linux/drivers/infiniband/core/verbs.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#include <linux/errno.h>
  40#include <linux/err.h>
  41#include <linux/export.h>
  42#include <linux/string.h>
  43#include <linux/slab.h>
  44#include <linux/in.h>
  45#include <linux/in6.h>
  46#include <net/addrconf.h>
  47#include <linux/security.h>
  48
  49#include <rdma/ib_verbs.h>
  50#include <rdma/ib_cache.h>
  51#include <rdma/ib_addr.h>
  52#include <rdma/rw.h>
  53#include <rdma/lag.h>
  54
  55#include "core_priv.h"
  56#include <trace/events/rdma_core.h>
  57
  58static int ib_resolve_eth_dmac(struct ib_device *device,
  59                               struct rdma_ah_attr *ah_attr);
  60
  61static const char * const ib_events[] = {
  62        [IB_EVENT_CQ_ERR]               = "CQ error",
  63        [IB_EVENT_QP_FATAL]             = "QP fatal error",
  64        [IB_EVENT_QP_REQ_ERR]           = "QP request error",
  65        [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
  66        [IB_EVENT_COMM_EST]             = "communication established",
  67        [IB_EVENT_SQ_DRAINED]           = "send queue drained",
  68        [IB_EVENT_PATH_MIG]             = "path migration successful",
  69        [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
  70        [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
  71        [IB_EVENT_PORT_ACTIVE]          = "port active",
  72        [IB_EVENT_PORT_ERR]             = "port error",
  73        [IB_EVENT_LID_CHANGE]           = "LID change",
  74        [IB_EVENT_PKEY_CHANGE]          = "P_key change",
  75        [IB_EVENT_SM_CHANGE]            = "SM change",
  76        [IB_EVENT_SRQ_ERR]              = "SRQ error",
  77        [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
  78        [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
  79        [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
  80        [IB_EVENT_GID_CHANGE]           = "GID changed",
  81};
  82
  83const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  84{
  85        size_t index = event;
  86
  87        return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  88                        ib_events[index] : "unrecognized event";
  89}
  90EXPORT_SYMBOL(ib_event_msg);
  91
  92static const char * const wc_statuses[] = {
  93        [IB_WC_SUCCESS]                 = "success",
  94        [IB_WC_LOC_LEN_ERR]             = "local length error",
  95        [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
  96        [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
  97        [IB_WC_LOC_PROT_ERR]            = "local protection error",
  98        [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
  99        [IB_WC_MW_BIND_ERR]             = "memory management operation error",
 100        [IB_WC_BAD_RESP_ERR]            = "bad response error",
 101        [IB_WC_LOC_ACCESS_ERR]          = "local access error",
 102        [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
 103        [IB_WC_REM_ACCESS_ERR]          = "remote access error",
 104        [IB_WC_REM_OP_ERR]              = "remote operation error",
 105        [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
 106        [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
 107        [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
 108        [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
 109        [IB_WC_REM_ABORT_ERR]           = "operation aborted",
 110        [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
 111        [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
 112        [IB_WC_FATAL_ERR]               = "fatal error",
 113        [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
 114        [IB_WC_GENERAL_ERR]             = "general error",
 115};
 116
 117const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
 118{
 119        size_t index = status;
 120
 121        return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
 122                        wc_statuses[index] : "unrecognized status";
 123}
 124EXPORT_SYMBOL(ib_wc_status_msg);
 125
 126__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
 127{
 128        switch (rate) {
 129        case IB_RATE_2_5_GBPS: return   1;
 130        case IB_RATE_5_GBPS:   return   2;
 131        case IB_RATE_10_GBPS:  return   4;
 132        case IB_RATE_20_GBPS:  return   8;
 133        case IB_RATE_30_GBPS:  return  12;
 134        case IB_RATE_40_GBPS:  return  16;
 135        case IB_RATE_60_GBPS:  return  24;
 136        case IB_RATE_80_GBPS:  return  32;
 137        case IB_RATE_120_GBPS: return  48;
 138        case IB_RATE_14_GBPS:  return   6;
 139        case IB_RATE_56_GBPS:  return  22;
 140        case IB_RATE_112_GBPS: return  45;
 141        case IB_RATE_168_GBPS: return  67;
 142        case IB_RATE_25_GBPS:  return  10;
 143        case IB_RATE_100_GBPS: return  40;
 144        case IB_RATE_200_GBPS: return  80;
 145        case IB_RATE_300_GBPS: return 120;
 146        case IB_RATE_28_GBPS:  return  11;
 147        case IB_RATE_50_GBPS:  return  20;
 148        case IB_RATE_400_GBPS: return 160;
 149        case IB_RATE_600_GBPS: return 240;
 150        default:               return  -1;
 151        }
 152}
 153EXPORT_SYMBOL(ib_rate_to_mult);
 154
 155__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
 156{
 157        switch (mult) {
 158        case 1:   return IB_RATE_2_5_GBPS;
 159        case 2:   return IB_RATE_5_GBPS;
 160        case 4:   return IB_RATE_10_GBPS;
 161        case 8:   return IB_RATE_20_GBPS;
 162        case 12:  return IB_RATE_30_GBPS;
 163        case 16:  return IB_RATE_40_GBPS;
 164        case 24:  return IB_RATE_60_GBPS;
 165        case 32:  return IB_RATE_80_GBPS;
 166        case 48:  return IB_RATE_120_GBPS;
 167        case 6:   return IB_RATE_14_GBPS;
 168        case 22:  return IB_RATE_56_GBPS;
 169        case 45:  return IB_RATE_112_GBPS;
 170        case 67:  return IB_RATE_168_GBPS;
 171        case 10:  return IB_RATE_25_GBPS;
 172        case 40:  return IB_RATE_100_GBPS;
 173        case 80:  return IB_RATE_200_GBPS;
 174        case 120: return IB_RATE_300_GBPS;
 175        case 11:  return IB_RATE_28_GBPS;
 176        case 20:  return IB_RATE_50_GBPS;
 177        case 160: return IB_RATE_400_GBPS;
 178        case 240: return IB_RATE_600_GBPS;
 179        default:  return IB_RATE_PORT_CURRENT;
 180        }
 181}
 182EXPORT_SYMBOL(mult_to_ib_rate);
 183
 184__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
 185{
 186        switch (rate) {
 187        case IB_RATE_2_5_GBPS: return 2500;
 188        case IB_RATE_5_GBPS:   return 5000;
 189        case IB_RATE_10_GBPS:  return 10000;
 190        case IB_RATE_20_GBPS:  return 20000;
 191        case IB_RATE_30_GBPS:  return 30000;
 192        case IB_RATE_40_GBPS:  return 40000;
 193        case IB_RATE_60_GBPS:  return 60000;
 194        case IB_RATE_80_GBPS:  return 80000;
 195        case IB_RATE_120_GBPS: return 120000;
 196        case IB_RATE_14_GBPS:  return 14062;
 197        case IB_RATE_56_GBPS:  return 56250;
 198        case IB_RATE_112_GBPS: return 112500;
 199        case IB_RATE_168_GBPS: return 168750;
 200        case IB_RATE_25_GBPS:  return 25781;
 201        case IB_RATE_100_GBPS: return 103125;
 202        case IB_RATE_200_GBPS: return 206250;
 203        case IB_RATE_300_GBPS: return 309375;
 204        case IB_RATE_28_GBPS:  return 28125;
 205        case IB_RATE_50_GBPS:  return 53125;
 206        case IB_RATE_400_GBPS: return 425000;
 207        case IB_RATE_600_GBPS: return 637500;
 208        default:               return -1;
 209        }
 210}
 211EXPORT_SYMBOL(ib_rate_to_mbps);
 212
 213__attribute_const__ enum rdma_transport_type
 214rdma_node_get_transport(unsigned int node_type)
 215{
 216
 217        if (node_type == RDMA_NODE_USNIC)
 218                return RDMA_TRANSPORT_USNIC;
 219        if (node_type == RDMA_NODE_USNIC_UDP)
 220                return RDMA_TRANSPORT_USNIC_UDP;
 221        if (node_type == RDMA_NODE_RNIC)
 222                return RDMA_TRANSPORT_IWARP;
 223        if (node_type == RDMA_NODE_UNSPECIFIED)
 224                return RDMA_TRANSPORT_UNSPECIFIED;
 225
 226        return RDMA_TRANSPORT_IB;
 227}
 228EXPORT_SYMBOL(rdma_node_get_transport);
 229
 230enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
 231{
 232        enum rdma_transport_type lt;
 233        if (device->ops.get_link_layer)
 234                return device->ops.get_link_layer(device, port_num);
 235
 236        lt = rdma_node_get_transport(device->node_type);
 237        if (lt == RDMA_TRANSPORT_IB)
 238                return IB_LINK_LAYER_INFINIBAND;
 239
 240        return IB_LINK_LAYER_ETHERNET;
 241}
 242EXPORT_SYMBOL(rdma_port_get_link_layer);
 243
 244/* Protection domains */
 245
 246/**
 247 * ib_alloc_pd - Allocates an unused protection domain.
 248 * @device: The device on which to allocate the protection domain.
 249 * @flags: protection domain flags
 250 * @caller: caller's build-time module name
 251 *
 252 * A protection domain object provides an association between QPs, shared
 253 * receive queues, address handles, memory regions, and memory windows.
 254 *
 255 * Every PD has a local_dma_lkey which can be used as the lkey value for local
 256 * memory operations.
 257 */
 258struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
 259                const char *caller)
 260{
 261        struct ib_pd *pd;
 262        int mr_access_flags = 0;
 263        int ret;
 264
 265        pd = rdma_zalloc_drv_obj(device, ib_pd);
 266        if (!pd)
 267                return ERR_PTR(-ENOMEM);
 268
 269        pd->device = device;
 270        pd->uobject = NULL;
 271        pd->__internal_mr = NULL;
 272        atomic_set(&pd->usecnt, 0);
 273        pd->flags = flags;
 274
 275        pd->res.type = RDMA_RESTRACK_PD;
 276        rdma_restrack_set_task(&pd->res, caller);
 277
 278        ret = device->ops.alloc_pd(pd, NULL);
 279        if (ret) {
 280                kfree(pd);
 281                return ERR_PTR(ret);
 282        }
 283        rdma_restrack_kadd(&pd->res);
 284
 285        if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
 286                pd->local_dma_lkey = device->local_dma_lkey;
 287        else
 288                mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
 289
 290        if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
 291                pr_warn("%s: enabling unsafe global rkey\n", caller);
 292                mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
 293        }
 294
 295        if (mr_access_flags) {
 296                struct ib_mr *mr;
 297
 298                mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
 299                if (IS_ERR(mr)) {
 300                        ib_dealloc_pd(pd);
 301                        return ERR_CAST(mr);
 302                }
 303
 304                mr->device      = pd->device;
 305                mr->pd          = pd;
 306                mr->type        = IB_MR_TYPE_DMA;
 307                mr->uobject     = NULL;
 308                mr->need_inval  = false;
 309
 310                pd->__internal_mr = mr;
 311
 312                if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
 313                        pd->local_dma_lkey = pd->__internal_mr->lkey;
 314
 315                if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
 316                        pd->unsafe_global_rkey = pd->__internal_mr->rkey;
 317        }
 318
 319        return pd;
 320}
 321EXPORT_SYMBOL(__ib_alloc_pd);
 322
 323/**
 324 * ib_dealloc_pd_user - Deallocates a protection domain.
 325 * @pd: The protection domain to deallocate.
 326 * @udata: Valid user data or NULL for kernel object
 327 *
 328 * It is an error to call this function while any resources in the pd still
 329 * exist.  The caller is responsible to synchronously destroy them and
 330 * guarantee no new allocations will happen.
 331 */
 332void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
 333{
 334        int ret;
 335
 336        if (pd->__internal_mr) {
 337                ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
 338                WARN_ON(ret);
 339                pd->__internal_mr = NULL;
 340        }
 341
 342        /* uverbs manipulates usecnt with proper locking, while the kabi
 343           requires the caller to guarantee we can't race here. */
 344        WARN_ON(atomic_read(&pd->usecnt));
 345
 346        rdma_restrack_del(&pd->res);
 347        pd->device->ops.dealloc_pd(pd, udata);
 348        kfree(pd);
 349}
 350EXPORT_SYMBOL(ib_dealloc_pd_user);
 351
 352/* Address handles */
 353
 354/**
 355 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
 356 * @dest:       Pointer to destination ah_attr. Contents of the destination
 357 *              pointer is assumed to be invalid and attribute are overwritten.
 358 * @src:        Pointer to source ah_attr.
 359 */
 360void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
 361                       const struct rdma_ah_attr *src)
 362{
 363        *dest = *src;
 364        if (dest->grh.sgid_attr)
 365                rdma_hold_gid_attr(dest->grh.sgid_attr);
 366}
 367EXPORT_SYMBOL(rdma_copy_ah_attr);
 368
 369/**
 370 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
 371 * @old:        Pointer to existing ah_attr which needs to be replaced.
 372 *              old is assumed to be valid or zero'd
 373 * @new:        Pointer to the new ah_attr.
 374 *
 375 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
 376 * old the ah_attr is valid; after that it copies the new attribute and holds
 377 * the reference to the replaced ah_attr.
 378 */
 379void rdma_replace_ah_attr(struct rdma_ah_attr *old,
 380                          const struct rdma_ah_attr *new)
 381{
 382        rdma_destroy_ah_attr(old);
 383        *old = *new;
 384        if (old->grh.sgid_attr)
 385                rdma_hold_gid_attr(old->grh.sgid_attr);
 386}
 387EXPORT_SYMBOL(rdma_replace_ah_attr);
 388
 389/**
 390 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
 391 * @dest:       Pointer to destination ah_attr to copy to.
 392 *              dest is assumed to be valid or zero'd
 393 * @src:        Pointer to the new ah_attr.
 394 *
 395 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
 396 * if it is valid. This also transfers ownership of internal references from
 397 * src to dest, making src invalid in the process. No new reference of the src
 398 * ah_attr is taken.
 399 */
 400void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
 401{
 402        rdma_destroy_ah_attr(dest);
 403        *dest = *src;
 404        src->grh.sgid_attr = NULL;
 405}
 406EXPORT_SYMBOL(rdma_move_ah_attr);
 407
 408/*
 409 * Validate that the rdma_ah_attr is valid for the device before passing it
 410 * off to the driver.
 411 */
 412static int rdma_check_ah_attr(struct ib_device *device,
 413                              struct rdma_ah_attr *ah_attr)
 414{
 415        if (!rdma_is_port_valid(device, ah_attr->port_num))
 416                return -EINVAL;
 417
 418        if ((rdma_is_grh_required(device, ah_attr->port_num) ||
 419             ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
 420            !(ah_attr->ah_flags & IB_AH_GRH))
 421                return -EINVAL;
 422
 423        if (ah_attr->grh.sgid_attr) {
 424                /*
 425                 * Make sure the passed sgid_attr is consistent with the
 426                 * parameters
 427                 */
 428                if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
 429                    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
 430                        return -EINVAL;
 431        }
 432        return 0;
 433}
 434
 435/*
 436 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
 437 * On success the caller is responsible to call rdma_unfill_sgid_attr().
 438 */
 439static int rdma_fill_sgid_attr(struct ib_device *device,
 440                               struct rdma_ah_attr *ah_attr,
 441                               const struct ib_gid_attr **old_sgid_attr)
 442{
 443        const struct ib_gid_attr *sgid_attr;
 444        struct ib_global_route *grh;
 445        int ret;
 446
 447        *old_sgid_attr = ah_attr->grh.sgid_attr;
 448
 449        ret = rdma_check_ah_attr(device, ah_attr);
 450        if (ret)
 451                return ret;
 452
 453        if (!(ah_attr->ah_flags & IB_AH_GRH))
 454                return 0;
 455
 456        grh = rdma_ah_retrieve_grh(ah_attr);
 457        if (grh->sgid_attr)
 458                return 0;
 459
 460        sgid_attr =
 461                rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
 462        if (IS_ERR(sgid_attr))
 463                return PTR_ERR(sgid_attr);
 464
 465        /* Move ownerhip of the kref into the ah_attr */
 466        grh->sgid_attr = sgid_attr;
 467        return 0;
 468}
 469
 470static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
 471                                  const struct ib_gid_attr *old_sgid_attr)
 472{
 473        /*
 474         * Fill didn't change anything, the caller retains ownership of
 475         * whatever it passed
 476         */
 477        if (ah_attr->grh.sgid_attr == old_sgid_attr)
 478                return;
 479
 480        /*
 481         * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
 482         * doesn't see any change in the rdma_ah_attr. If we get here
 483         * old_sgid_attr is NULL.
 484         */
 485        rdma_destroy_ah_attr(ah_attr);
 486}
 487
 488static const struct ib_gid_attr *
 489rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
 490                      const struct ib_gid_attr *old_attr)
 491{
 492        if (old_attr)
 493                rdma_put_gid_attr(old_attr);
 494        if (ah_attr->ah_flags & IB_AH_GRH) {
 495                rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
 496                return ah_attr->grh.sgid_attr;
 497        }
 498        return NULL;
 499}
 500
 501static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
 502                                     struct rdma_ah_attr *ah_attr,
 503                                     u32 flags,
 504                                     struct ib_udata *udata,
 505                                     struct net_device *xmit_slave)
 506{
 507        struct rdma_ah_init_attr init_attr = {};
 508        struct ib_device *device = pd->device;
 509        struct ib_ah *ah;
 510        int ret;
 511
 512        might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
 513
 514        if (!device->ops.create_ah)
 515                return ERR_PTR(-EOPNOTSUPP);
 516
 517        ah = rdma_zalloc_drv_obj_gfp(
 518                device, ib_ah,
 519                (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
 520        if (!ah)
 521                return ERR_PTR(-ENOMEM);
 522
 523        ah->device = device;
 524        ah->pd = pd;
 525        ah->type = ah_attr->type;
 526        ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
 527        init_attr.ah_attr = ah_attr;
 528        init_attr.flags = flags;
 529        init_attr.xmit_slave = xmit_slave;
 530
 531        ret = device->ops.create_ah(ah, &init_attr, udata);
 532        if (ret) {
 533                kfree(ah);
 534                return ERR_PTR(ret);
 535        }
 536
 537        atomic_inc(&pd->usecnt);
 538        return ah;
 539}
 540
 541/**
 542 * rdma_create_ah - Creates an address handle for the
 543 * given address vector.
 544 * @pd: The protection domain associated with the address handle.
 545 * @ah_attr: The attributes of the address vector.
 546 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
 547 *
 548 * It returns 0 on success and returns appropriate error code on error.
 549 * The address handle is used to reference a local or global destination
 550 * in all UD QP post sends.
 551 */
 552struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
 553                             u32 flags)
 554{
 555        const struct ib_gid_attr *old_sgid_attr;
 556        struct net_device *slave;
 557        struct ib_ah *ah;
 558        int ret;
 559
 560        ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 561        if (ret)
 562                return ERR_PTR(ret);
 563        slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
 564                                           (flags & RDMA_CREATE_AH_SLEEPABLE) ?
 565                                           GFP_KERNEL : GFP_ATOMIC);
 566        if (IS_ERR(slave)) {
 567                rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 568                return (void *)slave;
 569        }
 570        ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
 571        rdma_lag_put_ah_roce_slave(slave);
 572        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 573        return ah;
 574}
 575EXPORT_SYMBOL(rdma_create_ah);
 576
 577/**
 578 * rdma_create_user_ah - Creates an address handle for the
 579 * given address vector.
 580 * It resolves destination mac address for ah attribute of RoCE type.
 581 * @pd: The protection domain associated with the address handle.
 582 * @ah_attr: The attributes of the address vector.
 583 * @udata: pointer to user's input output buffer information need by
 584 *         provider driver.
 585 *
 586 * It returns 0 on success and returns appropriate error code on error.
 587 * The address handle is used to reference a local or global destination
 588 * in all UD QP post sends.
 589 */
 590struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
 591                                  struct rdma_ah_attr *ah_attr,
 592                                  struct ib_udata *udata)
 593{
 594        const struct ib_gid_attr *old_sgid_attr;
 595        struct ib_ah *ah;
 596        int err;
 597
 598        err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 599        if (err)
 600                return ERR_PTR(err);
 601
 602        if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
 603                err = ib_resolve_eth_dmac(pd->device, ah_attr);
 604                if (err) {
 605                        ah = ERR_PTR(err);
 606                        goto out;
 607                }
 608        }
 609
 610        ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
 611                             udata, NULL);
 612
 613out:
 614        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 615        return ah;
 616}
 617EXPORT_SYMBOL(rdma_create_user_ah);
 618
 619int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
 620{
 621        const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
 622        struct iphdr ip4h_checked;
 623        const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
 624
 625        /* If it's IPv6, the version must be 6, otherwise, the first
 626         * 20 bytes (before the IPv4 header) are garbled.
 627         */
 628        if (ip6h->version != 6)
 629                return (ip4h->version == 4) ? 4 : 0;
 630        /* version may be 6 or 4 because the first 20 bytes could be garbled */
 631
 632        /* RoCE v2 requires no options, thus header length
 633         * must be 5 words
 634         */
 635        if (ip4h->ihl != 5)
 636                return 6;
 637
 638        /* Verify checksum.
 639         * We can't write on scattered buffers so we need to copy to
 640         * temp buffer.
 641         */
 642        memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
 643        ip4h_checked.check = 0;
 644        ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
 645        /* if IPv4 header checksum is OK, believe it */
 646        if (ip4h->check == ip4h_checked.check)
 647                return 4;
 648        return 6;
 649}
 650EXPORT_SYMBOL(ib_get_rdma_header_version);
 651
 652static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
 653                                                     u8 port_num,
 654                                                     const struct ib_grh *grh)
 655{
 656        int grh_version;
 657
 658        if (rdma_protocol_ib(device, port_num))
 659                return RDMA_NETWORK_IB;
 660
 661        grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
 662
 663        if (grh_version == 4)
 664                return RDMA_NETWORK_IPV4;
 665
 666        if (grh->next_hdr == IPPROTO_UDP)
 667                return RDMA_NETWORK_IPV6;
 668
 669        return RDMA_NETWORK_ROCE_V1;
 670}
 671
 672struct find_gid_index_context {
 673        u16 vlan_id;
 674        enum ib_gid_type gid_type;
 675};
 676
 677static bool find_gid_index(const union ib_gid *gid,
 678                           const struct ib_gid_attr *gid_attr,
 679                           void *context)
 680{
 681        struct find_gid_index_context *ctx = context;
 682        u16 vlan_id = 0xffff;
 683        int ret;
 684
 685        if (ctx->gid_type != gid_attr->gid_type)
 686                return false;
 687
 688        ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
 689        if (ret)
 690                return false;
 691
 692        return ctx->vlan_id == vlan_id;
 693}
 694
 695static const struct ib_gid_attr *
 696get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
 697                       u16 vlan_id, const union ib_gid *sgid,
 698                       enum ib_gid_type gid_type)
 699{
 700        struct find_gid_index_context context = {.vlan_id = vlan_id,
 701                                                 .gid_type = gid_type};
 702
 703        return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
 704                                       &context);
 705}
 706
 707int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
 708                              enum rdma_network_type net_type,
 709                              union ib_gid *sgid, union ib_gid *dgid)
 710{
 711        struct sockaddr_in  src_in;
 712        struct sockaddr_in  dst_in;
 713        __be32 src_saddr, dst_saddr;
 714
 715        if (!sgid || !dgid)
 716                return -EINVAL;
 717
 718        if (net_type == RDMA_NETWORK_IPV4) {
 719                memcpy(&src_in.sin_addr.s_addr,
 720                       &hdr->roce4grh.saddr, 4);
 721                memcpy(&dst_in.sin_addr.s_addr,
 722                       &hdr->roce4grh.daddr, 4);
 723                src_saddr = src_in.sin_addr.s_addr;
 724                dst_saddr = dst_in.sin_addr.s_addr;
 725                ipv6_addr_set_v4mapped(src_saddr,
 726                                       (struct in6_addr *)sgid);
 727                ipv6_addr_set_v4mapped(dst_saddr,
 728                                       (struct in6_addr *)dgid);
 729                return 0;
 730        } else if (net_type == RDMA_NETWORK_IPV6 ||
 731                   net_type == RDMA_NETWORK_IB) {
 732                *dgid = hdr->ibgrh.dgid;
 733                *sgid = hdr->ibgrh.sgid;
 734                return 0;
 735        } else {
 736                return -EINVAL;
 737        }
 738}
 739EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
 740
 741/* Resolve destination mac address and hop limit for unicast destination
 742 * GID entry, considering the source GID entry as well.
 743 * ah_attribute must have have valid port_num, sgid_index.
 744 */
 745static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
 746                                       struct rdma_ah_attr *ah_attr)
 747{
 748        struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
 749        const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
 750        int hop_limit = 0xff;
 751        int ret = 0;
 752
 753        /* If destination is link local and source GID is RoCEv1,
 754         * IP stack is not used.
 755         */
 756        if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
 757            sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
 758                rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
 759                                ah_attr->roce.dmac);
 760                return ret;
 761        }
 762
 763        ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
 764                                           ah_attr->roce.dmac,
 765                                           sgid_attr, &hop_limit);
 766
 767        grh->hop_limit = hop_limit;
 768        return ret;
 769}
 770
 771/*
 772 * This function initializes address handle attributes from the incoming packet.
 773 * Incoming packet has dgid of the receiver node on which this code is
 774 * getting executed and, sgid contains the GID of the sender.
 775 *
 776 * When resolving mac address of destination, the arrived dgid is used
 777 * as sgid and, sgid is used as dgid because sgid contains destinations
 778 * GID whom to respond to.
 779 *
 780 * On success the caller is responsible to call rdma_destroy_ah_attr on the
 781 * attr.
 782 */
 783int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
 784                            const struct ib_wc *wc, const struct ib_grh *grh,
 785                            struct rdma_ah_attr *ah_attr)
 786{
 787        u32 flow_class;
 788        int ret;
 789        enum rdma_network_type net_type = RDMA_NETWORK_IB;
 790        enum ib_gid_type gid_type = IB_GID_TYPE_IB;
 791        const struct ib_gid_attr *sgid_attr;
 792        int hoplimit = 0xff;
 793        union ib_gid dgid;
 794        union ib_gid sgid;
 795
 796        might_sleep();
 797
 798        memset(ah_attr, 0, sizeof *ah_attr);
 799        ah_attr->type = rdma_ah_find_type(device, port_num);
 800        if (rdma_cap_eth_ah(device, port_num)) {
 801                if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
 802                        net_type = wc->network_hdr_type;
 803                else
 804                        net_type = ib_get_net_type_by_grh(device, port_num, grh);
 805                gid_type = ib_network_to_gid_type(net_type);
 806        }
 807        ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
 808                                        &sgid, &dgid);
 809        if (ret)
 810                return ret;
 811
 812        rdma_ah_set_sl(ah_attr, wc->sl);
 813        rdma_ah_set_port_num(ah_attr, port_num);
 814
 815        if (rdma_protocol_roce(device, port_num)) {
 816                u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
 817                                wc->vlan_id : 0xffff;
 818
 819                if (!(wc->wc_flags & IB_WC_GRH))
 820                        return -EPROTOTYPE;
 821
 822                sgid_attr = get_sgid_attr_from_eth(device, port_num,
 823                                                   vlan_id, &dgid,
 824                                                   gid_type);
 825                if (IS_ERR(sgid_attr))
 826                        return PTR_ERR(sgid_attr);
 827
 828                flow_class = be32_to_cpu(grh->version_tclass_flow);
 829                rdma_move_grh_sgid_attr(ah_attr,
 830                                        &sgid,
 831                                        flow_class & 0xFFFFF,
 832                                        hoplimit,
 833                                        (flow_class >> 20) & 0xFF,
 834                                        sgid_attr);
 835
 836                ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
 837                if (ret)
 838                        rdma_destroy_ah_attr(ah_attr);
 839
 840                return ret;
 841        } else {
 842                rdma_ah_set_dlid(ah_attr, wc->slid);
 843                rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
 844
 845                if ((wc->wc_flags & IB_WC_GRH) == 0)
 846                        return 0;
 847
 848                if (dgid.global.interface_id !=
 849                                        cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
 850                        sgid_attr = rdma_find_gid_by_port(
 851                                device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
 852                } else
 853                        sgid_attr = rdma_get_gid_attr(device, port_num, 0);
 854
 855                if (IS_ERR(sgid_attr))
 856                        return PTR_ERR(sgid_attr);
 857                flow_class = be32_to_cpu(grh->version_tclass_flow);
 858                rdma_move_grh_sgid_attr(ah_attr,
 859                                        &sgid,
 860                                        flow_class & 0xFFFFF,
 861                                        hoplimit,
 862                                        (flow_class >> 20) & 0xFF,
 863                                        sgid_attr);
 864
 865                return 0;
 866        }
 867}
 868EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
 869
 870/**
 871 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
 872 * of the reference
 873 *
 874 * @attr:       Pointer to AH attribute structure
 875 * @dgid:       Destination GID
 876 * @flow_label: Flow label
 877 * @hop_limit:  Hop limit
 878 * @traffic_class: traffic class
 879 * @sgid_attr:  Pointer to SGID attribute
 880 *
 881 * This takes ownership of the sgid_attr reference. The caller must ensure
 882 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
 883 * calling this function.
 884 */
 885void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
 886                             u32 flow_label, u8 hop_limit, u8 traffic_class,
 887                             const struct ib_gid_attr *sgid_attr)
 888{
 889        rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
 890                        traffic_class);
 891        attr->grh.sgid_attr = sgid_attr;
 892}
 893EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
 894
 895/**
 896 * rdma_destroy_ah_attr - Release reference to SGID attribute of
 897 * ah attribute.
 898 * @ah_attr: Pointer to ah attribute
 899 *
 900 * Release reference to the SGID attribute of the ah attribute if it is
 901 * non NULL. It is safe to call this multiple times, and safe to call it on
 902 * a zero initialized ah_attr.
 903 */
 904void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
 905{
 906        if (ah_attr->grh.sgid_attr) {
 907                rdma_put_gid_attr(ah_attr->grh.sgid_attr);
 908                ah_attr->grh.sgid_attr = NULL;
 909        }
 910}
 911EXPORT_SYMBOL(rdma_destroy_ah_attr);
 912
 913struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
 914                                   const struct ib_grh *grh, u8 port_num)
 915{
 916        struct rdma_ah_attr ah_attr;
 917        struct ib_ah *ah;
 918        int ret;
 919
 920        ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
 921        if (ret)
 922                return ERR_PTR(ret);
 923
 924        ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
 925
 926        rdma_destroy_ah_attr(&ah_attr);
 927        return ah;
 928}
 929EXPORT_SYMBOL(ib_create_ah_from_wc);
 930
 931int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 932{
 933        const struct ib_gid_attr *old_sgid_attr;
 934        int ret;
 935
 936        if (ah->type != ah_attr->type)
 937                return -EINVAL;
 938
 939        ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
 940        if (ret)
 941                return ret;
 942
 943        ret = ah->device->ops.modify_ah ?
 944                ah->device->ops.modify_ah(ah, ah_attr) :
 945                -EOPNOTSUPP;
 946
 947        ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
 948        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 949        return ret;
 950}
 951EXPORT_SYMBOL(rdma_modify_ah);
 952
 953int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 954{
 955        ah_attr->grh.sgid_attr = NULL;
 956
 957        return ah->device->ops.query_ah ?
 958                ah->device->ops.query_ah(ah, ah_attr) :
 959                -EOPNOTSUPP;
 960}
 961EXPORT_SYMBOL(rdma_query_ah);
 962
 963int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
 964{
 965        const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
 966        struct ib_pd *pd;
 967
 968        might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
 969
 970        pd = ah->pd;
 971
 972        ah->device->ops.destroy_ah(ah, flags);
 973        atomic_dec(&pd->usecnt);
 974        if (sgid_attr)
 975                rdma_put_gid_attr(sgid_attr);
 976
 977        kfree(ah);
 978        return 0;
 979}
 980EXPORT_SYMBOL(rdma_destroy_ah_user);
 981
 982/* Shared receive queues */
 983
 984/**
 985 * ib_create_srq_user - Creates a SRQ associated with the specified protection
 986 *   domain.
 987 * @pd: The protection domain associated with the SRQ.
 988 * @srq_init_attr: A list of initial attributes required to create the
 989 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
 990 *   the actual capabilities of the created SRQ.
 991 * @uobject - uobject pointer if this is not a kernel SRQ
 992 * @udata - udata pointer if this is not a kernel SRQ
 993 *
 994 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
 995 * requested size of the SRQ, and set to the actual values allocated
 996 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
 997 * will always be at least as large as the requested values.
 998 */
 999struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1000                                  struct ib_srq_init_attr *srq_init_attr,
1001                                  struct ib_usrq_object *uobject,
1002                                  struct ib_udata *udata)
1003{
1004        struct ib_srq *srq;
1005        int ret;
1006
1007        srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1008        if (!srq)
1009                return ERR_PTR(-ENOMEM);
1010
1011        srq->device = pd->device;
1012        srq->pd = pd;
1013        srq->event_handler = srq_init_attr->event_handler;
1014        srq->srq_context = srq_init_attr->srq_context;
1015        srq->srq_type = srq_init_attr->srq_type;
1016        srq->uobject = uobject;
1017
1018        if (ib_srq_has_cq(srq->srq_type)) {
1019                srq->ext.cq = srq_init_attr->ext.cq;
1020                atomic_inc(&srq->ext.cq->usecnt);
1021        }
1022        if (srq->srq_type == IB_SRQT_XRC) {
1023                srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1024                atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1025        }
1026        atomic_inc(&pd->usecnt);
1027
1028        ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1029        if (ret) {
1030                atomic_dec(&srq->pd->usecnt);
1031                if (srq->srq_type == IB_SRQT_XRC)
1032                        atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1033                if (ib_srq_has_cq(srq->srq_type))
1034                        atomic_dec(&srq->ext.cq->usecnt);
1035                kfree(srq);
1036                return ERR_PTR(ret);
1037        }
1038
1039        return srq;
1040}
1041EXPORT_SYMBOL(ib_create_srq_user);
1042
1043int ib_modify_srq(struct ib_srq *srq,
1044                  struct ib_srq_attr *srq_attr,
1045                  enum ib_srq_attr_mask srq_attr_mask)
1046{
1047        return srq->device->ops.modify_srq ?
1048                srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1049                                            NULL) : -EOPNOTSUPP;
1050}
1051EXPORT_SYMBOL(ib_modify_srq);
1052
1053int ib_query_srq(struct ib_srq *srq,
1054                 struct ib_srq_attr *srq_attr)
1055{
1056        return srq->device->ops.query_srq ?
1057                srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1058}
1059EXPORT_SYMBOL(ib_query_srq);
1060
1061int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1062{
1063        if (atomic_read(&srq->usecnt))
1064                return -EBUSY;
1065
1066        srq->device->ops.destroy_srq(srq, udata);
1067
1068        atomic_dec(&srq->pd->usecnt);
1069        if (srq->srq_type == IB_SRQT_XRC)
1070                atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1071        if (ib_srq_has_cq(srq->srq_type))
1072                atomic_dec(&srq->ext.cq->usecnt);
1073        kfree(srq);
1074
1075        return 0;
1076}
1077EXPORT_SYMBOL(ib_destroy_srq_user);
1078
1079/* Queue pairs */
1080
1081static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1082{
1083        struct ib_qp *qp = context;
1084        unsigned long flags;
1085
1086        spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1087        list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1088                if (event->element.qp->event_handler)
1089                        event->element.qp->event_handler(event, event->element.qp->qp_context);
1090        spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1091}
1092
1093static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1094{
1095        mutex_lock(&xrcd->tgt_qp_mutex);
1096        list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1097        mutex_unlock(&xrcd->tgt_qp_mutex);
1098}
1099
1100static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1101                                  void (*event_handler)(struct ib_event *, void *),
1102                                  void *qp_context)
1103{
1104        struct ib_qp *qp;
1105        unsigned long flags;
1106        int err;
1107
1108        qp = kzalloc(sizeof *qp, GFP_KERNEL);
1109        if (!qp)
1110                return ERR_PTR(-ENOMEM);
1111
1112        qp->real_qp = real_qp;
1113        err = ib_open_shared_qp_security(qp, real_qp->device);
1114        if (err) {
1115                kfree(qp);
1116                return ERR_PTR(err);
1117        }
1118
1119        qp->real_qp = real_qp;
1120        atomic_inc(&real_qp->usecnt);
1121        qp->device = real_qp->device;
1122        qp->event_handler = event_handler;
1123        qp->qp_context = qp_context;
1124        qp->qp_num = real_qp->qp_num;
1125        qp->qp_type = real_qp->qp_type;
1126
1127        spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1128        list_add(&qp->open_list, &real_qp->open_list);
1129        spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1130
1131        return qp;
1132}
1133
1134struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1135                         struct ib_qp_open_attr *qp_open_attr)
1136{
1137        struct ib_qp *qp, *real_qp;
1138
1139        if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1140                return ERR_PTR(-EINVAL);
1141
1142        qp = ERR_PTR(-EINVAL);
1143        mutex_lock(&xrcd->tgt_qp_mutex);
1144        list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1145                if (real_qp->qp_num == qp_open_attr->qp_num) {
1146                        qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1147                                          qp_open_attr->qp_context);
1148                        break;
1149                }
1150        }
1151        mutex_unlock(&xrcd->tgt_qp_mutex);
1152        return qp;
1153}
1154EXPORT_SYMBOL(ib_open_qp);
1155
1156static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1157                                        struct ib_qp_init_attr *qp_init_attr)
1158{
1159        struct ib_qp *real_qp = qp;
1160
1161        qp->event_handler = __ib_shared_qp_event_handler;
1162        qp->qp_context = qp;
1163        qp->pd = NULL;
1164        qp->send_cq = qp->recv_cq = NULL;
1165        qp->srq = NULL;
1166        qp->xrcd = qp_init_attr->xrcd;
1167        atomic_inc(&qp_init_attr->xrcd->usecnt);
1168        INIT_LIST_HEAD(&qp->open_list);
1169
1170        qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1171                          qp_init_attr->qp_context);
1172        if (IS_ERR(qp))
1173                return qp;
1174
1175        __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1176        return qp;
1177}
1178
1179/**
1180 * ib_create_qp - Creates a kernel QP associated with the specified protection
1181 *   domain.
1182 * @pd: The protection domain associated with the QP.
1183 * @qp_init_attr: A list of initial attributes required to create the
1184 *   QP.  If QP creation succeeds, then the attributes are updated to
1185 *   the actual capabilities of the created QP.
1186 *
1187 * NOTE: for user qp use ib_create_qp_user with valid udata!
1188 */
1189struct ib_qp *ib_create_qp(struct ib_pd *pd,
1190                           struct ib_qp_init_attr *qp_init_attr)
1191{
1192        struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1193        struct ib_qp *qp;
1194        int ret;
1195
1196        if (qp_init_attr->rwq_ind_tbl &&
1197            (qp_init_attr->recv_cq ||
1198            qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1199            qp_init_attr->cap.max_recv_sge))
1200                return ERR_PTR(-EINVAL);
1201
1202        if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1203            !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1204                return ERR_PTR(-EINVAL);
1205
1206        /*
1207         * If the callers is using the RDMA API calculate the resources
1208         * needed for the RDMA READ/WRITE operations.
1209         *
1210         * Note that these callers need to pass in a port number.
1211         */
1212        if (qp_init_attr->cap.max_rdma_ctxs)
1213                rdma_rw_init_qp(device, qp_init_attr);
1214
1215        qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1216        if (IS_ERR(qp))
1217                return qp;
1218
1219        ret = ib_create_qp_security(qp, device);
1220        if (ret)
1221                goto err;
1222
1223        if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1224                struct ib_qp *xrc_qp =
1225                        create_xrc_qp_user(qp, qp_init_attr);
1226
1227                if (IS_ERR(xrc_qp)) {
1228                        ret = PTR_ERR(xrc_qp);
1229                        goto err;
1230                }
1231                return xrc_qp;
1232        }
1233
1234        qp->event_handler = qp_init_attr->event_handler;
1235        qp->qp_context = qp_init_attr->qp_context;
1236        if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1237                qp->recv_cq = NULL;
1238                qp->srq = NULL;
1239        } else {
1240                qp->recv_cq = qp_init_attr->recv_cq;
1241                if (qp_init_attr->recv_cq)
1242                        atomic_inc(&qp_init_attr->recv_cq->usecnt);
1243                qp->srq = qp_init_attr->srq;
1244                if (qp->srq)
1245                        atomic_inc(&qp_init_attr->srq->usecnt);
1246        }
1247
1248        qp->send_cq = qp_init_attr->send_cq;
1249        qp->xrcd    = NULL;
1250
1251        atomic_inc(&pd->usecnt);
1252        if (qp_init_attr->send_cq)
1253                atomic_inc(&qp_init_attr->send_cq->usecnt);
1254        if (qp_init_attr->rwq_ind_tbl)
1255                atomic_inc(&qp->rwq_ind_tbl->usecnt);
1256
1257        if (qp_init_attr->cap.max_rdma_ctxs) {
1258                ret = rdma_rw_init_mrs(qp, qp_init_attr);
1259                if (ret)
1260                        goto err;
1261        }
1262
1263        /*
1264         * Note: all hw drivers guarantee that max_send_sge is lower than
1265         * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1266         * max_send_sge <= max_sge_rd.
1267         */
1268        qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1269        qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1270                                 device->attrs.max_sge_rd);
1271        if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1272                qp->integrity_en = true;
1273
1274        return qp;
1275
1276err:
1277        ib_destroy_qp(qp);
1278        return ERR_PTR(ret);
1279
1280}
1281EXPORT_SYMBOL(ib_create_qp);
1282
1283static const struct {
1284        int                     valid;
1285        enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1286        enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1287} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1288        [IB_QPS_RESET] = {
1289                [IB_QPS_RESET] = { .valid = 1 },
1290                [IB_QPS_INIT]  = {
1291                        .valid = 1,
1292                        .req_param = {
1293                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1294                                                IB_QP_PORT                      |
1295                                                IB_QP_QKEY),
1296                                [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1297                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1298                                                IB_QP_PORT                      |
1299                                                IB_QP_ACCESS_FLAGS),
1300                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1301                                                IB_QP_PORT                      |
1302                                                IB_QP_ACCESS_FLAGS),
1303                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1304                                                IB_QP_PORT                      |
1305                                                IB_QP_ACCESS_FLAGS),
1306                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1307                                                IB_QP_PORT                      |
1308                                                IB_QP_ACCESS_FLAGS),
1309                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1310                                                IB_QP_QKEY),
1311                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1312                                                IB_QP_QKEY),
1313                        }
1314                },
1315        },
1316        [IB_QPS_INIT]  = {
1317                [IB_QPS_RESET] = { .valid = 1 },
1318                [IB_QPS_ERR] =   { .valid = 1 },
1319                [IB_QPS_INIT]  = {
1320                        .valid = 1,
1321                        .opt_param = {
1322                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1323                                                IB_QP_PORT                      |
1324                                                IB_QP_QKEY),
1325                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1326                                                IB_QP_PORT                      |
1327                                                IB_QP_ACCESS_FLAGS),
1328                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1329                                                IB_QP_PORT                      |
1330                                                IB_QP_ACCESS_FLAGS),
1331                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1332                                                IB_QP_PORT                      |
1333                                                IB_QP_ACCESS_FLAGS),
1334                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1335                                                IB_QP_PORT                      |
1336                                                IB_QP_ACCESS_FLAGS),
1337                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1338                                                IB_QP_QKEY),
1339                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1340                                                IB_QP_QKEY),
1341                        }
1342                },
1343                [IB_QPS_RTR]   = {
1344                        .valid = 1,
1345                        .req_param = {
1346                                [IB_QPT_UC]  = (IB_QP_AV                        |
1347                                                IB_QP_PATH_MTU                  |
1348                                                IB_QP_DEST_QPN                  |
1349                                                IB_QP_RQ_PSN),
1350                                [IB_QPT_RC]  = (IB_QP_AV                        |
1351                                                IB_QP_PATH_MTU                  |
1352                                                IB_QP_DEST_QPN                  |
1353                                                IB_QP_RQ_PSN                    |
1354                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1355                                                IB_QP_MIN_RNR_TIMER),
1356                                [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1357                                                IB_QP_PATH_MTU                  |
1358                                                IB_QP_DEST_QPN                  |
1359                                                IB_QP_RQ_PSN),
1360                                [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1361                                                IB_QP_PATH_MTU                  |
1362                                                IB_QP_DEST_QPN                  |
1363                                                IB_QP_RQ_PSN                    |
1364                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1365                                                IB_QP_MIN_RNR_TIMER),
1366                        },
1367                        .opt_param = {
1368                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1369                                                 IB_QP_QKEY),
1370                                 [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1371                                                 IB_QP_ACCESS_FLAGS             |
1372                                                 IB_QP_PKEY_INDEX),
1373                                 [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1374                                                 IB_QP_ACCESS_FLAGS             |
1375                                                 IB_QP_PKEY_INDEX),
1376                                 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1377                                                 IB_QP_ACCESS_FLAGS             |
1378                                                 IB_QP_PKEY_INDEX),
1379                                 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1380                                                 IB_QP_ACCESS_FLAGS             |
1381                                                 IB_QP_PKEY_INDEX),
1382                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1383                                                 IB_QP_QKEY),
1384                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1385                                                 IB_QP_QKEY),
1386                         },
1387                },
1388        },
1389        [IB_QPS_RTR]   = {
1390                [IB_QPS_RESET] = { .valid = 1 },
1391                [IB_QPS_ERR] =   { .valid = 1 },
1392                [IB_QPS_RTS]   = {
1393                        .valid = 1,
1394                        .req_param = {
1395                                [IB_QPT_UD]  = IB_QP_SQ_PSN,
1396                                [IB_QPT_UC]  = IB_QP_SQ_PSN,
1397                                [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1398                                                IB_QP_RETRY_CNT                 |
1399                                                IB_QP_RNR_RETRY                 |
1400                                                IB_QP_SQ_PSN                    |
1401                                                IB_QP_MAX_QP_RD_ATOMIC),
1402                                [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1403                                                IB_QP_RETRY_CNT                 |
1404                                                IB_QP_RNR_RETRY                 |
1405                                                IB_QP_SQ_PSN                    |
1406                                                IB_QP_MAX_QP_RD_ATOMIC),
1407                                [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1408                                                IB_QP_SQ_PSN),
1409                                [IB_QPT_SMI] = IB_QP_SQ_PSN,
1410                                [IB_QPT_GSI] = IB_QP_SQ_PSN,
1411                        },
1412                        .opt_param = {
1413                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1414                                                 IB_QP_QKEY),
1415                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1416                                                 IB_QP_ALT_PATH                 |
1417                                                 IB_QP_ACCESS_FLAGS             |
1418                                                 IB_QP_PATH_MIG_STATE),
1419                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1420                                                 IB_QP_ALT_PATH                 |
1421                                                 IB_QP_ACCESS_FLAGS             |
1422                                                 IB_QP_MIN_RNR_TIMER            |
1423                                                 IB_QP_PATH_MIG_STATE),
1424                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1425                                                 IB_QP_ALT_PATH                 |
1426                                                 IB_QP_ACCESS_FLAGS             |
1427                                                 IB_QP_PATH_MIG_STATE),
1428                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1429                                                 IB_QP_ALT_PATH                 |
1430                                                 IB_QP_ACCESS_FLAGS             |
1431                                                 IB_QP_MIN_RNR_TIMER            |
1432                                                 IB_QP_PATH_MIG_STATE),
1433                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1434                                                 IB_QP_QKEY),
1435                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1436                                                 IB_QP_QKEY),
1437                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1438                         }
1439                }
1440        },
1441        [IB_QPS_RTS]   = {
1442                [IB_QPS_RESET] = { .valid = 1 },
1443                [IB_QPS_ERR] =   { .valid = 1 },
1444                [IB_QPS_RTS]   = {
1445                        .valid = 1,
1446                        .opt_param = {
1447                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1448                                                IB_QP_QKEY),
1449                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1450                                                IB_QP_ACCESS_FLAGS              |
1451                                                IB_QP_ALT_PATH                  |
1452                                                IB_QP_PATH_MIG_STATE),
1453                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1454                                                IB_QP_ACCESS_FLAGS              |
1455                                                IB_QP_ALT_PATH                  |
1456                                                IB_QP_PATH_MIG_STATE            |
1457                                                IB_QP_MIN_RNR_TIMER),
1458                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1459                                                IB_QP_ACCESS_FLAGS              |
1460                                                IB_QP_ALT_PATH                  |
1461                                                IB_QP_PATH_MIG_STATE),
1462                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1463                                                IB_QP_ACCESS_FLAGS              |
1464                                                IB_QP_ALT_PATH                  |
1465                                                IB_QP_PATH_MIG_STATE            |
1466                                                IB_QP_MIN_RNR_TIMER),
1467                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1468                                                IB_QP_QKEY),
1469                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1470                                                IB_QP_QKEY),
1471                                [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1472                        }
1473                },
1474                [IB_QPS_SQD]   = {
1475                        .valid = 1,
1476                        .opt_param = {
1477                                [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1478                                [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1479                                [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1480                                [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1481                                [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1482                                [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1483                                [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1484                        }
1485                },
1486        },
1487        [IB_QPS_SQD]   = {
1488                [IB_QPS_RESET] = { .valid = 1 },
1489                [IB_QPS_ERR] =   { .valid = 1 },
1490                [IB_QPS_RTS]   = {
1491                        .valid = 1,
1492                        .opt_param = {
1493                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1494                                                IB_QP_QKEY),
1495                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1496                                                IB_QP_ALT_PATH                  |
1497                                                IB_QP_ACCESS_FLAGS              |
1498                                                IB_QP_PATH_MIG_STATE),
1499                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1500                                                IB_QP_ALT_PATH                  |
1501                                                IB_QP_ACCESS_FLAGS              |
1502                                                IB_QP_MIN_RNR_TIMER             |
1503                                                IB_QP_PATH_MIG_STATE),
1504                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1505                                                IB_QP_ALT_PATH                  |
1506                                                IB_QP_ACCESS_FLAGS              |
1507                                                IB_QP_PATH_MIG_STATE),
1508                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1509                                                IB_QP_ALT_PATH                  |
1510                                                IB_QP_ACCESS_FLAGS              |
1511                                                IB_QP_MIN_RNR_TIMER             |
1512                                                IB_QP_PATH_MIG_STATE),
1513                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1514                                                IB_QP_QKEY),
1515                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1516                                                IB_QP_QKEY),
1517                        }
1518                },
1519                [IB_QPS_SQD]   = {
1520                        .valid = 1,
1521                        .opt_param = {
1522                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1523                                                IB_QP_QKEY),
1524                                [IB_QPT_UC]  = (IB_QP_AV                        |
1525                                                IB_QP_ALT_PATH                  |
1526                                                IB_QP_ACCESS_FLAGS              |
1527                                                IB_QP_PKEY_INDEX                |
1528                                                IB_QP_PATH_MIG_STATE),
1529                                [IB_QPT_RC]  = (IB_QP_PORT                      |
1530                                                IB_QP_AV                        |
1531                                                IB_QP_TIMEOUT                   |
1532                                                IB_QP_RETRY_CNT                 |
1533                                                IB_QP_RNR_RETRY                 |
1534                                                IB_QP_MAX_QP_RD_ATOMIC          |
1535                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1536                                                IB_QP_ALT_PATH                  |
1537                                                IB_QP_ACCESS_FLAGS              |
1538                                                IB_QP_PKEY_INDEX                |
1539                                                IB_QP_MIN_RNR_TIMER             |
1540                                                IB_QP_PATH_MIG_STATE),
1541                                [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1542                                                IB_QP_AV                        |
1543                                                IB_QP_TIMEOUT                   |
1544                                                IB_QP_RETRY_CNT                 |
1545                                                IB_QP_RNR_RETRY                 |
1546                                                IB_QP_MAX_QP_RD_ATOMIC          |
1547                                                IB_QP_ALT_PATH                  |
1548                                                IB_QP_ACCESS_FLAGS              |
1549                                                IB_QP_PKEY_INDEX                |
1550                                                IB_QP_PATH_MIG_STATE),
1551                                [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1552                                                IB_QP_AV                        |
1553                                                IB_QP_TIMEOUT                   |
1554                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1555                                                IB_QP_ALT_PATH                  |
1556                                                IB_QP_ACCESS_FLAGS              |
1557                                                IB_QP_PKEY_INDEX                |
1558                                                IB_QP_MIN_RNR_TIMER             |
1559                                                IB_QP_PATH_MIG_STATE),
1560                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1561                                                IB_QP_QKEY),
1562                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1563                                                IB_QP_QKEY),
1564                        }
1565                }
1566        },
1567        [IB_QPS_SQE]   = {
1568                [IB_QPS_RESET] = { .valid = 1 },
1569                [IB_QPS_ERR] =   { .valid = 1 },
1570                [IB_QPS_RTS]   = {
1571                        .valid = 1,
1572                        .opt_param = {
1573                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1574                                                IB_QP_QKEY),
1575                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1576                                                IB_QP_ACCESS_FLAGS),
1577                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1578                                                IB_QP_QKEY),
1579                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1580                                                IB_QP_QKEY),
1581                        }
1582                }
1583        },
1584        [IB_QPS_ERR] = {
1585                [IB_QPS_RESET] = { .valid = 1 },
1586                [IB_QPS_ERR] =   { .valid = 1 }
1587        }
1588};
1589
1590bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1591                        enum ib_qp_type type, enum ib_qp_attr_mask mask)
1592{
1593        enum ib_qp_attr_mask req_param, opt_param;
1594
1595        if (mask & IB_QP_CUR_STATE  &&
1596            cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1597            cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1598                return false;
1599
1600        if (!qp_state_table[cur_state][next_state].valid)
1601                return false;
1602
1603        req_param = qp_state_table[cur_state][next_state].req_param[type];
1604        opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1605
1606        if ((mask & req_param) != req_param)
1607                return false;
1608
1609        if (mask & ~(req_param | opt_param | IB_QP_STATE))
1610                return false;
1611
1612        return true;
1613}
1614EXPORT_SYMBOL(ib_modify_qp_is_ok);
1615
1616/**
1617 * ib_resolve_eth_dmac - Resolve destination mac address
1618 * @device:             Device to consider
1619 * @ah_attr:            address handle attribute which describes the
1620 *                      source and destination parameters
1621 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1622 * returns 0 on success or appropriate error code. It initializes the
1623 * necessary ah_attr fields when call is successful.
1624 */
1625static int ib_resolve_eth_dmac(struct ib_device *device,
1626                               struct rdma_ah_attr *ah_attr)
1627{
1628        int ret = 0;
1629
1630        if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1631                if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1632                        __be32 addr = 0;
1633
1634                        memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1635                        ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1636                } else {
1637                        ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1638                                        (char *)ah_attr->roce.dmac);
1639                }
1640        } else {
1641                ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1642        }
1643        return ret;
1644}
1645
1646static bool is_qp_type_connected(const struct ib_qp *qp)
1647{
1648        return (qp->qp_type == IB_QPT_UC ||
1649                qp->qp_type == IB_QPT_RC ||
1650                qp->qp_type == IB_QPT_XRC_INI ||
1651                qp->qp_type == IB_QPT_XRC_TGT);
1652}
1653
1654/**
1655 * IB core internal function to perform QP attributes modification.
1656 */
1657static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1658                         int attr_mask, struct ib_udata *udata)
1659{
1660        u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1661        const struct ib_gid_attr *old_sgid_attr_av;
1662        const struct ib_gid_attr *old_sgid_attr_alt_av;
1663        int ret;
1664
1665        attr->xmit_slave = NULL;
1666        if (attr_mask & IB_QP_AV) {
1667                ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1668                                          &old_sgid_attr_av);
1669                if (ret)
1670                        return ret;
1671
1672                if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1673                    is_qp_type_connected(qp)) {
1674                        struct net_device *slave;
1675
1676                        /*
1677                         * If the user provided the qp_attr then we have to
1678                         * resolve it. Kerne users have to provide already
1679                         * resolved rdma_ah_attr's.
1680                         */
1681                        if (udata) {
1682                                ret = ib_resolve_eth_dmac(qp->device,
1683                                                          &attr->ah_attr);
1684                                if (ret)
1685                                        goto out_av;
1686                        }
1687                        slave = rdma_lag_get_ah_roce_slave(qp->device,
1688                                                           &attr->ah_attr,
1689                                                           GFP_KERNEL);
1690                        if (IS_ERR(slave))
1691                                goto out_av;
1692                        attr->xmit_slave = slave;
1693                }
1694        }
1695        if (attr_mask & IB_QP_ALT_PATH) {
1696                /*
1697                 * FIXME: This does not track the migration state, so if the
1698                 * user loads a new alternate path after the HW has migrated
1699                 * from primary->alternate we will keep the wrong
1700                 * references. This is OK for IB because the reference
1701                 * counting does not serve any functional purpose.
1702                 */
1703                ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1704                                          &old_sgid_attr_alt_av);
1705                if (ret)
1706                        goto out_av;
1707
1708                /*
1709                 * Today the core code can only handle alternate paths and APM
1710                 * for IB. Ban them in roce mode.
1711                 */
1712                if (!(rdma_protocol_ib(qp->device,
1713                                       attr->alt_ah_attr.port_num) &&
1714                      rdma_protocol_ib(qp->device, port))) {
1715                        ret = EINVAL;
1716                        goto out;
1717                }
1718        }
1719
1720        if (rdma_ib_or_roce(qp->device, port)) {
1721                if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1722                        dev_warn(&qp->device->dev,
1723                                 "%s rq_psn overflow, masking to 24 bits\n",
1724                                 __func__);
1725                        attr->rq_psn &= 0xffffff;
1726                }
1727
1728                if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1729                        dev_warn(&qp->device->dev,
1730                                 " %s sq_psn overflow, masking to 24 bits\n",
1731                                 __func__);
1732                        attr->sq_psn &= 0xffffff;
1733                }
1734        }
1735
1736        /*
1737         * Bind this qp to a counter automatically based on the rdma counter
1738         * rules. This only set in RST2INIT with port specified
1739         */
1740        if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1741            ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1742                rdma_counter_bind_qp_auto(qp, attr->port_num);
1743
1744        ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1745        if (ret)
1746                goto out;
1747
1748        if (attr_mask & IB_QP_PORT)
1749                qp->port = attr->port_num;
1750        if (attr_mask & IB_QP_AV)
1751                qp->av_sgid_attr =
1752                        rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1753        if (attr_mask & IB_QP_ALT_PATH)
1754                qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1755                        &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1756
1757out:
1758        if (attr_mask & IB_QP_ALT_PATH)
1759                rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1760out_av:
1761        if (attr_mask & IB_QP_AV) {
1762                rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1763                rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1764        }
1765        return ret;
1766}
1767
1768/**
1769 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1770 * @ib_qp: The QP to modify.
1771 * @attr: On input, specifies the QP attributes to modify.  On output,
1772 *   the current values of selected QP attributes are returned.
1773 * @attr_mask: A bit-mask used to specify which attributes of the QP
1774 *   are being modified.
1775 * @udata: pointer to user's input output buffer information
1776 *   are being modified.
1777 * It returns 0 on success and returns appropriate error code on error.
1778 */
1779int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1780                            int attr_mask, struct ib_udata *udata)
1781{
1782        return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1783}
1784EXPORT_SYMBOL(ib_modify_qp_with_udata);
1785
1786int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1787{
1788        int rc;
1789        u32 netdev_speed;
1790        struct net_device *netdev;
1791        struct ethtool_link_ksettings lksettings;
1792
1793        if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1794                return -EINVAL;
1795
1796        netdev = ib_device_get_netdev(dev, port_num);
1797        if (!netdev)
1798                return -ENODEV;
1799
1800        rtnl_lock();
1801        rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1802        rtnl_unlock();
1803
1804        dev_put(netdev);
1805
1806        if (!rc) {
1807                netdev_speed = lksettings.base.speed;
1808        } else {
1809                netdev_speed = SPEED_1000;
1810                pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1811                        netdev_speed);
1812        }
1813
1814        if (netdev_speed <= SPEED_1000) {
1815                *width = IB_WIDTH_1X;
1816                *speed = IB_SPEED_SDR;
1817        } else if (netdev_speed <= SPEED_10000) {
1818                *width = IB_WIDTH_1X;
1819                *speed = IB_SPEED_FDR10;
1820        } else if (netdev_speed <= SPEED_20000) {
1821                *width = IB_WIDTH_4X;
1822                *speed = IB_SPEED_DDR;
1823        } else if (netdev_speed <= SPEED_25000) {
1824                *width = IB_WIDTH_1X;
1825                *speed = IB_SPEED_EDR;
1826        } else if (netdev_speed <= SPEED_40000) {
1827                *width = IB_WIDTH_4X;
1828                *speed = IB_SPEED_FDR10;
1829        } else {
1830                *width = IB_WIDTH_4X;
1831                *speed = IB_SPEED_EDR;
1832        }
1833
1834        return 0;
1835}
1836EXPORT_SYMBOL(ib_get_eth_speed);
1837
1838int ib_modify_qp(struct ib_qp *qp,
1839                 struct ib_qp_attr *qp_attr,
1840                 int qp_attr_mask)
1841{
1842        return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1843}
1844EXPORT_SYMBOL(ib_modify_qp);
1845
1846int ib_query_qp(struct ib_qp *qp,
1847                struct ib_qp_attr *qp_attr,
1848                int qp_attr_mask,
1849                struct ib_qp_init_attr *qp_init_attr)
1850{
1851        qp_attr->ah_attr.grh.sgid_attr = NULL;
1852        qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1853
1854        return qp->device->ops.query_qp ?
1855                qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1856                                         qp_init_attr) : -EOPNOTSUPP;
1857}
1858EXPORT_SYMBOL(ib_query_qp);
1859
1860int ib_close_qp(struct ib_qp *qp)
1861{
1862        struct ib_qp *real_qp;
1863        unsigned long flags;
1864
1865        real_qp = qp->real_qp;
1866        if (real_qp == qp)
1867                return -EINVAL;
1868
1869        spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1870        list_del(&qp->open_list);
1871        spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1872
1873        atomic_dec(&real_qp->usecnt);
1874        if (qp->qp_sec)
1875                ib_close_shared_qp_security(qp->qp_sec);
1876        kfree(qp);
1877
1878        return 0;
1879}
1880EXPORT_SYMBOL(ib_close_qp);
1881
1882static int __ib_destroy_shared_qp(struct ib_qp *qp)
1883{
1884        struct ib_xrcd *xrcd;
1885        struct ib_qp *real_qp;
1886        int ret;
1887
1888        real_qp = qp->real_qp;
1889        xrcd = real_qp->xrcd;
1890
1891        mutex_lock(&xrcd->tgt_qp_mutex);
1892        ib_close_qp(qp);
1893        if (atomic_read(&real_qp->usecnt) == 0)
1894                list_del(&real_qp->xrcd_list);
1895        else
1896                real_qp = NULL;
1897        mutex_unlock(&xrcd->tgt_qp_mutex);
1898
1899        if (real_qp) {
1900                ret = ib_destroy_qp(real_qp);
1901                if (!ret)
1902                        atomic_dec(&xrcd->usecnt);
1903                else
1904                        __ib_insert_xrcd_qp(xrcd, real_qp);
1905        }
1906
1907        return 0;
1908}
1909
1910int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1911{
1912        const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1913        const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1914        struct ib_pd *pd;
1915        struct ib_cq *scq, *rcq;
1916        struct ib_srq *srq;
1917        struct ib_rwq_ind_table *ind_tbl;
1918        struct ib_qp_security *sec;
1919        int ret;
1920
1921        WARN_ON_ONCE(qp->mrs_used > 0);
1922
1923        if (atomic_read(&qp->usecnt))
1924                return -EBUSY;
1925
1926        if (qp->real_qp != qp)
1927                return __ib_destroy_shared_qp(qp);
1928
1929        pd   = qp->pd;
1930        scq  = qp->send_cq;
1931        rcq  = qp->recv_cq;
1932        srq  = qp->srq;
1933        ind_tbl = qp->rwq_ind_tbl;
1934        sec  = qp->qp_sec;
1935        if (sec)
1936                ib_destroy_qp_security_begin(sec);
1937
1938        if (!qp->uobject)
1939                rdma_rw_cleanup_mrs(qp);
1940
1941        rdma_counter_unbind_qp(qp, true);
1942        rdma_restrack_del(&qp->res);
1943        ret = qp->device->ops.destroy_qp(qp, udata);
1944        if (!ret) {
1945                if (alt_path_sgid_attr)
1946                        rdma_put_gid_attr(alt_path_sgid_attr);
1947                if (av_sgid_attr)
1948                        rdma_put_gid_attr(av_sgid_attr);
1949                if (pd)
1950                        atomic_dec(&pd->usecnt);
1951                if (scq)
1952                        atomic_dec(&scq->usecnt);
1953                if (rcq)
1954                        atomic_dec(&rcq->usecnt);
1955                if (srq)
1956                        atomic_dec(&srq->usecnt);
1957                if (ind_tbl)
1958                        atomic_dec(&ind_tbl->usecnt);
1959                if (sec)
1960                        ib_destroy_qp_security_end(sec);
1961        } else {
1962                if (sec)
1963                        ib_destroy_qp_security_abort(sec);
1964        }
1965
1966        return ret;
1967}
1968EXPORT_SYMBOL(ib_destroy_qp_user);
1969
1970/* Completion queues */
1971
1972struct ib_cq *__ib_create_cq(struct ib_device *device,
1973                             ib_comp_handler comp_handler,
1974                             void (*event_handler)(struct ib_event *, void *),
1975                             void *cq_context,
1976                             const struct ib_cq_init_attr *cq_attr,
1977                             const char *caller)
1978{
1979        struct ib_cq *cq;
1980        int ret;
1981
1982        cq = rdma_zalloc_drv_obj(device, ib_cq);
1983        if (!cq)
1984                return ERR_PTR(-ENOMEM);
1985
1986        cq->device = device;
1987        cq->uobject = NULL;
1988        cq->comp_handler = comp_handler;
1989        cq->event_handler = event_handler;
1990        cq->cq_context = cq_context;
1991        atomic_set(&cq->usecnt, 0);
1992        cq->res.type = RDMA_RESTRACK_CQ;
1993        rdma_restrack_set_task(&cq->res, caller);
1994
1995        ret = device->ops.create_cq(cq, cq_attr, NULL);
1996        if (ret) {
1997                kfree(cq);
1998                return ERR_PTR(ret);
1999        }
2000
2001        rdma_restrack_kadd(&cq->res);
2002        return cq;
2003}
2004EXPORT_SYMBOL(__ib_create_cq);
2005
2006int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2007{
2008        if (cq->shared)
2009                return -EOPNOTSUPP;
2010
2011        return cq->device->ops.modify_cq ?
2012                cq->device->ops.modify_cq(cq, cq_count,
2013                                          cq_period) : -EOPNOTSUPP;
2014}
2015EXPORT_SYMBOL(rdma_set_cq_moderation);
2016
2017int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2018{
2019        if (WARN_ON_ONCE(cq->shared))
2020                return -EOPNOTSUPP;
2021
2022        if (atomic_read(&cq->usecnt))
2023                return -EBUSY;
2024
2025        rdma_restrack_del(&cq->res);
2026        cq->device->ops.destroy_cq(cq, udata);
2027        kfree(cq);
2028        return 0;
2029}
2030EXPORT_SYMBOL(ib_destroy_cq_user);
2031
2032int ib_resize_cq(struct ib_cq *cq, int cqe)
2033{
2034        if (cq->shared)
2035                return -EOPNOTSUPP;
2036
2037        return cq->device->ops.resize_cq ?
2038                cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2039}
2040EXPORT_SYMBOL(ib_resize_cq);
2041
2042/* Memory regions */
2043
2044struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2045                             u64 virt_addr, int access_flags)
2046{
2047        struct ib_mr *mr;
2048
2049        if (access_flags & IB_ACCESS_ON_DEMAND) {
2050                if (!(pd->device->attrs.device_cap_flags &
2051                      IB_DEVICE_ON_DEMAND_PAGING)) {
2052                        pr_debug("ODP support not available\n");
2053                        return ERR_PTR(-EINVAL);
2054                }
2055        }
2056
2057        mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2058                                         access_flags, NULL);
2059
2060        if (IS_ERR(mr))
2061                return mr;
2062
2063        mr->device = pd->device;
2064        mr->pd = pd;
2065        mr->dm = NULL;
2066        atomic_inc(&pd->usecnt);
2067        mr->res.type = RDMA_RESTRACK_MR;
2068        rdma_restrack_kadd(&mr->res);
2069
2070        return mr;
2071}
2072EXPORT_SYMBOL(ib_reg_user_mr);
2073
2074int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2075                 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2076{
2077        if (!pd->device->ops.advise_mr)
2078                return -EOPNOTSUPP;
2079
2080        return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2081                                         NULL);
2082}
2083EXPORT_SYMBOL(ib_advise_mr);
2084
2085int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2086{
2087        struct ib_pd *pd = mr->pd;
2088        struct ib_dm *dm = mr->dm;
2089        struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2090        int ret;
2091
2092        trace_mr_dereg(mr);
2093        rdma_restrack_del(&mr->res);
2094        ret = mr->device->ops.dereg_mr(mr, udata);
2095        if (!ret) {
2096                atomic_dec(&pd->usecnt);
2097                if (dm)
2098                        atomic_dec(&dm->usecnt);
2099                kfree(sig_attrs);
2100        }
2101
2102        return ret;
2103}
2104EXPORT_SYMBOL(ib_dereg_mr_user);
2105
2106/**
2107 * ib_alloc_mr_user() - Allocates a memory region
2108 * @pd:            protection domain associated with the region
2109 * @mr_type:       memory region type
2110 * @max_num_sg:    maximum sg entries available for registration.
2111 * @udata:         user data or null for kernel objects
2112 *
2113 * Notes:
2114 * Memory registeration page/sg lists must not exceed max_num_sg.
2115 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2116 * max_num_sg * used_page_size.
2117 *
2118 */
2119struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
2120                               u32 max_num_sg, struct ib_udata *udata)
2121{
2122        struct ib_mr *mr;
2123
2124        if (!pd->device->ops.alloc_mr) {
2125                mr = ERR_PTR(-EOPNOTSUPP);
2126                goto out;
2127        }
2128
2129        if (mr_type == IB_MR_TYPE_INTEGRITY) {
2130                WARN_ON_ONCE(1);
2131                mr = ERR_PTR(-EINVAL);
2132                goto out;
2133        }
2134
2135        mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata);
2136        if (!IS_ERR(mr)) {
2137                mr->device  = pd->device;
2138                mr->pd      = pd;
2139                mr->dm      = NULL;
2140                mr->uobject = NULL;
2141                atomic_inc(&pd->usecnt);
2142                mr->need_inval = false;
2143                mr->res.type = RDMA_RESTRACK_MR;
2144                rdma_restrack_kadd(&mr->res);
2145                mr->type = mr_type;
2146                mr->sig_attrs = NULL;
2147        }
2148
2149out:
2150        trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2151        return mr;
2152}
2153EXPORT_SYMBOL(ib_alloc_mr_user);
2154
2155/**
2156 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2157 * @pd:                      protection domain associated with the region
2158 * @max_num_data_sg:         maximum data sg entries available for registration
2159 * @max_num_meta_sg:         maximum metadata sg entries available for
2160 *                           registration
2161 *
2162 * Notes:
2163 * Memory registration page/sg lists must not exceed max_num_sg,
2164 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2165 *
2166 */
2167struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2168                                    u32 max_num_data_sg,
2169                                    u32 max_num_meta_sg)
2170{
2171        struct ib_mr *mr;
2172        struct ib_sig_attrs *sig_attrs;
2173
2174        if (!pd->device->ops.alloc_mr_integrity ||
2175            !pd->device->ops.map_mr_sg_pi) {
2176                mr = ERR_PTR(-EOPNOTSUPP);
2177                goto out;
2178        }
2179
2180        if (!max_num_meta_sg) {
2181                mr = ERR_PTR(-EINVAL);
2182                goto out;
2183        }
2184
2185        sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2186        if (!sig_attrs) {
2187                mr = ERR_PTR(-ENOMEM);
2188                goto out;
2189        }
2190
2191        mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2192                                                max_num_meta_sg);
2193        if (IS_ERR(mr)) {
2194                kfree(sig_attrs);
2195                goto out;
2196        }
2197
2198        mr->device = pd->device;
2199        mr->pd = pd;
2200        mr->dm = NULL;
2201        mr->uobject = NULL;
2202        atomic_inc(&pd->usecnt);
2203        mr->need_inval = false;
2204        mr->res.type = RDMA_RESTRACK_MR;
2205        rdma_restrack_kadd(&mr->res);
2206        mr->type = IB_MR_TYPE_INTEGRITY;
2207        mr->sig_attrs = sig_attrs;
2208
2209out:
2210        trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2211        return mr;
2212}
2213EXPORT_SYMBOL(ib_alloc_mr_integrity);
2214
2215/* Multicast groups */
2216
2217static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2218{
2219        struct ib_qp_init_attr init_attr = {};
2220        struct ib_qp_attr attr = {};
2221        int num_eth_ports = 0;
2222        int port;
2223
2224        /* If QP state >= init, it is assigned to a port and we can check this
2225         * port only.
2226         */
2227        if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2228                if (attr.qp_state >= IB_QPS_INIT) {
2229                        if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2230                            IB_LINK_LAYER_INFINIBAND)
2231                                return true;
2232                        goto lid_check;
2233                }
2234        }
2235
2236        /* Can't get a quick answer, iterate over all ports */
2237        for (port = 0; port < qp->device->phys_port_cnt; port++)
2238                if (rdma_port_get_link_layer(qp->device, port) !=
2239                    IB_LINK_LAYER_INFINIBAND)
2240                        num_eth_ports++;
2241
2242        /* If we have at lease one Ethernet port, RoCE annex declares that
2243         * multicast LID should be ignored. We can't tell at this step if the
2244         * QP belongs to an IB or Ethernet port.
2245         */
2246        if (num_eth_ports)
2247                return true;
2248
2249        /* If all the ports are IB, we can check according to IB spec. */
2250lid_check:
2251        return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2252                 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2253}
2254
2255int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2256{
2257        int ret;
2258
2259        if (!qp->device->ops.attach_mcast)
2260                return -EOPNOTSUPP;
2261
2262        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2263            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2264                return -EINVAL;
2265
2266        ret = qp->device->ops.attach_mcast(qp, gid, lid);
2267        if (!ret)
2268                atomic_inc(&qp->usecnt);
2269        return ret;
2270}
2271EXPORT_SYMBOL(ib_attach_mcast);
2272
2273int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2274{
2275        int ret;
2276
2277        if (!qp->device->ops.detach_mcast)
2278                return -EOPNOTSUPP;
2279
2280        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2281            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2282                return -EINVAL;
2283
2284        ret = qp->device->ops.detach_mcast(qp, gid, lid);
2285        if (!ret)
2286                atomic_dec(&qp->usecnt);
2287        return ret;
2288}
2289EXPORT_SYMBOL(ib_detach_mcast);
2290
2291struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2292{
2293        struct ib_xrcd *xrcd;
2294
2295        if (!device->ops.alloc_xrcd)
2296                return ERR_PTR(-EOPNOTSUPP);
2297
2298        xrcd = device->ops.alloc_xrcd(device, NULL);
2299        if (!IS_ERR(xrcd)) {
2300                xrcd->device = device;
2301                xrcd->inode = NULL;
2302                atomic_set(&xrcd->usecnt, 0);
2303                mutex_init(&xrcd->tgt_qp_mutex);
2304                INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2305        }
2306
2307        return xrcd;
2308}
2309EXPORT_SYMBOL(__ib_alloc_xrcd);
2310
2311int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
2312{
2313        struct ib_qp *qp;
2314        int ret;
2315
2316        if (atomic_read(&xrcd->usecnt))
2317                return -EBUSY;
2318
2319        while (!list_empty(&xrcd->tgt_qp_list)) {
2320                qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2321                ret = ib_destroy_qp(qp);
2322                if (ret)
2323                        return ret;
2324        }
2325        mutex_destroy(&xrcd->tgt_qp_mutex);
2326
2327        return xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2328}
2329EXPORT_SYMBOL(ib_dealloc_xrcd);
2330
2331/**
2332 * ib_create_wq - Creates a WQ associated with the specified protection
2333 * domain.
2334 * @pd: The protection domain associated with the WQ.
2335 * @wq_attr: A list of initial attributes required to create the
2336 * WQ. If WQ creation succeeds, then the attributes are updated to
2337 * the actual capabilities of the created WQ.
2338 *
2339 * wq_attr->max_wr and wq_attr->max_sge determine
2340 * the requested size of the WQ, and set to the actual values allocated
2341 * on return.
2342 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2343 * at least as large as the requested values.
2344 */
2345struct ib_wq *ib_create_wq(struct ib_pd *pd,
2346                           struct ib_wq_init_attr *wq_attr)
2347{
2348        struct ib_wq *wq;
2349
2350        if (!pd->device->ops.create_wq)
2351                return ERR_PTR(-EOPNOTSUPP);
2352
2353        wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2354        if (!IS_ERR(wq)) {
2355                wq->event_handler = wq_attr->event_handler;
2356                wq->wq_context = wq_attr->wq_context;
2357                wq->wq_type = wq_attr->wq_type;
2358                wq->cq = wq_attr->cq;
2359                wq->device = pd->device;
2360                wq->pd = pd;
2361                wq->uobject = NULL;
2362                atomic_inc(&pd->usecnt);
2363                atomic_inc(&wq_attr->cq->usecnt);
2364                atomic_set(&wq->usecnt, 0);
2365        }
2366        return wq;
2367}
2368EXPORT_SYMBOL(ib_create_wq);
2369
2370/**
2371 * ib_destroy_wq - Destroys the specified user WQ.
2372 * @wq: The WQ to destroy.
2373 * @udata: Valid user data
2374 */
2375int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
2376{
2377        struct ib_cq *cq = wq->cq;
2378        struct ib_pd *pd = wq->pd;
2379
2380        if (atomic_read(&wq->usecnt))
2381                return -EBUSY;
2382
2383        wq->device->ops.destroy_wq(wq, udata);
2384        atomic_dec(&pd->usecnt);
2385        atomic_dec(&cq->usecnt);
2386
2387        return 0;
2388}
2389EXPORT_SYMBOL(ib_destroy_wq);
2390
2391/**
2392 * ib_modify_wq - Modifies the specified WQ.
2393 * @wq: The WQ to modify.
2394 * @wq_attr: On input, specifies the WQ attributes to modify.
2395 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2396 *   are being modified.
2397 * On output, the current values of selected WQ attributes are returned.
2398 */
2399int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2400                 u32 wq_attr_mask)
2401{
2402        int err;
2403
2404        if (!wq->device->ops.modify_wq)
2405                return -EOPNOTSUPP;
2406
2407        err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2408        return err;
2409}
2410EXPORT_SYMBOL(ib_modify_wq);
2411
2412/*
2413 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2414 * @device: The device on which to create the rwq indirection table.
2415 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2416 * create the Indirection Table.
2417 *
2418 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2419 *      than the created ib_rwq_ind_table object and the caller is responsible
2420 *      for its memory allocation/free.
2421 */
2422struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2423                                                 struct ib_rwq_ind_table_init_attr *init_attr)
2424{
2425        struct ib_rwq_ind_table *rwq_ind_table;
2426        int i;
2427        u32 table_size;
2428
2429        if (!device->ops.create_rwq_ind_table)
2430                return ERR_PTR(-EOPNOTSUPP);
2431
2432        table_size = (1 << init_attr->log_ind_tbl_size);
2433        rwq_ind_table = device->ops.create_rwq_ind_table(device,
2434                                                         init_attr, NULL);
2435        if (IS_ERR(rwq_ind_table))
2436                return rwq_ind_table;
2437
2438        rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2439        rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2440        rwq_ind_table->device = device;
2441        rwq_ind_table->uobject = NULL;
2442        atomic_set(&rwq_ind_table->usecnt, 0);
2443
2444        for (i = 0; i < table_size; i++)
2445                atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2446
2447        return rwq_ind_table;
2448}
2449EXPORT_SYMBOL(ib_create_rwq_ind_table);
2450
2451/*
2452 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2453 * @wq_ind_table: The Indirection Table to destroy.
2454*/
2455int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2456{
2457        int err, i;
2458        u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2459        struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2460
2461        if (atomic_read(&rwq_ind_table->usecnt))
2462                return -EBUSY;
2463
2464        err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2465        if (!err) {
2466                for (i = 0; i < table_size; i++)
2467                        atomic_dec(&ind_tbl[i]->usecnt);
2468        }
2469
2470        return err;
2471}
2472EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2473
2474int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2475                       struct ib_mr_status *mr_status)
2476{
2477        if (!mr->device->ops.check_mr_status)
2478                return -EOPNOTSUPP;
2479
2480        return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2481}
2482EXPORT_SYMBOL(ib_check_mr_status);
2483
2484int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2485                         int state)
2486{
2487        if (!device->ops.set_vf_link_state)
2488                return -EOPNOTSUPP;
2489
2490        return device->ops.set_vf_link_state(device, vf, port, state);
2491}
2492EXPORT_SYMBOL(ib_set_vf_link_state);
2493
2494int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2495                     struct ifla_vf_info *info)
2496{
2497        if (!device->ops.get_vf_config)
2498                return -EOPNOTSUPP;
2499
2500        return device->ops.get_vf_config(device, vf, port, info);
2501}
2502EXPORT_SYMBOL(ib_get_vf_config);
2503
2504int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2505                    struct ifla_vf_stats *stats)
2506{
2507        if (!device->ops.get_vf_stats)
2508                return -EOPNOTSUPP;
2509
2510        return device->ops.get_vf_stats(device, vf, port, stats);
2511}
2512EXPORT_SYMBOL(ib_get_vf_stats);
2513
2514int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2515                   int type)
2516{
2517        if (!device->ops.set_vf_guid)
2518                return -EOPNOTSUPP;
2519
2520        return device->ops.set_vf_guid(device, vf, port, guid, type);
2521}
2522EXPORT_SYMBOL(ib_set_vf_guid);
2523
2524int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
2525                   struct ifla_vf_guid *node_guid,
2526                   struct ifla_vf_guid *port_guid)
2527{
2528        if (!device->ops.get_vf_guid)
2529                return -EOPNOTSUPP;
2530
2531        return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2532}
2533EXPORT_SYMBOL(ib_get_vf_guid);
2534/**
2535 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2536 *     information) and set an appropriate memory region for registration.
2537 * @mr:             memory region
2538 * @data_sg:        dma mapped scatterlist for data
2539 * @data_sg_nents:  number of entries in data_sg
2540 * @data_sg_offset: offset in bytes into data_sg
2541 * @meta_sg:        dma mapped scatterlist for metadata
2542 * @meta_sg_nents:  number of entries in meta_sg
2543 * @meta_sg_offset: offset in bytes into meta_sg
2544 * @page_size:      page vector desired page size
2545 *
2546 * Constraints:
2547 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2548 *
2549 * Return: 0 on success.
2550 *
2551 * After this completes successfully, the  memory region
2552 * is ready for registration.
2553 */
2554int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2555                    int data_sg_nents, unsigned int *data_sg_offset,
2556                    struct scatterlist *meta_sg, int meta_sg_nents,
2557                    unsigned int *meta_sg_offset, unsigned int page_size)
2558{
2559        if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2560                     WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2561                return -EOPNOTSUPP;
2562
2563        mr->page_size = page_size;
2564
2565        return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2566                                            data_sg_offset, meta_sg,
2567                                            meta_sg_nents, meta_sg_offset);
2568}
2569EXPORT_SYMBOL(ib_map_mr_sg_pi);
2570
2571/**
2572 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2573 *     and set it the memory region.
2574 * @mr:            memory region
2575 * @sg:            dma mapped scatterlist
2576 * @sg_nents:      number of entries in sg
2577 * @sg_offset:     offset in bytes into sg
2578 * @page_size:     page vector desired page size
2579 *
2580 * Constraints:
2581 *
2582 * - The first sg element is allowed to have an offset.
2583 * - Each sg element must either be aligned to page_size or virtually
2584 *   contiguous to the previous element. In case an sg element has a
2585 *   non-contiguous offset, the mapping prefix will not include it.
2586 * - The last sg element is allowed to have length less than page_size.
2587 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2588 *   then only max_num_sg entries will be mapped.
2589 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2590 *   constraints holds and the page_size argument is ignored.
2591 *
2592 * Returns the number of sg elements that were mapped to the memory region.
2593 *
2594 * After this completes successfully, the  memory region
2595 * is ready for registration.
2596 */
2597int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2598                 unsigned int *sg_offset, unsigned int page_size)
2599{
2600        if (unlikely(!mr->device->ops.map_mr_sg))
2601                return -EOPNOTSUPP;
2602
2603        mr->page_size = page_size;
2604
2605        return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2606}
2607EXPORT_SYMBOL(ib_map_mr_sg);
2608
2609/**
2610 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2611 *     to a page vector
2612 * @mr:            memory region
2613 * @sgl:           dma mapped scatterlist
2614 * @sg_nents:      number of entries in sg
2615 * @sg_offset_p:   ==== =======================================================
2616 *                 IN   start offset in bytes into sg
2617 *                 OUT  offset in bytes for element n of the sg of the first
2618 *                      byte that has not been processed where n is the return
2619 *                      value of this function.
2620 *                 ==== =======================================================
2621 * @set_page:      driver page assignment function pointer
2622 *
2623 * Core service helper for drivers to convert the largest
2624 * prefix of given sg list to a page vector. The sg list
2625 * prefix converted is the prefix that meet the requirements
2626 * of ib_map_mr_sg.
2627 *
2628 * Returns the number of sg elements that were assigned to
2629 * a page vector.
2630 */
2631int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2632                unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2633{
2634        struct scatterlist *sg;
2635        u64 last_end_dma_addr = 0;
2636        unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2637        unsigned int last_page_off = 0;
2638        u64 page_mask = ~((u64)mr->page_size - 1);
2639        int i, ret;
2640
2641        if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2642                return -EINVAL;
2643
2644        mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2645        mr->length = 0;
2646
2647        for_each_sg(sgl, sg, sg_nents, i) {
2648                u64 dma_addr = sg_dma_address(sg) + sg_offset;
2649                u64 prev_addr = dma_addr;
2650                unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2651                u64 end_dma_addr = dma_addr + dma_len;
2652                u64 page_addr = dma_addr & page_mask;
2653
2654                /*
2655                 * For the second and later elements, check whether either the
2656                 * end of element i-1 or the start of element i is not aligned
2657                 * on a page boundary.
2658                 */
2659                if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2660                        /* Stop mapping if there is a gap. */
2661                        if (last_end_dma_addr != dma_addr)
2662                                break;
2663
2664                        /*
2665                         * Coalesce this element with the last. If it is small
2666                         * enough just update mr->length. Otherwise start
2667                         * mapping from the next page.
2668                         */
2669                        goto next_page;
2670                }
2671
2672                do {
2673                        ret = set_page(mr, page_addr);
2674                        if (unlikely(ret < 0)) {
2675                                sg_offset = prev_addr - sg_dma_address(sg);
2676                                mr->length += prev_addr - dma_addr;
2677                                if (sg_offset_p)
2678                                        *sg_offset_p = sg_offset;
2679                                return i || sg_offset ? i : ret;
2680                        }
2681                        prev_addr = page_addr;
2682next_page:
2683                        page_addr += mr->page_size;
2684                } while (page_addr < end_dma_addr);
2685
2686                mr->length += dma_len;
2687                last_end_dma_addr = end_dma_addr;
2688                last_page_off = end_dma_addr & ~page_mask;
2689
2690                sg_offset = 0;
2691        }
2692
2693        if (sg_offset_p)
2694                *sg_offset_p = 0;
2695        return i;
2696}
2697EXPORT_SYMBOL(ib_sg_to_pages);
2698
2699struct ib_drain_cqe {
2700        struct ib_cqe cqe;
2701        struct completion done;
2702};
2703
2704static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2705{
2706        struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2707                                                cqe);
2708
2709        complete(&cqe->done);
2710}
2711
2712/*
2713 * Post a WR and block until its completion is reaped for the SQ.
2714 */
2715static void __ib_drain_sq(struct ib_qp *qp)
2716{
2717        struct ib_cq *cq = qp->send_cq;
2718        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2719        struct ib_drain_cqe sdrain;
2720        struct ib_rdma_wr swr = {
2721                .wr = {
2722                        .next = NULL,
2723                        { .wr_cqe       = &sdrain.cqe, },
2724                        .opcode = IB_WR_RDMA_WRITE,
2725                },
2726        };
2727        int ret;
2728
2729        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2730        if (ret) {
2731                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2732                return;
2733        }
2734
2735        sdrain.cqe.done = ib_drain_qp_done;
2736        init_completion(&sdrain.done);
2737
2738        ret = ib_post_send(qp, &swr.wr, NULL);
2739        if (ret) {
2740                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2741                return;
2742        }
2743
2744        if (cq->poll_ctx == IB_POLL_DIRECT)
2745                while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2746                        ib_process_cq_direct(cq, -1);
2747        else
2748                wait_for_completion(&sdrain.done);
2749}
2750
2751/*
2752 * Post a WR and block until its completion is reaped for the RQ.
2753 */
2754static void __ib_drain_rq(struct ib_qp *qp)
2755{
2756        struct ib_cq *cq = qp->recv_cq;
2757        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2758        struct ib_drain_cqe rdrain;
2759        struct ib_recv_wr rwr = {};
2760        int ret;
2761
2762        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2763        if (ret) {
2764                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2765                return;
2766        }
2767
2768        rwr.wr_cqe = &rdrain.cqe;
2769        rdrain.cqe.done = ib_drain_qp_done;
2770        init_completion(&rdrain.done);
2771
2772        ret = ib_post_recv(qp, &rwr, NULL);
2773        if (ret) {
2774                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2775                return;
2776        }
2777
2778        if (cq->poll_ctx == IB_POLL_DIRECT)
2779                while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2780                        ib_process_cq_direct(cq, -1);
2781        else
2782                wait_for_completion(&rdrain.done);
2783}
2784
2785/**
2786 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2787 *                 application.
2788 * @qp:            queue pair to drain
2789 *
2790 * If the device has a provider-specific drain function, then
2791 * call that.  Otherwise call the generic drain function
2792 * __ib_drain_sq().
2793 *
2794 * The caller must:
2795 *
2796 * ensure there is room in the CQ and SQ for the drain work request and
2797 * completion.
2798 *
2799 * allocate the CQ using ib_alloc_cq().
2800 *
2801 * ensure that there are no other contexts that are posting WRs concurrently.
2802 * Otherwise the drain is not guaranteed.
2803 */
2804void ib_drain_sq(struct ib_qp *qp)
2805{
2806        if (qp->device->ops.drain_sq)
2807                qp->device->ops.drain_sq(qp);
2808        else
2809                __ib_drain_sq(qp);
2810        trace_cq_drain_complete(qp->send_cq);
2811}
2812EXPORT_SYMBOL(ib_drain_sq);
2813
2814/**
2815 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2816 *                 application.
2817 * @qp:            queue pair to drain
2818 *
2819 * If the device has a provider-specific drain function, then
2820 * call that.  Otherwise call the generic drain function
2821 * __ib_drain_rq().
2822 *
2823 * The caller must:
2824 *
2825 * ensure there is room in the CQ and RQ for the drain work request and
2826 * completion.
2827 *
2828 * allocate the CQ using ib_alloc_cq().
2829 *
2830 * ensure that there are no other contexts that are posting WRs concurrently.
2831 * Otherwise the drain is not guaranteed.
2832 */
2833void ib_drain_rq(struct ib_qp *qp)
2834{
2835        if (qp->device->ops.drain_rq)
2836                qp->device->ops.drain_rq(qp);
2837        else
2838                __ib_drain_rq(qp);
2839        trace_cq_drain_complete(qp->recv_cq);
2840}
2841EXPORT_SYMBOL(ib_drain_rq);
2842
2843/**
2844 * ib_drain_qp() - Block until all CQEs have been consumed by the
2845 *                 application on both the RQ and SQ.
2846 * @qp:            queue pair to drain
2847 *
2848 * The caller must:
2849 *
2850 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2851 * and completions.
2852 *
2853 * allocate the CQs using ib_alloc_cq().
2854 *
2855 * ensure that there are no other contexts that are posting WRs concurrently.
2856 * Otherwise the drain is not guaranteed.
2857 */
2858void ib_drain_qp(struct ib_qp *qp)
2859{
2860        ib_drain_sq(qp);
2861        if (!qp->srq)
2862                ib_drain_rq(qp);
2863}
2864EXPORT_SYMBOL(ib_drain_qp);
2865
2866struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2867                                     enum rdma_netdev_t type, const char *name,
2868                                     unsigned char name_assign_type,
2869                                     void (*setup)(struct net_device *))
2870{
2871        struct rdma_netdev_alloc_params params;
2872        struct net_device *netdev;
2873        int rc;
2874
2875        if (!device->ops.rdma_netdev_get_params)
2876                return ERR_PTR(-EOPNOTSUPP);
2877
2878        rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2879                                                &params);
2880        if (rc)
2881                return ERR_PTR(rc);
2882
2883        netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2884                                  setup, params.txqs, params.rxqs);
2885        if (!netdev)
2886                return ERR_PTR(-ENOMEM);
2887
2888        return netdev;
2889}
2890EXPORT_SYMBOL(rdma_alloc_netdev);
2891
2892int rdma_init_netdev(struct ib_device *device, u8 port_num,
2893                     enum rdma_netdev_t type, const char *name,
2894                     unsigned char name_assign_type,
2895                     void (*setup)(struct net_device *),
2896                     struct net_device *netdev)
2897{
2898        struct rdma_netdev_alloc_params params;
2899        int rc;
2900
2901        if (!device->ops.rdma_netdev_get_params)
2902                return -EOPNOTSUPP;
2903
2904        rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2905                                                &params);
2906        if (rc)
2907                return rc;
2908
2909        return params.initialize_rdma_netdev(device, port_num,
2910                                             netdev, params.param);
2911}
2912EXPORT_SYMBOL(rdma_init_netdev);
2913
2914void __rdma_block_iter_start(struct ib_block_iter *biter,
2915                             struct scatterlist *sglist, unsigned int nents,
2916                             unsigned long pgsz)
2917{
2918        memset(biter, 0, sizeof(struct ib_block_iter));
2919        biter->__sg = sglist;
2920        biter->__sg_nents = nents;
2921
2922        /* Driver provides best block size to use */
2923        biter->__pg_bit = __fls(pgsz);
2924}
2925EXPORT_SYMBOL(__rdma_block_iter_start);
2926
2927bool __rdma_block_iter_next(struct ib_block_iter *biter)
2928{
2929        unsigned int block_offset;
2930
2931        if (!biter->__sg_nents || !biter->__sg)
2932                return false;
2933
2934        biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2935        block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2936        biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2937
2938        if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2939                biter->__sg_advance = 0;
2940                biter->__sg = sg_next(biter->__sg);
2941                biter->__sg_nents--;
2942        }
2943
2944        return true;
2945}
2946EXPORT_SYMBOL(__rdma_block_iter_next);
2947