linux/drivers/input/input.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * The input core
   4 *
   5 * Copyright (c) 1999-2002 Vojtech Pavlik
   6 */
   7
   8
   9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/types.h>
  13#include <linux/idr.h>
  14#include <linux/input/mt.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/random.h>
  18#include <linux/major.h>
  19#include <linux/proc_fs.h>
  20#include <linux/sched.h>
  21#include <linux/seq_file.h>
  22#include <linux/poll.h>
  23#include <linux/device.h>
  24#include <linux/mutex.h>
  25#include <linux/rcupdate.h>
  26#include "input-compat.h"
  27#include "input-poller.h"
  28
  29MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  30MODULE_DESCRIPTION("Input core");
  31MODULE_LICENSE("GPL");
  32
  33#define INPUT_MAX_CHAR_DEVICES          1024
  34#define INPUT_FIRST_DYNAMIC_DEV         256
  35static DEFINE_IDA(input_ida);
  36
  37static LIST_HEAD(input_dev_list);
  38static LIST_HEAD(input_handler_list);
  39
  40/*
  41 * input_mutex protects access to both input_dev_list and input_handler_list.
  42 * This also causes input_[un]register_device and input_[un]register_handler
  43 * be mutually exclusive which simplifies locking in drivers implementing
  44 * input handlers.
  45 */
  46static DEFINE_MUTEX(input_mutex);
  47
  48static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
  49
  50static inline int is_event_supported(unsigned int code,
  51                                     unsigned long *bm, unsigned int max)
  52{
  53        return code <= max && test_bit(code, bm);
  54}
  55
  56static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  57{
  58        if (fuzz) {
  59                if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  60                        return old_val;
  61
  62                if (value > old_val - fuzz && value < old_val + fuzz)
  63                        return (old_val * 3 + value) / 4;
  64
  65                if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  66                        return (old_val + value) / 2;
  67        }
  68
  69        return value;
  70}
  71
  72static void input_start_autorepeat(struct input_dev *dev, int code)
  73{
  74        if (test_bit(EV_REP, dev->evbit) &&
  75            dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  76            dev->timer.function) {
  77                dev->repeat_key = code;
  78                mod_timer(&dev->timer,
  79                          jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  80        }
  81}
  82
  83static void input_stop_autorepeat(struct input_dev *dev)
  84{
  85        del_timer(&dev->timer);
  86}
  87
  88/*
  89 * Pass event first through all filters and then, if event has not been
  90 * filtered out, through all open handles. This function is called with
  91 * dev->event_lock held and interrupts disabled.
  92 */
  93static unsigned int input_to_handler(struct input_handle *handle,
  94                        struct input_value *vals, unsigned int count)
  95{
  96        struct input_handler *handler = handle->handler;
  97        struct input_value *end = vals;
  98        struct input_value *v;
  99
 100        if (handler->filter) {
 101                for (v = vals; v != vals + count; v++) {
 102                        if (handler->filter(handle, v->type, v->code, v->value))
 103                                continue;
 104                        if (end != v)
 105                                *end = *v;
 106                        end++;
 107                }
 108                count = end - vals;
 109        }
 110
 111        if (!count)
 112                return 0;
 113
 114        if (handler->events)
 115                handler->events(handle, vals, count);
 116        else if (handler->event)
 117                for (v = vals; v != vals + count; v++)
 118                        handler->event(handle, v->type, v->code, v->value);
 119
 120        return count;
 121}
 122
 123/*
 124 * Pass values first through all filters and then, if event has not been
 125 * filtered out, through all open handles. This function is called with
 126 * dev->event_lock held and interrupts disabled.
 127 */
 128static void input_pass_values(struct input_dev *dev,
 129                              struct input_value *vals, unsigned int count)
 130{
 131        struct input_handle *handle;
 132        struct input_value *v;
 133
 134        if (!count)
 135                return;
 136
 137        rcu_read_lock();
 138
 139        handle = rcu_dereference(dev->grab);
 140        if (handle) {
 141                count = input_to_handler(handle, vals, count);
 142        } else {
 143                list_for_each_entry_rcu(handle, &dev->h_list, d_node)
 144                        if (handle->open) {
 145                                count = input_to_handler(handle, vals, count);
 146                                if (!count)
 147                                        break;
 148                        }
 149        }
 150
 151        rcu_read_unlock();
 152
 153        /* trigger auto repeat for key events */
 154        if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
 155                for (v = vals; v != vals + count; v++) {
 156                        if (v->type == EV_KEY && v->value != 2) {
 157                                if (v->value)
 158                                        input_start_autorepeat(dev, v->code);
 159                                else
 160                                        input_stop_autorepeat(dev);
 161                        }
 162                }
 163        }
 164}
 165
 166static void input_pass_event(struct input_dev *dev,
 167                             unsigned int type, unsigned int code, int value)
 168{
 169        struct input_value vals[] = { { type, code, value } };
 170
 171        input_pass_values(dev, vals, ARRAY_SIZE(vals));
 172}
 173
 174/*
 175 * Generate software autorepeat event. Note that we take
 176 * dev->event_lock here to avoid racing with input_event
 177 * which may cause keys get "stuck".
 178 */
 179static void input_repeat_key(struct timer_list *t)
 180{
 181        struct input_dev *dev = from_timer(dev, t, timer);
 182        unsigned long flags;
 183
 184        spin_lock_irqsave(&dev->event_lock, flags);
 185
 186        if (test_bit(dev->repeat_key, dev->key) &&
 187            is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
 188                struct input_value vals[] =  {
 189                        { EV_KEY, dev->repeat_key, 2 },
 190                        input_value_sync
 191                };
 192
 193                input_set_timestamp(dev, ktime_get());
 194                input_pass_values(dev, vals, ARRAY_SIZE(vals));
 195
 196                if (dev->rep[REP_PERIOD])
 197                        mod_timer(&dev->timer, jiffies +
 198                                        msecs_to_jiffies(dev->rep[REP_PERIOD]));
 199        }
 200
 201        spin_unlock_irqrestore(&dev->event_lock, flags);
 202}
 203
 204#define INPUT_IGNORE_EVENT      0
 205#define INPUT_PASS_TO_HANDLERS  1
 206#define INPUT_PASS_TO_DEVICE    2
 207#define INPUT_SLOT              4
 208#define INPUT_FLUSH             8
 209#define INPUT_PASS_TO_ALL       (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
 210
 211static int input_handle_abs_event(struct input_dev *dev,
 212                                  unsigned int code, int *pval)
 213{
 214        struct input_mt *mt = dev->mt;
 215        bool is_mt_event;
 216        int *pold;
 217
 218        if (code == ABS_MT_SLOT) {
 219                /*
 220                 * "Stage" the event; we'll flush it later, when we
 221                 * get actual touch data.
 222                 */
 223                if (mt && *pval >= 0 && *pval < mt->num_slots)
 224                        mt->slot = *pval;
 225
 226                return INPUT_IGNORE_EVENT;
 227        }
 228
 229        is_mt_event = input_is_mt_value(code);
 230
 231        if (!is_mt_event) {
 232                pold = &dev->absinfo[code].value;
 233        } else if (mt) {
 234                pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
 235        } else {
 236                /*
 237                 * Bypass filtering for multi-touch events when
 238                 * not employing slots.
 239                 */
 240                pold = NULL;
 241        }
 242
 243        if (pold) {
 244                *pval = input_defuzz_abs_event(*pval, *pold,
 245                                                dev->absinfo[code].fuzz);
 246                if (*pold == *pval)
 247                        return INPUT_IGNORE_EVENT;
 248
 249                *pold = *pval;
 250        }
 251
 252        /* Flush pending "slot" event */
 253        if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
 254                input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
 255                return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
 256        }
 257
 258        return INPUT_PASS_TO_HANDLERS;
 259}
 260
 261static int input_get_disposition(struct input_dev *dev,
 262                          unsigned int type, unsigned int code, int *pval)
 263{
 264        int disposition = INPUT_IGNORE_EVENT;
 265        int value = *pval;
 266
 267        switch (type) {
 268
 269        case EV_SYN:
 270                switch (code) {
 271                case SYN_CONFIG:
 272                        disposition = INPUT_PASS_TO_ALL;
 273                        break;
 274
 275                case SYN_REPORT:
 276                        disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
 277                        break;
 278                case SYN_MT_REPORT:
 279                        disposition = INPUT_PASS_TO_HANDLERS;
 280                        break;
 281                }
 282                break;
 283
 284        case EV_KEY:
 285                if (is_event_supported(code, dev->keybit, KEY_MAX)) {
 286
 287                        /* auto-repeat bypasses state updates */
 288                        if (value == 2) {
 289                                disposition = INPUT_PASS_TO_HANDLERS;
 290                                break;
 291                        }
 292
 293                        if (!!test_bit(code, dev->key) != !!value) {
 294
 295                                __change_bit(code, dev->key);
 296                                disposition = INPUT_PASS_TO_HANDLERS;
 297                        }
 298                }
 299                break;
 300
 301        case EV_SW:
 302                if (is_event_supported(code, dev->swbit, SW_MAX) &&
 303                    !!test_bit(code, dev->sw) != !!value) {
 304
 305                        __change_bit(code, dev->sw);
 306                        disposition = INPUT_PASS_TO_HANDLERS;
 307                }
 308                break;
 309
 310        case EV_ABS:
 311                if (is_event_supported(code, dev->absbit, ABS_MAX))
 312                        disposition = input_handle_abs_event(dev, code, &value);
 313
 314                break;
 315
 316        case EV_REL:
 317                if (is_event_supported(code, dev->relbit, REL_MAX) && value)
 318                        disposition = INPUT_PASS_TO_HANDLERS;
 319
 320                break;
 321
 322        case EV_MSC:
 323                if (is_event_supported(code, dev->mscbit, MSC_MAX))
 324                        disposition = INPUT_PASS_TO_ALL;
 325
 326                break;
 327
 328        case EV_LED:
 329                if (is_event_supported(code, dev->ledbit, LED_MAX) &&
 330                    !!test_bit(code, dev->led) != !!value) {
 331
 332                        __change_bit(code, dev->led);
 333                        disposition = INPUT_PASS_TO_ALL;
 334                }
 335                break;
 336
 337        case EV_SND:
 338                if (is_event_supported(code, dev->sndbit, SND_MAX)) {
 339
 340                        if (!!test_bit(code, dev->snd) != !!value)
 341                                __change_bit(code, dev->snd);
 342                        disposition = INPUT_PASS_TO_ALL;
 343                }
 344                break;
 345
 346        case EV_REP:
 347                if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
 348                        dev->rep[code] = value;
 349                        disposition = INPUT_PASS_TO_ALL;
 350                }
 351                break;
 352
 353        case EV_FF:
 354                if (value >= 0)
 355                        disposition = INPUT_PASS_TO_ALL;
 356                break;
 357
 358        case EV_PWR:
 359                disposition = INPUT_PASS_TO_ALL;
 360                break;
 361        }
 362
 363        *pval = value;
 364        return disposition;
 365}
 366
 367static void input_handle_event(struct input_dev *dev,
 368                               unsigned int type, unsigned int code, int value)
 369{
 370        int disposition = input_get_disposition(dev, type, code, &value);
 371
 372        if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
 373                add_input_randomness(type, code, value);
 374
 375        if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
 376                dev->event(dev, type, code, value);
 377
 378        if (!dev->vals)
 379                return;
 380
 381        if (disposition & INPUT_PASS_TO_HANDLERS) {
 382                struct input_value *v;
 383
 384                if (disposition & INPUT_SLOT) {
 385                        v = &dev->vals[dev->num_vals++];
 386                        v->type = EV_ABS;
 387                        v->code = ABS_MT_SLOT;
 388                        v->value = dev->mt->slot;
 389                }
 390
 391                v = &dev->vals[dev->num_vals++];
 392                v->type = type;
 393                v->code = code;
 394                v->value = value;
 395        }
 396
 397        if (disposition & INPUT_FLUSH) {
 398                if (dev->num_vals >= 2)
 399                        input_pass_values(dev, dev->vals, dev->num_vals);
 400                dev->num_vals = 0;
 401                /*
 402                 * Reset the timestamp on flush so we won't end up
 403                 * with a stale one. Note we only need to reset the
 404                 * monolithic one as we use its presence when deciding
 405                 * whether to generate a synthetic timestamp.
 406                 */
 407                dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
 408        } else if (dev->num_vals >= dev->max_vals - 2) {
 409                dev->vals[dev->num_vals++] = input_value_sync;
 410                input_pass_values(dev, dev->vals, dev->num_vals);
 411                dev->num_vals = 0;
 412        }
 413
 414}
 415
 416/**
 417 * input_event() - report new input event
 418 * @dev: device that generated the event
 419 * @type: type of the event
 420 * @code: event code
 421 * @value: value of the event
 422 *
 423 * This function should be used by drivers implementing various input
 424 * devices to report input events. See also input_inject_event().
 425 *
 426 * NOTE: input_event() may be safely used right after input device was
 427 * allocated with input_allocate_device(), even before it is registered
 428 * with input_register_device(), but the event will not reach any of the
 429 * input handlers. Such early invocation of input_event() may be used
 430 * to 'seed' initial state of a switch or initial position of absolute
 431 * axis, etc.
 432 */
 433void input_event(struct input_dev *dev,
 434                 unsigned int type, unsigned int code, int value)
 435{
 436        unsigned long flags;
 437
 438        if (is_event_supported(type, dev->evbit, EV_MAX)) {
 439
 440                spin_lock_irqsave(&dev->event_lock, flags);
 441                input_handle_event(dev, type, code, value);
 442                spin_unlock_irqrestore(&dev->event_lock, flags);
 443        }
 444}
 445EXPORT_SYMBOL(input_event);
 446
 447/**
 448 * input_inject_event() - send input event from input handler
 449 * @handle: input handle to send event through
 450 * @type: type of the event
 451 * @code: event code
 452 * @value: value of the event
 453 *
 454 * Similar to input_event() but will ignore event if device is
 455 * "grabbed" and handle injecting event is not the one that owns
 456 * the device.
 457 */
 458void input_inject_event(struct input_handle *handle,
 459                        unsigned int type, unsigned int code, int value)
 460{
 461        struct input_dev *dev = handle->dev;
 462        struct input_handle *grab;
 463        unsigned long flags;
 464
 465        if (is_event_supported(type, dev->evbit, EV_MAX)) {
 466                spin_lock_irqsave(&dev->event_lock, flags);
 467
 468                rcu_read_lock();
 469                grab = rcu_dereference(dev->grab);
 470                if (!grab || grab == handle)
 471                        input_handle_event(dev, type, code, value);
 472                rcu_read_unlock();
 473
 474                spin_unlock_irqrestore(&dev->event_lock, flags);
 475        }
 476}
 477EXPORT_SYMBOL(input_inject_event);
 478
 479/**
 480 * input_alloc_absinfo - allocates array of input_absinfo structs
 481 * @dev: the input device emitting absolute events
 482 *
 483 * If the absinfo struct the caller asked for is already allocated, this
 484 * functions will not do anything.
 485 */
 486void input_alloc_absinfo(struct input_dev *dev)
 487{
 488        if (dev->absinfo)
 489                return;
 490
 491        dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
 492        if (!dev->absinfo) {
 493                dev_err(dev->dev.parent ?: &dev->dev,
 494                        "%s: unable to allocate memory\n", __func__);
 495                /*
 496                 * We will handle this allocation failure in
 497                 * input_register_device() when we refuse to register input
 498                 * device with ABS bits but without absinfo.
 499                 */
 500        }
 501}
 502EXPORT_SYMBOL(input_alloc_absinfo);
 503
 504void input_set_abs_params(struct input_dev *dev, unsigned int axis,
 505                          int min, int max, int fuzz, int flat)
 506{
 507        struct input_absinfo *absinfo;
 508
 509        input_alloc_absinfo(dev);
 510        if (!dev->absinfo)
 511                return;
 512
 513        absinfo = &dev->absinfo[axis];
 514        absinfo->minimum = min;
 515        absinfo->maximum = max;
 516        absinfo->fuzz = fuzz;
 517        absinfo->flat = flat;
 518
 519        __set_bit(EV_ABS, dev->evbit);
 520        __set_bit(axis, dev->absbit);
 521}
 522EXPORT_SYMBOL(input_set_abs_params);
 523
 524
 525/**
 526 * input_grab_device - grabs device for exclusive use
 527 * @handle: input handle that wants to own the device
 528 *
 529 * When a device is grabbed by an input handle all events generated by
 530 * the device are delivered only to this handle. Also events injected
 531 * by other input handles are ignored while device is grabbed.
 532 */
 533int input_grab_device(struct input_handle *handle)
 534{
 535        struct input_dev *dev = handle->dev;
 536        int retval;
 537
 538        retval = mutex_lock_interruptible(&dev->mutex);
 539        if (retval)
 540                return retval;
 541
 542        if (dev->grab) {
 543                retval = -EBUSY;
 544                goto out;
 545        }
 546
 547        rcu_assign_pointer(dev->grab, handle);
 548
 549 out:
 550        mutex_unlock(&dev->mutex);
 551        return retval;
 552}
 553EXPORT_SYMBOL(input_grab_device);
 554
 555static void __input_release_device(struct input_handle *handle)
 556{
 557        struct input_dev *dev = handle->dev;
 558        struct input_handle *grabber;
 559
 560        grabber = rcu_dereference_protected(dev->grab,
 561                                            lockdep_is_held(&dev->mutex));
 562        if (grabber == handle) {
 563                rcu_assign_pointer(dev->grab, NULL);
 564                /* Make sure input_pass_event() notices that grab is gone */
 565                synchronize_rcu();
 566
 567                list_for_each_entry(handle, &dev->h_list, d_node)
 568                        if (handle->open && handle->handler->start)
 569                                handle->handler->start(handle);
 570        }
 571}
 572
 573/**
 574 * input_release_device - release previously grabbed device
 575 * @handle: input handle that owns the device
 576 *
 577 * Releases previously grabbed device so that other input handles can
 578 * start receiving input events. Upon release all handlers attached
 579 * to the device have their start() method called so they have a change
 580 * to synchronize device state with the rest of the system.
 581 */
 582void input_release_device(struct input_handle *handle)
 583{
 584        struct input_dev *dev = handle->dev;
 585
 586        mutex_lock(&dev->mutex);
 587        __input_release_device(handle);
 588        mutex_unlock(&dev->mutex);
 589}
 590EXPORT_SYMBOL(input_release_device);
 591
 592/**
 593 * input_open_device - open input device
 594 * @handle: handle through which device is being accessed
 595 *
 596 * This function should be called by input handlers when they
 597 * want to start receive events from given input device.
 598 */
 599int input_open_device(struct input_handle *handle)
 600{
 601        struct input_dev *dev = handle->dev;
 602        int retval;
 603
 604        retval = mutex_lock_interruptible(&dev->mutex);
 605        if (retval)
 606                return retval;
 607
 608        if (dev->going_away) {
 609                retval = -ENODEV;
 610                goto out;
 611        }
 612
 613        handle->open++;
 614
 615        if (dev->users++) {
 616                /*
 617                 * Device is already opened, so we can exit immediately and
 618                 * report success.
 619                 */
 620                goto out;
 621        }
 622
 623        if (dev->open) {
 624                retval = dev->open(dev);
 625                if (retval) {
 626                        dev->users--;
 627                        handle->open--;
 628                        /*
 629                         * Make sure we are not delivering any more events
 630                         * through this handle
 631                         */
 632                        synchronize_rcu();
 633                        goto out;
 634                }
 635        }
 636
 637        if (dev->poller)
 638                input_dev_poller_start(dev->poller);
 639
 640 out:
 641        mutex_unlock(&dev->mutex);
 642        return retval;
 643}
 644EXPORT_SYMBOL(input_open_device);
 645
 646int input_flush_device(struct input_handle *handle, struct file *file)
 647{
 648        struct input_dev *dev = handle->dev;
 649        int retval;
 650
 651        retval = mutex_lock_interruptible(&dev->mutex);
 652        if (retval)
 653                return retval;
 654
 655        if (dev->flush)
 656                retval = dev->flush(dev, file);
 657
 658        mutex_unlock(&dev->mutex);
 659        return retval;
 660}
 661EXPORT_SYMBOL(input_flush_device);
 662
 663/**
 664 * input_close_device - close input device
 665 * @handle: handle through which device is being accessed
 666 *
 667 * This function should be called by input handlers when they
 668 * want to stop receive events from given input device.
 669 */
 670void input_close_device(struct input_handle *handle)
 671{
 672        struct input_dev *dev = handle->dev;
 673
 674        mutex_lock(&dev->mutex);
 675
 676        __input_release_device(handle);
 677
 678        if (!--dev->users) {
 679                if (dev->poller)
 680                        input_dev_poller_stop(dev->poller);
 681
 682                if (dev->close)
 683                        dev->close(dev);
 684        }
 685
 686        if (!--handle->open) {
 687                /*
 688                 * synchronize_rcu() makes sure that input_pass_event()
 689                 * completed and that no more input events are delivered
 690                 * through this handle
 691                 */
 692                synchronize_rcu();
 693        }
 694
 695        mutex_unlock(&dev->mutex);
 696}
 697EXPORT_SYMBOL(input_close_device);
 698
 699/*
 700 * Simulate keyup events for all keys that are marked as pressed.
 701 * The function must be called with dev->event_lock held.
 702 */
 703static void input_dev_release_keys(struct input_dev *dev)
 704{
 705        bool need_sync = false;
 706        int code;
 707
 708        if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
 709                for_each_set_bit(code, dev->key, KEY_CNT) {
 710                        input_pass_event(dev, EV_KEY, code, 0);
 711                        need_sync = true;
 712                }
 713
 714                if (need_sync)
 715                        input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
 716
 717                memset(dev->key, 0, sizeof(dev->key));
 718        }
 719}
 720
 721/*
 722 * Prepare device for unregistering
 723 */
 724static void input_disconnect_device(struct input_dev *dev)
 725{
 726        struct input_handle *handle;
 727
 728        /*
 729         * Mark device as going away. Note that we take dev->mutex here
 730         * not to protect access to dev->going_away but rather to ensure
 731         * that there are no threads in the middle of input_open_device()
 732         */
 733        mutex_lock(&dev->mutex);
 734        dev->going_away = true;
 735        mutex_unlock(&dev->mutex);
 736
 737        spin_lock_irq(&dev->event_lock);
 738
 739        /*
 740         * Simulate keyup events for all pressed keys so that handlers
 741         * are not left with "stuck" keys. The driver may continue
 742         * generate events even after we done here but they will not
 743         * reach any handlers.
 744         */
 745        input_dev_release_keys(dev);
 746
 747        list_for_each_entry(handle, &dev->h_list, d_node)
 748                handle->open = 0;
 749
 750        spin_unlock_irq(&dev->event_lock);
 751}
 752
 753/**
 754 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
 755 * @ke: keymap entry containing scancode to be converted.
 756 * @scancode: pointer to the location where converted scancode should
 757 *      be stored.
 758 *
 759 * This function is used to convert scancode stored in &struct keymap_entry
 760 * into scalar form understood by legacy keymap handling methods. These
 761 * methods expect scancodes to be represented as 'unsigned int'.
 762 */
 763int input_scancode_to_scalar(const struct input_keymap_entry *ke,
 764                             unsigned int *scancode)
 765{
 766        switch (ke->len) {
 767        case 1:
 768                *scancode = *((u8 *)ke->scancode);
 769                break;
 770
 771        case 2:
 772                *scancode = *((u16 *)ke->scancode);
 773                break;
 774
 775        case 4:
 776                *scancode = *((u32 *)ke->scancode);
 777                break;
 778
 779        default:
 780                return -EINVAL;
 781        }
 782
 783        return 0;
 784}
 785EXPORT_SYMBOL(input_scancode_to_scalar);
 786
 787/*
 788 * Those routines handle the default case where no [gs]etkeycode() is
 789 * defined. In this case, an array indexed by the scancode is used.
 790 */
 791
 792static unsigned int input_fetch_keycode(struct input_dev *dev,
 793                                        unsigned int index)
 794{
 795        switch (dev->keycodesize) {
 796        case 1:
 797                return ((u8 *)dev->keycode)[index];
 798
 799        case 2:
 800                return ((u16 *)dev->keycode)[index];
 801
 802        default:
 803                return ((u32 *)dev->keycode)[index];
 804        }
 805}
 806
 807static int input_default_getkeycode(struct input_dev *dev,
 808                                    struct input_keymap_entry *ke)
 809{
 810        unsigned int index;
 811        int error;
 812
 813        if (!dev->keycodesize)
 814                return -EINVAL;
 815
 816        if (ke->flags & INPUT_KEYMAP_BY_INDEX)
 817                index = ke->index;
 818        else {
 819                error = input_scancode_to_scalar(ke, &index);
 820                if (error)
 821                        return error;
 822        }
 823
 824        if (index >= dev->keycodemax)
 825                return -EINVAL;
 826
 827        ke->keycode = input_fetch_keycode(dev, index);
 828        ke->index = index;
 829        ke->len = sizeof(index);
 830        memcpy(ke->scancode, &index, sizeof(index));
 831
 832        return 0;
 833}
 834
 835static int input_default_setkeycode(struct input_dev *dev,
 836                                    const struct input_keymap_entry *ke,
 837                                    unsigned int *old_keycode)
 838{
 839        unsigned int index;
 840        int error;
 841        int i;
 842
 843        if (!dev->keycodesize)
 844                return -EINVAL;
 845
 846        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 847                index = ke->index;
 848        } else {
 849                error = input_scancode_to_scalar(ke, &index);
 850                if (error)
 851                        return error;
 852        }
 853
 854        if (index >= dev->keycodemax)
 855                return -EINVAL;
 856
 857        if (dev->keycodesize < sizeof(ke->keycode) &&
 858                        (ke->keycode >> (dev->keycodesize * 8)))
 859                return -EINVAL;
 860
 861        switch (dev->keycodesize) {
 862                case 1: {
 863                        u8 *k = (u8 *)dev->keycode;
 864                        *old_keycode = k[index];
 865                        k[index] = ke->keycode;
 866                        break;
 867                }
 868                case 2: {
 869                        u16 *k = (u16 *)dev->keycode;
 870                        *old_keycode = k[index];
 871                        k[index] = ke->keycode;
 872                        break;
 873                }
 874                default: {
 875                        u32 *k = (u32 *)dev->keycode;
 876                        *old_keycode = k[index];
 877                        k[index] = ke->keycode;
 878                        break;
 879                }
 880        }
 881
 882        if (*old_keycode <= KEY_MAX) {
 883                __clear_bit(*old_keycode, dev->keybit);
 884                for (i = 0; i < dev->keycodemax; i++) {
 885                        if (input_fetch_keycode(dev, i) == *old_keycode) {
 886                                __set_bit(*old_keycode, dev->keybit);
 887                                /* Setting the bit twice is useless, so break */
 888                                break;
 889                        }
 890                }
 891        }
 892
 893        __set_bit(ke->keycode, dev->keybit);
 894        return 0;
 895}
 896
 897/**
 898 * input_get_keycode - retrieve keycode currently mapped to a given scancode
 899 * @dev: input device which keymap is being queried
 900 * @ke: keymap entry
 901 *
 902 * This function should be called by anyone interested in retrieving current
 903 * keymap. Presently evdev handlers use it.
 904 */
 905int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
 906{
 907        unsigned long flags;
 908        int retval;
 909
 910        spin_lock_irqsave(&dev->event_lock, flags);
 911        retval = dev->getkeycode(dev, ke);
 912        spin_unlock_irqrestore(&dev->event_lock, flags);
 913
 914        return retval;
 915}
 916EXPORT_SYMBOL(input_get_keycode);
 917
 918/**
 919 * input_set_keycode - attribute a keycode to a given scancode
 920 * @dev: input device which keymap is being updated
 921 * @ke: new keymap entry
 922 *
 923 * This function should be called by anyone needing to update current
 924 * keymap. Presently keyboard and evdev handlers use it.
 925 */
 926int input_set_keycode(struct input_dev *dev,
 927                      const struct input_keymap_entry *ke)
 928{
 929        unsigned long flags;
 930        unsigned int old_keycode;
 931        int retval;
 932
 933        if (ke->keycode > KEY_MAX)
 934                return -EINVAL;
 935
 936        spin_lock_irqsave(&dev->event_lock, flags);
 937
 938        retval = dev->setkeycode(dev, ke, &old_keycode);
 939        if (retval)
 940                goto out;
 941
 942        /* Make sure KEY_RESERVED did not get enabled. */
 943        __clear_bit(KEY_RESERVED, dev->keybit);
 944
 945        /*
 946         * Simulate keyup event if keycode is not present
 947         * in the keymap anymore
 948         */
 949        if (old_keycode > KEY_MAX) {
 950                dev_warn(dev->dev.parent ?: &dev->dev,
 951                         "%s: got too big old keycode %#x\n",
 952                         __func__, old_keycode);
 953        } else if (test_bit(EV_KEY, dev->evbit) &&
 954                   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
 955                   __test_and_clear_bit(old_keycode, dev->key)) {
 956                struct input_value vals[] =  {
 957                        { EV_KEY, old_keycode, 0 },
 958                        input_value_sync
 959                };
 960
 961                input_pass_values(dev, vals, ARRAY_SIZE(vals));
 962        }
 963
 964 out:
 965        spin_unlock_irqrestore(&dev->event_lock, flags);
 966
 967        return retval;
 968}
 969EXPORT_SYMBOL(input_set_keycode);
 970
 971bool input_match_device_id(const struct input_dev *dev,
 972                           const struct input_device_id *id)
 973{
 974        if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
 975                if (id->bustype != dev->id.bustype)
 976                        return false;
 977
 978        if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
 979                if (id->vendor != dev->id.vendor)
 980                        return false;
 981
 982        if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
 983                if (id->product != dev->id.product)
 984                        return false;
 985
 986        if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
 987                if (id->version != dev->id.version)
 988                        return false;
 989
 990        if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
 991            !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
 992            !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
 993            !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
 994            !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
 995            !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
 996            !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
 997            !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
 998            !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
 999            !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1000                return false;
1001        }
1002
1003        return true;
1004}
1005EXPORT_SYMBOL(input_match_device_id);
1006
1007static const struct input_device_id *input_match_device(struct input_handler *handler,
1008                                                        struct input_dev *dev)
1009{
1010        const struct input_device_id *id;
1011
1012        for (id = handler->id_table; id->flags || id->driver_info; id++) {
1013                if (input_match_device_id(dev, id) &&
1014                    (!handler->match || handler->match(handler, dev))) {
1015                        return id;
1016                }
1017        }
1018
1019        return NULL;
1020}
1021
1022static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1023{
1024        const struct input_device_id *id;
1025        int error;
1026
1027        id = input_match_device(handler, dev);
1028        if (!id)
1029                return -ENODEV;
1030
1031        error = handler->connect(handler, dev, id);
1032        if (error && error != -ENODEV)
1033                pr_err("failed to attach handler %s to device %s, error: %d\n",
1034                       handler->name, kobject_name(&dev->dev.kobj), error);
1035
1036        return error;
1037}
1038
1039#ifdef CONFIG_COMPAT
1040
1041static int input_bits_to_string(char *buf, int buf_size,
1042                                unsigned long bits, bool skip_empty)
1043{
1044        int len = 0;
1045
1046        if (in_compat_syscall()) {
1047                u32 dword = bits >> 32;
1048                if (dword || !skip_empty)
1049                        len += snprintf(buf, buf_size, "%x ", dword);
1050
1051                dword = bits & 0xffffffffUL;
1052                if (dword || !skip_empty || len)
1053                        len += snprintf(buf + len, max(buf_size - len, 0),
1054                                        "%x", dword);
1055        } else {
1056                if (bits || !skip_empty)
1057                        len += snprintf(buf, buf_size, "%lx", bits);
1058        }
1059
1060        return len;
1061}
1062
1063#else /* !CONFIG_COMPAT */
1064
1065static int input_bits_to_string(char *buf, int buf_size,
1066                                unsigned long bits, bool skip_empty)
1067{
1068        return bits || !skip_empty ?
1069                snprintf(buf, buf_size, "%lx", bits) : 0;
1070}
1071
1072#endif
1073
1074#ifdef CONFIG_PROC_FS
1075
1076static struct proc_dir_entry *proc_bus_input_dir;
1077static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1078static int input_devices_state;
1079
1080static inline void input_wakeup_procfs_readers(void)
1081{
1082        input_devices_state++;
1083        wake_up(&input_devices_poll_wait);
1084}
1085
1086static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1087{
1088        poll_wait(file, &input_devices_poll_wait, wait);
1089        if (file->f_version != input_devices_state) {
1090                file->f_version = input_devices_state;
1091                return EPOLLIN | EPOLLRDNORM;
1092        }
1093
1094        return 0;
1095}
1096
1097union input_seq_state {
1098        struct {
1099                unsigned short pos;
1100                bool mutex_acquired;
1101        };
1102        void *p;
1103};
1104
1105static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1106{
1107        union input_seq_state *state = (union input_seq_state *)&seq->private;
1108        int error;
1109
1110        /* We need to fit into seq->private pointer */
1111        BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1112
1113        error = mutex_lock_interruptible(&input_mutex);
1114        if (error) {
1115                state->mutex_acquired = false;
1116                return ERR_PTR(error);
1117        }
1118
1119        state->mutex_acquired = true;
1120
1121        return seq_list_start(&input_dev_list, *pos);
1122}
1123
1124static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1125{
1126        return seq_list_next(v, &input_dev_list, pos);
1127}
1128
1129static void input_seq_stop(struct seq_file *seq, void *v)
1130{
1131        union input_seq_state *state = (union input_seq_state *)&seq->private;
1132
1133        if (state->mutex_acquired)
1134                mutex_unlock(&input_mutex);
1135}
1136
1137static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1138                                   unsigned long *bitmap, int max)
1139{
1140        int i;
1141        bool skip_empty = true;
1142        char buf[18];
1143
1144        seq_printf(seq, "B: %s=", name);
1145
1146        for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1147                if (input_bits_to_string(buf, sizeof(buf),
1148                                         bitmap[i], skip_empty)) {
1149                        skip_empty = false;
1150                        seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1151                }
1152        }
1153
1154        /*
1155         * If no output was produced print a single 0.
1156         */
1157        if (skip_empty)
1158                seq_putc(seq, '0');
1159
1160        seq_putc(seq, '\n');
1161}
1162
1163static int input_devices_seq_show(struct seq_file *seq, void *v)
1164{
1165        struct input_dev *dev = container_of(v, struct input_dev, node);
1166        const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1167        struct input_handle *handle;
1168
1169        seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1170                   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1171
1172        seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1173        seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1174        seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1175        seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1176        seq_puts(seq, "H: Handlers=");
1177
1178        list_for_each_entry(handle, &dev->h_list, d_node)
1179                seq_printf(seq, "%s ", handle->name);
1180        seq_putc(seq, '\n');
1181
1182        input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1183
1184        input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1185        if (test_bit(EV_KEY, dev->evbit))
1186                input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1187        if (test_bit(EV_REL, dev->evbit))
1188                input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1189        if (test_bit(EV_ABS, dev->evbit))
1190                input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1191        if (test_bit(EV_MSC, dev->evbit))
1192                input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1193        if (test_bit(EV_LED, dev->evbit))
1194                input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1195        if (test_bit(EV_SND, dev->evbit))
1196                input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1197        if (test_bit(EV_FF, dev->evbit))
1198                input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1199        if (test_bit(EV_SW, dev->evbit))
1200                input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1201
1202        seq_putc(seq, '\n');
1203
1204        kfree(path);
1205        return 0;
1206}
1207
1208static const struct seq_operations input_devices_seq_ops = {
1209        .start  = input_devices_seq_start,
1210        .next   = input_devices_seq_next,
1211        .stop   = input_seq_stop,
1212        .show   = input_devices_seq_show,
1213};
1214
1215static int input_proc_devices_open(struct inode *inode, struct file *file)
1216{
1217        return seq_open(file, &input_devices_seq_ops);
1218}
1219
1220static const struct proc_ops input_devices_proc_ops = {
1221        .proc_open      = input_proc_devices_open,
1222        .proc_poll      = input_proc_devices_poll,
1223        .proc_read      = seq_read,
1224        .proc_lseek     = seq_lseek,
1225        .proc_release   = seq_release,
1226};
1227
1228static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1229{
1230        union input_seq_state *state = (union input_seq_state *)&seq->private;
1231        int error;
1232
1233        /* We need to fit into seq->private pointer */
1234        BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1235
1236        error = mutex_lock_interruptible(&input_mutex);
1237        if (error) {
1238                state->mutex_acquired = false;
1239                return ERR_PTR(error);
1240        }
1241
1242        state->mutex_acquired = true;
1243        state->pos = *pos;
1244
1245        return seq_list_start(&input_handler_list, *pos);
1246}
1247
1248static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1249{
1250        union input_seq_state *state = (union input_seq_state *)&seq->private;
1251
1252        state->pos = *pos + 1;
1253        return seq_list_next(v, &input_handler_list, pos);
1254}
1255
1256static int input_handlers_seq_show(struct seq_file *seq, void *v)
1257{
1258        struct input_handler *handler = container_of(v, struct input_handler, node);
1259        union input_seq_state *state = (union input_seq_state *)&seq->private;
1260
1261        seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1262        if (handler->filter)
1263                seq_puts(seq, " (filter)");
1264        if (handler->legacy_minors)
1265                seq_printf(seq, " Minor=%d", handler->minor);
1266        seq_putc(seq, '\n');
1267
1268        return 0;
1269}
1270
1271static const struct seq_operations input_handlers_seq_ops = {
1272        .start  = input_handlers_seq_start,
1273        .next   = input_handlers_seq_next,
1274        .stop   = input_seq_stop,
1275        .show   = input_handlers_seq_show,
1276};
1277
1278static int input_proc_handlers_open(struct inode *inode, struct file *file)
1279{
1280        return seq_open(file, &input_handlers_seq_ops);
1281}
1282
1283static const struct proc_ops input_handlers_proc_ops = {
1284        .proc_open      = input_proc_handlers_open,
1285        .proc_read      = seq_read,
1286        .proc_lseek     = seq_lseek,
1287        .proc_release   = seq_release,
1288};
1289
1290static int __init input_proc_init(void)
1291{
1292        struct proc_dir_entry *entry;
1293
1294        proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1295        if (!proc_bus_input_dir)
1296                return -ENOMEM;
1297
1298        entry = proc_create("devices", 0, proc_bus_input_dir,
1299                            &input_devices_proc_ops);
1300        if (!entry)
1301                goto fail1;
1302
1303        entry = proc_create("handlers", 0, proc_bus_input_dir,
1304                            &input_handlers_proc_ops);
1305        if (!entry)
1306                goto fail2;
1307
1308        return 0;
1309
1310 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1311 fail1: remove_proc_entry("bus/input", NULL);
1312        return -ENOMEM;
1313}
1314
1315static void input_proc_exit(void)
1316{
1317        remove_proc_entry("devices", proc_bus_input_dir);
1318        remove_proc_entry("handlers", proc_bus_input_dir);
1319        remove_proc_entry("bus/input", NULL);
1320}
1321
1322#else /* !CONFIG_PROC_FS */
1323static inline void input_wakeup_procfs_readers(void) { }
1324static inline int input_proc_init(void) { return 0; }
1325static inline void input_proc_exit(void) { }
1326#endif
1327
1328#define INPUT_DEV_STRING_ATTR_SHOW(name)                                \
1329static ssize_t input_dev_show_##name(struct device *dev,                \
1330                                     struct device_attribute *attr,     \
1331                                     char *buf)                         \
1332{                                                                       \
1333        struct input_dev *input_dev = to_input_dev(dev);                \
1334                                                                        \
1335        return scnprintf(buf, PAGE_SIZE, "%s\n",                        \
1336                         input_dev->name ? input_dev->name : "");       \
1337}                                                                       \
1338static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1339
1340INPUT_DEV_STRING_ATTR_SHOW(name);
1341INPUT_DEV_STRING_ATTR_SHOW(phys);
1342INPUT_DEV_STRING_ATTR_SHOW(uniq);
1343
1344static int input_print_modalias_bits(char *buf, int size,
1345                                     char name, unsigned long *bm,
1346                                     unsigned int min_bit, unsigned int max_bit)
1347{
1348        int len = 0, i;
1349
1350        len += snprintf(buf, max(size, 0), "%c", name);
1351        for (i = min_bit; i < max_bit; i++)
1352                if (bm[BIT_WORD(i)] & BIT_MASK(i))
1353                        len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1354        return len;
1355}
1356
1357static int input_print_modalias(char *buf, int size, struct input_dev *id,
1358                                int add_cr)
1359{
1360        int len;
1361
1362        len = snprintf(buf, max(size, 0),
1363                       "input:b%04Xv%04Xp%04Xe%04X-",
1364                       id->id.bustype, id->id.vendor,
1365                       id->id.product, id->id.version);
1366
1367        len += input_print_modalias_bits(buf + len, size - len,
1368                                'e', id->evbit, 0, EV_MAX);
1369        len += input_print_modalias_bits(buf + len, size - len,
1370                                'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1371        len += input_print_modalias_bits(buf + len, size - len,
1372                                'r', id->relbit, 0, REL_MAX);
1373        len += input_print_modalias_bits(buf + len, size - len,
1374                                'a', id->absbit, 0, ABS_MAX);
1375        len += input_print_modalias_bits(buf + len, size - len,
1376                                'm', id->mscbit, 0, MSC_MAX);
1377        len += input_print_modalias_bits(buf + len, size - len,
1378                                'l', id->ledbit, 0, LED_MAX);
1379        len += input_print_modalias_bits(buf + len, size - len,
1380                                's', id->sndbit, 0, SND_MAX);
1381        len += input_print_modalias_bits(buf + len, size - len,
1382                                'f', id->ffbit, 0, FF_MAX);
1383        len += input_print_modalias_bits(buf + len, size - len,
1384                                'w', id->swbit, 0, SW_MAX);
1385
1386        if (add_cr)
1387                len += snprintf(buf + len, max(size - len, 0), "\n");
1388
1389        return len;
1390}
1391
1392static ssize_t input_dev_show_modalias(struct device *dev,
1393                                       struct device_attribute *attr,
1394                                       char *buf)
1395{
1396        struct input_dev *id = to_input_dev(dev);
1397        ssize_t len;
1398
1399        len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1400
1401        return min_t(int, len, PAGE_SIZE);
1402}
1403static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1404
1405static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1406                              int max, int add_cr);
1407
1408static ssize_t input_dev_show_properties(struct device *dev,
1409                                         struct device_attribute *attr,
1410                                         char *buf)
1411{
1412        struct input_dev *input_dev = to_input_dev(dev);
1413        int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1414                                     INPUT_PROP_MAX, true);
1415        return min_t(int, len, PAGE_SIZE);
1416}
1417static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1418
1419static struct attribute *input_dev_attrs[] = {
1420        &dev_attr_name.attr,
1421        &dev_attr_phys.attr,
1422        &dev_attr_uniq.attr,
1423        &dev_attr_modalias.attr,
1424        &dev_attr_properties.attr,
1425        NULL
1426};
1427
1428static const struct attribute_group input_dev_attr_group = {
1429        .attrs  = input_dev_attrs,
1430};
1431
1432#define INPUT_DEV_ID_ATTR(name)                                         \
1433static ssize_t input_dev_show_id_##name(struct device *dev,             \
1434                                        struct device_attribute *attr,  \
1435                                        char *buf)                      \
1436{                                                                       \
1437        struct input_dev *input_dev = to_input_dev(dev);                \
1438        return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1439}                                                                       \
1440static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1441
1442INPUT_DEV_ID_ATTR(bustype);
1443INPUT_DEV_ID_ATTR(vendor);
1444INPUT_DEV_ID_ATTR(product);
1445INPUT_DEV_ID_ATTR(version);
1446
1447static struct attribute *input_dev_id_attrs[] = {
1448        &dev_attr_bustype.attr,
1449        &dev_attr_vendor.attr,
1450        &dev_attr_product.attr,
1451        &dev_attr_version.attr,
1452        NULL
1453};
1454
1455static const struct attribute_group input_dev_id_attr_group = {
1456        .name   = "id",
1457        .attrs  = input_dev_id_attrs,
1458};
1459
1460static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1461                              int max, int add_cr)
1462{
1463        int i;
1464        int len = 0;
1465        bool skip_empty = true;
1466
1467        for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1468                len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1469                                            bitmap[i], skip_empty);
1470                if (len) {
1471                        skip_empty = false;
1472                        if (i > 0)
1473                                len += snprintf(buf + len, max(buf_size - len, 0), " ");
1474                }
1475        }
1476
1477        /*
1478         * If no output was produced print a single 0.
1479         */
1480        if (len == 0)
1481                len = snprintf(buf, buf_size, "%d", 0);
1482
1483        if (add_cr)
1484                len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1485
1486        return len;
1487}
1488
1489#define INPUT_DEV_CAP_ATTR(ev, bm)                                      \
1490static ssize_t input_dev_show_cap_##bm(struct device *dev,              \
1491                                       struct device_attribute *attr,   \
1492                                       char *buf)                       \
1493{                                                                       \
1494        struct input_dev *input_dev = to_input_dev(dev);                \
1495        int len = input_print_bitmap(buf, PAGE_SIZE,                    \
1496                                     input_dev->bm##bit, ev##_MAX,      \
1497                                     true);                             \
1498        return min_t(int, len, PAGE_SIZE);                              \
1499}                                                                       \
1500static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1501
1502INPUT_DEV_CAP_ATTR(EV, ev);
1503INPUT_DEV_CAP_ATTR(KEY, key);
1504INPUT_DEV_CAP_ATTR(REL, rel);
1505INPUT_DEV_CAP_ATTR(ABS, abs);
1506INPUT_DEV_CAP_ATTR(MSC, msc);
1507INPUT_DEV_CAP_ATTR(LED, led);
1508INPUT_DEV_CAP_ATTR(SND, snd);
1509INPUT_DEV_CAP_ATTR(FF, ff);
1510INPUT_DEV_CAP_ATTR(SW, sw);
1511
1512static struct attribute *input_dev_caps_attrs[] = {
1513        &dev_attr_ev.attr,
1514        &dev_attr_key.attr,
1515        &dev_attr_rel.attr,
1516        &dev_attr_abs.attr,
1517        &dev_attr_msc.attr,
1518        &dev_attr_led.attr,
1519        &dev_attr_snd.attr,
1520        &dev_attr_ff.attr,
1521        &dev_attr_sw.attr,
1522        NULL
1523};
1524
1525static const struct attribute_group input_dev_caps_attr_group = {
1526        .name   = "capabilities",
1527        .attrs  = input_dev_caps_attrs,
1528};
1529
1530static const struct attribute_group *input_dev_attr_groups[] = {
1531        &input_dev_attr_group,
1532        &input_dev_id_attr_group,
1533        &input_dev_caps_attr_group,
1534        &input_poller_attribute_group,
1535        NULL
1536};
1537
1538static void input_dev_release(struct device *device)
1539{
1540        struct input_dev *dev = to_input_dev(device);
1541
1542        input_ff_destroy(dev);
1543        input_mt_destroy_slots(dev);
1544        kfree(dev->poller);
1545        kfree(dev->absinfo);
1546        kfree(dev->vals);
1547        kfree(dev);
1548
1549        module_put(THIS_MODULE);
1550}
1551
1552/*
1553 * Input uevent interface - loading event handlers based on
1554 * device bitfields.
1555 */
1556static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1557                                   const char *name, unsigned long *bitmap, int max)
1558{
1559        int len;
1560
1561        if (add_uevent_var(env, "%s", name))
1562                return -ENOMEM;
1563
1564        len = input_print_bitmap(&env->buf[env->buflen - 1],
1565                                 sizeof(env->buf) - env->buflen,
1566                                 bitmap, max, false);
1567        if (len >= (sizeof(env->buf) - env->buflen))
1568                return -ENOMEM;
1569
1570        env->buflen += len;
1571        return 0;
1572}
1573
1574static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1575                                         struct input_dev *dev)
1576{
1577        int len;
1578
1579        if (add_uevent_var(env, "MODALIAS="))
1580                return -ENOMEM;
1581
1582        len = input_print_modalias(&env->buf[env->buflen - 1],
1583                                   sizeof(env->buf) - env->buflen,
1584                                   dev, 0);
1585        if (len >= (sizeof(env->buf) - env->buflen))
1586                return -ENOMEM;
1587
1588        env->buflen += len;
1589        return 0;
1590}
1591
1592#define INPUT_ADD_HOTPLUG_VAR(fmt, val...)                              \
1593        do {                                                            \
1594                int err = add_uevent_var(env, fmt, val);                \
1595                if (err)                                                \
1596                        return err;                                     \
1597        } while (0)
1598
1599#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)                         \
1600        do {                                                            \
1601                int err = input_add_uevent_bm_var(env, name, bm, max);  \
1602                if (err)                                                \
1603                        return err;                                     \
1604        } while (0)
1605
1606#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)                             \
1607        do {                                                            \
1608                int err = input_add_uevent_modalias_var(env, dev);      \
1609                if (err)                                                \
1610                        return err;                                     \
1611        } while (0)
1612
1613static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1614{
1615        struct input_dev *dev = to_input_dev(device);
1616
1617        INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1618                                dev->id.bustype, dev->id.vendor,
1619                                dev->id.product, dev->id.version);
1620        if (dev->name)
1621                INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1622        if (dev->phys)
1623                INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1624        if (dev->uniq)
1625                INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1626
1627        INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1628
1629        INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1630        if (test_bit(EV_KEY, dev->evbit))
1631                INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1632        if (test_bit(EV_REL, dev->evbit))
1633                INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1634        if (test_bit(EV_ABS, dev->evbit))
1635                INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1636        if (test_bit(EV_MSC, dev->evbit))
1637                INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1638        if (test_bit(EV_LED, dev->evbit))
1639                INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1640        if (test_bit(EV_SND, dev->evbit))
1641                INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1642        if (test_bit(EV_FF, dev->evbit))
1643                INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1644        if (test_bit(EV_SW, dev->evbit))
1645                INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1646
1647        INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1648
1649        return 0;
1650}
1651
1652#define INPUT_DO_TOGGLE(dev, type, bits, on)                            \
1653        do {                                                            \
1654                int i;                                                  \
1655                bool active;                                            \
1656                                                                        \
1657                if (!test_bit(EV_##type, dev->evbit))                   \
1658                        break;                                          \
1659                                                                        \
1660                for_each_set_bit(i, dev->bits##bit, type##_CNT) {       \
1661                        active = test_bit(i, dev->bits);                \
1662                        if (!active && !on)                             \
1663                                continue;                               \
1664                                                                        \
1665                        dev->event(dev, EV_##type, i, on ? active : 0); \
1666                }                                                       \
1667        } while (0)
1668
1669static void input_dev_toggle(struct input_dev *dev, bool activate)
1670{
1671        if (!dev->event)
1672                return;
1673
1674        INPUT_DO_TOGGLE(dev, LED, led, activate);
1675        INPUT_DO_TOGGLE(dev, SND, snd, activate);
1676
1677        if (activate && test_bit(EV_REP, dev->evbit)) {
1678                dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1679                dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1680        }
1681}
1682
1683/**
1684 * input_reset_device() - reset/restore the state of input device
1685 * @dev: input device whose state needs to be reset
1686 *
1687 * This function tries to reset the state of an opened input device and
1688 * bring internal state and state if the hardware in sync with each other.
1689 * We mark all keys as released, restore LED state, repeat rate, etc.
1690 */
1691void input_reset_device(struct input_dev *dev)
1692{
1693        unsigned long flags;
1694
1695        mutex_lock(&dev->mutex);
1696        spin_lock_irqsave(&dev->event_lock, flags);
1697
1698        input_dev_toggle(dev, true);
1699        input_dev_release_keys(dev);
1700
1701        spin_unlock_irqrestore(&dev->event_lock, flags);
1702        mutex_unlock(&dev->mutex);
1703}
1704EXPORT_SYMBOL(input_reset_device);
1705
1706#ifdef CONFIG_PM_SLEEP
1707static int input_dev_suspend(struct device *dev)
1708{
1709        struct input_dev *input_dev = to_input_dev(dev);
1710
1711        spin_lock_irq(&input_dev->event_lock);
1712
1713        /*
1714         * Keys that are pressed now are unlikely to be
1715         * still pressed when we resume.
1716         */
1717        input_dev_release_keys(input_dev);
1718
1719        /* Turn off LEDs and sounds, if any are active. */
1720        input_dev_toggle(input_dev, false);
1721
1722        spin_unlock_irq(&input_dev->event_lock);
1723
1724        return 0;
1725}
1726
1727static int input_dev_resume(struct device *dev)
1728{
1729        struct input_dev *input_dev = to_input_dev(dev);
1730
1731        spin_lock_irq(&input_dev->event_lock);
1732
1733        /* Restore state of LEDs and sounds, if any were active. */
1734        input_dev_toggle(input_dev, true);
1735
1736        spin_unlock_irq(&input_dev->event_lock);
1737
1738        return 0;
1739}
1740
1741static int input_dev_freeze(struct device *dev)
1742{
1743        struct input_dev *input_dev = to_input_dev(dev);
1744
1745        spin_lock_irq(&input_dev->event_lock);
1746
1747        /*
1748         * Keys that are pressed now are unlikely to be
1749         * still pressed when we resume.
1750         */
1751        input_dev_release_keys(input_dev);
1752
1753        spin_unlock_irq(&input_dev->event_lock);
1754
1755        return 0;
1756}
1757
1758static int input_dev_poweroff(struct device *dev)
1759{
1760        struct input_dev *input_dev = to_input_dev(dev);
1761
1762        spin_lock_irq(&input_dev->event_lock);
1763
1764        /* Turn off LEDs and sounds, if any are active. */
1765        input_dev_toggle(input_dev, false);
1766
1767        spin_unlock_irq(&input_dev->event_lock);
1768
1769        return 0;
1770}
1771
1772static const struct dev_pm_ops input_dev_pm_ops = {
1773        .suspend        = input_dev_suspend,
1774        .resume         = input_dev_resume,
1775        .freeze         = input_dev_freeze,
1776        .poweroff       = input_dev_poweroff,
1777        .restore        = input_dev_resume,
1778};
1779#endif /* CONFIG_PM */
1780
1781static const struct device_type input_dev_type = {
1782        .groups         = input_dev_attr_groups,
1783        .release        = input_dev_release,
1784        .uevent         = input_dev_uevent,
1785#ifdef CONFIG_PM_SLEEP
1786        .pm             = &input_dev_pm_ops,
1787#endif
1788};
1789
1790static char *input_devnode(struct device *dev, umode_t *mode)
1791{
1792        return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1793}
1794
1795struct class input_class = {
1796        .name           = "input",
1797        .devnode        = input_devnode,
1798};
1799EXPORT_SYMBOL_GPL(input_class);
1800
1801/**
1802 * input_allocate_device - allocate memory for new input device
1803 *
1804 * Returns prepared struct input_dev or %NULL.
1805 *
1806 * NOTE: Use input_free_device() to free devices that have not been
1807 * registered; input_unregister_device() should be used for already
1808 * registered devices.
1809 */
1810struct input_dev *input_allocate_device(void)
1811{
1812        static atomic_t input_no = ATOMIC_INIT(-1);
1813        struct input_dev *dev;
1814
1815        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1816        if (dev) {
1817                dev->dev.type = &input_dev_type;
1818                dev->dev.class = &input_class;
1819                device_initialize(&dev->dev);
1820                mutex_init(&dev->mutex);
1821                spin_lock_init(&dev->event_lock);
1822                timer_setup(&dev->timer, NULL, 0);
1823                INIT_LIST_HEAD(&dev->h_list);
1824                INIT_LIST_HEAD(&dev->node);
1825
1826                dev_set_name(&dev->dev, "input%lu",
1827                             (unsigned long)atomic_inc_return(&input_no));
1828
1829                __module_get(THIS_MODULE);
1830        }
1831
1832        return dev;
1833}
1834EXPORT_SYMBOL(input_allocate_device);
1835
1836struct input_devres {
1837        struct input_dev *input;
1838};
1839
1840static int devm_input_device_match(struct device *dev, void *res, void *data)
1841{
1842        struct input_devres *devres = res;
1843
1844        return devres->input == data;
1845}
1846
1847static void devm_input_device_release(struct device *dev, void *res)
1848{
1849        struct input_devres *devres = res;
1850        struct input_dev *input = devres->input;
1851
1852        dev_dbg(dev, "%s: dropping reference to %s\n",
1853                __func__, dev_name(&input->dev));
1854        input_put_device(input);
1855}
1856
1857/**
1858 * devm_input_allocate_device - allocate managed input device
1859 * @dev: device owning the input device being created
1860 *
1861 * Returns prepared struct input_dev or %NULL.
1862 *
1863 * Managed input devices do not need to be explicitly unregistered or
1864 * freed as it will be done automatically when owner device unbinds from
1865 * its driver (or binding fails). Once managed input device is allocated,
1866 * it is ready to be set up and registered in the same fashion as regular
1867 * input device. There are no special devm_input_device_[un]register()
1868 * variants, regular ones work with both managed and unmanaged devices,
1869 * should you need them. In most cases however, managed input device need
1870 * not be explicitly unregistered or freed.
1871 *
1872 * NOTE: the owner device is set up as parent of input device and users
1873 * should not override it.
1874 */
1875struct input_dev *devm_input_allocate_device(struct device *dev)
1876{
1877        struct input_dev *input;
1878        struct input_devres *devres;
1879
1880        devres = devres_alloc(devm_input_device_release,
1881                              sizeof(*devres), GFP_KERNEL);
1882        if (!devres)
1883                return NULL;
1884
1885        input = input_allocate_device();
1886        if (!input) {
1887                devres_free(devres);
1888                return NULL;
1889        }
1890
1891        input->dev.parent = dev;
1892        input->devres_managed = true;
1893
1894        devres->input = input;
1895        devres_add(dev, devres);
1896
1897        return input;
1898}
1899EXPORT_SYMBOL(devm_input_allocate_device);
1900
1901/**
1902 * input_free_device - free memory occupied by input_dev structure
1903 * @dev: input device to free
1904 *
1905 * This function should only be used if input_register_device()
1906 * was not called yet or if it failed. Once device was registered
1907 * use input_unregister_device() and memory will be freed once last
1908 * reference to the device is dropped.
1909 *
1910 * Device should be allocated by input_allocate_device().
1911 *
1912 * NOTE: If there are references to the input device then memory
1913 * will not be freed until last reference is dropped.
1914 */
1915void input_free_device(struct input_dev *dev)
1916{
1917        if (dev) {
1918                if (dev->devres_managed)
1919                        WARN_ON(devres_destroy(dev->dev.parent,
1920                                                devm_input_device_release,
1921                                                devm_input_device_match,
1922                                                dev));
1923                input_put_device(dev);
1924        }
1925}
1926EXPORT_SYMBOL(input_free_device);
1927
1928/**
1929 * input_set_timestamp - set timestamp for input events
1930 * @dev: input device to set timestamp for
1931 * @timestamp: the time at which the event has occurred
1932 *   in CLOCK_MONOTONIC
1933 *
1934 * This function is intended to provide to the input system a more
1935 * accurate time of when an event actually occurred. The driver should
1936 * call this function as soon as a timestamp is acquired ensuring
1937 * clock conversions in input_set_timestamp are done correctly.
1938 *
1939 * The system entering suspend state between timestamp acquisition and
1940 * calling input_set_timestamp can result in inaccurate conversions.
1941 */
1942void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1943{
1944        dev->timestamp[INPUT_CLK_MONO] = timestamp;
1945        dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1946        dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1947                                                           TK_OFFS_BOOT);
1948}
1949EXPORT_SYMBOL(input_set_timestamp);
1950
1951/**
1952 * input_get_timestamp - get timestamp for input events
1953 * @dev: input device to get timestamp from
1954 *
1955 * A valid timestamp is a timestamp of non-zero value.
1956 */
1957ktime_t *input_get_timestamp(struct input_dev *dev)
1958{
1959        const ktime_t invalid_timestamp = ktime_set(0, 0);
1960
1961        if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1962                input_set_timestamp(dev, ktime_get());
1963
1964        return dev->timestamp;
1965}
1966EXPORT_SYMBOL(input_get_timestamp);
1967
1968/**
1969 * input_set_capability - mark device as capable of a certain event
1970 * @dev: device that is capable of emitting or accepting event
1971 * @type: type of the event (EV_KEY, EV_REL, etc...)
1972 * @code: event code
1973 *
1974 * In addition to setting up corresponding bit in appropriate capability
1975 * bitmap the function also adjusts dev->evbit.
1976 */
1977void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1978{
1979        switch (type) {
1980        case EV_KEY:
1981                __set_bit(code, dev->keybit);
1982                break;
1983
1984        case EV_REL:
1985                __set_bit(code, dev->relbit);
1986                break;
1987
1988        case EV_ABS:
1989                input_alloc_absinfo(dev);
1990                if (!dev->absinfo)
1991                        return;
1992
1993                __set_bit(code, dev->absbit);
1994                break;
1995
1996        case EV_MSC:
1997                __set_bit(code, dev->mscbit);
1998                break;
1999
2000        case EV_SW:
2001                __set_bit(code, dev->swbit);
2002                break;
2003
2004        case EV_LED:
2005                __set_bit(code, dev->ledbit);
2006                break;
2007
2008        case EV_SND:
2009                __set_bit(code, dev->sndbit);
2010                break;
2011
2012        case EV_FF:
2013                __set_bit(code, dev->ffbit);
2014                break;
2015
2016        case EV_PWR:
2017                /* do nothing */
2018                break;
2019
2020        default:
2021                pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2022                dump_stack();
2023                return;
2024        }
2025
2026        __set_bit(type, dev->evbit);
2027}
2028EXPORT_SYMBOL(input_set_capability);
2029
2030static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2031{
2032        int mt_slots;
2033        int i;
2034        unsigned int events;
2035
2036        if (dev->mt) {
2037                mt_slots = dev->mt->num_slots;
2038        } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2039                mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2040                           dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2041                mt_slots = clamp(mt_slots, 2, 32);
2042        } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2043                mt_slots = 2;
2044        } else {
2045                mt_slots = 0;
2046        }
2047
2048        events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2049
2050        if (test_bit(EV_ABS, dev->evbit))
2051                for_each_set_bit(i, dev->absbit, ABS_CNT)
2052                        events += input_is_mt_axis(i) ? mt_slots : 1;
2053
2054        if (test_bit(EV_REL, dev->evbit))
2055                events += bitmap_weight(dev->relbit, REL_CNT);
2056
2057        /* Make room for KEY and MSC events */
2058        events += 7;
2059
2060        return events;
2061}
2062
2063#define INPUT_CLEANSE_BITMASK(dev, type, bits)                          \
2064        do {                                                            \
2065                if (!test_bit(EV_##type, dev->evbit))                   \
2066                        memset(dev->bits##bit, 0,                       \
2067                                sizeof(dev->bits##bit));                \
2068        } while (0)
2069
2070static void input_cleanse_bitmasks(struct input_dev *dev)
2071{
2072        INPUT_CLEANSE_BITMASK(dev, KEY, key);
2073        INPUT_CLEANSE_BITMASK(dev, REL, rel);
2074        INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2075        INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2076        INPUT_CLEANSE_BITMASK(dev, LED, led);
2077        INPUT_CLEANSE_BITMASK(dev, SND, snd);
2078        INPUT_CLEANSE_BITMASK(dev, FF, ff);
2079        INPUT_CLEANSE_BITMASK(dev, SW, sw);
2080}
2081
2082static void __input_unregister_device(struct input_dev *dev)
2083{
2084        struct input_handle *handle, *next;
2085
2086        input_disconnect_device(dev);
2087
2088        mutex_lock(&input_mutex);
2089
2090        list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2091                handle->handler->disconnect(handle);
2092        WARN_ON(!list_empty(&dev->h_list));
2093
2094        del_timer_sync(&dev->timer);
2095        list_del_init(&dev->node);
2096
2097        input_wakeup_procfs_readers();
2098
2099        mutex_unlock(&input_mutex);
2100
2101        device_del(&dev->dev);
2102}
2103
2104static void devm_input_device_unregister(struct device *dev, void *res)
2105{
2106        struct input_devres *devres = res;
2107        struct input_dev *input = devres->input;
2108
2109        dev_dbg(dev, "%s: unregistering device %s\n",
2110                __func__, dev_name(&input->dev));
2111        __input_unregister_device(input);
2112}
2113
2114/**
2115 * input_enable_softrepeat - enable software autorepeat
2116 * @dev: input device
2117 * @delay: repeat delay
2118 * @period: repeat period
2119 *
2120 * Enable software autorepeat on the input device.
2121 */
2122void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2123{
2124        dev->timer.function = input_repeat_key;
2125        dev->rep[REP_DELAY] = delay;
2126        dev->rep[REP_PERIOD] = period;
2127}
2128EXPORT_SYMBOL(input_enable_softrepeat);
2129
2130/**
2131 * input_register_device - register device with input core
2132 * @dev: device to be registered
2133 *
2134 * This function registers device with input core. The device must be
2135 * allocated with input_allocate_device() and all it's capabilities
2136 * set up before registering.
2137 * If function fails the device must be freed with input_free_device().
2138 * Once device has been successfully registered it can be unregistered
2139 * with input_unregister_device(); input_free_device() should not be
2140 * called in this case.
2141 *
2142 * Note that this function is also used to register managed input devices
2143 * (ones allocated with devm_input_allocate_device()). Such managed input
2144 * devices need not be explicitly unregistered or freed, their tear down
2145 * is controlled by the devres infrastructure. It is also worth noting
2146 * that tear down of managed input devices is internally a 2-step process:
2147 * registered managed input device is first unregistered, but stays in
2148 * memory and can still handle input_event() calls (although events will
2149 * not be delivered anywhere). The freeing of managed input device will
2150 * happen later, when devres stack is unwound to the point where device
2151 * allocation was made.
2152 */
2153int input_register_device(struct input_dev *dev)
2154{
2155        struct input_devres *devres = NULL;
2156        struct input_handler *handler;
2157        unsigned int packet_size;
2158        const char *path;
2159        int error;
2160
2161        if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2162                dev_err(&dev->dev,
2163                        "Absolute device without dev->absinfo, refusing to register\n");
2164                return -EINVAL;
2165        }
2166
2167        if (dev->devres_managed) {
2168                devres = devres_alloc(devm_input_device_unregister,
2169                                      sizeof(*devres), GFP_KERNEL);
2170                if (!devres)
2171                        return -ENOMEM;
2172
2173                devres->input = dev;
2174        }
2175
2176        /* Every input device generates EV_SYN/SYN_REPORT events. */
2177        __set_bit(EV_SYN, dev->evbit);
2178
2179        /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2180        __clear_bit(KEY_RESERVED, dev->keybit);
2181
2182        /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2183        input_cleanse_bitmasks(dev);
2184
2185        packet_size = input_estimate_events_per_packet(dev);
2186        if (dev->hint_events_per_packet < packet_size)
2187                dev->hint_events_per_packet = packet_size;
2188
2189        dev->max_vals = dev->hint_events_per_packet + 2;
2190        dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2191        if (!dev->vals) {
2192                error = -ENOMEM;
2193                goto err_devres_free;
2194        }
2195
2196        /*
2197         * If delay and period are pre-set by the driver, then autorepeating
2198         * is handled by the driver itself and we don't do it in input.c.
2199         */
2200        if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2201                input_enable_softrepeat(dev, 250, 33);
2202
2203        if (!dev->getkeycode)
2204                dev->getkeycode = input_default_getkeycode;
2205
2206        if (!dev->setkeycode)
2207                dev->setkeycode = input_default_setkeycode;
2208
2209        if (dev->poller)
2210                input_dev_poller_finalize(dev->poller);
2211
2212        error = device_add(&dev->dev);
2213        if (error)
2214                goto err_free_vals;
2215
2216        path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2217        pr_info("%s as %s\n",
2218                dev->name ? dev->name : "Unspecified device",
2219                path ? path : "N/A");
2220        kfree(path);
2221
2222        error = mutex_lock_interruptible(&input_mutex);
2223        if (error)
2224                goto err_device_del;
2225
2226        list_add_tail(&dev->node, &input_dev_list);
2227
2228        list_for_each_entry(handler, &input_handler_list, node)
2229                input_attach_handler(dev, handler);
2230
2231        input_wakeup_procfs_readers();
2232
2233        mutex_unlock(&input_mutex);
2234
2235        if (dev->devres_managed) {
2236                dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2237                        __func__, dev_name(&dev->dev));
2238                devres_add(dev->dev.parent, devres);
2239        }
2240        return 0;
2241
2242err_device_del:
2243        device_del(&dev->dev);
2244err_free_vals:
2245        kfree(dev->vals);
2246        dev->vals = NULL;
2247err_devres_free:
2248        devres_free(devres);
2249        return error;
2250}
2251EXPORT_SYMBOL(input_register_device);
2252
2253/**
2254 * input_unregister_device - unregister previously registered device
2255 * @dev: device to be unregistered
2256 *
2257 * This function unregisters an input device. Once device is unregistered
2258 * the caller should not try to access it as it may get freed at any moment.
2259 */
2260void input_unregister_device(struct input_dev *dev)
2261{
2262        if (dev->devres_managed) {
2263                WARN_ON(devres_destroy(dev->dev.parent,
2264                                        devm_input_device_unregister,
2265                                        devm_input_device_match,
2266                                        dev));
2267                __input_unregister_device(dev);
2268                /*
2269                 * We do not do input_put_device() here because it will be done
2270                 * when 2nd devres fires up.
2271                 */
2272        } else {
2273                __input_unregister_device(dev);
2274                input_put_device(dev);
2275        }
2276}
2277EXPORT_SYMBOL(input_unregister_device);
2278
2279/**
2280 * input_register_handler - register a new input handler
2281 * @handler: handler to be registered
2282 *
2283 * This function registers a new input handler (interface) for input
2284 * devices in the system and attaches it to all input devices that
2285 * are compatible with the handler.
2286 */
2287int input_register_handler(struct input_handler *handler)
2288{
2289        struct input_dev *dev;
2290        int error;
2291
2292        error = mutex_lock_interruptible(&input_mutex);
2293        if (error)
2294                return error;
2295
2296        INIT_LIST_HEAD(&handler->h_list);
2297
2298        list_add_tail(&handler->node, &input_handler_list);
2299
2300        list_for_each_entry(dev, &input_dev_list, node)
2301                input_attach_handler(dev, handler);
2302
2303        input_wakeup_procfs_readers();
2304
2305        mutex_unlock(&input_mutex);
2306        return 0;
2307}
2308EXPORT_SYMBOL(input_register_handler);
2309
2310/**
2311 * input_unregister_handler - unregisters an input handler
2312 * @handler: handler to be unregistered
2313 *
2314 * This function disconnects a handler from its input devices and
2315 * removes it from lists of known handlers.
2316 */
2317void input_unregister_handler(struct input_handler *handler)
2318{
2319        struct input_handle *handle, *next;
2320
2321        mutex_lock(&input_mutex);
2322
2323        list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2324                handler->disconnect(handle);
2325        WARN_ON(!list_empty(&handler->h_list));
2326
2327        list_del_init(&handler->node);
2328
2329        input_wakeup_procfs_readers();
2330
2331        mutex_unlock(&input_mutex);
2332}
2333EXPORT_SYMBOL(input_unregister_handler);
2334
2335/**
2336 * input_handler_for_each_handle - handle iterator
2337 * @handler: input handler to iterate
2338 * @data: data for the callback
2339 * @fn: function to be called for each handle
2340 *
2341 * Iterate over @bus's list of devices, and call @fn for each, passing
2342 * it @data and stop when @fn returns a non-zero value. The function is
2343 * using RCU to traverse the list and therefore may be using in atomic
2344 * contexts. The @fn callback is invoked from RCU critical section and
2345 * thus must not sleep.
2346 */
2347int input_handler_for_each_handle(struct input_handler *handler, void *data,
2348                                  int (*fn)(struct input_handle *, void *))
2349{
2350        struct input_handle *handle;
2351        int retval = 0;
2352
2353        rcu_read_lock();
2354
2355        list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2356                retval = fn(handle, data);
2357                if (retval)
2358                        break;
2359        }
2360
2361        rcu_read_unlock();
2362
2363        return retval;
2364}
2365EXPORT_SYMBOL(input_handler_for_each_handle);
2366
2367/**
2368 * input_register_handle - register a new input handle
2369 * @handle: handle to register
2370 *
2371 * This function puts a new input handle onto device's
2372 * and handler's lists so that events can flow through
2373 * it once it is opened using input_open_device().
2374 *
2375 * This function is supposed to be called from handler's
2376 * connect() method.
2377 */
2378int input_register_handle(struct input_handle *handle)
2379{
2380        struct input_handler *handler = handle->handler;
2381        struct input_dev *dev = handle->dev;
2382        int error;
2383
2384        /*
2385         * We take dev->mutex here to prevent race with
2386         * input_release_device().
2387         */
2388        error = mutex_lock_interruptible(&dev->mutex);
2389        if (error)
2390                return error;
2391
2392        /*
2393         * Filters go to the head of the list, normal handlers
2394         * to the tail.
2395         */
2396        if (handler->filter)
2397                list_add_rcu(&handle->d_node, &dev->h_list);
2398        else
2399                list_add_tail_rcu(&handle->d_node, &dev->h_list);
2400
2401        mutex_unlock(&dev->mutex);
2402
2403        /*
2404         * Since we are supposed to be called from ->connect()
2405         * which is mutually exclusive with ->disconnect()
2406         * we can't be racing with input_unregister_handle()
2407         * and so separate lock is not needed here.
2408         */
2409        list_add_tail_rcu(&handle->h_node, &handler->h_list);
2410
2411        if (handler->start)
2412                handler->start(handle);
2413
2414        return 0;
2415}
2416EXPORT_SYMBOL(input_register_handle);
2417
2418/**
2419 * input_unregister_handle - unregister an input handle
2420 * @handle: handle to unregister
2421 *
2422 * This function removes input handle from device's
2423 * and handler's lists.
2424 *
2425 * This function is supposed to be called from handler's
2426 * disconnect() method.
2427 */
2428void input_unregister_handle(struct input_handle *handle)
2429{
2430        struct input_dev *dev = handle->dev;
2431
2432        list_del_rcu(&handle->h_node);
2433
2434        /*
2435         * Take dev->mutex to prevent race with input_release_device().
2436         */
2437        mutex_lock(&dev->mutex);
2438        list_del_rcu(&handle->d_node);
2439        mutex_unlock(&dev->mutex);
2440
2441        synchronize_rcu();
2442}
2443EXPORT_SYMBOL(input_unregister_handle);
2444
2445/**
2446 * input_get_new_minor - allocates a new input minor number
2447 * @legacy_base: beginning or the legacy range to be searched
2448 * @legacy_num: size of legacy range
2449 * @allow_dynamic: whether we can also take ID from the dynamic range
2450 *
2451 * This function allocates a new device minor for from input major namespace.
2452 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2453 * parameters and whether ID can be allocated from dynamic range if there are
2454 * no free IDs in legacy range.
2455 */
2456int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2457                        bool allow_dynamic)
2458{
2459        /*
2460         * This function should be called from input handler's ->connect()
2461         * methods, which are serialized with input_mutex, so no additional
2462         * locking is needed here.
2463         */
2464        if (legacy_base >= 0) {
2465                int minor = ida_simple_get(&input_ida,
2466                                           legacy_base,
2467                                           legacy_base + legacy_num,
2468                                           GFP_KERNEL);
2469                if (minor >= 0 || !allow_dynamic)
2470                        return minor;
2471        }
2472
2473        return ida_simple_get(&input_ida,
2474                              INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2475                              GFP_KERNEL);
2476}
2477EXPORT_SYMBOL(input_get_new_minor);
2478
2479/**
2480 * input_free_minor - release previously allocated minor
2481 * @minor: minor to be released
2482 *
2483 * This function releases previously allocated input minor so that it can be
2484 * reused later.
2485 */
2486void input_free_minor(unsigned int minor)
2487{
2488        ida_simple_remove(&input_ida, minor);
2489}
2490EXPORT_SYMBOL(input_free_minor);
2491
2492static int __init input_init(void)
2493{
2494        int err;
2495
2496        err = class_register(&input_class);
2497        if (err) {
2498                pr_err("unable to register input_dev class\n");
2499                return err;
2500        }
2501
2502        err = input_proc_init();
2503        if (err)
2504                goto fail1;
2505
2506        err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2507                                     INPUT_MAX_CHAR_DEVICES, "input");
2508        if (err) {
2509                pr_err("unable to register char major %d", INPUT_MAJOR);
2510                goto fail2;
2511        }
2512
2513        return 0;
2514
2515 fail2: input_proc_exit();
2516 fail1: class_unregister(&input_class);
2517        return err;
2518}
2519
2520static void __exit input_exit(void)
2521{
2522        input_proc_exit();
2523        unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2524                                 INPUT_MAX_CHAR_DEVICES);
2525        class_unregister(&input_class);
2526}
2527
2528subsys_initcall(input_init);
2529module_exit(input_exit);
2530