linux/drivers/md/bcache/writeback.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * background writeback - scan btree for dirty data and write it to the backing
   4 * device
   5 *
   6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   7 * Copyright 2012 Google, Inc.
   8 */
   9
  10#include "bcache.h"
  11#include "btree.h"
  12#include "debug.h"
  13#include "writeback.h"
  14
  15#include <linux/delay.h>
  16#include <linux/kthread.h>
  17#include <linux/sched/clock.h>
  18#include <trace/events/bcache.h>
  19
  20static void update_gc_after_writeback(struct cache_set *c)
  21{
  22        if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
  23            c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
  24                return;
  25
  26        c->gc_after_writeback |= BCH_DO_AUTO_GC;
  27}
  28
  29/* Rate limiting */
  30static uint64_t __calc_target_rate(struct cached_dev *dc)
  31{
  32        struct cache_set *c = dc->disk.c;
  33
  34        /*
  35         * This is the size of the cache, minus the amount used for
  36         * flash-only devices
  37         */
  38        uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
  39                                atomic_long_read(&c->flash_dev_dirty_sectors);
  40
  41        /*
  42         * Unfortunately there is no control of global dirty data.  If the
  43         * user states that they want 10% dirty data in the cache, and has,
  44         * e.g., 5 backing volumes of equal size, we try and ensure each
  45         * backing volume uses about 2% of the cache for dirty data.
  46         */
  47        uint32_t bdev_share =
  48                div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
  49                                c->cached_dev_sectors);
  50
  51        uint64_t cache_dirty_target =
  52                div_u64(cache_sectors * dc->writeback_percent, 100);
  53
  54        /* Ensure each backing dev gets at least one dirty share */
  55        if (bdev_share < 1)
  56                bdev_share = 1;
  57
  58        return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
  59}
  60
  61static void __update_writeback_rate(struct cached_dev *dc)
  62{
  63        /*
  64         * PI controller:
  65         * Figures out the amount that should be written per second.
  66         *
  67         * First, the error (number of sectors that are dirty beyond our
  68         * target) is calculated.  The error is accumulated (numerically
  69         * integrated).
  70         *
  71         * Then, the proportional value and integral value are scaled
  72         * based on configured values.  These are stored as inverses to
  73         * avoid fixed point math and to make configuration easy-- e.g.
  74         * the default value of 40 for writeback_rate_p_term_inverse
  75         * attempts to write at a rate that would retire all the dirty
  76         * blocks in 40 seconds.
  77         *
  78         * The writeback_rate_i_inverse value of 10000 means that 1/10000th
  79         * of the error is accumulated in the integral term per second.
  80         * This acts as a slow, long-term average that is not subject to
  81         * variations in usage like the p term.
  82         */
  83        int64_t target = __calc_target_rate(dc);
  84        int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
  85        int64_t error = dirty - target;
  86        int64_t proportional_scaled =
  87                div_s64(error, dc->writeback_rate_p_term_inverse);
  88        int64_t integral_scaled;
  89        uint32_t new_rate;
  90
  91        if ((error < 0 && dc->writeback_rate_integral > 0) ||
  92            (error > 0 && time_before64(local_clock(),
  93                         dc->writeback_rate.next + NSEC_PER_MSEC))) {
  94                /*
  95                 * Only decrease the integral term if it's more than
  96                 * zero.  Only increase the integral term if the device
  97                 * is keeping up.  (Don't wind up the integral
  98                 * ineffectively in either case).
  99                 *
 100                 * It's necessary to scale this by
 101                 * writeback_rate_update_seconds to keep the integral
 102                 * term dimensioned properly.
 103                 */
 104                dc->writeback_rate_integral += error *
 105                        dc->writeback_rate_update_seconds;
 106        }
 107
 108        integral_scaled = div_s64(dc->writeback_rate_integral,
 109                        dc->writeback_rate_i_term_inverse);
 110
 111        new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
 112                        dc->writeback_rate_minimum, NSEC_PER_SEC);
 113
 114        dc->writeback_rate_proportional = proportional_scaled;
 115        dc->writeback_rate_integral_scaled = integral_scaled;
 116        dc->writeback_rate_change = new_rate -
 117                        atomic_long_read(&dc->writeback_rate.rate);
 118        atomic_long_set(&dc->writeback_rate.rate, new_rate);
 119        dc->writeback_rate_target = target;
 120}
 121
 122static bool set_at_max_writeback_rate(struct cache_set *c,
 123                                       struct cached_dev *dc)
 124{
 125        /* Don't sst max writeback rate if it is disabled */
 126        if (!c->idle_max_writeback_rate_enabled)
 127                return false;
 128
 129        /* Don't set max writeback rate if gc is running */
 130        if (!c->gc_mark_valid)
 131                return false;
 132        /*
 133         * Idle_counter is increased everytime when update_writeback_rate() is
 134         * called. If all backing devices attached to the same cache set have
 135         * identical dc->writeback_rate_update_seconds values, it is about 6
 136         * rounds of update_writeback_rate() on each backing device before
 137         * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
 138         * to each dc->writeback_rate.rate.
 139         * In order to avoid extra locking cost for counting exact dirty cached
 140         * devices number, c->attached_dev_nr is used to calculate the idle
 141         * throushold. It might be bigger if not all cached device are in write-
 142         * back mode, but it still works well with limited extra rounds of
 143         * update_writeback_rate().
 144         */
 145        if (atomic_inc_return(&c->idle_counter) <
 146            atomic_read(&c->attached_dev_nr) * 6)
 147                return false;
 148
 149        if (atomic_read(&c->at_max_writeback_rate) != 1)
 150                atomic_set(&c->at_max_writeback_rate, 1);
 151
 152        atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
 153
 154        /* keep writeback_rate_target as existing value */
 155        dc->writeback_rate_proportional = 0;
 156        dc->writeback_rate_integral_scaled = 0;
 157        dc->writeback_rate_change = 0;
 158
 159        /*
 160         * Check c->idle_counter and c->at_max_writeback_rate agagain in case
 161         * new I/O arrives during before set_at_max_writeback_rate() returns.
 162         * Then the writeback rate is set to 1, and its new value should be
 163         * decided via __update_writeback_rate().
 164         */
 165        if ((atomic_read(&c->idle_counter) <
 166             atomic_read(&c->attached_dev_nr) * 6) ||
 167            !atomic_read(&c->at_max_writeback_rate))
 168                return false;
 169
 170        return true;
 171}
 172
 173static void update_writeback_rate(struct work_struct *work)
 174{
 175        struct cached_dev *dc = container_of(to_delayed_work(work),
 176                                             struct cached_dev,
 177                                             writeback_rate_update);
 178        struct cache_set *c = dc->disk.c;
 179
 180        /*
 181         * should check BCACHE_DEV_RATE_DW_RUNNING before calling
 182         * cancel_delayed_work_sync().
 183         */
 184        set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
 185        /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
 186        smp_mb__after_atomic();
 187
 188        /*
 189         * CACHE_SET_IO_DISABLE might be set via sysfs interface,
 190         * check it here too.
 191         */
 192        if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
 193            test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
 194                clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
 195                /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
 196                smp_mb__after_atomic();
 197                return;
 198        }
 199
 200        if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
 201                /*
 202                 * If the whole cache set is idle, set_at_max_writeback_rate()
 203                 * will set writeback rate to a max number. Then it is
 204                 * unncessary to update writeback rate for an idle cache set
 205                 * in maximum writeback rate number(s).
 206                 */
 207                if (!set_at_max_writeback_rate(c, dc)) {
 208                        down_read(&dc->writeback_lock);
 209                        __update_writeback_rate(dc);
 210                        update_gc_after_writeback(c);
 211                        up_read(&dc->writeback_lock);
 212                }
 213        }
 214
 215
 216        /*
 217         * CACHE_SET_IO_DISABLE might be set via sysfs interface,
 218         * check it here too.
 219         */
 220        if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
 221            !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
 222                schedule_delayed_work(&dc->writeback_rate_update,
 223                              dc->writeback_rate_update_seconds * HZ);
 224        }
 225
 226        /*
 227         * should check BCACHE_DEV_RATE_DW_RUNNING before calling
 228         * cancel_delayed_work_sync().
 229         */
 230        clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
 231        /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
 232        smp_mb__after_atomic();
 233}
 234
 235static unsigned int writeback_delay(struct cached_dev *dc,
 236                                    unsigned int sectors)
 237{
 238        if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
 239            !dc->writeback_percent)
 240                return 0;
 241
 242        return bch_next_delay(&dc->writeback_rate, sectors);
 243}
 244
 245struct dirty_io {
 246        struct closure          cl;
 247        struct cached_dev       *dc;
 248        uint16_t                sequence;
 249        struct bio              bio;
 250};
 251
 252static void dirty_init(struct keybuf_key *w)
 253{
 254        struct dirty_io *io = w->private;
 255        struct bio *bio = &io->bio;
 256
 257        bio_init(bio, bio->bi_inline_vecs,
 258                 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
 259        if (!io->dc->writeback_percent)
 260                bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
 261
 262        bio->bi_iter.bi_size    = KEY_SIZE(&w->key) << 9;
 263        bio->bi_private         = w;
 264        bch_bio_map(bio, NULL);
 265}
 266
 267static void dirty_io_destructor(struct closure *cl)
 268{
 269        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 270
 271        kfree(io);
 272}
 273
 274static void write_dirty_finish(struct closure *cl)
 275{
 276        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 277        struct keybuf_key *w = io->bio.bi_private;
 278        struct cached_dev *dc = io->dc;
 279
 280        bio_free_pages(&io->bio);
 281
 282        /* This is kind of a dumb way of signalling errors. */
 283        if (KEY_DIRTY(&w->key)) {
 284                int ret;
 285                unsigned int i;
 286                struct keylist keys;
 287
 288                bch_keylist_init(&keys);
 289
 290                bkey_copy(keys.top, &w->key);
 291                SET_KEY_DIRTY(keys.top, false);
 292                bch_keylist_push(&keys);
 293
 294                for (i = 0; i < KEY_PTRS(&w->key); i++)
 295                        atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
 296
 297                ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
 298
 299                if (ret)
 300                        trace_bcache_writeback_collision(&w->key);
 301
 302                atomic_long_inc(ret
 303                                ? &dc->disk.c->writeback_keys_failed
 304                                : &dc->disk.c->writeback_keys_done);
 305        }
 306
 307        bch_keybuf_del(&dc->writeback_keys, w);
 308        up(&dc->in_flight);
 309
 310        closure_return_with_destructor(cl, dirty_io_destructor);
 311}
 312
 313static void dirty_endio(struct bio *bio)
 314{
 315        struct keybuf_key *w = bio->bi_private;
 316        struct dirty_io *io = w->private;
 317
 318        if (bio->bi_status) {
 319                SET_KEY_DIRTY(&w->key, false);
 320                bch_count_backing_io_errors(io->dc, bio);
 321        }
 322
 323        closure_put(&io->cl);
 324}
 325
 326static void write_dirty(struct closure *cl)
 327{
 328        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 329        struct keybuf_key *w = io->bio.bi_private;
 330        struct cached_dev *dc = io->dc;
 331
 332        uint16_t next_sequence;
 333
 334        if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
 335                /* Not our turn to write; wait for a write to complete */
 336                closure_wait(&dc->writeback_ordering_wait, cl);
 337
 338                if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
 339                        /*
 340                         * Edge case-- it happened in indeterminate order
 341                         * relative to when we were added to wait list..
 342                         */
 343                        closure_wake_up(&dc->writeback_ordering_wait);
 344                }
 345
 346                continue_at(cl, write_dirty, io->dc->writeback_write_wq);
 347                return;
 348        }
 349
 350        next_sequence = io->sequence + 1;
 351
 352        /*
 353         * IO errors are signalled using the dirty bit on the key.
 354         * If we failed to read, we should not attempt to write to the
 355         * backing device.  Instead, immediately go to write_dirty_finish
 356         * to clean up.
 357         */
 358        if (KEY_DIRTY(&w->key)) {
 359                dirty_init(w);
 360                bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
 361                io->bio.bi_iter.bi_sector = KEY_START(&w->key);
 362                bio_set_dev(&io->bio, io->dc->bdev);
 363                io->bio.bi_end_io       = dirty_endio;
 364
 365                /* I/O request sent to backing device */
 366                closure_bio_submit(io->dc->disk.c, &io->bio, cl);
 367        }
 368
 369        atomic_set(&dc->writeback_sequence_next, next_sequence);
 370        closure_wake_up(&dc->writeback_ordering_wait);
 371
 372        continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
 373}
 374
 375static void read_dirty_endio(struct bio *bio)
 376{
 377        struct keybuf_key *w = bio->bi_private;
 378        struct dirty_io *io = w->private;
 379
 380        /* is_read = 1 */
 381        bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
 382                            bio->bi_status, 1,
 383                            "reading dirty data from cache");
 384
 385        dirty_endio(bio);
 386}
 387
 388static void read_dirty_submit(struct closure *cl)
 389{
 390        struct dirty_io *io = container_of(cl, struct dirty_io, cl);
 391
 392        closure_bio_submit(io->dc->disk.c, &io->bio, cl);
 393
 394        continue_at(cl, write_dirty, io->dc->writeback_write_wq);
 395}
 396
 397static void read_dirty(struct cached_dev *dc)
 398{
 399        unsigned int delay = 0;
 400        struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
 401        size_t size;
 402        int nk, i;
 403        struct dirty_io *io;
 404        struct closure cl;
 405        uint16_t sequence = 0;
 406
 407        BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
 408        atomic_set(&dc->writeback_sequence_next, sequence);
 409        closure_init_stack(&cl);
 410
 411        /*
 412         * XXX: if we error, background writeback just spins. Should use some
 413         * mempools.
 414         */
 415
 416        next = bch_keybuf_next(&dc->writeback_keys);
 417
 418        while (!kthread_should_stop() &&
 419               !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
 420               next) {
 421                size = 0;
 422                nk = 0;
 423
 424                do {
 425                        BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
 426
 427                        /*
 428                         * Don't combine too many operations, even if they
 429                         * are all small.
 430                         */
 431                        if (nk >= MAX_WRITEBACKS_IN_PASS)
 432                                break;
 433
 434                        /*
 435                         * If the current operation is very large, don't
 436                         * further combine operations.
 437                         */
 438                        if (size >= MAX_WRITESIZE_IN_PASS)
 439                                break;
 440
 441                        /*
 442                         * Operations are only eligible to be combined
 443                         * if they are contiguous.
 444                         *
 445                         * TODO: add a heuristic willing to fire a
 446                         * certain amount of non-contiguous IO per pass,
 447                         * so that we can benefit from backing device
 448                         * command queueing.
 449                         */
 450                        if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
 451                                                &START_KEY(&next->key)))
 452                                break;
 453
 454                        size += KEY_SIZE(&next->key);
 455                        keys[nk++] = next;
 456                } while ((next = bch_keybuf_next(&dc->writeback_keys)));
 457
 458                /* Now we have gathered a set of 1..5 keys to write back. */
 459                for (i = 0; i < nk; i++) {
 460                        w = keys[i];
 461
 462                        io = kzalloc(sizeof(struct dirty_io) +
 463                                     sizeof(struct bio_vec) *
 464                                     DIV_ROUND_UP(KEY_SIZE(&w->key),
 465                                                  PAGE_SECTORS),
 466                                     GFP_KERNEL);
 467                        if (!io)
 468                                goto err;
 469
 470                        w->private      = io;
 471                        io->dc          = dc;
 472                        io->sequence    = sequence++;
 473
 474                        dirty_init(w);
 475                        bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
 476                        io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
 477                        bio_set_dev(&io->bio,
 478                                    PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
 479                        io->bio.bi_end_io       = read_dirty_endio;
 480
 481                        if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
 482                                goto err_free;
 483
 484                        trace_bcache_writeback(&w->key);
 485
 486                        down(&dc->in_flight);
 487
 488                        /*
 489                         * We've acquired a semaphore for the maximum
 490                         * simultaneous number of writebacks; from here
 491                         * everything happens asynchronously.
 492                         */
 493                        closure_call(&io->cl, read_dirty_submit, NULL, &cl);
 494                }
 495
 496                delay = writeback_delay(dc, size);
 497
 498                while (!kthread_should_stop() &&
 499                       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
 500                       delay) {
 501                        schedule_timeout_interruptible(delay);
 502                        delay = writeback_delay(dc, 0);
 503                }
 504        }
 505
 506        if (0) {
 507err_free:
 508                kfree(w->private);
 509err:
 510                bch_keybuf_del(&dc->writeback_keys, w);
 511        }
 512
 513        /*
 514         * Wait for outstanding writeback IOs to finish (and keybuf slots to be
 515         * freed) before refilling again
 516         */
 517        closure_sync(&cl);
 518}
 519
 520/* Scan for dirty data */
 521
 522void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
 523                                  uint64_t offset, int nr_sectors)
 524{
 525        struct bcache_device *d = c->devices[inode];
 526        unsigned int stripe_offset, stripe, sectors_dirty;
 527
 528        if (!d)
 529                return;
 530
 531        if (UUID_FLASH_ONLY(&c->uuids[inode]))
 532                atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
 533
 534        stripe = offset_to_stripe(d, offset);
 535        stripe_offset = offset & (d->stripe_size - 1);
 536
 537        while (nr_sectors) {
 538                int s = min_t(unsigned int, abs(nr_sectors),
 539                              d->stripe_size - stripe_offset);
 540
 541                if (nr_sectors < 0)
 542                        s = -s;
 543
 544                if (stripe >= d->nr_stripes)
 545                        return;
 546
 547                sectors_dirty = atomic_add_return(s,
 548                                        d->stripe_sectors_dirty + stripe);
 549                if (sectors_dirty == d->stripe_size)
 550                        set_bit(stripe, d->full_dirty_stripes);
 551                else
 552                        clear_bit(stripe, d->full_dirty_stripes);
 553
 554                nr_sectors -= s;
 555                stripe_offset = 0;
 556                stripe++;
 557        }
 558}
 559
 560static bool dirty_pred(struct keybuf *buf, struct bkey *k)
 561{
 562        struct cached_dev *dc = container_of(buf,
 563                                             struct cached_dev,
 564                                             writeback_keys);
 565
 566        BUG_ON(KEY_INODE(k) != dc->disk.id);
 567
 568        return KEY_DIRTY(k);
 569}
 570
 571static void refill_full_stripes(struct cached_dev *dc)
 572{
 573        struct keybuf *buf = &dc->writeback_keys;
 574        unsigned int start_stripe, stripe, next_stripe;
 575        bool wrapped = false;
 576
 577        stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
 578
 579        if (stripe >= dc->disk.nr_stripes)
 580                stripe = 0;
 581
 582        start_stripe = stripe;
 583
 584        while (1) {
 585                stripe = find_next_bit(dc->disk.full_dirty_stripes,
 586                                       dc->disk.nr_stripes, stripe);
 587
 588                if (stripe == dc->disk.nr_stripes)
 589                        goto next;
 590
 591                next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
 592                                                 dc->disk.nr_stripes, stripe);
 593
 594                buf->last_scanned = KEY(dc->disk.id,
 595                                        stripe * dc->disk.stripe_size, 0);
 596
 597                bch_refill_keybuf(dc->disk.c, buf,
 598                                  &KEY(dc->disk.id,
 599                                       next_stripe * dc->disk.stripe_size, 0),
 600                                  dirty_pred);
 601
 602                if (array_freelist_empty(&buf->freelist))
 603                        return;
 604
 605                stripe = next_stripe;
 606next:
 607                if (wrapped && stripe > start_stripe)
 608                        return;
 609
 610                if (stripe == dc->disk.nr_stripes) {
 611                        stripe = 0;
 612                        wrapped = true;
 613                }
 614        }
 615}
 616
 617/*
 618 * Returns true if we scanned the entire disk
 619 */
 620static bool refill_dirty(struct cached_dev *dc)
 621{
 622        struct keybuf *buf = &dc->writeback_keys;
 623        struct bkey start = KEY(dc->disk.id, 0, 0);
 624        struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
 625        struct bkey start_pos;
 626
 627        /*
 628         * make sure keybuf pos is inside the range for this disk - at bringup
 629         * we might not be attached yet so this disk's inode nr isn't
 630         * initialized then
 631         */
 632        if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
 633            bkey_cmp(&buf->last_scanned, &end) > 0)
 634                buf->last_scanned = start;
 635
 636        if (dc->partial_stripes_expensive) {
 637                refill_full_stripes(dc);
 638                if (array_freelist_empty(&buf->freelist))
 639                        return false;
 640        }
 641
 642        start_pos = buf->last_scanned;
 643        bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
 644
 645        if (bkey_cmp(&buf->last_scanned, &end) < 0)
 646                return false;
 647
 648        /*
 649         * If we get to the end start scanning again from the beginning, and
 650         * only scan up to where we initially started scanning from:
 651         */
 652        buf->last_scanned = start;
 653        bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
 654
 655        return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
 656}
 657
 658static int bch_writeback_thread(void *arg)
 659{
 660        struct cached_dev *dc = arg;
 661        struct cache_set *c = dc->disk.c;
 662        bool searched_full_index;
 663
 664        bch_ratelimit_reset(&dc->writeback_rate);
 665
 666        while (!kthread_should_stop() &&
 667               !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
 668                down_write(&dc->writeback_lock);
 669                set_current_state(TASK_INTERRUPTIBLE);
 670                /*
 671                 * If the bache device is detaching, skip here and continue
 672                 * to perform writeback. Otherwise, if no dirty data on cache,
 673                 * or there is dirty data on cache but writeback is disabled,
 674                 * the writeback thread should sleep here and wait for others
 675                 * to wake up it.
 676                 */
 677                if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
 678                    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
 679                        up_write(&dc->writeback_lock);
 680
 681                        if (kthread_should_stop() ||
 682                            test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
 683                                set_current_state(TASK_RUNNING);
 684                                break;
 685                        }
 686
 687                        schedule();
 688                        continue;
 689                }
 690                set_current_state(TASK_RUNNING);
 691
 692                searched_full_index = refill_dirty(dc);
 693
 694                if (searched_full_index &&
 695                    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
 696                        atomic_set(&dc->has_dirty, 0);
 697                        SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
 698                        bch_write_bdev_super(dc, NULL);
 699                        /*
 700                         * If bcache device is detaching via sysfs interface,
 701                         * writeback thread should stop after there is no dirty
 702                         * data on cache. BCACHE_DEV_DETACHING flag is set in
 703                         * bch_cached_dev_detach().
 704                         */
 705                        if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
 706                                up_write(&dc->writeback_lock);
 707                                break;
 708                        }
 709
 710                        /*
 711                         * When dirty data rate is high (e.g. 50%+), there might
 712                         * be heavy buckets fragmentation after writeback
 713                         * finished, which hurts following write performance.
 714                         * If users really care about write performance they
 715                         * may set BCH_ENABLE_AUTO_GC via sysfs, then when
 716                         * BCH_DO_AUTO_GC is set, garbage collection thread
 717                         * will be wake up here. After moving gc, the shrunk
 718                         * btree and discarded free buckets SSD space may be
 719                         * helpful for following write requests.
 720                         */
 721                        if (c->gc_after_writeback ==
 722                            (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
 723                                c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
 724                                force_wake_up_gc(c);
 725                        }
 726                }
 727
 728                up_write(&dc->writeback_lock);
 729
 730                read_dirty(dc);
 731
 732                if (searched_full_index) {
 733                        unsigned int delay = dc->writeback_delay * HZ;
 734
 735                        while (delay &&
 736                               !kthread_should_stop() &&
 737                               !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
 738                               !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
 739                                delay = schedule_timeout_interruptible(delay);
 740
 741                        bch_ratelimit_reset(&dc->writeback_rate);
 742                }
 743        }
 744
 745        if (dc->writeback_write_wq) {
 746                flush_workqueue(dc->writeback_write_wq);
 747                destroy_workqueue(dc->writeback_write_wq);
 748        }
 749        cached_dev_put(dc);
 750        wait_for_kthread_stop();
 751
 752        return 0;
 753}
 754
 755/* Init */
 756#define INIT_KEYS_EACH_TIME     500000
 757#define INIT_KEYS_SLEEP_MS      100
 758
 759struct sectors_dirty_init {
 760        struct btree_op op;
 761        unsigned int    inode;
 762        size_t          count;
 763        struct bkey     start;
 764};
 765
 766static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
 767                                 struct bkey *k)
 768{
 769        struct sectors_dirty_init *op = container_of(_op,
 770                                                struct sectors_dirty_init, op);
 771        if (KEY_INODE(k) > op->inode)
 772                return MAP_DONE;
 773
 774        if (KEY_DIRTY(k))
 775                bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
 776                                             KEY_START(k), KEY_SIZE(k));
 777
 778        op->count++;
 779        if (atomic_read(&b->c->search_inflight) &&
 780            !(op->count % INIT_KEYS_EACH_TIME)) {
 781                bkey_copy_key(&op->start, k);
 782                return -EAGAIN;
 783        }
 784
 785        return MAP_CONTINUE;
 786}
 787
 788static int bch_root_node_dirty_init(struct cache_set *c,
 789                                     struct bcache_device *d,
 790                                     struct bkey *k)
 791{
 792        struct sectors_dirty_init op;
 793        int ret;
 794
 795        bch_btree_op_init(&op.op, -1);
 796        op.inode = d->id;
 797        op.count = 0;
 798        op.start = KEY(op.inode, 0, 0);
 799
 800        do {
 801                ret = bcache_btree(map_keys_recurse,
 802                                   k,
 803                                   c->root,
 804                                   &op.op,
 805                                   &op.start,
 806                                   sectors_dirty_init_fn,
 807                                   0);
 808                if (ret == -EAGAIN)
 809                        schedule_timeout_interruptible(
 810                                msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
 811                else if (ret < 0) {
 812                        pr_warn("sectors dirty init failed, ret=%d!\n", ret);
 813                        break;
 814                }
 815        } while (ret == -EAGAIN);
 816
 817        return ret;
 818}
 819
 820static int bch_dirty_init_thread(void *arg)
 821{
 822        struct dirty_init_thrd_info *info = arg;
 823        struct bch_dirty_init_state *state = info->state;
 824        struct cache_set *c = state->c;
 825        struct btree_iter iter;
 826        struct bkey *k, *p;
 827        int cur_idx, prev_idx, skip_nr;
 828        int i;
 829
 830        k = p = NULL;
 831        i = 0;
 832        cur_idx = prev_idx = 0;
 833
 834        bch_btree_iter_init(&c->root->keys, &iter, NULL);
 835        k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
 836        BUG_ON(!k);
 837
 838        p = k;
 839
 840        while (k) {
 841                spin_lock(&state->idx_lock);
 842                cur_idx = state->key_idx;
 843                state->key_idx++;
 844                spin_unlock(&state->idx_lock);
 845
 846                skip_nr = cur_idx - prev_idx;
 847
 848                while (skip_nr) {
 849                        k = bch_btree_iter_next_filter(&iter,
 850                                                       &c->root->keys,
 851                                                       bch_ptr_bad);
 852                        if (k)
 853                                p = k;
 854                        else {
 855                                atomic_set(&state->enough, 1);
 856                                /* Update state->enough earlier */
 857                                smp_mb__after_atomic();
 858                                goto out;
 859                        }
 860                        skip_nr--;
 861                        cond_resched();
 862                }
 863
 864                if (p) {
 865                        if (bch_root_node_dirty_init(c, state->d, p) < 0)
 866                                goto out;
 867                }
 868
 869                p = NULL;
 870                prev_idx = cur_idx;
 871                cond_resched();
 872        }
 873
 874out:
 875        /* In order to wake up state->wait in time */
 876        smp_mb__before_atomic();
 877        if (atomic_dec_and_test(&state->started))
 878                wake_up(&state->wait);
 879
 880        return 0;
 881}
 882
 883static int bch_btre_dirty_init_thread_nr(void)
 884{
 885        int n = num_online_cpus()/2;
 886
 887        if (n == 0)
 888                n = 1;
 889        else if (n > BCH_DIRTY_INIT_THRD_MAX)
 890                n = BCH_DIRTY_INIT_THRD_MAX;
 891
 892        return n;
 893}
 894
 895void bch_sectors_dirty_init(struct bcache_device *d)
 896{
 897        int i;
 898        struct bkey *k = NULL;
 899        struct btree_iter iter;
 900        struct sectors_dirty_init op;
 901        struct cache_set *c = d->c;
 902        struct bch_dirty_init_state *state;
 903        char name[32];
 904
 905        /* Just count root keys if no leaf node */
 906        if (c->root->level == 0) {
 907                bch_btree_op_init(&op.op, -1);
 908                op.inode = d->id;
 909                op.count = 0;
 910                op.start = KEY(op.inode, 0, 0);
 911
 912                for_each_key_filter(&c->root->keys,
 913                                    k, &iter, bch_ptr_invalid)
 914                        sectors_dirty_init_fn(&op.op, c->root, k);
 915                return;
 916        }
 917
 918        state = kzalloc(sizeof(struct bch_dirty_init_state), GFP_KERNEL);
 919        if (!state) {
 920                pr_warn("sectors dirty init failed: cannot allocate memory\n");
 921                return;
 922        }
 923
 924        state->c = c;
 925        state->d = d;
 926        state->total_threads = bch_btre_dirty_init_thread_nr();
 927        state->key_idx = 0;
 928        spin_lock_init(&state->idx_lock);
 929        atomic_set(&state->started, 0);
 930        atomic_set(&state->enough, 0);
 931        init_waitqueue_head(&state->wait);
 932
 933        for (i = 0; i < state->total_threads; i++) {
 934                /* Fetch latest state->enough earlier */
 935                smp_mb__before_atomic();
 936                if (atomic_read(&state->enough))
 937                        break;
 938
 939                state->infos[i].state = state;
 940                atomic_inc(&state->started);
 941                snprintf(name, sizeof(name), "bch_dirty_init[%d]", i);
 942
 943                state->infos[i].thread =
 944                        kthread_run(bch_dirty_init_thread,
 945                                    &state->infos[i],
 946                                    name);
 947                if (IS_ERR(state->infos[i].thread)) {
 948                        pr_err("fails to run thread bch_dirty_init[%d]\n", i);
 949                        for (--i; i >= 0; i--)
 950                                kthread_stop(state->infos[i].thread);
 951                        goto out;
 952                }
 953        }
 954
 955        wait_event_interruptible(state->wait,
 956                 atomic_read(&state->started) == 0 ||
 957                 test_bit(CACHE_SET_IO_DISABLE, &c->flags));
 958
 959out:
 960        kfree(state);
 961}
 962
 963void bch_cached_dev_writeback_init(struct cached_dev *dc)
 964{
 965        sema_init(&dc->in_flight, 64);
 966        init_rwsem(&dc->writeback_lock);
 967        bch_keybuf_init(&dc->writeback_keys);
 968
 969        dc->writeback_metadata          = true;
 970        dc->writeback_running           = false;
 971        dc->writeback_percent           = 10;
 972        dc->writeback_delay             = 30;
 973        atomic_long_set(&dc->writeback_rate.rate, 1024);
 974        dc->writeback_rate_minimum      = 8;
 975
 976        dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
 977        dc->writeback_rate_p_term_inverse = 40;
 978        dc->writeback_rate_i_term_inverse = 10000;
 979
 980        WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
 981        INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
 982}
 983
 984int bch_cached_dev_writeback_start(struct cached_dev *dc)
 985{
 986        dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
 987                                                WQ_MEM_RECLAIM, 0);
 988        if (!dc->writeback_write_wq)
 989                return -ENOMEM;
 990
 991        cached_dev_get(dc);
 992        dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
 993                                              "bcache_writeback");
 994        if (IS_ERR(dc->writeback_thread)) {
 995                cached_dev_put(dc);
 996                destroy_workqueue(dc->writeback_write_wq);
 997                return PTR_ERR(dc->writeback_thread);
 998        }
 999        dc->writeback_running = true;
1000
1001        WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1002        schedule_delayed_work(&dc->writeback_rate_update,
1003                              dc->writeback_rate_update_seconds * HZ);
1004
1005        bch_writeback_queue(dc);
1006
1007        return 0;
1008}
1009