linux/drivers/md/bcache/request.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Main bcache entry point - handle a read or a write request and decide what to
   4 * do with it; the make_request functions are called by the block layer.
   5 *
   6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   7 * Copyright 2012 Google, Inc.
   8 */
   9
  10#include "bcache.h"
  11#include "btree.h"
  12#include "debug.h"
  13#include "request.h"
  14#include "writeback.h"
  15
  16#include <linux/module.h>
  17#include <linux/hash.h>
  18#include <linux/random.h>
  19#include <linux/backing-dev.h>
  20
  21#include <trace/events/bcache.h>
  22
  23#define CUTOFF_CACHE_ADD        95
  24#define CUTOFF_CACHE_READA      90
  25
  26struct kmem_cache *bch_search_cache;
  27
  28static void bch_data_insert_start(struct closure *cl);
  29
  30static unsigned int cache_mode(struct cached_dev *dc)
  31{
  32        return BDEV_CACHE_MODE(&dc->sb);
  33}
  34
  35static bool verify(struct cached_dev *dc)
  36{
  37        return dc->verify;
  38}
  39
  40static void bio_csum(struct bio *bio, struct bkey *k)
  41{
  42        struct bio_vec bv;
  43        struct bvec_iter iter;
  44        uint64_t csum = 0;
  45
  46        bio_for_each_segment(bv, bio, iter) {
  47                void *d = kmap(bv.bv_page) + bv.bv_offset;
  48
  49                csum = bch_crc64_update(csum, d, bv.bv_len);
  50                kunmap(bv.bv_page);
  51        }
  52
  53        k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  54}
  55
  56/* Insert data into cache */
  57
  58static void bch_data_insert_keys(struct closure *cl)
  59{
  60        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
  61        atomic_t *journal_ref = NULL;
  62        struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
  63        int ret;
  64
  65        if (!op->replace)
  66                journal_ref = bch_journal(op->c, &op->insert_keys,
  67                                          op->flush_journal ? cl : NULL);
  68
  69        ret = bch_btree_insert(op->c, &op->insert_keys,
  70                               journal_ref, replace_key);
  71        if (ret == -ESRCH) {
  72                op->replace_collision = true;
  73        } else if (ret) {
  74                op->status              = BLK_STS_RESOURCE;
  75                op->insert_data_done    = true;
  76        }
  77
  78        if (journal_ref)
  79                atomic_dec_bug(journal_ref);
  80
  81        if (!op->insert_data_done) {
  82                continue_at(cl, bch_data_insert_start, op->wq);
  83                return;
  84        }
  85
  86        bch_keylist_free(&op->insert_keys);
  87        closure_return(cl);
  88}
  89
  90static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
  91                               struct cache_set *c)
  92{
  93        size_t oldsize = bch_keylist_nkeys(l);
  94        size_t newsize = oldsize + u64s;
  95
  96        /*
  97         * The journalling code doesn't handle the case where the keys to insert
  98         * is bigger than an empty write: If we just return -ENOMEM here,
  99         * bch_data_insert_keys() will insert the keys created so far
 100         * and finish the rest when the keylist is empty.
 101         */
 102        if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
 103                return -ENOMEM;
 104
 105        return __bch_keylist_realloc(l, u64s);
 106}
 107
 108static void bch_data_invalidate(struct closure *cl)
 109{
 110        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 111        struct bio *bio = op->bio;
 112
 113        pr_debug("invalidating %i sectors from %llu\n",
 114                 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
 115
 116        while (bio_sectors(bio)) {
 117                unsigned int sectors = min(bio_sectors(bio),
 118                                       1U << (KEY_SIZE_BITS - 1));
 119
 120                if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
 121                        goto out;
 122
 123                bio->bi_iter.bi_sector  += sectors;
 124                bio->bi_iter.bi_size    -= sectors << 9;
 125
 126                bch_keylist_add(&op->insert_keys,
 127                                &KEY(op->inode,
 128                                     bio->bi_iter.bi_sector,
 129                                     sectors));
 130        }
 131
 132        op->insert_data_done = true;
 133        /* get in bch_data_insert() */
 134        bio_put(bio);
 135out:
 136        continue_at(cl, bch_data_insert_keys, op->wq);
 137}
 138
 139static void bch_data_insert_error(struct closure *cl)
 140{
 141        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 142
 143        /*
 144         * Our data write just errored, which means we've got a bunch of keys to
 145         * insert that point to data that wasn't successfully written.
 146         *
 147         * We don't have to insert those keys but we still have to invalidate
 148         * that region of the cache - so, if we just strip off all the pointers
 149         * from the keys we'll accomplish just that.
 150         */
 151
 152        struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
 153
 154        while (src != op->insert_keys.top) {
 155                struct bkey *n = bkey_next(src);
 156
 157                SET_KEY_PTRS(src, 0);
 158                memmove(dst, src, bkey_bytes(src));
 159
 160                dst = bkey_next(dst);
 161                src = n;
 162        }
 163
 164        op->insert_keys.top = dst;
 165
 166        bch_data_insert_keys(cl);
 167}
 168
 169static void bch_data_insert_endio(struct bio *bio)
 170{
 171        struct closure *cl = bio->bi_private;
 172        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 173
 174        if (bio->bi_status) {
 175                /* TODO: We could try to recover from this. */
 176                if (op->writeback)
 177                        op->status = bio->bi_status;
 178                else if (!op->replace)
 179                        set_closure_fn(cl, bch_data_insert_error, op->wq);
 180                else
 181                        set_closure_fn(cl, NULL, NULL);
 182        }
 183
 184        bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
 185}
 186
 187static void bch_data_insert_start(struct closure *cl)
 188{
 189        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 190        struct bio *bio = op->bio, *n;
 191
 192        if (op->bypass)
 193                return bch_data_invalidate(cl);
 194
 195        if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
 196                wake_up_gc(op->c);
 197
 198        /*
 199         * Journal writes are marked REQ_PREFLUSH; if the original write was a
 200         * flush, it'll wait on the journal write.
 201         */
 202        bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
 203
 204        do {
 205                unsigned int i;
 206                struct bkey *k;
 207                struct bio_set *split = &op->c->bio_split;
 208
 209                /* 1 for the device pointer and 1 for the chksum */
 210                if (bch_keylist_realloc(&op->insert_keys,
 211                                        3 + (op->csum ? 1 : 0),
 212                                        op->c)) {
 213                        continue_at(cl, bch_data_insert_keys, op->wq);
 214                        return;
 215                }
 216
 217                k = op->insert_keys.top;
 218                bkey_init(k);
 219                SET_KEY_INODE(k, op->inode);
 220                SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
 221
 222                if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
 223                                       op->write_point, op->write_prio,
 224                                       op->writeback))
 225                        goto err;
 226
 227                n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
 228
 229                n->bi_end_io    = bch_data_insert_endio;
 230                n->bi_private   = cl;
 231
 232                if (op->writeback) {
 233                        SET_KEY_DIRTY(k, true);
 234
 235                        for (i = 0; i < KEY_PTRS(k); i++)
 236                                SET_GC_MARK(PTR_BUCKET(op->c, k, i),
 237                                            GC_MARK_DIRTY);
 238                }
 239
 240                SET_KEY_CSUM(k, op->csum);
 241                if (KEY_CSUM(k))
 242                        bio_csum(n, k);
 243
 244                trace_bcache_cache_insert(k);
 245                bch_keylist_push(&op->insert_keys);
 246
 247                bio_set_op_attrs(n, REQ_OP_WRITE, 0);
 248                bch_submit_bbio(n, op->c, k, 0);
 249        } while (n != bio);
 250
 251        op->insert_data_done = true;
 252        continue_at(cl, bch_data_insert_keys, op->wq);
 253        return;
 254err:
 255        /* bch_alloc_sectors() blocks if s->writeback = true */
 256        BUG_ON(op->writeback);
 257
 258        /*
 259         * But if it's not a writeback write we'd rather just bail out if
 260         * there aren't any buckets ready to write to - it might take awhile and
 261         * we might be starving btree writes for gc or something.
 262         */
 263
 264        if (!op->replace) {
 265                /*
 266                 * Writethrough write: We can't complete the write until we've
 267                 * updated the index. But we don't want to delay the write while
 268                 * we wait for buckets to be freed up, so just invalidate the
 269                 * rest of the write.
 270                 */
 271                op->bypass = true;
 272                return bch_data_invalidate(cl);
 273        } else {
 274                /*
 275                 * From a cache miss, we can just insert the keys for the data
 276                 * we have written or bail out if we didn't do anything.
 277                 */
 278                op->insert_data_done = true;
 279                bio_put(bio);
 280
 281                if (!bch_keylist_empty(&op->insert_keys))
 282                        continue_at(cl, bch_data_insert_keys, op->wq);
 283                else
 284                        closure_return(cl);
 285        }
 286}
 287
 288/**
 289 * bch_data_insert - stick some data in the cache
 290 * @cl: closure pointer.
 291 *
 292 * This is the starting point for any data to end up in a cache device; it could
 293 * be from a normal write, or a writeback write, or a write to a flash only
 294 * volume - it's also used by the moving garbage collector to compact data in
 295 * mostly empty buckets.
 296 *
 297 * It first writes the data to the cache, creating a list of keys to be inserted
 298 * (if the data had to be fragmented there will be multiple keys); after the
 299 * data is written it calls bch_journal, and after the keys have been added to
 300 * the next journal write they're inserted into the btree.
 301 *
 302 * It inserts the data in op->bio; bi_sector is used for the key offset,
 303 * and op->inode is used for the key inode.
 304 *
 305 * If op->bypass is true, instead of inserting the data it invalidates the
 306 * region of the cache represented by op->bio and op->inode.
 307 */
 308void bch_data_insert(struct closure *cl)
 309{
 310        struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
 311
 312        trace_bcache_write(op->c, op->inode, op->bio,
 313                           op->writeback, op->bypass);
 314
 315        bch_keylist_init(&op->insert_keys);
 316        bio_get(op->bio);
 317        bch_data_insert_start(cl);
 318}
 319
 320/*
 321 * Congested?  Return 0 (not congested) or the limit (in sectors)
 322 * beyond which we should bypass the cache due to congestion.
 323 */
 324unsigned int bch_get_congested(const struct cache_set *c)
 325{
 326        int i;
 327
 328        if (!c->congested_read_threshold_us &&
 329            !c->congested_write_threshold_us)
 330                return 0;
 331
 332        i = (local_clock_us() - c->congested_last_us) / 1024;
 333        if (i < 0)
 334                return 0;
 335
 336        i += atomic_read(&c->congested);
 337        if (i >= 0)
 338                return 0;
 339
 340        i += CONGESTED_MAX;
 341
 342        if (i > 0)
 343                i = fract_exp_two(i, 6);
 344
 345        i -= hweight32(get_random_u32());
 346
 347        return i > 0 ? i : 1;
 348}
 349
 350static void add_sequential(struct task_struct *t)
 351{
 352        ewma_add(t->sequential_io_avg,
 353                 t->sequential_io, 8, 0);
 354
 355        t->sequential_io = 0;
 356}
 357
 358static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
 359{
 360        return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
 361}
 362
 363static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
 364{
 365        struct cache_set *c = dc->disk.c;
 366        unsigned int mode = cache_mode(dc);
 367        unsigned int sectors, congested;
 368        struct task_struct *task = current;
 369        struct io *i;
 370
 371        if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 372            c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
 373            (bio_op(bio) == REQ_OP_DISCARD))
 374                goto skip;
 375
 376        if (mode == CACHE_MODE_NONE ||
 377            (mode == CACHE_MODE_WRITEAROUND &&
 378             op_is_write(bio_op(bio))))
 379                goto skip;
 380
 381        /*
 382         * If the bio is for read-ahead or background IO, bypass it or
 383         * not depends on the following situations,
 384         * - If the IO is for meta data, always cache it and no bypass
 385         * - If the IO is not meta data, check dc->cache_reada_policy,
 386         *      BCH_CACHE_READA_ALL: cache it and not bypass
 387         *      BCH_CACHE_READA_META_ONLY: not cache it and bypass
 388         * That is, read-ahead request for metadata always get cached
 389         * (eg, for gfs2 or xfs).
 390         */
 391        if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
 392                if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
 393                    (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
 394                        goto skip;
 395        }
 396
 397        if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
 398            bio_sectors(bio) & (c->sb.block_size - 1)) {
 399                pr_debug("skipping unaligned io\n");
 400                goto skip;
 401        }
 402
 403        if (bypass_torture_test(dc)) {
 404                if ((get_random_int() & 3) == 3)
 405                        goto skip;
 406                else
 407                        goto rescale;
 408        }
 409
 410        congested = bch_get_congested(c);
 411        if (!congested && !dc->sequential_cutoff)
 412                goto rescale;
 413
 414        spin_lock(&dc->io_lock);
 415
 416        hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
 417                if (i->last == bio->bi_iter.bi_sector &&
 418                    time_before(jiffies, i->jiffies))
 419                        goto found;
 420
 421        i = list_first_entry(&dc->io_lru, struct io, lru);
 422
 423        add_sequential(task);
 424        i->sequential = 0;
 425found:
 426        if (i->sequential + bio->bi_iter.bi_size > i->sequential)
 427                i->sequential   += bio->bi_iter.bi_size;
 428
 429        i->last                  = bio_end_sector(bio);
 430        i->jiffies               = jiffies + msecs_to_jiffies(5000);
 431        task->sequential_io      = i->sequential;
 432
 433        hlist_del(&i->hash);
 434        hlist_add_head(&i->hash, iohash(dc, i->last));
 435        list_move_tail(&i->lru, &dc->io_lru);
 436
 437        spin_unlock(&dc->io_lock);
 438
 439        sectors = max(task->sequential_io,
 440                      task->sequential_io_avg) >> 9;
 441
 442        if (dc->sequential_cutoff &&
 443            sectors >= dc->sequential_cutoff >> 9) {
 444                trace_bcache_bypass_sequential(bio);
 445                goto skip;
 446        }
 447
 448        if (congested && sectors >= congested) {
 449                trace_bcache_bypass_congested(bio);
 450                goto skip;
 451        }
 452
 453rescale:
 454        bch_rescale_priorities(c, bio_sectors(bio));
 455        return false;
 456skip:
 457        bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
 458        return true;
 459}
 460
 461/* Cache lookup */
 462
 463struct search {
 464        /* Stack frame for bio_complete */
 465        struct closure          cl;
 466
 467        struct bbio             bio;
 468        struct bio              *orig_bio;
 469        struct bio              *cache_miss;
 470        struct bcache_device    *d;
 471
 472        unsigned int            insert_bio_sectors;
 473        unsigned int            recoverable:1;
 474        unsigned int            write:1;
 475        unsigned int            read_dirty_data:1;
 476        unsigned int            cache_missed:1;
 477
 478        unsigned long           start_time;
 479
 480        struct btree_op         op;
 481        struct data_insert_op   iop;
 482};
 483
 484static void bch_cache_read_endio(struct bio *bio)
 485{
 486        struct bbio *b = container_of(bio, struct bbio, bio);
 487        struct closure *cl = bio->bi_private;
 488        struct search *s = container_of(cl, struct search, cl);
 489
 490        /*
 491         * If the bucket was reused while our bio was in flight, we might have
 492         * read the wrong data. Set s->error but not error so it doesn't get
 493         * counted against the cache device, but we'll still reread the data
 494         * from the backing device.
 495         */
 496
 497        if (bio->bi_status)
 498                s->iop.status = bio->bi_status;
 499        else if (!KEY_DIRTY(&b->key) &&
 500                 ptr_stale(s->iop.c, &b->key, 0)) {
 501                atomic_long_inc(&s->iop.c->cache_read_races);
 502                s->iop.status = BLK_STS_IOERR;
 503        }
 504
 505        bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
 506}
 507
 508/*
 509 * Read from a single key, handling the initial cache miss if the key starts in
 510 * the middle of the bio
 511 */
 512static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
 513{
 514        struct search *s = container_of(op, struct search, op);
 515        struct bio *n, *bio = &s->bio.bio;
 516        struct bkey *bio_key;
 517        unsigned int ptr;
 518
 519        if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
 520                return MAP_CONTINUE;
 521
 522        if (KEY_INODE(k) != s->iop.inode ||
 523            KEY_START(k) > bio->bi_iter.bi_sector) {
 524                unsigned int bio_sectors = bio_sectors(bio);
 525                unsigned int sectors = KEY_INODE(k) == s->iop.inode
 526                        ? min_t(uint64_t, INT_MAX,
 527                                KEY_START(k) - bio->bi_iter.bi_sector)
 528                        : INT_MAX;
 529                int ret = s->d->cache_miss(b, s, bio, sectors);
 530
 531                if (ret != MAP_CONTINUE)
 532                        return ret;
 533
 534                /* if this was a complete miss we shouldn't get here */
 535                BUG_ON(bio_sectors <= sectors);
 536        }
 537
 538        if (!KEY_SIZE(k))
 539                return MAP_CONTINUE;
 540
 541        /* XXX: figure out best pointer - for multiple cache devices */
 542        ptr = 0;
 543
 544        PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
 545
 546        if (KEY_DIRTY(k))
 547                s->read_dirty_data = true;
 548
 549        n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
 550                                      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
 551                           GFP_NOIO, &s->d->bio_split);
 552
 553        bio_key = &container_of(n, struct bbio, bio)->key;
 554        bch_bkey_copy_single_ptr(bio_key, k, ptr);
 555
 556        bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
 557        bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
 558
 559        n->bi_end_io    = bch_cache_read_endio;
 560        n->bi_private   = &s->cl;
 561
 562        /*
 563         * The bucket we're reading from might be reused while our bio
 564         * is in flight, and we could then end up reading the wrong
 565         * data.
 566         *
 567         * We guard against this by checking (in cache_read_endio()) if
 568         * the pointer is stale again; if so, we treat it as an error
 569         * and reread from the backing device (but we don't pass that
 570         * error up anywhere).
 571         */
 572
 573        __bch_submit_bbio(n, b->c);
 574        return n == bio ? MAP_DONE : MAP_CONTINUE;
 575}
 576
 577static void cache_lookup(struct closure *cl)
 578{
 579        struct search *s = container_of(cl, struct search, iop.cl);
 580        struct bio *bio = &s->bio.bio;
 581        struct cached_dev *dc;
 582        int ret;
 583
 584        bch_btree_op_init(&s->op, -1);
 585
 586        ret = bch_btree_map_keys(&s->op, s->iop.c,
 587                                 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
 588                                 cache_lookup_fn, MAP_END_KEY);
 589        if (ret == -EAGAIN) {
 590                continue_at(cl, cache_lookup, bcache_wq);
 591                return;
 592        }
 593
 594        /*
 595         * We might meet err when searching the btree, If that happens, we will
 596         * get negative ret, in this scenario we should not recover data from
 597         * backing device (when cache device is dirty) because we don't know
 598         * whether bkeys the read request covered are all clean.
 599         *
 600         * And after that happened, s->iop.status is still its initial value
 601         * before we submit s->bio.bio
 602         */
 603        if (ret < 0) {
 604                BUG_ON(ret == -EINTR);
 605                if (s->d && s->d->c &&
 606                                !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
 607                        dc = container_of(s->d, struct cached_dev, disk);
 608                        if (dc && atomic_read(&dc->has_dirty))
 609                                s->recoverable = false;
 610                }
 611                if (!s->iop.status)
 612                        s->iop.status = BLK_STS_IOERR;
 613        }
 614
 615        closure_return(cl);
 616}
 617
 618/* Common code for the make_request functions */
 619
 620static void request_endio(struct bio *bio)
 621{
 622        struct closure *cl = bio->bi_private;
 623
 624        if (bio->bi_status) {
 625                struct search *s = container_of(cl, struct search, cl);
 626
 627                s->iop.status = bio->bi_status;
 628                /* Only cache read errors are recoverable */
 629                s->recoverable = false;
 630        }
 631
 632        bio_put(bio);
 633        closure_put(cl);
 634}
 635
 636static void backing_request_endio(struct bio *bio)
 637{
 638        struct closure *cl = bio->bi_private;
 639
 640        if (bio->bi_status) {
 641                struct search *s = container_of(cl, struct search, cl);
 642                struct cached_dev *dc = container_of(s->d,
 643                                                     struct cached_dev, disk);
 644                /*
 645                 * If a bio has REQ_PREFLUSH for writeback mode, it is
 646                 * speically assembled in cached_dev_write() for a non-zero
 647                 * write request which has REQ_PREFLUSH. we don't set
 648                 * s->iop.status by this failure, the status will be decided
 649                 * by result of bch_data_insert() operation.
 650                 */
 651                if (unlikely(s->iop.writeback &&
 652                             bio->bi_opf & REQ_PREFLUSH)) {
 653                        pr_err("Can't flush %s: returned bi_status %i\n",
 654                                dc->backing_dev_name, bio->bi_status);
 655                } else {
 656                        /* set to orig_bio->bi_status in bio_complete() */
 657                        s->iop.status = bio->bi_status;
 658                }
 659                s->recoverable = false;
 660                /* should count I/O error for backing device here */
 661                bch_count_backing_io_errors(dc, bio);
 662        }
 663
 664        bio_put(bio);
 665        closure_put(cl);
 666}
 667
 668static void bio_complete(struct search *s)
 669{
 670        if (s->orig_bio) {
 671                bio_end_io_acct(s->orig_bio, s->start_time);
 672                trace_bcache_request_end(s->d, s->orig_bio);
 673                s->orig_bio->bi_status = s->iop.status;
 674                bio_endio(s->orig_bio);
 675                s->orig_bio = NULL;
 676        }
 677}
 678
 679static void do_bio_hook(struct search *s,
 680                        struct bio *orig_bio,
 681                        bio_end_io_t *end_io_fn)
 682{
 683        struct bio *bio = &s->bio.bio;
 684
 685        bio_init(bio, NULL, 0);
 686        __bio_clone_fast(bio, orig_bio);
 687        /*
 688         * bi_end_io can be set separately somewhere else, e.g. the
 689         * variants in,
 690         * - cache_bio->bi_end_io from cached_dev_cache_miss()
 691         * - n->bi_end_io from cache_lookup_fn()
 692         */
 693        bio->bi_end_io          = end_io_fn;
 694        bio->bi_private         = &s->cl;
 695
 696        bio_cnt_set(bio, 3);
 697}
 698
 699static void search_free(struct closure *cl)
 700{
 701        struct search *s = container_of(cl, struct search, cl);
 702
 703        atomic_dec(&s->iop.c->search_inflight);
 704
 705        if (s->iop.bio)
 706                bio_put(s->iop.bio);
 707
 708        bio_complete(s);
 709        closure_debug_destroy(cl);
 710        mempool_free(s, &s->iop.c->search);
 711}
 712
 713static inline struct search *search_alloc(struct bio *bio,
 714                                          struct bcache_device *d)
 715{
 716        struct search *s;
 717
 718        s = mempool_alloc(&d->c->search, GFP_NOIO);
 719
 720        closure_init(&s->cl, NULL);
 721        do_bio_hook(s, bio, request_endio);
 722        atomic_inc(&d->c->search_inflight);
 723
 724        s->orig_bio             = bio;
 725        s->cache_miss           = NULL;
 726        s->cache_missed         = 0;
 727        s->d                    = d;
 728        s->recoverable          = 1;
 729        s->write                = op_is_write(bio_op(bio));
 730        s->read_dirty_data      = 0;
 731        s->start_time           = bio_start_io_acct(bio);
 732
 733        s->iop.c                = d->c;
 734        s->iop.bio              = NULL;
 735        s->iop.inode            = d->id;
 736        s->iop.write_point      = hash_long((unsigned long) current, 16);
 737        s->iop.write_prio       = 0;
 738        s->iop.status           = 0;
 739        s->iop.flags            = 0;
 740        s->iop.flush_journal    = op_is_flush(bio->bi_opf);
 741        s->iop.wq               = bcache_wq;
 742
 743        return s;
 744}
 745
 746/* Cached devices */
 747
 748static void cached_dev_bio_complete(struct closure *cl)
 749{
 750        struct search *s = container_of(cl, struct search, cl);
 751        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 752
 753        cached_dev_put(dc);
 754        search_free(cl);
 755}
 756
 757/* Process reads */
 758
 759static void cached_dev_read_error_done(struct closure *cl)
 760{
 761        struct search *s = container_of(cl, struct search, cl);
 762
 763        if (s->iop.replace_collision)
 764                bch_mark_cache_miss_collision(s->iop.c, s->d);
 765
 766        if (s->iop.bio)
 767                bio_free_pages(s->iop.bio);
 768
 769        cached_dev_bio_complete(cl);
 770}
 771
 772static void cached_dev_read_error(struct closure *cl)
 773{
 774        struct search *s = container_of(cl, struct search, cl);
 775        struct bio *bio = &s->bio.bio;
 776
 777        /*
 778         * If read request hit dirty data (s->read_dirty_data is true),
 779         * then recovery a failed read request from cached device may
 780         * get a stale data back. So read failure recovery is only
 781         * permitted when read request hit clean data in cache device,
 782         * or when cache read race happened.
 783         */
 784        if (s->recoverable && !s->read_dirty_data) {
 785                /* Retry from the backing device: */
 786                trace_bcache_read_retry(s->orig_bio);
 787
 788                s->iop.status = 0;
 789                do_bio_hook(s, s->orig_bio, backing_request_endio);
 790
 791                /* XXX: invalidate cache */
 792
 793                /* I/O request sent to backing device */
 794                closure_bio_submit(s->iop.c, bio, cl);
 795        }
 796
 797        continue_at(cl, cached_dev_read_error_done, NULL);
 798}
 799
 800static void cached_dev_cache_miss_done(struct closure *cl)
 801{
 802        struct search *s = container_of(cl, struct search, cl);
 803        struct bcache_device *d = s->d;
 804
 805        if (s->iop.replace_collision)
 806                bch_mark_cache_miss_collision(s->iop.c, s->d);
 807
 808        if (s->iop.bio)
 809                bio_free_pages(s->iop.bio);
 810
 811        cached_dev_bio_complete(cl);
 812        closure_put(&d->cl);
 813}
 814
 815static void cached_dev_read_done(struct closure *cl)
 816{
 817        struct search *s = container_of(cl, struct search, cl);
 818        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 819
 820        /*
 821         * We had a cache miss; cache_bio now contains data ready to be inserted
 822         * into the cache.
 823         *
 824         * First, we copy the data we just read from cache_bio's bounce buffers
 825         * to the buffers the original bio pointed to:
 826         */
 827
 828        if (s->iop.bio) {
 829                bio_reset(s->iop.bio);
 830                s->iop.bio->bi_iter.bi_sector =
 831                        s->cache_miss->bi_iter.bi_sector;
 832                bio_copy_dev(s->iop.bio, s->cache_miss);
 833                s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
 834                bch_bio_map(s->iop.bio, NULL);
 835
 836                bio_copy_data(s->cache_miss, s->iop.bio);
 837
 838                bio_put(s->cache_miss);
 839                s->cache_miss = NULL;
 840        }
 841
 842        if (verify(dc) && s->recoverable && !s->read_dirty_data)
 843                bch_data_verify(dc, s->orig_bio);
 844
 845        closure_get(&dc->disk.cl);
 846        bio_complete(s);
 847
 848        if (s->iop.bio &&
 849            !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
 850                BUG_ON(!s->iop.replace);
 851                closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
 852        }
 853
 854        continue_at(cl, cached_dev_cache_miss_done, NULL);
 855}
 856
 857static void cached_dev_read_done_bh(struct closure *cl)
 858{
 859        struct search *s = container_of(cl, struct search, cl);
 860        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 861
 862        bch_mark_cache_accounting(s->iop.c, s->d,
 863                                  !s->cache_missed, s->iop.bypass);
 864        trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
 865
 866        if (s->iop.status)
 867                continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
 868        else if (s->iop.bio || verify(dc))
 869                continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
 870        else
 871                continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
 872}
 873
 874static int cached_dev_cache_miss(struct btree *b, struct search *s,
 875                                 struct bio *bio, unsigned int sectors)
 876{
 877        int ret = MAP_CONTINUE;
 878        unsigned int reada = 0;
 879        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 880        struct bio *miss, *cache_bio;
 881
 882        s->cache_missed = 1;
 883
 884        if (s->cache_miss || s->iop.bypass) {
 885                miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
 886                ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
 887                goto out_submit;
 888        }
 889
 890        if (!(bio->bi_opf & REQ_RAHEAD) &&
 891            !(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
 892            s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
 893                reada = min_t(sector_t, dc->readahead >> 9,
 894                              get_capacity(bio->bi_disk) - bio_end_sector(bio));
 895
 896        s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
 897
 898        s->iop.replace_key = KEY(s->iop.inode,
 899                                 bio->bi_iter.bi_sector + s->insert_bio_sectors,
 900                                 s->insert_bio_sectors);
 901
 902        ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
 903        if (ret)
 904                return ret;
 905
 906        s->iop.replace = true;
 907
 908        miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
 909
 910        /* btree_search_recurse()'s btree iterator is no good anymore */
 911        ret = miss == bio ? MAP_DONE : -EINTR;
 912
 913        cache_bio = bio_alloc_bioset(GFP_NOWAIT,
 914                        DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
 915                        &dc->disk.bio_split);
 916        if (!cache_bio)
 917                goto out_submit;
 918
 919        cache_bio->bi_iter.bi_sector    = miss->bi_iter.bi_sector;
 920        bio_copy_dev(cache_bio, miss);
 921        cache_bio->bi_iter.bi_size      = s->insert_bio_sectors << 9;
 922
 923        cache_bio->bi_end_io    = backing_request_endio;
 924        cache_bio->bi_private   = &s->cl;
 925
 926        bch_bio_map(cache_bio, NULL);
 927        if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
 928                goto out_put;
 929
 930        if (reada)
 931                bch_mark_cache_readahead(s->iop.c, s->d);
 932
 933        s->cache_miss   = miss;
 934        s->iop.bio      = cache_bio;
 935        bio_get(cache_bio);
 936        /* I/O request sent to backing device */
 937        closure_bio_submit(s->iop.c, cache_bio, &s->cl);
 938
 939        return ret;
 940out_put:
 941        bio_put(cache_bio);
 942out_submit:
 943        miss->bi_end_io         = backing_request_endio;
 944        miss->bi_private        = &s->cl;
 945        /* I/O request sent to backing device */
 946        closure_bio_submit(s->iop.c, miss, &s->cl);
 947        return ret;
 948}
 949
 950static void cached_dev_read(struct cached_dev *dc, struct search *s)
 951{
 952        struct closure *cl = &s->cl;
 953
 954        closure_call(&s->iop.cl, cache_lookup, NULL, cl);
 955        continue_at(cl, cached_dev_read_done_bh, NULL);
 956}
 957
 958/* Process writes */
 959
 960static void cached_dev_write_complete(struct closure *cl)
 961{
 962        struct search *s = container_of(cl, struct search, cl);
 963        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 964
 965        up_read_non_owner(&dc->writeback_lock);
 966        cached_dev_bio_complete(cl);
 967}
 968
 969static void cached_dev_write(struct cached_dev *dc, struct search *s)
 970{
 971        struct closure *cl = &s->cl;
 972        struct bio *bio = &s->bio.bio;
 973        struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
 974        struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
 975
 976        bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
 977
 978        down_read_non_owner(&dc->writeback_lock);
 979        if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
 980                /*
 981                 * We overlap with some dirty data undergoing background
 982                 * writeback, force this write to writeback
 983                 */
 984                s->iop.bypass = false;
 985                s->iop.writeback = true;
 986        }
 987
 988        /*
 989         * Discards aren't _required_ to do anything, so skipping if
 990         * check_overlapping returned true is ok
 991         *
 992         * But check_overlapping drops dirty keys for which io hasn't started,
 993         * so we still want to call it.
 994         */
 995        if (bio_op(bio) == REQ_OP_DISCARD)
 996                s->iop.bypass = true;
 997
 998        if (should_writeback(dc, s->orig_bio,
 999                             cache_mode(dc),
1000                             s->iop.bypass)) {
1001                s->iop.bypass = false;
1002                s->iop.writeback = true;
1003        }
1004
1005        if (s->iop.bypass) {
1006                s->iop.bio = s->orig_bio;
1007                bio_get(s->iop.bio);
1008
1009                if (bio_op(bio) == REQ_OP_DISCARD &&
1010                    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1011                        goto insert_data;
1012
1013                /* I/O request sent to backing device */
1014                bio->bi_end_io = backing_request_endio;
1015                closure_bio_submit(s->iop.c, bio, cl);
1016
1017        } else if (s->iop.writeback) {
1018                bch_writeback_add(dc);
1019                s->iop.bio = bio;
1020
1021                if (bio->bi_opf & REQ_PREFLUSH) {
1022                        /*
1023                         * Also need to send a flush to the backing
1024                         * device.
1025                         */
1026                        struct bio *flush;
1027
1028                        flush = bio_alloc_bioset(GFP_NOIO, 0,
1029                                                 &dc->disk.bio_split);
1030                        if (!flush) {
1031                                s->iop.status = BLK_STS_RESOURCE;
1032                                goto insert_data;
1033                        }
1034                        bio_copy_dev(flush, bio);
1035                        flush->bi_end_io = backing_request_endio;
1036                        flush->bi_private = cl;
1037                        flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1038                        /* I/O request sent to backing device */
1039                        closure_bio_submit(s->iop.c, flush, cl);
1040                }
1041        } else {
1042                s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1043                /* I/O request sent to backing device */
1044                bio->bi_end_io = backing_request_endio;
1045                closure_bio_submit(s->iop.c, bio, cl);
1046        }
1047
1048insert_data:
1049        closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1050        continue_at(cl, cached_dev_write_complete, NULL);
1051}
1052
1053static void cached_dev_nodata(struct closure *cl)
1054{
1055        struct search *s = container_of(cl, struct search, cl);
1056        struct bio *bio = &s->bio.bio;
1057
1058        if (s->iop.flush_journal)
1059                bch_journal_meta(s->iop.c, cl);
1060
1061        /* If it's a flush, we send the flush to the backing device too */
1062        bio->bi_end_io = backing_request_endio;
1063        closure_bio_submit(s->iop.c, bio, cl);
1064
1065        continue_at(cl, cached_dev_bio_complete, NULL);
1066}
1067
1068struct detached_dev_io_private {
1069        struct bcache_device    *d;
1070        unsigned long           start_time;
1071        bio_end_io_t            *bi_end_io;
1072        void                    *bi_private;
1073};
1074
1075static void detached_dev_end_io(struct bio *bio)
1076{
1077        struct detached_dev_io_private *ddip;
1078
1079        ddip = bio->bi_private;
1080        bio->bi_end_io = ddip->bi_end_io;
1081        bio->bi_private = ddip->bi_private;
1082
1083        bio_end_io_acct(bio, ddip->start_time);
1084
1085        if (bio->bi_status) {
1086                struct cached_dev *dc = container_of(ddip->d,
1087                                                     struct cached_dev, disk);
1088                /* should count I/O error for backing device here */
1089                bch_count_backing_io_errors(dc, bio);
1090        }
1091
1092        kfree(ddip);
1093        bio->bi_end_io(bio);
1094}
1095
1096static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1097{
1098        struct detached_dev_io_private *ddip;
1099        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1100
1101        /*
1102         * no need to call closure_get(&dc->disk.cl),
1103         * because upper layer had already opened bcache device,
1104         * which would call closure_get(&dc->disk.cl)
1105         */
1106        ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1107        ddip->d = d;
1108        ddip->start_time = bio_start_io_acct(bio);
1109        ddip->bi_end_io = bio->bi_end_io;
1110        ddip->bi_private = bio->bi_private;
1111        bio->bi_end_io = detached_dev_end_io;
1112        bio->bi_private = ddip;
1113
1114        if ((bio_op(bio) == REQ_OP_DISCARD) &&
1115            !blk_queue_discard(bdev_get_queue(dc->bdev)))
1116                bio->bi_end_io(bio);
1117        else
1118                generic_make_request(bio);
1119}
1120
1121static void quit_max_writeback_rate(struct cache_set *c,
1122                                    struct cached_dev *this_dc)
1123{
1124        int i;
1125        struct bcache_device *d;
1126        struct cached_dev *dc;
1127
1128        /*
1129         * mutex bch_register_lock may compete with other parallel requesters,
1130         * or attach/detach operations on other backing device. Waiting to
1131         * the mutex lock may increase I/O request latency for seconds or more.
1132         * To avoid such situation, if mutext_trylock() failed, only writeback
1133         * rate of current cached device is set to 1, and __update_write_back()
1134         * will decide writeback rate of other cached devices (remember now
1135         * c->idle_counter is 0 already).
1136         */
1137        if (mutex_trylock(&bch_register_lock)) {
1138                for (i = 0; i < c->devices_max_used; i++) {
1139                        if (!c->devices[i])
1140                                continue;
1141
1142                        if (UUID_FLASH_ONLY(&c->uuids[i]))
1143                                continue;
1144
1145                        d = c->devices[i];
1146                        dc = container_of(d, struct cached_dev, disk);
1147                        /*
1148                         * set writeback rate to default minimum value,
1149                         * then let update_writeback_rate() to decide the
1150                         * upcoming rate.
1151                         */
1152                        atomic_long_set(&dc->writeback_rate.rate, 1);
1153                }
1154                mutex_unlock(&bch_register_lock);
1155        } else
1156                atomic_long_set(&this_dc->writeback_rate.rate, 1);
1157}
1158
1159/* Cached devices - read & write stuff */
1160
1161blk_qc_t cached_dev_make_request(struct request_queue *q, struct bio *bio)
1162{
1163        struct search *s;
1164        struct bcache_device *d = bio->bi_disk->private_data;
1165        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1166        int rw = bio_data_dir(bio);
1167
1168        if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1169                     dc->io_disable)) {
1170                bio->bi_status = BLK_STS_IOERR;
1171                bio_endio(bio);
1172                return BLK_QC_T_NONE;
1173        }
1174
1175        if (likely(d->c)) {
1176                if (atomic_read(&d->c->idle_counter))
1177                        atomic_set(&d->c->idle_counter, 0);
1178                /*
1179                 * If at_max_writeback_rate of cache set is true and new I/O
1180                 * comes, quit max writeback rate of all cached devices
1181                 * attached to this cache set, and set at_max_writeback_rate
1182                 * to false.
1183                 */
1184                if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1185                        atomic_set(&d->c->at_max_writeback_rate, 0);
1186                        quit_max_writeback_rate(d->c, dc);
1187                }
1188        }
1189
1190        bio_set_dev(bio, dc->bdev);
1191        bio->bi_iter.bi_sector += dc->sb.data_offset;
1192
1193        if (cached_dev_get(dc)) {
1194                s = search_alloc(bio, d);
1195                trace_bcache_request_start(s->d, bio);
1196
1197                if (!bio->bi_iter.bi_size) {
1198                        /*
1199                         * can't call bch_journal_meta from under
1200                         * generic_make_request
1201                         */
1202                        continue_at_nobarrier(&s->cl,
1203                                              cached_dev_nodata,
1204                                              bcache_wq);
1205                } else {
1206                        s->iop.bypass = check_should_bypass(dc, bio);
1207
1208                        if (rw)
1209                                cached_dev_write(dc, s);
1210                        else
1211                                cached_dev_read(dc, s);
1212                }
1213        } else
1214                /* I/O request sent to backing device */
1215                detached_dev_do_request(d, bio);
1216
1217        return BLK_QC_T_NONE;
1218}
1219
1220static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1221                            unsigned int cmd, unsigned long arg)
1222{
1223        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1224
1225        if (dc->io_disable)
1226                return -EIO;
1227
1228        return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1229}
1230
1231static int cached_dev_congested(void *data, int bits)
1232{
1233        struct bcache_device *d = data;
1234        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1235        struct request_queue *q = bdev_get_queue(dc->bdev);
1236        int ret = 0;
1237
1238        if (bdi_congested(q->backing_dev_info, bits))
1239                return 1;
1240
1241        if (cached_dev_get(dc)) {
1242                unsigned int i;
1243                struct cache *ca;
1244
1245                for_each_cache(ca, d->c, i) {
1246                        q = bdev_get_queue(ca->bdev);
1247                        ret |= bdi_congested(q->backing_dev_info, bits);
1248                }
1249
1250                cached_dev_put(dc);
1251        }
1252
1253        return ret;
1254}
1255
1256void bch_cached_dev_request_init(struct cached_dev *dc)
1257{
1258        struct gendisk *g = dc->disk.disk;
1259
1260        g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1261        dc->disk.cache_miss                     = cached_dev_cache_miss;
1262        dc->disk.ioctl                          = cached_dev_ioctl;
1263}
1264
1265/* Flash backed devices */
1266
1267static int flash_dev_cache_miss(struct btree *b, struct search *s,
1268                                struct bio *bio, unsigned int sectors)
1269{
1270        unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1271
1272        swap(bio->bi_iter.bi_size, bytes);
1273        zero_fill_bio(bio);
1274        swap(bio->bi_iter.bi_size, bytes);
1275
1276        bio_advance(bio, bytes);
1277
1278        if (!bio->bi_iter.bi_size)
1279                return MAP_DONE;
1280
1281        return MAP_CONTINUE;
1282}
1283
1284static void flash_dev_nodata(struct closure *cl)
1285{
1286        struct search *s = container_of(cl, struct search, cl);
1287
1288        if (s->iop.flush_journal)
1289                bch_journal_meta(s->iop.c, cl);
1290
1291        continue_at(cl, search_free, NULL);
1292}
1293
1294blk_qc_t flash_dev_make_request(struct request_queue *q, struct bio *bio)
1295{
1296        struct search *s;
1297        struct closure *cl;
1298        struct bcache_device *d = bio->bi_disk->private_data;
1299
1300        if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1301                bio->bi_status = BLK_STS_IOERR;
1302                bio_endio(bio);
1303                return BLK_QC_T_NONE;
1304        }
1305
1306        s = search_alloc(bio, d);
1307        cl = &s->cl;
1308        bio = &s->bio.bio;
1309
1310        trace_bcache_request_start(s->d, bio);
1311
1312        if (!bio->bi_iter.bi_size) {
1313                /*
1314                 * can't call bch_journal_meta from under
1315                 * generic_make_request
1316                 */
1317                continue_at_nobarrier(&s->cl,
1318                                      flash_dev_nodata,
1319                                      bcache_wq);
1320                return BLK_QC_T_NONE;
1321        } else if (bio_data_dir(bio)) {
1322                bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1323                                        &KEY(d->id, bio->bi_iter.bi_sector, 0),
1324                                        &KEY(d->id, bio_end_sector(bio), 0));
1325
1326                s->iop.bypass           = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1327                s->iop.writeback        = true;
1328                s->iop.bio              = bio;
1329
1330                closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1331        } else {
1332                closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1333        }
1334
1335        continue_at(cl, search_free, NULL);
1336        return BLK_QC_T_NONE;
1337}
1338
1339static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1340                           unsigned int cmd, unsigned long arg)
1341{
1342        return -ENOTTY;
1343}
1344
1345static int flash_dev_congested(void *data, int bits)
1346{
1347        struct bcache_device *d = data;
1348        struct request_queue *q;
1349        struct cache *ca;
1350        unsigned int i;
1351        int ret = 0;
1352
1353        for_each_cache(ca, d->c, i) {
1354                q = bdev_get_queue(ca->bdev);
1355                ret |= bdi_congested(q->backing_dev_info, bits);
1356        }
1357
1358        return ret;
1359}
1360
1361void bch_flash_dev_request_init(struct bcache_device *d)
1362{
1363        struct gendisk *g = d->disk;
1364
1365        g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1366        d->cache_miss                           = flash_dev_cache_miss;
1367        d->ioctl                                = flash_dev_ioctl;
1368}
1369
1370void bch_request_exit(void)
1371{
1372        kmem_cache_destroy(bch_search_cache);
1373}
1374
1375int __init bch_request_init(void)
1376{
1377        bch_search_cache = KMEM_CACHE(search, 0);
1378        if (!bch_search_cache)
1379                return -ENOMEM;
1380
1381        return 0;
1382}
1383