linux/drivers/memory/samsung/exynos5422-dmc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2019 Samsung Electronics Co., Ltd.
   4 * Author: Lukasz Luba <l.luba@partner.samsung.com>
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/devfreq.h>
   9#include <linux/devfreq-event.h>
  10#include <linux/device.h>
  11#include <linux/interrupt.h>
  12#include <linux/io.h>
  13#include <linux/mfd/syscon.h>
  14#include <linux/module.h>
  15#include <linux/of_device.h>
  16#include <linux/pm_opp.h>
  17#include <linux/platform_device.h>
  18#include <linux/regmap.h>
  19#include <linux/regulator/consumer.h>
  20#include <linux/slab.h>
  21#include "../jedec_ddr.h"
  22#include "../of_memory.h"
  23
  24#define EXYNOS5_DREXI_TIMINGAREF                (0x0030)
  25#define EXYNOS5_DREXI_TIMINGROW0                (0x0034)
  26#define EXYNOS5_DREXI_TIMINGDATA0               (0x0038)
  27#define EXYNOS5_DREXI_TIMINGPOWER0              (0x003C)
  28#define EXYNOS5_DREXI_TIMINGROW1                (0x00E4)
  29#define EXYNOS5_DREXI_TIMINGDATA1               (0x00E8)
  30#define EXYNOS5_DREXI_TIMINGPOWER1              (0x00EC)
  31#define CDREX_PAUSE                             (0x2091c)
  32#define CDREX_LPDDR3PHY_CON3                    (0x20a20)
  33#define CDREX_LPDDR3PHY_CLKM_SRC                (0x20700)
  34#define EXYNOS5_TIMING_SET_SWI                  BIT(28)
  35#define USE_MX_MSPLL_TIMINGS                    (1)
  36#define USE_BPLL_TIMINGS                        (0)
  37#define EXYNOS5_AREF_NORMAL                     (0x2e)
  38
  39#define DREX_PPCCLKCON          (0x0130)
  40#define DREX_PEREV2CONFIG       (0x013c)
  41#define DREX_PMNC_PPC           (0xE000)
  42#define DREX_CNTENS_PPC         (0xE010)
  43#define DREX_CNTENC_PPC         (0xE020)
  44#define DREX_INTENS_PPC         (0xE030)
  45#define DREX_INTENC_PPC         (0xE040)
  46#define DREX_FLAG_PPC           (0xE050)
  47#define DREX_PMCNT2_PPC         (0xE130)
  48
  49/*
  50 * A value for register DREX_PMNC_PPC which should be written to reset
  51 * the cycle counter CCNT (a reference wall clock). It sets zero to the
  52 * CCNT counter.
  53 */
  54#define CC_RESET                BIT(2)
  55
  56/*
  57 * A value for register DREX_PMNC_PPC which does the reset of all performance
  58 * counters to zero.
  59 */
  60#define PPC_COUNTER_RESET       BIT(1)
  61
  62/*
  63 * Enables all configured counters (including cycle counter). The value should
  64 * be written to the register DREX_PMNC_PPC.
  65 */
  66#define PPC_ENABLE              BIT(0)
  67
  68/* A value for register DREX_PPCCLKCON which enables performance events clock.
  69 * Must be written before first access to the performance counters register
  70 * set, otherwise it could crash.
  71 */
  72#define PEREV_CLK_EN            BIT(0)
  73
  74/*
  75 * Values which are used to enable counters, interrupts or configure flags of
  76 * the performance counters. They configure counter 2 and cycle counter.
  77 */
  78#define PERF_CNT2               BIT(2)
  79#define PERF_CCNT               BIT(31)
  80
  81/*
  82 * Performance event types which are used for setting the preferred event
  83 * to track in the counters.
  84 * There is a set of different types, the values are from range 0 to 0x6f.
  85 * These settings should be written to the configuration register which manages
  86 * the type of the event (register DREX_PEREV2CONFIG).
  87 */
  88#define READ_TRANSFER_CH0       (0x6d)
  89#define READ_TRANSFER_CH1       (0x6f)
  90
  91#define PERF_COUNTER_START_VALUE 0xff000000
  92#define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
  93
  94/**
  95 * struct dmc_opp_table - Operating level desciption
  96 *
  97 * Covers frequency and voltage settings of the DMC operating mode.
  98 */
  99struct dmc_opp_table {
 100        u32 freq_hz;
 101        u32 volt_uv;
 102};
 103
 104/**
 105 * struct exynos5_dmc - main structure describing DMC device
 106 *
 107 * The main structure for the Dynamic Memory Controller which covers clocks,
 108 * memory regions, HW information, parameters and current operating mode.
 109 */
 110struct exynos5_dmc {
 111        struct device *dev;
 112        struct devfreq *df;
 113        struct devfreq_simple_ondemand_data gov_data;
 114        void __iomem *base_drexi0;
 115        void __iomem *base_drexi1;
 116        struct regmap *clk_regmap;
 117        struct mutex lock;
 118        unsigned long curr_rate;
 119        unsigned long curr_volt;
 120        unsigned long bypass_rate;
 121        struct dmc_opp_table *opp;
 122        struct dmc_opp_table opp_bypass;
 123        int opp_count;
 124        u32 timings_arr_size;
 125        u32 *timing_row;
 126        u32 *timing_data;
 127        u32 *timing_power;
 128        const struct lpddr3_timings *timings;
 129        const struct lpddr3_min_tck *min_tck;
 130        u32 bypass_timing_row;
 131        u32 bypass_timing_data;
 132        u32 bypass_timing_power;
 133        struct regulator *vdd_mif;
 134        struct clk *fout_spll;
 135        struct clk *fout_bpll;
 136        struct clk *mout_spll;
 137        struct clk *mout_bpll;
 138        struct clk *mout_mclk_cdrex;
 139        struct clk *mout_mx_mspll_ccore;
 140        struct clk *mx_mspll_ccore_phy;
 141        struct clk *mout_mx_mspll_ccore_phy;
 142        struct devfreq_event_dev **counter;
 143        int num_counters;
 144        u64 last_overflow_ts[2];
 145        unsigned long load;
 146        unsigned long total;
 147        bool in_irq_mode;
 148};
 149
 150#define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
 151        { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
 152
 153#define TIMING_VAL2REG(timing, t_val)                   \
 154({                                                      \
 155                u32 __val;                              \
 156                __val = (t_val) << (timing)->bit_beg;   \
 157                __val;                                  \
 158})
 159
 160struct timing_reg {
 161        char *name;
 162        int bit_beg;
 163        int bit_end;
 164        unsigned int val;
 165};
 166
 167static const struct timing_reg timing_row[] = {
 168        TIMING_FIELD("tRFC", 24, 31),
 169        TIMING_FIELD("tRRD", 20, 23),
 170        TIMING_FIELD("tRP", 16, 19),
 171        TIMING_FIELD("tRCD", 12, 15),
 172        TIMING_FIELD("tRC", 6, 11),
 173        TIMING_FIELD("tRAS", 0, 5),
 174};
 175
 176static const struct timing_reg timing_data[] = {
 177        TIMING_FIELD("tWTR", 28, 31),
 178        TIMING_FIELD("tWR", 24, 27),
 179        TIMING_FIELD("tRTP", 20, 23),
 180        TIMING_FIELD("tW2W-C2C", 14, 14),
 181        TIMING_FIELD("tR2R-C2C", 12, 12),
 182        TIMING_FIELD("WL", 8, 11),
 183        TIMING_FIELD("tDQSCK", 4, 7),
 184        TIMING_FIELD("RL", 0, 3),
 185};
 186
 187static const struct timing_reg timing_power[] = {
 188        TIMING_FIELD("tFAW", 26, 31),
 189        TIMING_FIELD("tXSR", 16, 25),
 190        TIMING_FIELD("tXP", 8, 15),
 191        TIMING_FIELD("tCKE", 4, 7),
 192        TIMING_FIELD("tMRD", 0, 3),
 193};
 194
 195#define TIMING_COUNT (ARRAY_SIZE(timing_row) + ARRAY_SIZE(timing_data) + \
 196                      ARRAY_SIZE(timing_power))
 197
 198static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
 199{
 200        int i, ret;
 201
 202        for (i = 0; i < dmc->num_counters; i++) {
 203                if (!dmc->counter[i])
 204                        continue;
 205                ret = devfreq_event_set_event(dmc->counter[i]);
 206                if (ret < 0)
 207                        return ret;
 208        }
 209        return 0;
 210}
 211
 212static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
 213{
 214        int i, ret;
 215
 216        for (i = 0; i < dmc->num_counters; i++) {
 217                if (!dmc->counter[i])
 218                        continue;
 219                ret = devfreq_event_enable_edev(dmc->counter[i]);
 220                if (ret < 0)
 221                        return ret;
 222        }
 223        return 0;
 224}
 225
 226static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
 227{
 228        int i, ret;
 229
 230        for (i = 0; i < dmc->num_counters; i++) {
 231                if (!dmc->counter[i])
 232                        continue;
 233                ret = devfreq_event_disable_edev(dmc->counter[i]);
 234                if (ret < 0)
 235                        return ret;
 236        }
 237        return 0;
 238}
 239
 240/**
 241 * find_target_freq_id() - Finds requested frequency in local DMC configuration
 242 * @dmc:        device for which the information is checked
 243 * @target_rate:        requested frequency in KHz
 244 *
 245 * Seeks in the local DMC driver structure for the requested frequency value
 246 * and returns index or error value.
 247 */
 248static int find_target_freq_idx(struct exynos5_dmc *dmc,
 249                                unsigned long target_rate)
 250{
 251        int i;
 252
 253        for (i = dmc->opp_count - 1; i >= 0; i--)
 254                if (dmc->opp[i].freq_hz <= target_rate)
 255                        return i;
 256
 257        return -EINVAL;
 258}
 259
 260/**
 261 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
 262 * @dmc:        device for which the new settings is going to be applied
 263 * @set:        boolean variable passing set value
 264 *
 265 * Changes the register set, which holds timing parameters.
 266 * There is two register sets: 0 and 1. The register set 0
 267 * is used in normal operation when the clock is provided from main PLL.
 268 * The bank register set 1 is used when the main PLL frequency is going to be
 269 * changed and the clock is taken from alternative, stable source.
 270 * This function switches between these banks according to the
 271 * currently used clock source.
 272 */
 273static void exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
 274{
 275        unsigned int reg;
 276        int ret;
 277
 278        ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
 279
 280        if (set)
 281                reg |= EXYNOS5_TIMING_SET_SWI;
 282        else
 283                reg &= ~EXYNOS5_TIMING_SET_SWI;
 284
 285        regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
 286}
 287
 288/**
 289 * exynos5_init_freq_table() - Initialized PM OPP framework
 290 * @dmc:        DMC device for which the frequencies are used for OPP init
 291 * @profile:    devfreq device's profile
 292 *
 293 * Populate the devfreq device's OPP table based on current frequency, voltage.
 294 */
 295static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
 296                                   struct devfreq_dev_profile *profile)
 297{
 298        int i, ret;
 299        int idx;
 300        unsigned long freq;
 301
 302        ret = dev_pm_opp_of_add_table(dmc->dev);
 303        if (ret < 0) {
 304                dev_err(dmc->dev, "Failed to get OPP table\n");
 305                return ret;
 306        }
 307
 308        dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
 309
 310        dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
 311                                      sizeof(struct dmc_opp_table), GFP_KERNEL);
 312        if (!dmc->opp)
 313                goto err_opp;
 314
 315        idx = dmc->opp_count - 1;
 316        for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
 317                struct dev_pm_opp *opp;
 318
 319                opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
 320                if (IS_ERR(opp))
 321                        goto err_opp;
 322
 323                dmc->opp[idx - i].freq_hz = freq;
 324                dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
 325
 326                dev_pm_opp_put(opp);
 327        }
 328
 329        return 0;
 330
 331err_opp:
 332        dev_pm_opp_of_remove_table(dmc->dev);
 333
 334        return -EINVAL;
 335}
 336
 337/**
 338 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
 339 * @dmc:        device for which the new settings is going to be applied
 340 * @param:      DRAM parameters which passes timing data
 341 *
 342 * Low-level function for changing timings for DRAM memory clocking from
 343 * 'bypass' clock source (fixed frequency @400MHz).
 344 * It uses timing bank registers set 1.
 345 */
 346static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
 347{
 348        writel(EXYNOS5_AREF_NORMAL,
 349               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
 350
 351        writel(dmc->bypass_timing_row,
 352               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
 353        writel(dmc->bypass_timing_row,
 354               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
 355        writel(dmc->bypass_timing_data,
 356               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
 357        writel(dmc->bypass_timing_data,
 358               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
 359        writel(dmc->bypass_timing_power,
 360               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
 361        writel(dmc->bypass_timing_power,
 362               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
 363}
 364
 365/**
 366 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
 367 * @dmc:        device for which the new settings is going to be applied
 368 * @target_rate:        target frequency of the DMC
 369 *
 370 * Low-level function for changing timings for DRAM memory operating from main
 371 * clock source (BPLL), which can have different frequencies. Thus, each
 372 * frequency must have corresponding timings register values in order to keep
 373 * the needed delays.
 374 * It uses timing bank registers set 0.
 375 */
 376static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
 377                                       unsigned long target_rate)
 378{
 379        int idx;
 380
 381        for (idx = dmc->opp_count - 1; idx >= 0; idx--)
 382                if (dmc->opp[idx].freq_hz <= target_rate)
 383                        break;
 384
 385        if (idx < 0)
 386                return -EINVAL;
 387
 388        writel(EXYNOS5_AREF_NORMAL,
 389               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
 390
 391        writel(dmc->timing_row[idx],
 392               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
 393        writel(dmc->timing_row[idx],
 394               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
 395        writel(dmc->timing_data[idx],
 396               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
 397        writel(dmc->timing_data[idx],
 398               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
 399        writel(dmc->timing_power[idx],
 400               dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
 401        writel(dmc->timing_power[idx],
 402               dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
 403
 404        return 0;
 405}
 406
 407/**
 408 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
 409 * @dmc:        device for which it is going to be set
 410 * @target_volt:        new voltage which is chosen to be final
 411 *
 412 * Function tries to align voltage to the safe level for 'normal' mode.
 413 * It checks the need of higher voltage and changes the value. The target
 414 * voltage might be lower that currently set and still the system will be
 415 * stable.
 416 */
 417static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
 418                                            unsigned long target_volt)
 419{
 420        int ret = 0;
 421
 422        if (dmc->curr_volt <= target_volt)
 423                return 0;
 424
 425        ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
 426                                    target_volt);
 427        if (!ret)
 428                dmc->curr_volt = target_volt;
 429
 430        return ret;
 431}
 432
 433/**
 434 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
 435 * @dmc:        device for which it is going to be set
 436 * @target_volt:        new voltage which is chosen to be final
 437 *
 438 * Function tries to align voltage to the safe level for the 'bypass' mode.
 439 * It checks the need of higher voltage and changes the value.
 440 * The target voltage must not be less than currently needed, because
 441 * for current frequency the device might become unstable.
 442 */
 443static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
 444                                            unsigned long target_volt)
 445{
 446        int ret = 0;
 447        unsigned long bypass_volt = dmc->opp_bypass.volt_uv;
 448
 449        target_volt = max(bypass_volt, target_volt);
 450
 451        if (dmc->curr_volt >= target_volt)
 452                return 0;
 453
 454        ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
 455                                    target_volt);
 456        if (!ret)
 457                dmc->curr_volt = target_volt;
 458
 459        return ret;
 460}
 461
 462/**
 463 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
 464 * @dmc:        device for which it is going to be set
 465 * @target_rate:        new frequency which is chosen to be final
 466 *
 467 * Function changes the DRAM timings for the temporary 'bypass' mode.
 468 */
 469static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
 470                                                 unsigned long target_rate)
 471{
 472        int idx = find_target_freq_idx(dmc, target_rate);
 473
 474        if (idx < 0)
 475                return -EINVAL;
 476
 477        exynos5_set_bypass_dram_timings(dmc);
 478
 479        return 0;
 480}
 481
 482/**
 483 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
 484 * @dmc:        DMC device for which the switching is going to happen
 485 * @target_rate:        new frequency which is going to be set as a final
 486 * @target_volt:        new voltage which is going to be set as a final
 487 *
 488 * Function configures DMC and clocks for operating in temporary 'bypass' mode.
 489 * This mode is used only temporary but if required, changes voltage and timings
 490 * for DRAM chips. It switches the main clock to stable clock source for the
 491 * period of the main PLL reconfiguration.
 492 */
 493static int
 494exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
 495                                           unsigned long target_rate,
 496                                           unsigned long target_volt)
 497{
 498        int ret;
 499
 500        /*
 501         * Having higher voltage for a particular frequency does not harm
 502         * the chip. Use it for the temporary frequency change when one
 503         * voltage manipulation might be avoided.
 504         */
 505        ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
 506        if (ret)
 507                return ret;
 508
 509        /*
 510         * Longer delays for DRAM does not cause crash, the opposite does.
 511         */
 512        ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
 513        if (ret)
 514                return ret;
 515
 516        /*
 517         * Delays are long enough, so use them for the new coming clock.
 518         */
 519        exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
 520
 521        return ret;
 522}
 523
 524/**
 525 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
 526 * using safe procedure
 527 * @dmc:        device for which the frequency is going to be changed
 528 * @target_rate:        requested new frequency
 529 * @target_volt:        requested voltage which corresponds to the new frequency
 530 *
 531 * The DMC frequency change procedure requires a few steps.
 532 * The main requirement is to change the clock source in the clk mux
 533 * for the time of main clock PLL locking. The assumption is that the
 534 * alternative clock source set as parent is stable.
 535 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
 536 * clock. This requires alignment in DRAM timing parameters for the new
 537 * T-period. There is two bank sets for keeping DRAM
 538 * timings: set 0 and set 1. The set 0 is used when main clock source is
 539 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
 540 * the two bank sets is part of the process.
 541 * The voltage must also be aligned to the minimum required level. There is
 542 * this intermediate step with switching to 'bypass' parent clock source.
 543 * if the old voltage is lower, it requires an increase of the voltage level.
 544 * The complexity of the voltage manipulation is hidden in low level function.
 545 * In this function there is last alignment of the voltage level at the end.
 546 */
 547static int
 548exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
 549                                 unsigned long target_rate,
 550                                 unsigned long target_volt)
 551{
 552        int ret;
 553
 554        ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
 555                                                         target_volt);
 556        if (ret)
 557                return ret;
 558
 559        /*
 560         * Voltage is set at least to a level needed for this frequency,
 561         * so switching clock source is safe now.
 562         */
 563        clk_prepare_enable(dmc->fout_spll);
 564        clk_prepare_enable(dmc->mout_spll);
 565        clk_prepare_enable(dmc->mout_mx_mspll_ccore);
 566
 567        ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
 568        if (ret)
 569                goto disable_clocks;
 570
 571        /*
 572         * We are safe to increase the timings for current bypass frequency.
 573         * Thanks to this the settings will be ready for the upcoming clock
 574         * source change.
 575         */
 576        exynos5_dram_change_timings(dmc, target_rate);
 577
 578        clk_set_rate(dmc->fout_bpll, target_rate);
 579
 580        exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
 581
 582        ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
 583        if (ret)
 584                goto disable_clocks;
 585
 586        /*
 587         * Make sure if the voltage is not from 'bypass' settings and align to
 588         * the right level for power efficiency.
 589         */
 590        ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
 591
 592disable_clocks:
 593        clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
 594        clk_disable_unprepare(dmc->mout_spll);
 595        clk_disable_unprepare(dmc->fout_spll);
 596
 597        return ret;
 598}
 599
 600/**
 601 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
 602 * table.
 603 * @dmc:        device for which the frequency is going to be changed
 604 * @freq:       requested frequency in KHz
 605 * @target_rate:        returned frequency which is the same or lower than
 606 *                      requested
 607 * @target_volt:        returned voltage which corresponds to the returned
 608 *                      frequency
 609 *
 610 * Function gets requested frequency and checks OPP framework for needed
 611 * frequency and voltage. It populates the values 'target_rate' and
 612 * 'target_volt' or returns error value when OPP framework fails.
 613 */
 614static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
 615                                     unsigned long *freq,
 616                                     unsigned long *target_rate,
 617                                     unsigned long *target_volt, u32 flags)
 618{
 619        struct dev_pm_opp *opp;
 620
 621        opp = devfreq_recommended_opp(dmc->dev, freq, flags);
 622        if (IS_ERR(opp))
 623                return PTR_ERR(opp);
 624
 625        *target_rate = dev_pm_opp_get_freq(opp);
 626        *target_volt = dev_pm_opp_get_voltage(opp);
 627        dev_pm_opp_put(opp);
 628
 629        return 0;
 630}
 631
 632/**
 633 * exynos5_dmc_target() - Function responsible for changing frequency of DMC
 634 * @dev:        device for which the frequency is going to be changed
 635 * @freq:       requested frequency in KHz
 636 * @flags:      flags provided for this frequency change request
 637 *
 638 * An entry function provided to the devfreq framework which provides frequency
 639 * change of the DMC. The function gets the possible rate from OPP table based
 640 * on requested frequency. It calls the next function responsible for the
 641 * frequency and voltage change. In case of failure, does not set 'curr_rate'
 642 * and returns error value to the framework.
 643 */
 644static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
 645                              u32 flags)
 646{
 647        struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 648        unsigned long target_rate = 0;
 649        unsigned long target_volt = 0;
 650        int ret;
 651
 652        ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
 653                                        flags);
 654
 655        if (ret)
 656                return ret;
 657
 658        if (target_rate == dmc->curr_rate)
 659                return 0;
 660
 661        mutex_lock(&dmc->lock);
 662
 663        ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
 664
 665        if (ret) {
 666                mutex_unlock(&dmc->lock);
 667                return ret;
 668        }
 669
 670        dmc->curr_rate = target_rate;
 671
 672        mutex_unlock(&dmc->lock);
 673        return 0;
 674}
 675
 676/**
 677 * exynos5_counters_get() - Gets the performance counters values.
 678 * @dmc:        device for which the counters are going to be checked
 679 * @load_count: variable which is populated with counter value
 680 * @total_count:        variable which is used as 'wall clock' reference
 681 *
 682 * Function which provides performance counters values. It sums up counters for
 683 * two DMC channels. The 'total_count' is used as a reference and max value.
 684 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
 685 */
 686static int exynos5_counters_get(struct exynos5_dmc *dmc,
 687                                unsigned long *load_count,
 688                                unsigned long *total_count)
 689{
 690        unsigned long total = 0;
 691        struct devfreq_event_data event;
 692        int ret, i;
 693
 694        *load_count = 0;
 695
 696        /* Take into account only read+write counters, but stop all */
 697        for (i = 0; i < dmc->num_counters; i++) {
 698                if (!dmc->counter[i])
 699                        continue;
 700
 701                ret = devfreq_event_get_event(dmc->counter[i], &event);
 702                if (ret < 0)
 703                        return ret;
 704
 705                *load_count += event.load_count;
 706
 707                if (total < event.total_count)
 708                        total = event.total_count;
 709        }
 710
 711        *total_count = total;
 712
 713        return 0;
 714}
 715
 716/**
 717 * exynos5_dmc_start_perf_events() - Setup and start performance event counters
 718 * @dmc:        device for which the counters are going to be checked
 719 * @beg_value:  initial value for the counter
 720 *
 721 * Function which enables needed counters, interrupts and sets initial values
 722 * then starts the counters.
 723 */
 724static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
 725                                          u32 beg_value)
 726{
 727        /* Enable interrupts for counter 2 */
 728        writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
 729        writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
 730
 731        /* Enable counter 2 and CCNT  */
 732        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
 733        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
 734
 735        /* Clear overflow flag for all counters */
 736        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
 737        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
 738
 739        /* Reset all counters */
 740        writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
 741        writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
 742
 743        /*
 744         * Set start value for the counters, the number of samples that
 745         * will be gathered is calculated as: 0xffffffff - beg_value
 746         */
 747        writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
 748        writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
 749
 750        /* Start all counters */
 751        writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
 752        writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
 753}
 754
 755/**
 756 * exynos5_dmc_perf_events_calc() - Calculate utilization
 757 * @dmc:        device for which the counters are going to be checked
 758 * @diff_ts:    time between last interrupt and current one
 759 *
 760 * Function which calculates needed utilization for the devfreq governor.
 761 * It prepares values for 'busy_time' and 'total_time' based on elapsed time
 762 * between interrupts, which approximates utilization.
 763 */
 764static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
 765{
 766        /*
 767         * This is a simple algorithm for managing traffic on DMC.
 768         * When there is almost no load the counters overflow every 4s,
 769         * no mater the DMC frequency.
 770         * The high load might be approximated using linear function.
 771         * Knowing that, simple calculation can provide 'busy_time' and
 772         * 'total_time' to the devfreq governor which picks up target
 773         * frequency.
 774         * We want a fast ramp up and slow decay in frequency change function.
 775         */
 776        if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
 777                /*
 778                 * Set higher utilization for the simple_ondemand governor.
 779                 * The governor should increase the frequency of the DMC.
 780                 */
 781                dmc->load = 70;
 782                dmc->total = 100;
 783        } else {
 784                /*
 785                 * Set low utilization for the simple_ondemand governor.
 786                 * The governor should decrease the frequency of the DMC.
 787                 */
 788                dmc->load = 35;
 789                dmc->total = 100;
 790        }
 791
 792        dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
 793}
 794
 795/**
 796 * exynos5_dmc_perf_events_check() - Checks the status of the counters
 797 * @dmc:        device for which the counters are going to be checked
 798 *
 799 * Function which is called from threaded IRQ to check the counters state
 800 * and to call approximation for the needed utilization.
 801 */
 802static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
 803{
 804        u32 val;
 805        u64 diff_ts, ts;
 806
 807        ts = ktime_get_ns();
 808
 809        /* Stop all counters */
 810        writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
 811        writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
 812
 813        /* Check the source in interrupt flag registers (which channel) */
 814        val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
 815        if (val) {
 816                diff_ts = ts - dmc->last_overflow_ts[0];
 817                dmc->last_overflow_ts[0] = ts;
 818                dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n",  val);
 819        } else {
 820                val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
 821                diff_ts = ts - dmc->last_overflow_ts[1];
 822                dmc->last_overflow_ts[1] = ts;
 823                dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n",  val);
 824        }
 825
 826        exynos5_dmc_perf_events_calc(dmc, diff_ts);
 827
 828        exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
 829}
 830
 831/**
 832 * exynos5_dmc_enable_perf_events() - Enable performance events
 833 * @dmc:        device for which the counters are going to be checked
 834 *
 835 * Function which is setup needed environment and enables counters.
 836 */
 837static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
 838{
 839        u64 ts;
 840
 841        /* Enable Performance Event Clock */
 842        writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
 843        writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
 844
 845        /* Select read transfers as performance event2 */
 846        writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
 847        writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
 848
 849        ts = ktime_get_ns();
 850        dmc->last_overflow_ts[0] = ts;
 851        dmc->last_overflow_ts[1] = ts;
 852
 853        /* Devfreq shouldn't be faster than initialization, play safe though. */
 854        dmc->load = 99;
 855        dmc->total = 100;
 856}
 857
 858/**
 859 * exynos5_dmc_disable_perf_events() - Disable performance events
 860 * @dmc:        device for which the counters are going to be checked
 861 *
 862 * Function which stops, disables performance event counters and interrupts.
 863 */
 864static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
 865{
 866        /* Stop all counters */
 867        writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
 868        writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
 869
 870        /* Disable interrupts for counter 2 */
 871        writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
 872        writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
 873
 874        /* Disable counter 2 and CCNT  */
 875        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
 876        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
 877
 878        /* Clear overflow flag for all counters */
 879        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
 880        writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
 881}
 882
 883/**
 884 * exynos5_dmc_get_status() - Read current DMC performance statistics.
 885 * @dev:        device for which the statistics are requested
 886 * @stat:       structure which has statistic fields
 887 *
 888 * Function reads the DMC performance counters and calculates 'busy_time'
 889 * and 'total_time'. To protect from overflow, the values are shifted right
 890 * by 10. After read out the counters are setup to count again.
 891 */
 892static int exynos5_dmc_get_status(struct device *dev,
 893                                  struct devfreq_dev_status *stat)
 894{
 895        struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 896        unsigned long load, total;
 897        int ret;
 898
 899        if (dmc->in_irq_mode) {
 900                stat->current_frequency = dmc->curr_rate;
 901                stat->busy_time = dmc->load;
 902                stat->total_time = dmc->total;
 903        } else {
 904                ret = exynos5_counters_get(dmc, &load, &total);
 905                if (ret < 0)
 906                        return -EINVAL;
 907
 908                /* To protect from overflow, divide by 1024 */
 909                stat->busy_time = load >> 10;
 910                stat->total_time = total >> 10;
 911
 912                ret = exynos5_counters_set_event(dmc);
 913                if (ret < 0) {
 914                        dev_err(dev, "could not set event counter\n");
 915                        return ret;
 916                }
 917        }
 918
 919        return 0;
 920}
 921
 922/**
 923 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
 924 * @dev:        device for which the framework checks operating frequency
 925 * @freq:       returned frequency value
 926 *
 927 * It returns the currently used frequency of the DMC. The real operating
 928 * frequency might be lower when the clock source value could not be divided
 929 * to the requested value.
 930 */
 931static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
 932{
 933        struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 934
 935        mutex_lock(&dmc->lock);
 936        *freq = dmc->curr_rate;
 937        mutex_unlock(&dmc->lock);
 938
 939        return 0;
 940}
 941
 942/**
 943 * exynos5_dmc_df_profile - Devfreq governor's profile structure
 944 *
 945 * It provides to the devfreq framework needed functions and polling period.
 946 */
 947static struct devfreq_dev_profile exynos5_dmc_df_profile = {
 948        .target = exynos5_dmc_target,
 949        .get_dev_status = exynos5_dmc_get_status,
 950        .get_cur_freq = exynos5_dmc_get_cur_freq,
 951};
 952
 953/**
 954 * exynos5_dmc_align_initial_frequency() - Align initial frequency value
 955 * @dmc:        device for which the frequency is going to be set
 956 * @bootloader_init_freq:       initial frequency set by the bootloader in KHz
 957 *
 958 * The initial bootloader frequency, which is present during boot, might be
 959 * different that supported frequency values in the driver. It is possible
 960 * due to different PLL settings or used PLL as a source.
 961 * This function provides the 'initial_freq' for the devfreq framework
 962 * statistics engine which supports only registered values. Thus, some alignment
 963 * must be made.
 964 */
 965static unsigned long
 966exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
 967                            unsigned long bootloader_init_freq)
 968{
 969        unsigned long aligned_freq;
 970        int idx;
 971
 972        idx = find_target_freq_idx(dmc, bootloader_init_freq);
 973        if (idx >= 0)
 974                aligned_freq = dmc->opp[idx].freq_hz;
 975        else
 976                aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
 977
 978        return aligned_freq;
 979}
 980
 981/**
 982 * create_timings_aligned() - Create register values and align with standard
 983 * @dmc:        device for which the frequency is going to be set
 984 * @idx:        speed bin in the OPP table
 985 * @clk_period_ps:      the period of the clock, known as tCK
 986 *
 987 * The function calculates timings and creates a register value ready for
 988 * a frequency transition. The register contains a few timings. They are
 989 * shifted by a known offset. The timing value is calculated based on memory
 990 * specyfication: minimal time required and minimal cycles required.
 991 */
 992static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
 993                                  u32 *reg_timing_data, u32 *reg_timing_power,
 994                                  u32 clk_period_ps)
 995{
 996        u32 val;
 997        const struct timing_reg *reg;
 998
 999        if (clk_period_ps == 0)
1000                return -EINVAL;
1001
1002        *reg_timing_row = 0;
1003        *reg_timing_data = 0;
1004        *reg_timing_power = 0;
1005
1006        val = dmc->timings->tRFC / clk_period_ps;
1007        val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1008        val = max(val, dmc->min_tck->tRFC);
1009        reg = &timing_row[0];
1010        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1011
1012        val = dmc->timings->tRRD / clk_period_ps;
1013        val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1014        val = max(val, dmc->min_tck->tRRD);
1015        reg = &timing_row[1];
1016        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1017
1018        val = dmc->timings->tRPab / clk_period_ps;
1019        val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1020        val = max(val, dmc->min_tck->tRPab);
1021        reg = &timing_row[2];
1022        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1023
1024        val = dmc->timings->tRCD / clk_period_ps;
1025        val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1026        val = max(val, dmc->min_tck->tRCD);
1027        reg = &timing_row[3];
1028        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1029
1030        val = dmc->timings->tRC / clk_period_ps;
1031        val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1032        val = max(val, dmc->min_tck->tRC);
1033        reg = &timing_row[4];
1034        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1035
1036        val = dmc->timings->tRAS / clk_period_ps;
1037        val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1038        val = max(val, dmc->min_tck->tRAS);
1039        reg = &timing_row[5];
1040        *reg_timing_row |= TIMING_VAL2REG(reg, val);
1041
1042        /* data related timings */
1043        val = dmc->timings->tWTR / clk_period_ps;
1044        val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1045        val = max(val, dmc->min_tck->tWTR);
1046        reg = &timing_data[0];
1047        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1048
1049        val = dmc->timings->tWR / clk_period_ps;
1050        val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1051        val = max(val, dmc->min_tck->tWR);
1052        reg = &timing_data[1];
1053        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1054
1055        val = dmc->timings->tRTP / clk_period_ps;
1056        val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1057        val = max(val, dmc->min_tck->tRTP);
1058        reg = &timing_data[2];
1059        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1060
1061        val = dmc->timings->tW2W_C2C / clk_period_ps;
1062        val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1063        val = max(val, dmc->min_tck->tW2W_C2C);
1064        reg = &timing_data[3];
1065        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1066
1067        val = dmc->timings->tR2R_C2C / clk_period_ps;
1068        val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1069        val = max(val, dmc->min_tck->tR2R_C2C);
1070        reg = &timing_data[4];
1071        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1072
1073        val = dmc->timings->tWL / clk_period_ps;
1074        val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1075        val = max(val, dmc->min_tck->tWL);
1076        reg = &timing_data[5];
1077        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1078
1079        val = dmc->timings->tDQSCK / clk_period_ps;
1080        val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1081        val = max(val, dmc->min_tck->tDQSCK);
1082        reg = &timing_data[6];
1083        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1084
1085        val = dmc->timings->tRL / clk_period_ps;
1086        val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1087        val = max(val, dmc->min_tck->tRL);
1088        reg = &timing_data[7];
1089        *reg_timing_data |= TIMING_VAL2REG(reg, val);
1090
1091        /* power related timings */
1092        val = dmc->timings->tFAW / clk_period_ps;
1093        val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1094        val = max(val, dmc->min_tck->tFAW);
1095        reg = &timing_power[0];
1096        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1097
1098        val = dmc->timings->tXSR / clk_period_ps;
1099        val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1100        val = max(val, dmc->min_tck->tXSR);
1101        reg = &timing_power[1];
1102        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1103
1104        val = dmc->timings->tXP / clk_period_ps;
1105        val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1106        val = max(val, dmc->min_tck->tXP);
1107        reg = &timing_power[2];
1108        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1109
1110        val = dmc->timings->tCKE / clk_period_ps;
1111        val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1112        val = max(val, dmc->min_tck->tCKE);
1113        reg = &timing_power[3];
1114        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1115
1116        val = dmc->timings->tMRD / clk_period_ps;
1117        val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1118        val = max(val, dmc->min_tck->tMRD);
1119        reg = &timing_power[4];
1120        *reg_timing_power |= TIMING_VAL2REG(reg, val);
1121
1122        return 0;
1123}
1124
1125/**
1126 * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1127 * @dmc:        device for which the frequency is going to be set
1128 *
1129 * The function parses DT entries with DRAM information.
1130 */
1131static int of_get_dram_timings(struct exynos5_dmc *dmc)
1132{
1133        int ret = 0;
1134        int idx;
1135        struct device_node *np_ddr;
1136        u32 freq_mhz, clk_period_ps;
1137
1138        np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1139        if (!np_ddr) {
1140                dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1141                return -EINVAL;
1142        }
1143
1144        dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1145                                             sizeof(u32), GFP_KERNEL);
1146        if (!dmc->timing_row)
1147                return -ENOMEM;
1148
1149        dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1150                                              sizeof(u32), GFP_KERNEL);
1151        if (!dmc->timing_data)
1152                return -ENOMEM;
1153
1154        dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1155                                               sizeof(u32), GFP_KERNEL);
1156        if (!dmc->timing_power)
1157                return -ENOMEM;
1158
1159        dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1160                                                 DDR_TYPE_LPDDR3,
1161                                                 &dmc->timings_arr_size);
1162        if (!dmc->timings) {
1163                of_node_put(np_ddr);
1164                dev_warn(dmc->dev, "could not get timings from DT\n");
1165                return -EINVAL;
1166        }
1167
1168        dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1169        if (!dmc->min_tck) {
1170                of_node_put(np_ddr);
1171                dev_warn(dmc->dev, "could not get tck from DT\n");
1172                return -EINVAL;
1173        }
1174
1175        /* Sorted array of OPPs with frequency ascending */
1176        for (idx = 0; idx < dmc->opp_count; idx++) {
1177                freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1178                clk_period_ps = 1000000 / freq_mhz;
1179
1180                ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1181                                             &dmc->timing_data[idx],
1182                                             &dmc->timing_power[idx],
1183                                             clk_period_ps);
1184        }
1185
1186        of_node_put(np_ddr);
1187
1188        /* Take the highest frequency's timings as 'bypass' */
1189        dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1190        dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1191        dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1192
1193        return ret;
1194}
1195
1196/**
1197 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1198 * @dmc:        DMC structure containing needed fields
1199 *
1200 * Get the needed clocks defined in DT device, enable and set the right parents.
1201 * Read current frequency and initialize the initial rate for governor.
1202 */
1203static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1204{
1205        int ret;
1206        unsigned long target_volt = 0;
1207        unsigned long target_rate = 0;
1208        unsigned int tmp;
1209
1210        dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1211        if (IS_ERR(dmc->fout_spll))
1212                return PTR_ERR(dmc->fout_spll);
1213
1214        dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1215        if (IS_ERR(dmc->fout_bpll))
1216                return PTR_ERR(dmc->fout_bpll);
1217
1218        dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1219        if (IS_ERR(dmc->mout_mclk_cdrex))
1220                return PTR_ERR(dmc->mout_mclk_cdrex);
1221
1222        dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1223        if (IS_ERR(dmc->mout_bpll))
1224                return PTR_ERR(dmc->mout_bpll);
1225
1226        dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1227                                                "mout_mx_mspll_ccore");
1228        if (IS_ERR(dmc->mout_mx_mspll_ccore))
1229                return PTR_ERR(dmc->mout_mx_mspll_ccore);
1230
1231        dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1232        if (IS_ERR(dmc->mout_spll)) {
1233                dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1234                if (IS_ERR(dmc->mout_spll))
1235                        return PTR_ERR(dmc->mout_spll);
1236        }
1237
1238        /*
1239         * Convert frequency to KHz values and set it for the governor.
1240         */
1241        dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1242        dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1243        exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1244
1245        ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1246                                        &target_volt, 0);
1247        if (ret)
1248                return ret;
1249
1250        dmc->curr_volt = target_volt;
1251
1252        clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1253
1254        dmc->bypass_rate = clk_get_rate(dmc->mout_mx_mspll_ccore);
1255
1256        clk_prepare_enable(dmc->fout_bpll);
1257        clk_prepare_enable(dmc->mout_bpll);
1258
1259        /*
1260         * Some bootloaders do not set clock routes correctly.
1261         * Stop one path in clocks to PHY.
1262         */
1263        regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1264        tmp &= ~(BIT(1) | BIT(0));
1265        regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1266
1267        return 0;
1268}
1269
1270/**
1271 * exynos5_performance_counters_init() - Initializes performance DMC's counters
1272 * @dmc:        DMC for which it does the setup
1273 *
1274 * Initialization of performance counters in DMC for estimating usage.
1275 * The counter's values are used for calculation of a memory bandwidth and based
1276 * on that the governor changes the frequency.
1277 * The counters are not used when the governor is GOVERNOR_USERSPACE.
1278 */
1279static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1280{
1281        int counters_size;
1282        int ret, i;
1283
1284        dmc->num_counters = devfreq_event_get_edev_count(dmc->dev);
1285        if (dmc->num_counters < 0) {
1286                dev_err(dmc->dev, "could not get devfreq-event counters\n");
1287                return dmc->num_counters;
1288        }
1289
1290        counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1291        dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1292        if (!dmc->counter)
1293                return -ENOMEM;
1294
1295        for (i = 0; i < dmc->num_counters; i++) {
1296                dmc->counter[i] =
1297                        devfreq_event_get_edev_by_phandle(dmc->dev, i);
1298                if (IS_ERR_OR_NULL(dmc->counter[i]))
1299                        return -EPROBE_DEFER;
1300        }
1301
1302        ret = exynos5_counters_enable_edev(dmc);
1303        if (ret < 0) {
1304                dev_err(dmc->dev, "could not enable event counter\n");
1305                return ret;
1306        }
1307
1308        ret = exynos5_counters_set_event(dmc);
1309        if (ret < 0) {
1310                exynos5_counters_disable_edev(dmc);
1311                dev_err(dmc->dev, "could not set event counter\n");
1312                return ret;
1313        }
1314
1315        return 0;
1316}
1317
1318/**
1319 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1320 * @dmc:        device which is used for changing this feature
1321 * @set:        a boolean state passing enable/disable request
1322 *
1323 * There is a need of pausing DREX DMC when divider or MUX in clock tree
1324 * changes its configuration. In such situation access to the memory is blocked
1325 * in DMC automatically. This feature is used when clock frequency change
1326 * request appears and touches clock tree.
1327 */
1328static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1329{
1330        unsigned int val;
1331        int ret;
1332
1333        ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1334        if (ret)
1335                return ret;
1336
1337        val |= 1UL;
1338        regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1339
1340        return 0;
1341}
1342
1343static irqreturn_t dmc_irq_thread(int irq, void *priv)
1344{
1345        int res;
1346        struct exynos5_dmc *dmc = priv;
1347
1348        mutex_lock(&dmc->df->lock);
1349        exynos5_dmc_perf_events_check(dmc);
1350        res = update_devfreq(dmc->df);
1351        mutex_unlock(&dmc->df->lock);
1352
1353        if (res)
1354                dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1355
1356        return IRQ_HANDLED;
1357}
1358
1359/**
1360 * exynos5_dmc_probe() - Probe function for the DMC driver
1361 * @pdev:       platform device for which the driver is going to be initialized
1362 *
1363 * Initialize basic components: clocks, regulators, performance counters, etc.
1364 * Read out product version and based on the information setup
1365 * internal structures for the controller (frequency and voltage) and for DRAM
1366 * memory parameters: timings for each operating frequency.
1367 * Register new devfreq device for controlling DVFS of the DMC.
1368 */
1369static int exynos5_dmc_probe(struct platform_device *pdev)
1370{
1371        int ret = 0;
1372        struct device *dev = &pdev->dev;
1373        struct device_node *np = dev->of_node;
1374        struct exynos5_dmc *dmc;
1375        int irq[2];
1376
1377        dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1378        if (!dmc)
1379                return -ENOMEM;
1380
1381        mutex_init(&dmc->lock);
1382
1383        dmc->dev = dev;
1384        platform_set_drvdata(pdev, dmc);
1385
1386        dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1387        if (IS_ERR(dmc->base_drexi0))
1388                return PTR_ERR(dmc->base_drexi0);
1389
1390        dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1391        if (IS_ERR(dmc->base_drexi1))
1392                return PTR_ERR(dmc->base_drexi1);
1393
1394        dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1395                                "samsung,syscon-clk");
1396        if (IS_ERR(dmc->clk_regmap))
1397                return PTR_ERR(dmc->clk_regmap);
1398
1399        ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1400        if (ret) {
1401                dev_warn(dev, "couldn't initialize frequency settings\n");
1402                return ret;
1403        }
1404
1405        dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1406        if (IS_ERR(dmc->vdd_mif)) {
1407                ret = PTR_ERR(dmc->vdd_mif);
1408                return ret;
1409        }
1410
1411        ret = exynos5_dmc_init_clks(dmc);
1412        if (ret)
1413                return ret;
1414
1415        ret = of_get_dram_timings(dmc);
1416        if (ret) {
1417                dev_warn(dev, "couldn't initialize timings settings\n");
1418                goto remove_clocks;
1419        }
1420
1421        ret = exynos5_dmc_set_pause_on_switching(dmc);
1422        if (ret) {
1423                dev_warn(dev, "couldn't get access to PAUSE register\n");
1424                goto remove_clocks;
1425        }
1426
1427        /* There is two modes in which the driver works: polling or IRQ */
1428        irq[0] = platform_get_irq_byname(pdev, "drex_0");
1429        irq[1] = platform_get_irq_byname(pdev, "drex_1");
1430        if (irq[0] > 0 && irq[1] > 0) {
1431                ret = devm_request_threaded_irq(dev, irq[0], NULL,
1432                                                dmc_irq_thread, IRQF_ONESHOT,
1433                                                dev_name(dev), dmc);
1434                if (ret) {
1435                        dev_err(dev, "couldn't grab IRQ\n");
1436                        goto remove_clocks;
1437                }
1438
1439                ret = devm_request_threaded_irq(dev, irq[1], NULL,
1440                                                dmc_irq_thread, IRQF_ONESHOT,
1441                                                dev_name(dev), dmc);
1442                if (ret) {
1443                        dev_err(dev, "couldn't grab IRQ\n");
1444                        goto remove_clocks;
1445                }
1446
1447                /*
1448                 * Setup default thresholds for the devfreq governor.
1449                 * The values are chosen based on experiments.
1450                 */
1451                dmc->gov_data.upthreshold = 55;
1452                dmc->gov_data.downdifferential = 5;
1453
1454                exynos5_dmc_enable_perf_events(dmc);
1455
1456                dmc->in_irq_mode = 1;
1457        } else {
1458                ret = exynos5_performance_counters_init(dmc);
1459                if (ret) {
1460                        dev_warn(dev, "couldn't probe performance counters\n");
1461                        goto remove_clocks;
1462                }
1463
1464                /*
1465                 * Setup default thresholds for the devfreq governor.
1466                 * The values are chosen based on experiments.
1467                 */
1468                dmc->gov_data.upthreshold = 30;
1469                dmc->gov_data.downdifferential = 5;
1470
1471                exynos5_dmc_df_profile.polling_ms = 500;
1472        }
1473
1474
1475        dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1476                                          DEVFREQ_GOV_SIMPLE_ONDEMAND,
1477                                          &dmc->gov_data);
1478
1479        if (IS_ERR(dmc->df)) {
1480                ret = PTR_ERR(dmc->df);
1481                goto err_devfreq_add;
1482        }
1483
1484        if (dmc->in_irq_mode)
1485                exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1486
1487        dev_info(dev, "DMC initialized\n");
1488
1489        return 0;
1490
1491err_devfreq_add:
1492        if (dmc->in_irq_mode)
1493                exynos5_dmc_disable_perf_events(dmc);
1494        else
1495                exynos5_counters_disable_edev(dmc);
1496remove_clocks:
1497        clk_disable_unprepare(dmc->mout_bpll);
1498        clk_disable_unprepare(dmc->fout_bpll);
1499
1500        return ret;
1501}
1502
1503/**
1504 * exynos5_dmc_remove() - Remove function for the platform device
1505 * @pdev:       platform device which is going to be removed
1506 *
1507 * The function relies on 'devm' framework function which automatically
1508 * clean the device's resources. It just calls explicitly disable function for
1509 * the performance counters.
1510 */
1511static int exynos5_dmc_remove(struct platform_device *pdev)
1512{
1513        struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1514
1515        if (dmc->in_irq_mode)
1516                exynos5_dmc_disable_perf_events(dmc);
1517        else
1518                exynos5_counters_disable_edev(dmc);
1519
1520        clk_disable_unprepare(dmc->mout_bpll);
1521        clk_disable_unprepare(dmc->fout_bpll);
1522
1523        dev_pm_opp_remove_table(dmc->dev);
1524
1525        return 0;
1526}
1527
1528static const struct of_device_id exynos5_dmc_of_match[] = {
1529        { .compatible = "samsung,exynos5422-dmc", },
1530        { },
1531};
1532MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1533
1534static struct platform_driver exynos5_dmc_platdrv = {
1535        .probe  = exynos5_dmc_probe,
1536        .remove = exynos5_dmc_remove,
1537        .driver = {
1538                .name   = "exynos5-dmc",
1539                .of_match_table = exynos5_dmc_of_match,
1540        },
1541};
1542module_platform_driver(exynos5_dmc_platdrv);
1543MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1544MODULE_LICENSE("GPL v2");
1545MODULE_AUTHOR("Lukasz Luba");
1546