiple of
 898                         * of HA_CHUNK that fully covers the pages
 899                         * we have.
 900                         */
 901                        size = (has->end_pfn - has->ha_end_pfn);
 902                        if (pfn_cnt <= size) {
 903                                size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
 904                                if (pfn_cnt % HA_CHUNK)
 905                                        size += HA_CHUNK;
 906                        } else {
 907                                pfn_cnt = size;
 908                        }
 909                        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 910                        hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
 911                        spin_lock_irqsave(&dm_device.ha_lock, flags);
 912                }
 913                /*
 914                 * If we managed to online any pages that were given to us,
 915                 * we declare success.
 916                 */
 917                res = has->covered_end_pfn - old_covered_state;
 918                break;
 919        }
 920        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 921
 922        return res;
 923}
 924
 925static unsigned long process_hot_add(unsigned long pg_start,
 926                                        unsigned long pfn_cnt,
 927                                        unsigned long rg_start,
 928                                        unsigned long rg_size)
 929{
 930        struct hv_hotadd_state *ha_region = NULL;
 931        int covered;
 932        unsigned long flags;
 933
 934        if (pfn_cnt == 0)
 935                return 0;
 936
 937        if (!dm_device.host_specified_ha_region) {
 938                covered = pfn_covered(pg_start, pfn_cnt);
 939                if (covered < 0)
 940                        return 0;
 941
 942                if (covered)
 943                        goto do_pg_range;
 944        }
 945
 946        /*
 947         * If the host has specified a hot-add range; deal with it first.
 948         */
 949
 950        if (rg_size != 0) {
 951                ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
 952                if (!ha_region)
 953                        return 0;
 954
 955                INIT_LIST_HEAD(&ha_region->list);
 956                INIT_LIST_HEAD(&ha_region->gap_list);
 957
 958                ha_region->start_pfn = rg_start;
 959                ha_region->ha_end_pfn = rg_start;
 960                ha_region->covered_start_pfn = pg_start;
 961                ha_region->covered_end_pfn = pg_start;
 962                ha_region->end_pfn = rg_start + rg_size;
 963
 964                spin_lock_irqsave(&dm_device.ha_lock, flags);
 965                list_add_tail(&ha_region->list, &dm_device.ha_region_list);
 966                spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 967        }
 968
 969do_pg_range:
 970        /*
 971         * Process the page range specified; bringing them
 972         * online if possible.
 973         */
 974        return handle_pg_range(pg_start, pfn_cnt);
 975}
 976
 977#endif
 978
 979static void hot_add_req(struct work_struct *dummy)
 980{
 981        struct dm_hot_add_response resp;
 982#ifdef CONFIG_MEMORY_HOTPLUG
 983        unsigned long pg_start, pfn_cnt;
 984        unsigned long rg_start, rg_sz;
 985#endif
 986        struct hv_dynmem_device *dm = &dm_device;
 987
 988        memset(&resp, 0, sizeof(struct dm_hot_add_response));
 989        resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
 990        resp.hdr.size = sizeof(struct dm_hot_add_response);
 991
 992#ifdef CONFIG_MEMORY_HOTPLUG
 993        pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
 994        pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
 995
 996        rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
 997        rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
 998
 999        if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1000                unsigned long region_size;
1001                unsigned long region_start;
1002
1003                /*
1004                 * The host has not specified the hot-add region.
1005                 * Based on the hot-add page range being specified,
1006                 * compute a hot-add region that can cover the pages
1007                 * that need to be hot-added while ensuring the alignment
1008                 * and size requirements of Linux as it relates to hot-add.
1009                 */
1010                region_start = pg_start;
1011                region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1012                if (pfn_cnt % HA_CHUNK)
1013                        region_size += HA_CHUNK;
1014
1015                region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1016
1017                rg_start = region_start;
1018                rg_sz = region_size;
1019        }
1020
1021        if (do_hot_add)
1022                resp.page_count = process_hot_add(pg_start, pfn_cnt,
1023                                                rg_start, rg_sz);
1024
1025        dm->num_pages_added += resp.page_count;
1026#endif
1027        /*
1028         * The result field of the response structure has the
1029         * following semantics:
1030         *
1031         * 1. If all or some pages hot-added: Guest should return success.
1032         *
1033         * 2. If no pages could be hot-added:
1034         *
1035         * If the guest returns success, then the host
1036         * will not attempt any further hot-add operations. This
1037         * signifies a permanent failure.
1038         *
1039         * If the guest returns failure, then this failure will be
1040         * treated as a transient failure and the host may retry the
1041         * hot-add operation after some delay.
1042         */
1043        if (resp.page_count > 0)
1044                resp.result = 1;
1045        else if (!do_hot_add)
1046                resp.result = 1;
1047        else
1048                resp.result = 0;
1049
1050        if (!do_hot_add || resp.page_count == 0) {
1051                if (!allow_hibernation)
1052                        pr_err("Memory hot add failed\n");
1053                else
1054                        pr_info("Ignore hot-add request!\n");
1055        }
1056
1057        dm->state = DM_INITIALIZED;
1058        resp.hdr.trans_id = atomic_inc_return(&trans_id);
1059        vmbus_sendpacket(dm->dev->channel, &resp,
1060                        sizeof(struct dm_hot_add_response),
1061                        (unsigned long)NULL,
1062                        VM_PKT_DATA_INBAND, 0);
1063}
1064
1065static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1066{
1067        struct dm_info_header *info_hdr;
1068
1069        info_hdr = (struct dm_info_header *)msg->info;
1070
1071        switch (info_hdr->type) {
1072        case INFO_TYPE_MAX_PAGE_CNT:
1073                if (info_hdr->data_size == sizeof(__u64)) {
1074                        __u64 *max_page_count = (__u64 *)&info_hdr[1];
1075
1076                        pr_info("Max. dynamic memory size: %llu MB\n",
1077                                (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1078                }
1079
1080                break;
1081        default:
1082                pr_warn("Received Unknown type: %d\n", info_hdr->type);
1083        }
1084}
1085
1086static unsigned long compute_balloon_floor(void)
1087{
1088        unsigned long min_pages;
1089        unsigned long nr_pages = totalram_pages();
1090#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1091        /* Simple continuous piecewiese linear function:
1092         *  max MiB -> min MiB  gradient
1093         *       0         0
1094         *      16        16
1095         *      32        24
1096         *     128        72    (1/2)
1097         *     512       168    (1/4)
1098         *    2048       360    (1/8)
1099         *    8192       744    (1/16)
1100         *   32768      1512    (1/32)
1101         */
1102        if (nr_pages < MB2PAGES(128))
1103                min_pages = MB2PAGES(8) + (nr_pages >> 1);
1104        else if (nr_pages < MB2PAGES(512))
1105                min_pages = MB2PAGES(40) + (nr_pages >> 2);
1106        else if (nr_pages < MB2PAGES(2048))
1107                min_pages = MB2PAGES(104) + (nr_pages >> 3);
1108        else if (nr_pages < MB2PAGES(8192))
1109                min_pages = MB2PAGES(232) + (nr_pages >> 4);
1110        else
1111                min_pages = MB2PAGES(488) + (nr_pages >> 5);
1112#undef MB2PAGES
1113        return min_pages;
1114}
1115
1116/*
1117 * Post our status as it relates memory pressure to the
1118 * host. Host expects the guests to post this status
1119 * periodically at 1 second intervals.
1120 *
1121 * The metrics specified in this protocol are very Windows
1122 * specific and so we cook up numbers here to convey our memory
1123 * pressure.
1124 */
1125
1126static void post_status(struct hv_dynmem_device *dm)
1127{
1128        struct dm_status status;
1129        unsigned long now = jiffies;
1130        unsigned long last_post = last_post_time;
1131
1132        if (pressure_report_delay > 0) {
1133                --pressure_report_delay;
1134                return;
1135        }
1136
1137        if (!time_after(now, (last_post_time + HZ)))
1138                return;
1139
1140        memset(&status, 0, sizeof(struct dm_status));
1141        status.hdr.type = DM_STATUS_REPORT;
1142        status.hdr.size = sizeof(struct dm_status);
1143        status.hdr.trans_id = atomic_inc_return(&trans_id);
1144
1145        /*
1146         * The host expects the guest to report free and committed memory.
1147         * Furthermore, the host expects the pressure information to include
1148         * the ballooned out pages. For a given amount of memory that we are
1149         * managing we need to compute a floor below which we should not
1150         * balloon. Compute this and add it to the pressure report.
1151         * We also need to report all offline pages (num_pages_added -
1152         * num_pages_onlined) as committed to the host, otherwise it can try
1153         * asking us to balloon them out.
1154         */
1155        status.num_avail = si_mem_available();
1156        status.num_committed = vm_memory_committed() +
1157                dm->num_pages_ballooned +
1158                (dm->num_pages_added > dm->num_pages_onlined ?
1159                 dm->num_pages_added - dm->num_pages_onlined : 0) +
1160                compute_balloon_floor();
1161
1162        trace_balloon_status(status.num_avail, status.num_committed,
1163                             vm_memory_committed(), dm->num_pages_ballooned,
1164                             dm->num_pages_added, dm->num_pages_onlined);
1165        /*
1166         * If our transaction ID is no longer current, just don't
1167         * send the status. This can happen if we were interrupted
1168         * after we picked our transaction ID.
1169         */
1170        if (status.hdr.trans_id != atomic_read(&trans_id))
1171                return;
1172
1173        /*
1174         * If the last post time that we sampled has changed,
1175         * we have raced, don't post the status.
1176         */
1177        if (last_post != last_post_time)
1178                return;
1179
1180        last_post_time = jiffies;
1181        vmbus_sendpacket(dm->dev->channel, &status,
1182                                sizeof(struct dm_status),
1183                                (unsigned long)NULL,
1184                                VM_PKT_DATA_INBAND, 0);
1185
1186}
1187
1188static void free_balloon_pages(struct hv_dynmem_device *dm,
1189                         union dm_mem_page_range *range_array)
1190{
1191        int num_pages = range_array->finfo.page_cnt;
1192        __u64 start_frame = range_array->finfo.start_page;
1193        struct page *pg;
1194        int i;
1195
1196        for (i = 0; i < num_pages; i++) {
1197                pg = pfn_to_page(i + start_frame);
1198                __ClearPageOffline(pg);
1199                __free_page(pg);
1200                dm->num_pages_ballooned--;
1201        }
1202}
1203
1204
1205
1206static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1207                                        unsigned int num_pages,
1208                                        struct dm_balloon_response *bl_resp,
1209                                        int alloc_unit)
1210{
1211        unsigned int i, j;
1212        struct page *pg;
1213
1214        for (i = 0; i < num_pages / alloc_unit; i++) {
1215                if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1216                        HV_HYP_PAGE_SIZE)
1217                        return i * alloc_unit;
1218
1219                /*
1220                 * We execute this code in a thread context. Furthermore,
1221                 * we don't want the kernel to try too hard.
1222                 */
1223                pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1224                                __GFP_NOMEMALLOC | __GFP_NOWARN,
1225                                get_order(alloc_unit << PAGE_SHIFT));
1226
1227                if (!pg)
1228                        return i * alloc_unit;
1229
1230                dm->num_pages_ballooned += alloc_unit;
1231
1232                /*
1233                 * If we allocatted 2M pages; split them so we
1234                 * can free them in any order we get.
1235                 */
1236
1237                if (alloc_unit != 1)
1238                        split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1239
1240                /* mark all pages offline */
1241                for (j = 0; j < (1 << get_order(alloc_unit << PAGE_SHIFT)); j++)
1242                        __SetPageOffline(pg + j);
1243
1244                bl_resp->range_count++;
1245                bl_resp->range_array[i].finfo.start_page =
1246                        page_to_pfn(pg);
1247                bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1248                bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1249
1250        }
1251
1252        return i * alloc_unit;
1253}
1254
1255static void balloon_up(struct work_struct *dummy)
1256{
1257        unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1258        unsigned int num_ballooned = 0;
1259        struct dm_balloon_response *bl_resp;
1260        int alloc_unit;
1261        int ret;
1262        bool done = false;
1263        int i;
1264        long avail_pages;
1265        unsigned long floor;
1266
1267        /*
1268         * We will attempt 2M allocations. However, if we fail to
1269         * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1270         */
1271        alloc_unit = PAGES_IN_2M;
1272
1273        avail_pages = si_mem_available();
1274        floor = compute_balloon_floor();
1275
1276        /* Refuse to balloon below the floor. */
1277        if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1278                pr_warn("Balloon request will be partially fulfilled. %s\n",
1279                        avail_pages < num_pages ? "Not enough memory." :
1280                        "Balloon floor reached.");
1281
1282                num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1283        }
1284
1285        while (!done) {
1286                memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1287                bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1288                bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1289                bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1290                bl_resp->more_pages = 1;
1291
1292                num_pages -= num_ballooned;
1293                num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1294                                                    bl_resp, alloc_unit);
1295
1296                if (alloc_unit != 1 && num_ballooned == 0) {
1297                        alloc_unit = 1;
1298                        continue;
1299                }
1300
1301                if (num_ballooned == 0 || num_ballooned == num_pages) {
1302                        pr_debug("Ballooned %u out of %u requested pages.\n",
1303                                num_pages, dm_device.balloon_wrk.num_pages);
1304
1305                        bl_resp->more_pages = 0;
1306                        done = true;
1307                        dm_device.state = DM_INITIALIZED;
1308                }
1309
1310                /*
1311                 * We are pushing a lot of data through the channel;
1312                 * deal with transient failures caused because of the
1313                 * lack of space in the ring buffer.
1314                 */
1315
1316                do {
1317                        bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1318                        ret = vmbus_sendpacket(dm_device.dev->channel,
1319                                                bl_resp,
1320                                                bl_resp->hdr.size,
1321                                                (unsigned long)NULL,
1322                                                VM_PKT_DATA_INBAND, 0);
1323
1324                        if (ret == -EAGAIN)
1325                                msleep(20);
1326                        post_status(&dm_device);
1327                } while (ret == -EAGAIN);
1328
1329                if (ret) {
1330                        /*
1331                         * Free up the memory we allocatted.
1332                         */
1333                        pr_err("Balloon response failed\n");
1334
1335                        for (i = 0; i < bl_resp->range_count; i++)
1336                                free_balloon_pages(&dm_device,
1337                                                 &bl_resp->range_array[i]);
1338
1339                        done = true;
1340                }
1341        }
1342
1343}
1344
1345static void balloon_down(struct hv_dynmem_device *dm,
1346                        struct dm_unballoon_request *req)
1347{
1348        union dm_mem_page_range *range_array = req->range_array;
1349        int range_count = req->range_count;
1350        struct dm_unballoon_response resp;
1351        int i;
1352        unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1353
1354        for (i = 0; i < range_count; i++) {
1355                free_balloon_pages(dm, &range_array[i]);
1356                complete(&dm_device.config_event);
1357        }
1358
1359        pr_debug("Freed %u ballooned pages.\n",
1360                prev_pages_ballooned - dm->num_pages_ballooned);
1361
1362        if (req->more_pages == 1)
1363                return;
1364
1365        memset(&resp, 0, sizeof(struct dm_unballoon_response));
1366        resp.hdr.type = DM_UNBALLOON_RESPONSE;
1367        resp.hdr.trans_id = atomic_inc_return(&trans_id);
1368        resp.hdr.size = sizeof(struct dm_unballoon_response);
1369
1370        vmbus_sendpacket(dm_device.dev->channel, &resp,
1371                                sizeof(struct dm_unballoon_response),
1372                                (unsigned long)NULL,
1373                                VM_PKT_DATA_INBAND, 0);
1374
1375        dm->state = DM_INITIALIZED;
1376}
1377
1378static void balloon_onchannelcallback(void *context);
1379
1380static int dm_thread_func(void *dm_dev)
1381{
1382        struct hv_dynmem_device *dm = dm_dev;
1383
1384        while (!kthread_should_stop()) {
1385                wait_for_completion_interruptible_timeout(
1386                                                &dm_device.config_event, 1*HZ);
1387                /*
1388                 * The host expects us to post information on the memory
1389                 * pressure every second.
1390                 */
1391                reinit_completion(&dm_device.config_event);
1392                post_status(dm);
1393        }
1394
1395        return 0;
1396}
1397
1398
1399static void version_resp(struct hv_dynmem_device *dm,
1400                        struct dm_version_response *vresp)
1401{
1402        struct dm_version_request version_req;
1403        int ret;
1404
1405        if (vresp->is_accepted) {
1406                /*
1407                 * We are done; wakeup the
1408                 * context waiting for version
1409                 * negotiation.
1410                 */
1411                complete(&dm->host_event);
1412                return;
1413        }
1414        /*
1415         * If there are more versions to try, continue
1416         * with negotiations; if not
1417         * shutdown the service since we are not able
1418         * to negotiate a suitable version number
1419         * with the host.
1420         */
1421        if (dm->next_version == 0)
1422                goto version_error;
1423
1424        memset(&version_req, 0, sizeof(struct dm_version_request));
1425        version_req.hdr.type = DM_VERSION_REQUEST;
1426        version_req.hdr.size = sizeof(struct dm_version_request);
1427        version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1428        version_req.version.version = dm->next_version;
1429        dm->version = version_req.version.version;
1430
1431        /*
1432         * Set the next version to try in case current version fails.
1433         * Win7 protocol ought to be the last one to try.
1434         */
1435        switch (version_req.version.version) {
1436        case DYNMEM_PROTOCOL_VERSION_WIN8:
1437                dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1438                version_req.is_last_attempt = 0;
1439                break;
1440        default:
1441                dm->next_version = 0;
1442                version_req.is_last_attempt = 1;
1443        }
1444
1445        ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1446                                sizeof(struct dm_version_request),
1447                                (unsigned long)NULL,
1448                                VM_PKT_DATA_INBAND, 0);
1449
1450        if (ret)
1451                goto version_error;
1452
1453        return;
1454
1455version_error:
1456        dm->state = DM_INIT_ERROR;
1457        complete(&dm->host_event);
1458}
1459
1460static void cap_resp(struct hv_dynmem_device *dm,
1461                        struct dm_capabilities_resp_msg *cap_resp)
1462{
1463        if (!cap_resp->is_accepted) {
1464                pr_err("Capabilities not accepted by host\n");
1465                dm->state = DM_INIT_ERROR;
1466        }
1467        complete(&dm->host_event);
1468}
1469
1470static void balloon_onchannelcallback(void *context)
1471{
1472        struct hv_device *dev = context;
1473        u32 recvlen;
1474        u64 requestid;
1475        struct dm_message *dm_msg;
1476        struct dm_header *dm_hdr;
1477        struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1478        struct dm_balloon *bal_msg;
1479        struct dm_hot_add *ha_msg;
1480        union dm_mem_page_range *ha_pg_range;
1481        union dm_mem_page_range *ha_region;
1482
1483        memset(recv_buffer, 0, sizeof(recv_buffer));
1484        vmbus_recvpacket(dev->channel, recv_buffer,
1485                         HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1486
1487        if (recvlen > 0) {
1488                dm_msg = (struct dm_message *)recv_buffer;
1489                dm_hdr = &dm_msg->hdr;
1490
1491                switch (dm_hdr->type) {
1492                case DM_VERSION_RESPONSE:
1493                        version_resp(dm,
1494                                 (struct dm_version_response *)dm_msg);
1495                        break;
1496
1497                case DM_CAPABILITIES_RESPONSE:
1498                        cap_resp(dm,
1499                                 (struct dm_capabilities_resp_msg *)dm_msg);
1500                        break;
1501
1502                case DM_BALLOON_REQUEST:
1503                        if (allow_hibernation) {
1504                                pr_info("Ignore balloon-up request!\n");
1505                                break;
1506                        }
1507
1508                        if (dm->state == DM_BALLOON_UP)
1509                                pr_warn("Currently ballooning\n");
1510                        bal_msg = (struct dm_balloon *)recv_buffer;
1511                        dm->state = DM_BALLOON_UP;
1512                        dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1513                        schedule_work(&dm_device.balloon_wrk.wrk);
1514                        break;
1515
1516                case DM_UNBALLOON_REQUEST:
1517                        if (allow_hibernation) {
1518                                pr_info("Ignore balloon-down request!\n");
1519                                break;
1520                        }
1521
1522                        dm->state = DM_BALLOON_DOWN;
1523                        balloon_down(dm,
1524                                 (struct dm_unballoon_request *)recv_buffer);
1525                        break;
1526
1527                case DM_MEM_HOT_ADD_REQUEST:
1528                        if (dm->state == DM_HOT_ADD)
1529                                pr_warn("Currently hot-adding\n");
1530                        dm->state = DM_HOT_ADD;
1531                        ha_msg = (struct dm_hot_add *)recv_buffer;
1532                        if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1533                                /*
1534                                 * This is a normal hot-add request specifying
1535                                 * hot-add memory.
1536                                 */
1537                                dm->host_specified_ha_region = false;
1538                                ha_pg_range = &ha_msg->range;
1539                                dm->ha_wrk.ha_page_range = *ha_pg_range;
1540                                dm->ha_wrk.ha_region_range.page_range = 0;
1541                        } else {
1542                                /*
1543                                 * Host is specifying that we first hot-add
1544                                 * a region and then partially populate this
1545                                 * region.
1546                                 */
1547                                dm->host_specified_ha_region = true;
1548                                ha_pg_range = &ha_msg->range;
1549                                ha_region = &ha_pg_range[1];
1550                                dm->ha_wrk.ha_page_range = *ha_pg_range;
1551                                dm->ha_wrk.ha_region_range = *ha_region;
1552                        }
1553                        schedule_work(&dm_device.ha_wrk.wrk);
1554                        break;
1555
1556                case DM_INFO_MESSAGE:
1557                        process_info(dm, (struct dm_info_msg *)dm_msg);
1558                        break;
1559
1560                default:
1561                        pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1562
1563                }
1564        }
1565
1566}
1567
1568static int balloon_connect_vsp(struct hv_device *dev)
1569{
1570        struct dm_version_request version_req;
1571        struct dm_capabilities cap_msg;
1572        unsigned long t;
1573        int ret;
1574
1575        ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1576                         balloon_onchannelcallback, dev);
1577        if (ret)
1578                return ret;
1579
1580        /*
1581         * Initiate the hand shake with the host and negotiate
1582         * a version that the host can support. We start with the
1583         * highest version number and go down if the host cannot
1584         * support it.
1585         */
1586        memset(&version_req, 0, sizeof(struct dm_version_request));
1587        version_req.hdr.type = DM_VERSION_REQUEST;
1588        version_req.hdr.size = sizeof(struct dm_version_request);
1589        version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1590        version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1591        version_req.is_last_attempt = 0;
1592        dm_device.version = version_req.version.version;
1593
1594        ret = vmbus_sendpacket(dev->channel, &version_req,
1595                               sizeof(struct dm_version_request),
1596                               (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1597        if (ret)
1598                goto out;
1599
1600        t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1601        if (t == 0) {
1602                ret = -ETIMEDOUT;
1603                goto out;
1604        }
1605
1606        /*
1607         * If we could not negotiate a compatible version with the host
1608         * fail the probe function.
1609         */
1610        if (dm_device.state == DM_INIT_ERROR) {
1611                ret = -EPROTO;
1612                goto out;
1613        }
1614
1615        pr_info("Using Dynamic Memory protocol version %u.%u\n",
1616                DYNMEM_MAJOR_VERSION(dm_device.version),
1617                DYNMEM_MINOR_VERSION(dm_device.version));
1618
1619        /*
1620         * Now submit our capabilities to the host.
1621         */
1622        memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1623        cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1624        cap_msg.hdr.size = sizeof(struct dm_capabilities);
1625        cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1626
1627        /*
1628         * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1629         * currently still requires the bits to be set, so we have to add code
1630         * to fail the host's hot-add and balloon up/down requests, if any.
1631         */
1632        cap_msg.caps.cap_bits.balloon = 1;
1633        cap_msg.caps.cap_bits.hot_add = 1;
1634
1635        /*
1636         * Specify our alignment requirements as it relates
1637         * memory hot-add. Specify 128MB alignment.
1638         */
1639        cap_msg.caps.cap_bits.hot_add_alignment = 7;
1640
1641        /*
1642         * Currently the host does not use these
1643         * values and we set them to what is done in the
1644         * Windows driver.
1645         */
1646        cap_msg.min_page_cnt = 0;
1647        cap_msg.max_page_number = -1;
1648
1649        ret = vmbus_sendpacket(dev->channel, &cap_msg,
1650                               sizeof(struct dm_capabilities),
1651                               (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1652        if (ret)
1653                goto out;
1654
1655        t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1656        if (t == 0) {
1657                ret = -ETIMEDOUT;
1658                goto out;
1659        }
1660
1661        /*
1662         * If the host does not like our capabilities,
1663         * fail the probe function.
1664         */
1665        if (dm_device.state == DM_INIT_ERROR) {
1666                ret = -EPROTO;
1667                goto out;
1668        }
1669
1670        return 0;
1671out:
1672        vmbus_close(dev->channel);
1673        return ret;
1674}
1675
1676static int balloon_probe(struct hv_device *dev,
1677                         const struct hv_vmbus_device_id *dev_id)
1678{
1679        int ret;
1680
1681        allow_hibernation = hv_is_hibernation_supported();
1682        if (allow_hibernation)
1683                hot_add = false;
1684
1685#ifdef CONFIG_MEMORY_HOTPLUG
1686        do_hot_add = hot_add;
1687#else
1688        do_hot_add = false;
1689#endif
1690        dm_device.dev = dev;
1691        dm_device.state = DM_INITIALIZING;
1692        dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1693        init_completion(&dm_device.host_event);
1694        init_completion(&dm_device.config_event);
1695        INIT_LIST_HEAD(&dm_device.ha_region_list);
1696        spin_lock_init(&dm_device.ha_lock);
1697        INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1698        INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1699        dm_device.host_specified_ha_region = false;
1700
1701#ifdef CONFIG_MEMORY_HOTPLUG
1702        set_online_page_callback(&hv_online_page);
1703        init_completion(&dm_device.ol_waitevent);
1704        register_memory_notifier(&hv_memory_nb);
1705#endif
1706
1707        hv_set_drvdata(dev, &dm_device);
1708
1709        ret = balloon_connect_vsp(dev);
1710        if (ret != 0)
1711                return ret;
1712
1713        dm_device.state = DM_INITIALIZED;
1714
1715        dm_device.thread =
1716                 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1717        if (IS_ERR(dm_device.thread)) {
1718                ret = PTR_ERR(dm_device.thread);
1719                goto probe_error;
1720        }
1721
1722        return 0;
1723
1724probe_error:
1725        dm_device.state = DM_INIT_ERROR;
1726        dm_device.thread  = NULL;
1727        vmbus_close(dev->channel);
1728#ifdef CONFIG_MEMORY_HOTPLUG
1729        unregister_memory_notifier(&hv_memory_nb);
1730        restore_online_page_callback(&hv_online_page);
1731#endif
1732        return ret;
1733}
1734
1735static int balloon_remove(struct hv_device *dev)
1736{
1737        struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1738        struct hv_hotadd_state *has, *tmp;
1739        struct hv_hotadd_gap *gap, *tmp_gap;
1740        unsigned long flags;
1741
1742        if (dm->num_pages_ballooned != 0)
1743                pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1744
1745        cancel_work_sync(&dm->balloon_wrk.wrk);
1746        cancel_work_sync(&dm->ha_wrk.wrk);
1747
1748        kthread_stop(dm->thread);
1749        vmbus_close(dev->channel);
1750#ifdef CONFIG_MEMORY_HOTPLUG
1751        unregister_memory_notifier(&hv_memory_nb);
1752        restore_online_page_callback(&hv_online_page);
1753#endif
1754        spin_lock_irqsave(&dm_device.ha_lock, flags);
1755        list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1756                list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1757                        list_del(&gap->list);
1758                        kfree(gap);
1759                }
1760                list_del(&has->list);
1761                kfree(has);
1762        }
1763        spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1764
1765        return 0;
1766}
1767
1768static int balloon_suspend(struct hv_device *hv_dev)
1769{
1770        struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
1771
1772        tasklet_disable(&hv_dev->channel->callback_event);
1773
1774        cancel_work_sync(&dm->balloon_wrk.wrk);
1775        cancel_work_sync(&dm->ha_wrk.wrk);
1776
1777        if (dm->thread) {
1778                kthread_stop(dm->thread);
1779                dm->thread = NULL;
1780                vmbus_close(hv_dev->channel);
1781        }
1782
1783        tasklet_enable(&hv_dev->channel->callback_event);
1784
1785        return 0;
1786
1787}
1788
1789static int balloon_resume(struct hv_device *dev)
1790{
1791        int ret;
1792
1793        dm_device.state = DM_INITIALIZING;
1794
1795        ret = balloon_connect_vsp(dev);
1796
1797        if (ret != 0)
1798                goto out;
1799
1800        dm_device.thread =
1801                 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1802        if (IS_ERR(dm_device.thread)) {
1803                ret = PTR_ERR(dm_device.thread);
1804                dm_device.thread = NULL;
1805                goto close_channel;
1806        }
1807
1808        dm_device.state = DM_INITIALIZED;
1809        return 0;
1810close_channel:
1811        vmbus_close(dev->channel);
1812out:
1813        dm_device.state = DM_INIT_ERROR;
1814#ifdef CONFIG_MEMORY_HOTPLUG
1815        unregister_memory_notifier(&hv_memory_nb);
1816        restore_online_page_callback(&hv_online_page);
1817#endif
1818        return ret;
1819}
1820
1821static const struct hv_vmbus_device_id id_table[] = {
1822        /* Dynamic Memory Class ID */
1823        /* 525074DC-8985-46e2-8057-A307DC18A502 */
1824        { HV_DM_GUID, },
1825        { },
1826};
1827
1828MODULE_DEVICE_TABLE(vmbus, id_table);
1829
1830static  struct hv_driver balloon_drv = {
1831        .name = "hv_balloon",
1832        .id_table = id_table,
1833        .probe =  balloon_probe,
1834        .remove =  balloon_remove,
1835        .suspend = balloon_suspend,
1836        .resume = balloon_resume,
1837        .driver = {
1838                .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1839        },
1840};
1841
1842static int __init init_balloon_drv(void)
1843{
1844
1845        return vmbus_driver_register(&balloon_drv);
1846}
1847
1848module_init(init_balloon_drv);
1849
1850MODULE_DESCRIPTION("Hyper-V Balloon");
1851MODULE_LICENSE("GPL");
1852