linux/drivers/iio/gyro/mpu3050-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * MPU3050 gyroscope driver
   4 *
   5 * Copyright (C) 2016 Linaro Ltd.
   6 * Author: Linus Walleij <linus.walleij@linaro.org>
   7 *
   8 * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
   9 * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
  10 * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
  11 * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
  12 *
  13 * TODO: add support for setting up the low pass 3dB frequency.
  14 */
  15
  16#include <linux/bitops.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/iio/buffer.h>
  20#include <linux/iio/iio.h>
  21#include <linux/iio/sysfs.h>
  22#include <linux/iio/trigger.h>
  23#include <linux/iio/trigger_consumer.h>
  24#include <linux/iio/triggered_buffer.h>
  25#include <linux/interrupt.h>
  26#include <linux/module.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/random.h>
  29#include <linux/slab.h>
  30
  31#include "mpu3050.h"
  32
  33#define MPU3050_CHIP_ID         0x68
  34#define MPU3050_CHIP_ID_MASK    0x7E
  35
  36/*
  37 * Register map: anything suffixed *_H is a big-endian high byte and always
  38 * followed by the corresponding low byte (*_L) even though these are not
  39 * explicitly included in the register definitions.
  40 */
  41#define MPU3050_CHIP_ID_REG     0x00
  42#define MPU3050_PRODUCT_ID_REG  0x01
  43#define MPU3050_XG_OFFS_TC      0x05
  44#define MPU3050_YG_OFFS_TC      0x08
  45#define MPU3050_ZG_OFFS_TC      0x0B
  46#define MPU3050_X_OFFS_USR_H    0x0C
  47#define MPU3050_Y_OFFS_USR_H    0x0E
  48#define MPU3050_Z_OFFS_USR_H    0x10
  49#define MPU3050_FIFO_EN         0x12
  50#define MPU3050_AUX_VDDIO       0x13
  51#define MPU3050_SLV_ADDR        0x14
  52#define MPU3050_SMPLRT_DIV      0x15
  53#define MPU3050_DLPF_FS_SYNC    0x16
  54#define MPU3050_INT_CFG         0x17
  55#define MPU3050_AUX_ADDR        0x18
  56#define MPU3050_INT_STATUS      0x1A
  57#define MPU3050_TEMP_H          0x1B
  58#define MPU3050_XOUT_H          0x1D
  59#define MPU3050_YOUT_H          0x1F
  60#define MPU3050_ZOUT_H          0x21
  61#define MPU3050_DMP_CFG1        0x35
  62#define MPU3050_DMP_CFG2        0x36
  63#define MPU3050_BANK_SEL        0x37
  64#define MPU3050_MEM_START_ADDR  0x38
  65#define MPU3050_MEM_R_W         0x39
  66#define MPU3050_FIFO_COUNT_H    0x3A
  67#define MPU3050_FIFO_R          0x3C
  68#define MPU3050_USR_CTRL        0x3D
  69#define MPU3050_PWR_MGM         0x3E
  70
  71/* MPU memory bank read options */
  72#define MPU3050_MEM_PRFTCH      BIT(5)
  73#define MPU3050_MEM_USER_BANK   BIT(4)
  74/* Bits 8-11 select memory bank */
  75#define MPU3050_MEM_RAM_BANK_0  0
  76#define MPU3050_MEM_RAM_BANK_1  1
  77#define MPU3050_MEM_RAM_BANK_2  2
  78#define MPU3050_MEM_RAM_BANK_3  3
  79#define MPU3050_MEM_OTP_BANK_0  4
  80
  81#define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
  82
  83/* Register bits */
  84
  85/* FIFO Enable */
  86#define MPU3050_FIFO_EN_FOOTER          BIT(0)
  87#define MPU3050_FIFO_EN_AUX_ZOUT        BIT(1)
  88#define MPU3050_FIFO_EN_AUX_YOUT        BIT(2)
  89#define MPU3050_FIFO_EN_AUX_XOUT        BIT(3)
  90#define MPU3050_FIFO_EN_GYRO_ZOUT       BIT(4)
  91#define MPU3050_FIFO_EN_GYRO_YOUT       BIT(5)
  92#define MPU3050_FIFO_EN_GYRO_XOUT       BIT(6)
  93#define MPU3050_FIFO_EN_TEMP_OUT        BIT(7)
  94
  95/*
  96 * Digital Low Pass filter (DLPF)
  97 * Full Scale (FS)
  98 * and Synchronization
  99 */
 100#define MPU3050_EXT_SYNC_NONE           0x00
 101#define MPU3050_EXT_SYNC_TEMP           0x20
 102#define MPU3050_EXT_SYNC_GYROX          0x40
 103#define MPU3050_EXT_SYNC_GYROY          0x60
 104#define MPU3050_EXT_SYNC_GYROZ          0x80
 105#define MPU3050_EXT_SYNC_ACCELX 0xA0
 106#define MPU3050_EXT_SYNC_ACCELY 0xC0
 107#define MPU3050_EXT_SYNC_ACCELZ 0xE0
 108#define MPU3050_EXT_SYNC_MASK           0xE0
 109#define MPU3050_EXT_SYNC_SHIFT          5
 110
 111#define MPU3050_FS_250DPS               0x00
 112#define MPU3050_FS_500DPS               0x08
 113#define MPU3050_FS_1000DPS              0x10
 114#define MPU3050_FS_2000DPS              0x18
 115#define MPU3050_FS_MASK                 0x18
 116#define MPU3050_FS_SHIFT                3
 117
 118#define MPU3050_DLPF_CFG_256HZ_NOLPF2   0x00
 119#define MPU3050_DLPF_CFG_188HZ          0x01
 120#define MPU3050_DLPF_CFG_98HZ           0x02
 121#define MPU3050_DLPF_CFG_42HZ           0x03
 122#define MPU3050_DLPF_CFG_20HZ           0x04
 123#define MPU3050_DLPF_CFG_10HZ           0x05
 124#define MPU3050_DLPF_CFG_5HZ            0x06
 125#define MPU3050_DLPF_CFG_2100HZ_NOLPF   0x07
 126#define MPU3050_DLPF_CFG_MASK           0x07
 127#define MPU3050_DLPF_CFG_SHIFT          0
 128
 129/* Interrupt config */
 130#define MPU3050_INT_RAW_RDY_EN          BIT(0)
 131#define MPU3050_INT_DMP_DONE_EN         BIT(1)
 132#define MPU3050_INT_MPU_RDY_EN          BIT(2)
 133#define MPU3050_INT_ANYRD_2CLEAR        BIT(4)
 134#define MPU3050_INT_LATCH_EN            BIT(5)
 135#define MPU3050_INT_OPEN                BIT(6)
 136#define MPU3050_INT_ACTL                BIT(7)
 137/* Interrupt status */
 138#define MPU3050_INT_STATUS_RAW_RDY      BIT(0)
 139#define MPU3050_INT_STATUS_DMP_DONE     BIT(1)
 140#define MPU3050_INT_STATUS_MPU_RDY      BIT(2)
 141#define MPU3050_INT_STATUS_FIFO_OVFLW   BIT(7)
 142/* USR_CTRL */
 143#define MPU3050_USR_CTRL_FIFO_EN        BIT(6)
 144#define MPU3050_USR_CTRL_AUX_IF_EN      BIT(5)
 145#define MPU3050_USR_CTRL_AUX_IF_RST     BIT(3)
 146#define MPU3050_USR_CTRL_FIFO_RST       BIT(1)
 147#define MPU3050_USR_CTRL_GYRO_RST       BIT(0)
 148/* PWR_MGM */
 149#define MPU3050_PWR_MGM_PLL_X           0x01
 150#define MPU3050_PWR_MGM_PLL_Y           0x02
 151#define MPU3050_PWR_MGM_PLL_Z           0x03
 152#define MPU3050_PWR_MGM_CLKSEL_MASK     0x07
 153#define MPU3050_PWR_MGM_STBY_ZG         BIT(3)
 154#define MPU3050_PWR_MGM_STBY_YG         BIT(4)
 155#define MPU3050_PWR_MGM_STBY_XG         BIT(5)
 156#define MPU3050_PWR_MGM_SLEEP           BIT(6)
 157#define MPU3050_PWR_MGM_RESET           BIT(7)
 158#define MPU3050_PWR_MGM_MASK            0xff
 159
 160/*
 161 * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
 162 * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
 163 * in two's complement.
 164 */
 165static unsigned int mpu3050_fs_precision[] = {
 166        IIO_DEGREE_TO_RAD(250),
 167        IIO_DEGREE_TO_RAD(500),
 168        IIO_DEGREE_TO_RAD(1000),
 169        IIO_DEGREE_TO_RAD(2000)
 170};
 171
 172/*
 173 * Regulator names
 174 */
 175static const char mpu3050_reg_vdd[] = "vdd";
 176static const char mpu3050_reg_vlogic[] = "vlogic";
 177
 178static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
 179{
 180        unsigned int freq;
 181
 182        if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
 183                freq = 8000;
 184        else
 185                freq = 1000;
 186        freq /= (mpu3050->divisor + 1);
 187
 188        return freq;
 189}
 190
 191static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
 192{
 193        __be16 raw_val[3];
 194        int ret;
 195        int i;
 196
 197        /* Reset */
 198        ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
 199                                 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
 200        if (ret)
 201                return ret;
 202
 203        /* Turn on the Z-axis PLL */
 204        ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
 205                                 MPU3050_PWR_MGM_CLKSEL_MASK,
 206                                 MPU3050_PWR_MGM_PLL_Z);
 207        if (ret)
 208                return ret;
 209
 210        /* Write calibration offset registers */
 211        for (i = 0; i < 3; i++)
 212                raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
 213
 214        ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
 215                                sizeof(raw_val));
 216        if (ret)
 217                return ret;
 218
 219        /* Set low pass filter (sample rate), sync and full scale */
 220        ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
 221                           MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
 222                           mpu3050->fullscale << MPU3050_FS_SHIFT |
 223                           mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
 224        if (ret)
 225                return ret;
 226
 227        /* Set up sampling frequency */
 228        ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
 229        if (ret)
 230                return ret;
 231
 232        /*
 233         * Max 50 ms start-up time after setting DLPF_FS_SYNC
 234         * according to the data sheet, then wait for the next sample
 235         * at this frequency T = 1000/f ms.
 236         */
 237        msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
 238
 239        return 0;
 240}
 241
 242static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
 243{
 244        int ret;
 245        u8 divisor;
 246        enum mpu3050_lpf lpf;
 247
 248        lpf = mpu3050->lpf;
 249        divisor = mpu3050->divisor;
 250
 251        mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
 252        mpu3050->divisor = 0; /* Divide by 1 */
 253        ret = mpu3050_start_sampling(mpu3050);
 254
 255        mpu3050->lpf = lpf;
 256        mpu3050->divisor = divisor;
 257
 258        return ret;
 259}
 260
 261static int mpu3050_read_raw(struct iio_dev *indio_dev,
 262                            struct iio_chan_spec const *chan,
 263                            int *val, int *val2,
 264                            long mask)
 265{
 266        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 267        int ret;
 268        __be16 raw_val;
 269
 270        switch (mask) {
 271        case IIO_CHAN_INFO_OFFSET:
 272                switch (chan->type) {
 273                case IIO_TEMP:
 274                        /* The temperature scaling is (x+23000)/280 Celsius */
 275                        *val = 23000;
 276                        return IIO_VAL_INT;
 277                default:
 278                        return -EINVAL;
 279                }
 280        case IIO_CHAN_INFO_CALIBBIAS:
 281                switch (chan->type) {
 282                case IIO_ANGL_VEL:
 283                        *val = mpu3050->calibration[chan->scan_index-1];
 284                        return IIO_VAL_INT;
 285                default:
 286                        return -EINVAL;
 287                }
 288        case IIO_CHAN_INFO_SAMP_FREQ:
 289                *val = mpu3050_get_freq(mpu3050);
 290                return IIO_VAL_INT;
 291        case IIO_CHAN_INFO_SCALE:
 292                switch (chan->type) {
 293                case IIO_TEMP:
 294                        /* Millidegrees, see about temperature scaling above */
 295                        *val = 1000;
 296                        *val2 = 280;
 297                        return IIO_VAL_FRACTIONAL;
 298                case IIO_ANGL_VEL:
 299                        /*
 300                         * Convert to the corresponding full scale in
 301                         * radians. All 16 bits are used with sign to
 302                         * span the available scale: to account for the one
 303                         * missing value if we multiply by 1/S16_MAX, instead
 304                         * multiply with 2/U16_MAX.
 305                         */
 306                        *val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
 307                        *val2 = U16_MAX;
 308                        return IIO_VAL_FRACTIONAL;
 309                default:
 310                        return -EINVAL;
 311                }
 312        case IIO_CHAN_INFO_RAW:
 313                /* Resume device */
 314                pm_runtime_get_sync(mpu3050->dev);
 315                mutex_lock(&mpu3050->lock);
 316
 317                ret = mpu3050_set_8khz_samplerate(mpu3050);
 318                if (ret)
 319                        goto out_read_raw_unlock;
 320
 321                switch (chan->type) {
 322                case IIO_TEMP:
 323                        ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
 324                                               &raw_val, sizeof(raw_val));
 325                        if (ret) {
 326                                dev_err(mpu3050->dev,
 327                                        "error reading temperature\n");
 328                                goto out_read_raw_unlock;
 329                        }
 330
 331                        *val = be16_to_cpu(raw_val);
 332                        ret = IIO_VAL_INT;
 333
 334                        goto out_read_raw_unlock;
 335                case IIO_ANGL_VEL:
 336                        ret = regmap_bulk_read(mpu3050->map,
 337                                       MPU3050_AXIS_REGS(chan->scan_index-1),
 338                                       &raw_val,
 339                                       sizeof(raw_val));
 340                        if (ret) {
 341                                dev_err(mpu3050->dev,
 342                                        "error reading axis data\n");
 343                                goto out_read_raw_unlock;
 344                        }
 345
 346                        *val = be16_to_cpu(raw_val);
 347                        ret = IIO_VAL_INT;
 348
 349                        goto out_read_raw_unlock;
 350                default:
 351                        ret = -EINVAL;
 352                        goto out_read_raw_unlock;
 353                }
 354        default:
 355                break;
 356        }
 357
 358        return -EINVAL;
 359
 360out_read_raw_unlock:
 361        mutex_unlock(&mpu3050->lock);
 362        pm_runtime_mark_last_busy(mpu3050->dev);
 363        pm_runtime_put_autosuspend(mpu3050->dev);
 364
 365        return ret;
 366}
 367
 368static int mpu3050_write_raw(struct iio_dev *indio_dev,
 369                             const struct iio_chan_spec *chan,
 370                             int val, int val2, long mask)
 371{
 372        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 373        /*
 374         * Couldn't figure out a way to precalculate these at compile time.
 375         */
 376        unsigned int fs250 =
 377                DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
 378                                  U16_MAX);
 379        unsigned int fs500 =
 380                DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
 381                                  U16_MAX);
 382        unsigned int fs1000 =
 383                DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
 384                                  U16_MAX);
 385        unsigned int fs2000 =
 386                DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
 387                                  U16_MAX);
 388
 389        switch (mask) {
 390        case IIO_CHAN_INFO_CALIBBIAS:
 391                if (chan->type != IIO_ANGL_VEL)
 392                        return -EINVAL;
 393                mpu3050->calibration[chan->scan_index-1] = val;
 394                return 0;
 395        case IIO_CHAN_INFO_SAMP_FREQ:
 396                /*
 397                 * The max samplerate is 8000 Hz, the minimum
 398                 * 1000 / 256 ~= 4 Hz
 399                 */
 400                if (val < 4 || val > 8000)
 401                        return -EINVAL;
 402
 403                /*
 404                 * Above 1000 Hz we must turn off the digital low pass filter
 405                 * so we get a base frequency of 8kHz to the divider
 406                 */
 407                if (val > 1000) {
 408                        mpu3050->lpf = LPF_256_HZ_NOLPF;
 409                        mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
 410                        return 0;
 411                }
 412
 413                mpu3050->lpf = LPF_188_HZ;
 414                mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
 415                return 0;
 416        case IIO_CHAN_INFO_SCALE:
 417                if (chan->type != IIO_ANGL_VEL)
 418                        return -EINVAL;
 419                /*
 420                 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
 421                 * which means we need to round to the closest radians
 422                 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
 423                 * rad/s. The scale is then for the 16 bits used to cover
 424                 * it 2/(2^16) of that.
 425                 */
 426
 427                /* Just too large, set the max range */
 428                if (val != 0) {
 429                        mpu3050->fullscale = FS_2000_DPS;
 430                        return 0;
 431                }
 432
 433                /*
 434                 * Now we're dealing with fractions below zero in millirad/s
 435                 * do some integer interpolation and match with the closest
 436                 * fullscale in the table.
 437                 */
 438                if (val2 <= fs250 ||
 439                    val2 < ((fs500 + fs250) / 2))
 440                        mpu3050->fullscale = FS_250_DPS;
 441                else if (val2 <= fs500 ||
 442                         val2 < ((fs1000 + fs500) / 2))
 443                        mpu3050->fullscale = FS_500_DPS;
 444                else if (val2 <= fs1000 ||
 445                         val2 < ((fs2000 + fs1000) / 2))
 446                        mpu3050->fullscale = FS_1000_DPS;
 447                else
 448                        /* Catch-all */
 449                        mpu3050->fullscale = FS_2000_DPS;
 450                return 0;
 451        default:
 452                break;
 453        }
 454
 455        return -EINVAL;
 456}
 457
 458static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
 459{
 460        const struct iio_poll_func *pf = p;
 461        struct iio_dev *indio_dev = pf->indio_dev;
 462        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 463        int ret;
 464        /*
 465         * Temperature 1*16 bits
 466         * Three axes 3*16 bits
 467         * Timestamp 64 bits (4*16 bits)
 468         * Sum total 8*16 bits
 469         */
 470        __be16 hw_values[8];
 471        s64 timestamp;
 472        unsigned int datums_from_fifo = 0;
 473
 474        /*
 475         * If we're using the hardware trigger, get the precise timestamp from
 476         * the top half of the threaded IRQ handler. Otherwise get the
 477         * timestamp here so it will be close in time to the actual values
 478         * read from the registers.
 479         */
 480        if (iio_trigger_using_own(indio_dev))
 481                timestamp = mpu3050->hw_timestamp;
 482        else
 483                timestamp = iio_get_time_ns(indio_dev);
 484
 485        mutex_lock(&mpu3050->lock);
 486
 487        /* Using the hardware IRQ trigger? Check the buffer then. */
 488        if (mpu3050->hw_irq_trigger) {
 489                __be16 raw_fifocnt;
 490                u16 fifocnt;
 491                /* X, Y, Z + temperature */
 492                unsigned int bytes_per_datum = 8;
 493                bool fifo_overflow = false;
 494
 495                ret = regmap_bulk_read(mpu3050->map,
 496                                       MPU3050_FIFO_COUNT_H,
 497                                       &raw_fifocnt,
 498                                       sizeof(raw_fifocnt));
 499                if (ret)
 500                        goto out_trigger_unlock;
 501                fifocnt = be16_to_cpu(raw_fifocnt);
 502
 503                if (fifocnt == 512) {
 504                        dev_info(mpu3050->dev,
 505                                 "FIFO overflow! Emptying and resetting FIFO\n");
 506                        fifo_overflow = true;
 507                        /* Reset and enable the FIFO */
 508                        ret = regmap_update_bits(mpu3050->map,
 509                                                 MPU3050_USR_CTRL,
 510                                                 MPU3050_USR_CTRL_FIFO_EN |
 511                                                 MPU3050_USR_CTRL_FIFO_RST,
 512                                                 MPU3050_USR_CTRL_FIFO_EN |
 513                                                 MPU3050_USR_CTRL_FIFO_RST);
 514                        if (ret) {
 515                                dev_info(mpu3050->dev, "error resetting FIFO\n");
 516                                goto out_trigger_unlock;
 517                        }
 518                        mpu3050->pending_fifo_footer = false;
 519                }
 520
 521                if (fifocnt)
 522                        dev_dbg(mpu3050->dev,
 523                                "%d bytes in the FIFO\n",
 524                                fifocnt);
 525
 526                while (!fifo_overflow && fifocnt > bytes_per_datum) {
 527                        unsigned int toread;
 528                        unsigned int offset;
 529                        __be16 fifo_values[5];
 530
 531                        /*
 532                         * If there is a FIFO footer in the pipe, first clear
 533                         * that out. This follows the complex algorithm in the
 534                         * datasheet that states that you may never leave the
 535                         * FIFO empty after the first reading: you have to
 536                         * always leave two footer bytes in it. The footer is
 537                         * in practice just two zero bytes.
 538                         */
 539                        if (mpu3050->pending_fifo_footer) {
 540                                toread = bytes_per_datum + 2;
 541                                offset = 0;
 542                        } else {
 543                                toread = bytes_per_datum;
 544                                offset = 1;
 545                                /* Put in some dummy value */
 546                                fifo_values[0] = cpu_to_be16(0xAAAA);
 547                        }
 548
 549                        ret = regmap_bulk_read(mpu3050->map,
 550                                               MPU3050_FIFO_R,
 551                                               &fifo_values[offset],
 552                                               toread);
 553
 554                        dev_dbg(mpu3050->dev,
 555                                "%04x %04x %04x %04x %04x\n",
 556                                fifo_values[0],
 557                                fifo_values[1],
 558                                fifo_values[2],
 559                                fifo_values[3],
 560                                fifo_values[4]);
 561
 562                        /* Index past the footer (fifo_values[0]) and push */
 563                        iio_push_to_buffers_with_timestamp(indio_dev,
 564                                                           &fifo_values[1],
 565                                                           timestamp);
 566
 567                        fifocnt -= toread;
 568                        datums_from_fifo++;
 569                        mpu3050->pending_fifo_footer = true;
 570
 571                        /*
 572                         * If we're emptying the FIFO, just make sure to
 573                         * check if something new appeared.
 574                         */
 575                        if (fifocnt < bytes_per_datum) {
 576                                ret = regmap_bulk_read(mpu3050->map,
 577                                                       MPU3050_FIFO_COUNT_H,
 578                                                       &raw_fifocnt,
 579                                                       sizeof(raw_fifocnt));
 580                                if (ret)
 581                                        goto out_trigger_unlock;
 582                                fifocnt = be16_to_cpu(raw_fifocnt);
 583                        }
 584
 585                        if (fifocnt < bytes_per_datum)
 586                                dev_dbg(mpu3050->dev,
 587                                        "%d bytes left in the FIFO\n",
 588                                        fifocnt);
 589
 590                        /*
 591                         * At this point, the timestamp that triggered the
 592                         * hardware interrupt is no longer valid for what
 593                         * we are reading (the interrupt likely fired for
 594                         * the value on the top of the FIFO), so set the
 595                         * timestamp to zero and let userspace deal with it.
 596                         */
 597                        timestamp = 0;
 598                }
 599        }
 600
 601        /*
 602         * If we picked some datums from the FIFO that's enough, else
 603         * fall through and just read from the current value registers.
 604         * This happens in two cases:
 605         *
 606         * - We are using some other trigger (external, like an HRTimer)
 607         *   than the sensor's own sample generator. In this case the
 608         *   sensor is just set to the max sampling frequency and we give
 609         *   the trigger a copy of the latest value every time we get here.
 610         *
 611         * - The hardware trigger is active but unused and we actually use
 612         *   another trigger which calls here with a frequency higher
 613         *   than what the device provides data. We will then just read
 614         *   duplicate values directly from the hardware registers.
 615         */
 616        if (datums_from_fifo) {
 617                dev_dbg(mpu3050->dev,
 618                        "read %d datums from the FIFO\n",
 619                        datums_from_fifo);
 620                goto out_trigger_unlock;
 621        }
 622
 623        ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, &hw_values,
 624                               sizeof(hw_values));
 625        if (ret) {
 626                dev_err(mpu3050->dev,
 627                        "error reading axis data\n");
 628                goto out_trigger_unlock;
 629        }
 630
 631        iio_push_to_buffers_with_timestamp(indio_dev, hw_values, timestamp);
 632
 633out_trigger_unlock:
 634        mutex_unlock(&mpu3050->lock);
 635        iio_trigger_notify_done(indio_dev->trig);
 636
 637        return IRQ_HANDLED;
 638}
 639
 640static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
 641{
 642        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 643
 644        pm_runtime_get_sync(mpu3050->dev);
 645
 646        /* Unless we have OUR trigger active, run at full speed */
 647        if (!mpu3050->hw_irq_trigger)
 648                return mpu3050_set_8khz_samplerate(mpu3050);
 649
 650        return 0;
 651}
 652
 653static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
 654{
 655        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 656
 657        pm_runtime_mark_last_busy(mpu3050->dev);
 658        pm_runtime_put_autosuspend(mpu3050->dev);
 659
 660        return 0;
 661}
 662
 663static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
 664        .preenable = mpu3050_buffer_preenable,
 665        .postenable = iio_triggered_buffer_postenable,
 666        .predisable = iio_triggered_buffer_predisable,
 667        .postdisable = mpu3050_buffer_postdisable,
 668};
 669
 670static const struct iio_mount_matrix *
 671mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
 672                         const struct iio_chan_spec *chan)
 673{
 674        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 675
 676        return &mpu3050->orientation;
 677}
 678
 679static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
 680        IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
 681        { },
 682};
 683
 684#define MPU3050_AXIS_CHANNEL(axis, index)                               \
 685        {                                                               \
 686                .type = IIO_ANGL_VEL,                                   \
 687                .modified = 1,                                          \
 688                .channel2 = IIO_MOD_##axis,                             \
 689                .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
 690                        BIT(IIO_CHAN_INFO_CALIBBIAS),                   \
 691                .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),   \
 692                .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
 693                .ext_info = mpu3050_ext_info,                           \
 694                .scan_index = index,                                    \
 695                .scan_type = {                                          \
 696                        .sign = 's',                                    \
 697                        .realbits = 16,                                 \
 698                        .storagebits = 16,                              \
 699                        .endianness = IIO_BE,                           \
 700                },                                                      \
 701        }
 702
 703static const struct iio_chan_spec mpu3050_channels[] = {
 704        {
 705                .type = IIO_TEMP,
 706                .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
 707                                      BIT(IIO_CHAN_INFO_SCALE) |
 708                                      BIT(IIO_CHAN_INFO_OFFSET),
 709                .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
 710                .scan_index = 0,
 711                .scan_type = {
 712                        .sign = 's',
 713                        .realbits = 16,
 714                        .storagebits = 16,
 715                        .endianness = IIO_BE,
 716                },
 717        },
 718        MPU3050_AXIS_CHANNEL(X, 1),
 719        MPU3050_AXIS_CHANNEL(Y, 2),
 720        MPU3050_AXIS_CHANNEL(Z, 3),
 721        IIO_CHAN_SOFT_TIMESTAMP(4),
 722};
 723
 724/* Four channels apart from timestamp, scan mask = 0x0f */
 725static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
 726
 727/*
 728 * These are just the hardcoded factors resulting from the more elaborate
 729 * calculations done with fractions in the scale raw get/set functions.
 730 */
 731static IIO_CONST_ATTR(anglevel_scale_available,
 732                      "0.000122070 "
 733                      "0.000274658 "
 734                      "0.000518798 "
 735                      "0.001068115");
 736
 737static struct attribute *mpu3050_attributes[] = {
 738        &iio_const_attr_anglevel_scale_available.dev_attr.attr,
 739        NULL,
 740};
 741
 742static const struct attribute_group mpu3050_attribute_group = {
 743        .attrs = mpu3050_attributes,
 744};
 745
 746static const struct iio_info mpu3050_info = {
 747        .read_raw = mpu3050_read_raw,
 748        .write_raw = mpu3050_write_raw,
 749        .attrs = &mpu3050_attribute_group,
 750};
 751
 752/**
 753 * mpu3050_read_mem() - read MPU-3050 internal memory
 754 * @mpu3050: device to read from
 755 * @bank: target bank
 756 * @addr: target address
 757 * @len: number of bytes
 758 * @buf: the buffer to store the read bytes in
 759 */
 760static int mpu3050_read_mem(struct mpu3050 *mpu3050,
 761                            u8 bank,
 762                            u8 addr,
 763                            u8 len,
 764                            u8 *buf)
 765{
 766        int ret;
 767
 768        ret = regmap_write(mpu3050->map,
 769                           MPU3050_BANK_SEL,
 770                           bank);
 771        if (ret)
 772                return ret;
 773
 774        ret = regmap_write(mpu3050->map,
 775                           MPU3050_MEM_START_ADDR,
 776                           addr);
 777        if (ret)
 778                return ret;
 779
 780        return regmap_bulk_read(mpu3050->map,
 781                                MPU3050_MEM_R_W,
 782                                buf,
 783                                len);
 784}
 785
 786static int mpu3050_hw_init(struct mpu3050 *mpu3050)
 787{
 788        int ret;
 789        u8 otp[8];
 790
 791        /* Reset */
 792        ret = regmap_update_bits(mpu3050->map,
 793                                 MPU3050_PWR_MGM,
 794                                 MPU3050_PWR_MGM_RESET,
 795                                 MPU3050_PWR_MGM_RESET);
 796        if (ret)
 797                return ret;
 798
 799        /* Turn on the PLL */
 800        ret = regmap_update_bits(mpu3050->map,
 801                                 MPU3050_PWR_MGM,
 802                                 MPU3050_PWR_MGM_CLKSEL_MASK,
 803                                 MPU3050_PWR_MGM_PLL_Z);
 804        if (ret)
 805                return ret;
 806
 807        /* Disable IRQs */
 808        ret = regmap_write(mpu3050->map,
 809                           MPU3050_INT_CFG,
 810                           0);
 811        if (ret)
 812                return ret;
 813
 814        /* Read out the 8 bytes of OTP (one-time-programmable) memory */
 815        ret = mpu3050_read_mem(mpu3050,
 816                               (MPU3050_MEM_PRFTCH |
 817                                MPU3050_MEM_USER_BANK |
 818                                MPU3050_MEM_OTP_BANK_0),
 819                               0,
 820                               sizeof(otp),
 821                               otp);
 822        if (ret)
 823                return ret;
 824
 825        /* This is device-unique data so it goes into the entropy pool */
 826        add_device_randomness(otp, sizeof(otp));
 827
 828        dev_info(mpu3050->dev,
 829                 "die ID: %04X, wafer ID: %02X, A lot ID: %04X, "
 830                 "W lot ID: %03X, WP ID: %01X, rev ID: %02X\n",
 831                 /* Die ID, bits 0-12 */
 832                 (otp[1] << 8 | otp[0]) & 0x1fff,
 833                 /* Wafer ID, bits 13-17 */
 834                 ((otp[2] << 8 | otp[1]) & 0x03e0) >> 5,
 835                 /* A lot ID, bits 18-33 */
 836                 ((otp[4] << 16 | otp[3] << 8 | otp[2]) & 0x3fffc) >> 2,
 837                 /* W lot ID, bits 34-45 */
 838                 ((otp[5] << 8 | otp[4]) & 0x3ffc) >> 2,
 839                 /* WP ID, bits 47-49 */
 840                 ((otp[6] << 8 | otp[5]) & 0x0380) >> 7,
 841                 /* rev ID, bits 50-55 */
 842                 otp[6] >> 2);
 843
 844        return 0;
 845}
 846
 847static int mpu3050_power_up(struct mpu3050 *mpu3050)
 848{
 849        int ret;
 850
 851        ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
 852        if (ret) {
 853                dev_err(mpu3050->dev, "cannot enable regulators\n");
 854                return ret;
 855        }
 856        /*
 857         * 20-100 ms start-up time for register read/write according to
 858         * the datasheet, be on the safe side and wait 200 ms.
 859         */
 860        msleep(200);
 861
 862        /* Take device out of sleep mode */
 863        ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
 864                                 MPU3050_PWR_MGM_SLEEP, 0);
 865        if (ret) {
 866                dev_err(mpu3050->dev, "error setting power mode\n");
 867                return ret;
 868        }
 869        usleep_range(10000, 20000);
 870
 871        return 0;
 872}
 873
 874static int mpu3050_power_down(struct mpu3050 *mpu3050)
 875{
 876        int ret;
 877
 878        /*
 879         * Put MPU-3050 into sleep mode before cutting regulators.
 880         * This is important, because we may not be the sole user
 881         * of the regulator so the power may stay on after this, and
 882         * then we would be wasting power unless we go to sleep mode
 883         * first.
 884         */
 885        ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
 886                                 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
 887        if (ret)
 888                dev_err(mpu3050->dev, "error putting to sleep\n");
 889
 890        ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
 891        if (ret)
 892                dev_err(mpu3050->dev, "error disabling regulators\n");
 893
 894        return 0;
 895}
 896
 897static irqreturn_t mpu3050_irq_handler(int irq, void *p)
 898{
 899        struct iio_trigger *trig = p;
 900        struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
 901        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 902
 903        if (!mpu3050->hw_irq_trigger)
 904                return IRQ_NONE;
 905
 906        /* Get the time stamp as close in time as possible */
 907        mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
 908
 909        return IRQ_WAKE_THREAD;
 910}
 911
 912static irqreturn_t mpu3050_irq_thread(int irq, void *p)
 913{
 914        struct iio_trigger *trig = p;
 915        struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
 916        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 917        unsigned int val;
 918        int ret;
 919
 920        /* ACK IRQ and check if it was from us */
 921        ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
 922        if (ret) {
 923                dev_err(mpu3050->dev, "error reading IRQ status\n");
 924                return IRQ_HANDLED;
 925        }
 926        if (!(val & MPU3050_INT_STATUS_RAW_RDY))
 927                return IRQ_NONE;
 928
 929        iio_trigger_poll_chained(p);
 930
 931        return IRQ_HANDLED;
 932}
 933
 934/**
 935 * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
 936 * @trig: trigger instance
 937 * @enable: true if trigger should be enabled, false to disable
 938 */
 939static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
 940                                          bool enable)
 941{
 942        struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
 943        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 944        unsigned int val;
 945        int ret;
 946
 947        /* Disabling trigger: disable interrupt and return */
 948        if (!enable) {
 949                /* Disable all interrupts */
 950                ret = regmap_write(mpu3050->map,
 951                                   MPU3050_INT_CFG,
 952                                   0);
 953                if (ret)
 954                        dev_err(mpu3050->dev, "error disabling IRQ\n");
 955
 956                /* Clear IRQ flag */
 957                ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
 958                if (ret)
 959                        dev_err(mpu3050->dev, "error clearing IRQ status\n");
 960
 961                /* Disable all things in the FIFO and reset it */
 962                ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
 963                if (ret)
 964                        dev_err(mpu3050->dev, "error disabling FIFO\n");
 965
 966                ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
 967                                   MPU3050_USR_CTRL_FIFO_RST);
 968                if (ret)
 969                        dev_err(mpu3050->dev, "error resetting FIFO\n");
 970
 971                pm_runtime_mark_last_busy(mpu3050->dev);
 972                pm_runtime_put_autosuspend(mpu3050->dev);
 973                mpu3050->hw_irq_trigger = false;
 974
 975                return 0;
 976        } else {
 977                /* Else we're enabling the trigger from this point */
 978                pm_runtime_get_sync(mpu3050->dev);
 979                mpu3050->hw_irq_trigger = true;
 980
 981                /* Disable all things in the FIFO */
 982                ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
 983                if (ret)
 984                        return ret;
 985
 986                /* Reset and enable the FIFO */
 987                ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
 988                                         MPU3050_USR_CTRL_FIFO_EN |
 989                                         MPU3050_USR_CTRL_FIFO_RST,
 990                                         MPU3050_USR_CTRL_FIFO_EN |
 991                                         MPU3050_USR_CTRL_FIFO_RST);
 992                if (ret)
 993                        return ret;
 994
 995                mpu3050->pending_fifo_footer = false;
 996
 997                /* Turn on the FIFO for temp+X+Y+Z */
 998                ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
 999                                   MPU3050_FIFO_EN_TEMP_OUT |
1000                                   MPU3050_FIFO_EN_GYRO_XOUT |
1001                                   MPU3050_FIFO_EN_GYRO_YOUT |
1002                                   MPU3050_FIFO_EN_GYRO_ZOUT |
1003                                   MPU3050_FIFO_EN_FOOTER);
1004                if (ret)
1005                        return ret;
1006
1007                /* Configure the sample engine */
1008                ret = mpu3050_start_sampling(mpu3050);
1009                if (ret)
1010                        return ret;
1011
1012                /* Clear IRQ flag */
1013                ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1014                if (ret)
1015                        dev_err(mpu3050->dev, "error clearing IRQ status\n");
1016
1017                /* Give us interrupts whenever there is new data ready */
1018                val = MPU3050_INT_RAW_RDY_EN;
1019
1020                if (mpu3050->irq_actl)
1021                        val |= MPU3050_INT_ACTL;
1022                if (mpu3050->irq_latch)
1023                        val |= MPU3050_INT_LATCH_EN;
1024                if (mpu3050->irq_opendrain)
1025                        val |= MPU3050_INT_OPEN;
1026
1027                ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1028                if (ret)
1029                        return ret;
1030        }
1031
1032        return 0;
1033}
1034
1035static const struct iio_trigger_ops mpu3050_trigger_ops = {
1036        .set_trigger_state = mpu3050_drdy_trigger_set_state,
1037};
1038
1039static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1040{
1041        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1042        unsigned long irq_trig;
1043        int ret;
1044
1045        mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1046                                               "%s-dev%d",
1047                                               indio_dev->name,
1048                                               indio_dev->id);
1049        if (!mpu3050->trig)
1050                return -ENOMEM;
1051
1052        /* Check if IRQ is open drain */
1053        if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain"))
1054                mpu3050->irq_opendrain = true;
1055
1056        irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1057        /*
1058         * Configure the interrupt generator hardware to supply whatever
1059         * the interrupt is configured for, edges low/high level low/high,
1060         * we can provide it all.
1061         */
1062        switch (irq_trig) {
1063        case IRQF_TRIGGER_RISING:
1064                dev_info(&indio_dev->dev,
1065                         "pulse interrupts on the rising edge\n");
1066                break;
1067        case IRQF_TRIGGER_FALLING:
1068                mpu3050->irq_actl = true;
1069                dev_info(&indio_dev->dev,
1070                         "pulse interrupts on the falling edge\n");
1071                break;
1072        case IRQF_TRIGGER_HIGH:
1073                mpu3050->irq_latch = true;
1074                dev_info(&indio_dev->dev,
1075                         "interrupts active high level\n");
1076                /*
1077                 * With level IRQs, we mask the IRQ until it is processed,
1078                 * but with edge IRQs (pulses) we can queue several interrupts
1079                 * in the top half.
1080                 */
1081                irq_trig |= IRQF_ONESHOT;
1082                break;
1083        case IRQF_TRIGGER_LOW:
1084                mpu3050->irq_latch = true;
1085                mpu3050->irq_actl = true;
1086                irq_trig |= IRQF_ONESHOT;
1087                dev_info(&indio_dev->dev,
1088                         "interrupts active low level\n");
1089                break;
1090        default:
1091                /* This is the most preferred mode, if possible */
1092                dev_err(&indio_dev->dev,
1093                        "unsupported IRQ trigger specified (%lx), enforce "
1094                        "rising edge\n", irq_trig);
1095                irq_trig = IRQF_TRIGGER_RISING;
1096                break;
1097        }
1098
1099        /* An open drain line can be shared with several devices */
1100        if (mpu3050->irq_opendrain)
1101                irq_trig |= IRQF_SHARED;
1102
1103        ret = request_threaded_irq(irq,
1104                                   mpu3050_irq_handler,
1105                                   mpu3050_irq_thread,
1106                                   irq_trig,
1107                                   mpu3050->trig->name,
1108                                   mpu3050->trig);
1109        if (ret) {
1110                dev_err(mpu3050->dev,
1111                        "can't get IRQ %d, error %d\n", irq, ret);
1112                return ret;
1113        }
1114
1115        mpu3050->irq = irq;
1116        mpu3050->trig->dev.parent = mpu3050->dev;
1117        mpu3050->trig->ops = &mpu3050_trigger_ops;
1118        iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1119
1120        ret = iio_trigger_register(mpu3050->trig);
1121        if (ret)
1122                return ret;
1123
1124        indio_dev->trig = iio_trigger_get(mpu3050->trig);
1125
1126        return 0;
1127}
1128
1129int mpu3050_common_probe(struct device *dev,
1130                         struct regmap *map,
1131                         int irq,
1132                         const char *name)
1133{
1134        struct iio_dev *indio_dev;
1135        struct mpu3050 *mpu3050;
1136        unsigned int val;
1137        int ret;
1138
1139        indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1140        if (!indio_dev)
1141                return -ENOMEM;
1142        mpu3050 = iio_priv(indio_dev);
1143
1144        mpu3050->dev = dev;
1145        mpu3050->map = map;
1146        mutex_init(&mpu3050->lock);
1147        /* Default fullscale: 2000 degrees per second */
1148        mpu3050->fullscale = FS_2000_DPS;
1149        /* 1 kHz, divide by 100, default frequency = 10 Hz */
1150        mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1151        mpu3050->divisor = 99;
1152
1153        /* Read the mounting matrix, if present */
1154        ret = iio_read_mount_matrix(dev, "mount-matrix", &mpu3050->orientation);
1155        if (ret)
1156                return ret;
1157
1158        /* Fetch and turn on regulators */
1159        mpu3050->regs[0].supply = mpu3050_reg_vdd;
1160        mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1161        ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1162                                      mpu3050->regs);
1163        if (ret) {
1164                dev_err(dev, "Cannot get regulators\n");
1165                return ret;
1166        }
1167
1168        ret = mpu3050_power_up(mpu3050);
1169        if (ret)
1170                return ret;
1171
1172        ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1173        if (ret) {
1174                dev_err(dev, "could not read device ID\n");
1175                ret = -ENODEV;
1176
1177                goto err_power_down;
1178        }
1179
1180        if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) {
1181                dev_err(dev, "unsupported chip id %02x\n",
1182                                (u8)(val & MPU3050_CHIP_ID_MASK));
1183                ret = -ENODEV;
1184                goto err_power_down;
1185        }
1186
1187        ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1188        if (ret) {
1189                dev_err(dev, "could not read device ID\n");
1190                ret = -ENODEV;
1191
1192                goto err_power_down;
1193        }
1194        dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1195                 ((val >> 4) & 0xf), (val & 0xf));
1196
1197        ret = mpu3050_hw_init(mpu3050);
1198        if (ret)
1199                goto err_power_down;
1200
1201        indio_dev->dev.parent = dev;
1202        indio_dev->channels = mpu3050_channels;
1203        indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1204        indio_dev->info = &mpu3050_info;
1205        indio_dev->available_scan_masks = mpu3050_scan_masks;
1206        indio_dev->modes = INDIO_DIRECT_MODE;
1207        indio_dev->name = name;
1208
1209        ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1210                                         mpu3050_trigger_handler,
1211                                         &mpu3050_buffer_setup_ops);
1212        if (ret) {
1213                dev_err(dev, "triggered buffer setup failed\n");
1214                goto err_power_down;
1215        }
1216
1217        ret = iio_device_register(indio_dev);
1218        if (ret) {
1219                dev_err(dev, "device register failed\n");
1220                goto err_cleanup_buffer;
1221        }
1222
1223        dev_set_drvdata(dev, indio_dev);
1224
1225        /* Check if we have an assigned IRQ to use as trigger */
1226        if (irq) {
1227                ret = mpu3050_trigger_probe(indio_dev, irq);
1228                if (ret)
1229                        dev_err(dev, "failed to register trigger\n");
1230        }
1231
1232        /* Enable runtime PM */
1233        pm_runtime_get_noresume(dev);
1234        pm_runtime_set_active(dev);
1235        pm_runtime_enable(dev);
1236        /*
1237         * Set autosuspend to two orders of magnitude larger than the
1238         * start-up time. 100ms start-up time means 10000ms autosuspend,
1239         * i.e. 10 seconds.
1240         */
1241        pm_runtime_set_autosuspend_delay(dev, 10000);
1242        pm_runtime_use_autosuspend(dev);
1243        pm_runtime_put(dev);
1244
1245        return 0;
1246
1247err_cleanup_buffer:
1248        iio_triggered_buffer_cleanup(indio_dev);
1249err_power_down:
1250        mpu3050_power_down(mpu3050);
1251
1252        return ret;
1253}
1254EXPORT_SYMBOL(mpu3050_common_probe);
1255
1256int mpu3050_common_remove(struct device *dev)
1257{
1258        struct iio_dev *indio_dev = dev_get_drvdata(dev);
1259        struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1260
1261        pm_runtime_get_sync(dev);
1262        pm_runtime_put_noidle(dev);
1263        pm_runtime_disable(dev);
1264        iio_triggered_buffer_cleanup(indio_dev);
1265        if (mpu3050->irq)
1266                free_irq(mpu3050->irq, mpu3050);
1267        iio_device_unregister(indio_dev);
1268        mpu3050_power_down(mpu3050);
1269
1270        return 0;
1271}
1272EXPORT_SYMBOL(mpu3050_common_remove);
1273
1274#ifdef CONFIG_PM
1275static int mpu3050_runtime_suspend(struct device *dev)
1276{
1277        return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1278}
1279
1280static int mpu3050_runtime_resume(struct device *dev)
1281{
1282        return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1283}
1284#endif /* CONFIG_PM */
1285
1286const struct dev_pm_ops mpu3050_dev_pm_ops = {
1287        SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1288                                pm_runtime_force_resume)
1289        SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend,
1290                           mpu3050_runtime_resume, NULL)
1291};
1292EXPORT_SYMBOL(mpu3050_dev_pm_ops);
1293
1294MODULE_AUTHOR("Linus Walleij");
1295MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1296MODULE_LICENSE("GPL");
1297