linux/drivers/misc/sgi-gru/grukservices.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * SN Platform GRU Driver
   4 *
   5 *              KERNEL SERVICES THAT USE THE GRU
   6 *
   7 *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/errno.h>
  12#include <linux/slab.h>
  13#include <linux/mm.h>
  14#include <linux/spinlock.h>
  15#include <linux/device.h>
  16#include <linux/miscdevice.h>
  17#include <linux/proc_fs.h>
  18#include <linux/interrupt.h>
  19#include <linux/uaccess.h>
  20#include <linux/delay.h>
  21#include <linux/export.h>
  22#include <asm/io_apic.h>
  23#include "gru.h"
  24#include "grulib.h"
  25#include "grutables.h"
  26#include "grukservices.h"
  27#include "gru_instructions.h"
  28#include <asm/uv/uv_hub.h>
  29
  30/*
  31 * Kernel GRU Usage
  32 *
  33 * The following is an interim algorithm for management of kernel GRU
  34 * resources. This will likely be replaced when we better understand the
  35 * kernel/user requirements.
  36 *
  37 * Blade percpu resources reserved for kernel use. These resources are
  38 * reserved whenever the the kernel context for the blade is loaded. Note
  39 * that the kernel context is not guaranteed to be always available. It is
  40 * loaded on demand & can be stolen by a user if the user demand exceeds the
  41 * kernel demand. The kernel can always reload the kernel context but
  42 * a SLEEP may be required!!!.
  43 *
  44 * Async Overview:
  45 *
  46 *      Each blade has one "kernel context" that owns GRU kernel resources
  47 *      located on the blade. Kernel drivers use GRU resources in this context
  48 *      for sending messages, zeroing memory, etc.
  49 *
  50 *      The kernel context is dynamically loaded on demand. If it is not in
  51 *      use by the kernel, the kernel context can be unloaded & given to a user.
  52 *      The kernel context will be reloaded when needed. This may require that
  53 *      a context be stolen from a user.
  54 *              NOTE: frequent unloading/reloading of the kernel context is
  55 *              expensive. We are depending on batch schedulers, cpusets, sane
  56 *              drivers or some other mechanism to prevent the need for frequent
  57 *              stealing/reloading.
  58 *
  59 *      The kernel context consists of two parts:
  60 *              - 1 CB & a few DSRs that are reserved for each cpu on the blade.
  61 *                Each cpu has it's own private resources & does not share them
  62 *                with other cpus. These resources are used serially, ie,
  63 *                locked, used & unlocked  on each call to a function in
  64 *                grukservices.
  65 *                      (Now that we have dynamic loading of kernel contexts, I
  66 *                       may rethink this & allow sharing between cpus....)
  67 *
  68 *              - Additional resources can be reserved long term & used directly
  69 *                by UV drivers located in the kernel. Drivers using these GRU
  70 *                resources can use asynchronous GRU instructions that send
  71 *                interrupts on completion.
  72 *                      - these resources must be explicitly locked/unlocked
  73 *                      - locked resources prevent (obviously) the kernel
  74 *                        context from being unloaded.
  75 *                      - drivers using these resource directly issue their own
  76 *                        GRU instruction and must wait/check completion.
  77 *
  78 *                When these resources are reserved, the caller can optionally
  79 *                associate a wait_queue with the resources and use asynchronous
  80 *                GRU instructions. When an async GRU instruction completes, the
  81 *                driver will do a wakeup on the event.
  82 *
  83 */
  84
  85
  86#define ASYNC_HAN_TO_BID(h)     ((h) - 1)
  87#define ASYNC_BID_TO_HAN(b)     ((b) + 1)
  88#define ASYNC_HAN_TO_BS(h)      gru_base[ASYNC_HAN_TO_BID(h)]
  89
  90#define GRU_NUM_KERNEL_CBR      1
  91#define GRU_NUM_KERNEL_DSR_BYTES 256
  92#define GRU_NUM_KERNEL_DSR_CL   (GRU_NUM_KERNEL_DSR_BYTES /             \
  93                                        GRU_CACHE_LINE_BYTES)
  94
  95/* GRU instruction attributes for all instructions */
  96#define IMA                     IMA_CB_DELAY
  97
  98/* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
  99#define __gru_cacheline_aligned__                               \
 100        __attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
 101
 102#define MAGIC   0x1234567887654321UL
 103
 104/* Default retry count for GRU errors on kernel instructions */
 105#define EXCEPTION_RETRY_LIMIT   3
 106
 107/* Status of message queue sections */
 108#define MQS_EMPTY               0
 109#define MQS_FULL                1
 110#define MQS_NOOP                2
 111
 112/*----------------- RESOURCE MANAGEMENT -------------------------------------*/
 113/* optimized for x86_64 */
 114struct message_queue {
 115        union gru_mesqhead      head __gru_cacheline_aligned__; /* CL 0 */
 116        int                     qlines;                         /* DW 1 */
 117        long                    hstatus[2];
 118        void                    *next __gru_cacheline_aligned__;/* CL 1 */
 119        void                    *limit;
 120        void                    *start;
 121        void                    *start2;
 122        char                    data ____cacheline_aligned;     /* CL 2 */
 123};
 124
 125/* First word in every message - used by mesq interface */
 126struct message_header {
 127        char    present;
 128        char    present2;
 129        char    lines;
 130        char    fill;
 131};
 132
 133#define HSTATUS(mq, h)  ((mq) + offsetof(struct message_queue, hstatus[h]))
 134
 135/*
 136 * Reload the blade's kernel context into a GRU chiplet. Called holding
 137 * the bs_kgts_sema for READ. Will steal user contexts if necessary.
 138 */
 139static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id)
 140{
 141        struct gru_state *gru;
 142        struct gru_thread_state *kgts;
 143        void *vaddr;
 144        int ctxnum, ncpus;
 145
 146        up_read(&bs->bs_kgts_sema);
 147        down_write(&bs->bs_kgts_sema);
 148
 149        if (!bs->bs_kgts) {
 150                do {
 151                        bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0);
 152                        if (!IS_ERR(bs->bs_kgts))
 153                                break;
 154                        msleep(1);
 155                } while (true);
 156                bs->bs_kgts->ts_user_blade_id = blade_id;
 157        }
 158        kgts = bs->bs_kgts;
 159
 160        if (!kgts->ts_gru) {
 161                STAT(load_kernel_context);
 162                ncpus = uv_blade_nr_possible_cpus(blade_id);
 163                kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU(
 164                        GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs);
 165                kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU(
 166                        GRU_NUM_KERNEL_DSR_BYTES * ncpus +
 167                                bs->bs_async_dsr_bytes);
 168                while (!gru_assign_gru_context(kgts)) {
 169                        msleep(1);
 170                        gru_steal_context(kgts);
 171                }
 172                gru_load_context(kgts);
 173                gru = bs->bs_kgts->ts_gru;
 174                vaddr = gru->gs_gru_base_vaddr;
 175                ctxnum = kgts->ts_ctxnum;
 176                bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0);
 177                bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0);
 178        }
 179        downgrade_write(&bs->bs_kgts_sema);
 180}
 181
 182/*
 183 * Free all kernel contexts that are not currently in use.
 184 *   Returns 0 if all freed, else number of inuse context.
 185 */
 186static int gru_free_kernel_contexts(void)
 187{
 188        struct gru_blade_state *bs;
 189        struct gru_thread_state *kgts;
 190        int bid, ret = 0;
 191
 192        for (bid = 0; bid < GRU_MAX_BLADES; bid++) {
 193                bs = gru_base[bid];
 194                if (!bs)
 195                        continue;
 196
 197                /* Ignore busy contexts. Don't want to block here.  */
 198                if (down_write_trylock(&bs->bs_kgts_sema)) {
 199                        kgts = bs->bs_kgts;
 200                        if (kgts && kgts->ts_gru)
 201                                gru_unload_context(kgts, 0);
 202                        bs->bs_kgts = NULL;
 203                        up_write(&bs->bs_kgts_sema);
 204                        kfree(kgts);
 205                } else {
 206                        ret++;
 207                }
 208        }
 209        return ret;
 210}
 211
 212/*
 213 * Lock & load the kernel context for the specified blade.
 214 */
 215static struct gru_blade_state *gru_lock_kernel_context(int blade_id)
 216{
 217        struct gru_blade_state *bs;
 218        int bid;
 219
 220        STAT(lock_kernel_context);
 221again:
 222        bid = blade_id < 0 ? uv_numa_blade_id() : blade_id;
 223        bs = gru_base[bid];
 224
 225        /* Handle the case where migration occurred while waiting for the sema */
 226        down_read(&bs->bs_kgts_sema);
 227        if (blade_id < 0 && bid != uv_numa_blade_id()) {
 228                up_read(&bs->bs_kgts_sema);
 229                goto again;
 230        }
 231        if (!bs->bs_kgts || !bs->bs_kgts->ts_gru)
 232                gru_load_kernel_context(bs, bid);
 233        return bs;
 234
 235}
 236
 237/*
 238 * Unlock the kernel context for the specified blade. Context is not
 239 * unloaded but may be stolen before next use.
 240 */
 241static void gru_unlock_kernel_context(int blade_id)
 242{
 243        struct gru_blade_state *bs;
 244
 245        bs = gru_base[blade_id];
 246        up_read(&bs->bs_kgts_sema);
 247        STAT(unlock_kernel_context);
 248}
 249
 250/*
 251 * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
 252 *      - returns with preemption disabled
 253 */
 254static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
 255{
 256        struct gru_blade_state *bs;
 257        int lcpu;
 258
 259        BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
 260        preempt_disable();
 261        bs = gru_lock_kernel_context(-1);
 262        lcpu = uv_blade_processor_id();
 263        *cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
 264        *dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
 265        return 0;
 266}
 267
 268/*
 269 * Free the current cpus reserved DSR/CBR resources.
 270 */
 271static void gru_free_cpu_resources(void *cb, void *dsr)
 272{
 273        gru_unlock_kernel_context(uv_numa_blade_id());
 274        preempt_enable();
 275}
 276
 277/*
 278 * Reserve GRU resources to be used asynchronously.
 279 *   Note: currently supports only 1 reservation per blade.
 280 *
 281 *      input:
 282 *              blade_id  - blade on which resources should be reserved
 283 *              cbrs      - number of CBRs
 284 *              dsr_bytes - number of DSR bytes needed
 285 *      output:
 286 *              handle to identify resource
 287 *              (0 = async resources already reserved)
 288 */
 289unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
 290                        struct completion *cmp)
 291{
 292        struct gru_blade_state *bs;
 293        struct gru_thread_state *kgts;
 294        int ret = 0;
 295
 296        bs = gru_base[blade_id];
 297
 298        down_write(&bs->bs_kgts_sema);
 299
 300        /* Verify no resources already reserved */
 301        if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs)
 302                goto done;
 303        bs->bs_async_dsr_bytes = dsr_bytes;
 304        bs->bs_async_cbrs = cbrs;
 305        bs->bs_async_wq = cmp;
 306        kgts = bs->bs_kgts;
 307
 308        /* Resources changed. Unload context if already loaded */
 309        if (kgts && kgts->ts_gru)
 310                gru_unload_context(kgts, 0);
 311        ret = ASYNC_BID_TO_HAN(blade_id);
 312
 313done:
 314        up_write(&bs->bs_kgts_sema);
 315        return ret;
 316}
 317
 318/*
 319 * Release async resources previously reserved.
 320 *
 321 *      input:
 322 *              han - handle to identify resources
 323 */
 324void gru_release_async_resources(unsigned long han)
 325{
 326        struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
 327
 328        down_write(&bs->bs_kgts_sema);
 329        bs->bs_async_dsr_bytes = 0;
 330        bs->bs_async_cbrs = 0;
 331        bs->bs_async_wq = NULL;
 332        up_write(&bs->bs_kgts_sema);
 333}
 334
 335/*
 336 * Wait for async GRU instructions to complete.
 337 *
 338 *      input:
 339 *              han - handle to identify resources
 340 */
 341void gru_wait_async_cbr(unsigned long han)
 342{
 343        struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
 344
 345        wait_for_completion(bs->bs_async_wq);
 346        mb();
 347}
 348
 349/*
 350 * Lock previous reserved async GRU resources
 351 *
 352 *      input:
 353 *              han - handle to identify resources
 354 *      output:
 355 *              cb  - pointer to first CBR
 356 *              dsr - pointer to first DSR
 357 */
 358void gru_lock_async_resource(unsigned long han,  void **cb, void **dsr)
 359{
 360        struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
 361        int blade_id = ASYNC_HAN_TO_BID(han);
 362        int ncpus;
 363
 364        gru_lock_kernel_context(blade_id);
 365        ncpus = uv_blade_nr_possible_cpus(blade_id);
 366        if (cb)
 367                *cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE;
 368        if (dsr)
 369                *dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES;
 370}
 371
 372/*
 373 * Unlock previous reserved async GRU resources
 374 *
 375 *      input:
 376 *              han - handle to identify resources
 377 */
 378void gru_unlock_async_resource(unsigned long han)
 379{
 380        int blade_id = ASYNC_HAN_TO_BID(han);
 381
 382        gru_unlock_kernel_context(blade_id);
 383}
 384
 385/*----------------------------------------------------------------------*/
 386int gru_get_cb_exception_detail(void *cb,
 387                struct control_block_extended_exc_detail *excdet)
 388{
 389        struct gru_control_block_extended *cbe;
 390        struct gru_thread_state *kgts = NULL;
 391        unsigned long off;
 392        int cbrnum, bid;
 393
 394        /*
 395         * Locate kgts for cb. This algorithm is SLOW but
 396         * this function is rarely called (ie., almost never).
 397         * Performance does not matter.
 398         */
 399        for_each_possible_blade(bid) {
 400                if (!gru_base[bid])
 401                        break;
 402                kgts = gru_base[bid]->bs_kgts;
 403                if (!kgts || !kgts->ts_gru)
 404                        continue;
 405                off = cb - kgts->ts_gru->gs_gru_base_vaddr;
 406                if (off < GRU_SIZE)
 407                        break;
 408                kgts = NULL;
 409        }
 410        BUG_ON(!kgts);
 411        cbrnum = thread_cbr_number(kgts, get_cb_number(cb));
 412        cbe = get_cbe(GRUBASE(cb), cbrnum);
 413        gru_flush_cache(cbe);   /* CBE not coherent */
 414        sync_core();
 415        excdet->opc = cbe->opccpy;
 416        excdet->exopc = cbe->exopccpy;
 417        excdet->ecause = cbe->ecause;
 418        excdet->exceptdet0 = cbe->idef1upd;
 419        excdet->exceptdet1 = cbe->idef3upd;
 420        gru_flush_cache(cbe);
 421        return 0;
 422}
 423
 424static char *gru_get_cb_exception_detail_str(int ret, void *cb,
 425                                             char *buf, int size)
 426{
 427        struct gru_control_block_status *gen = (void *)cb;
 428        struct control_block_extended_exc_detail excdet;
 429
 430        if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
 431                gru_get_cb_exception_detail(cb, &excdet);
 432                snprintf(buf, size,
 433                        "GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
 434                        "excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
 435                        gen, excdet.opc, excdet.exopc, excdet.ecause,
 436                        excdet.exceptdet0, excdet.exceptdet1);
 437        } else {
 438                snprintf(buf, size, "No exception");
 439        }
 440        return buf;
 441}
 442
 443static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
 444{
 445        while (gen->istatus >= CBS_ACTIVE) {
 446                cpu_relax();
 447                barrier();
 448        }
 449        return gen->istatus;
 450}
 451
 452static int gru_retry_exception(void *cb)
 453{
 454        struct gru_control_block_status *gen = (void *)cb;
 455        struct control_block_extended_exc_detail excdet;
 456        int retry = EXCEPTION_RETRY_LIMIT;
 457
 458        while (1)  {
 459                if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
 460                        return CBS_IDLE;
 461                if (gru_get_cb_message_queue_substatus(cb))
 462                        return CBS_EXCEPTION;
 463                gru_get_cb_exception_detail(cb, &excdet);
 464                if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) ||
 465                                (excdet.cbrexecstatus & CBR_EXS_ABORT_OCC))
 466                        break;
 467                if (retry-- == 0)
 468                        break;
 469                gen->icmd = 1;
 470                gru_flush_cache(gen);
 471        }
 472        return CBS_EXCEPTION;
 473}
 474
 475int gru_check_status_proc(void *cb)
 476{
 477        struct gru_control_block_status *gen = (void *)cb;
 478        int ret;
 479
 480        ret = gen->istatus;
 481        if (ret == CBS_EXCEPTION)
 482                ret = gru_retry_exception(cb);
 483        rmb();
 484        return ret;
 485
 486}
 487
 488int gru_wait_proc(void *cb)
 489{
 490        struct gru_control_block_status *gen = (void *)cb;
 491        int ret;
 492
 493        ret = gru_wait_idle_or_exception(gen);
 494        if (ret == CBS_EXCEPTION)
 495                ret = gru_retry_exception(cb);
 496        rmb();
 497        return ret;
 498}
 499
 500static void gru_abort(int ret, void *cb, char *str)
 501{
 502        char buf[GRU_EXC_STR_SIZE];
 503
 504        panic("GRU FATAL ERROR: %s - %s\n", str,
 505              gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
 506}
 507
 508void gru_wait_abort_proc(void *cb)
 509{
 510        int ret;
 511
 512        ret = gru_wait_proc(cb);
 513        if (ret)
 514                gru_abort(ret, cb, "gru_wait_abort");
 515}
 516
 517
 518/*------------------------------ MESSAGE QUEUES -----------------------------*/
 519
 520/* Internal status . These are NOT returned to the user. */
 521#define MQIE_AGAIN              -1      /* try again */
 522
 523
 524/*
 525 * Save/restore the "present" flag that is in the second line of 2-line
 526 * messages
 527 */
 528static inline int get_present2(void *p)
 529{
 530        struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
 531        return mhdr->present;
 532}
 533
 534static inline void restore_present2(void *p, int val)
 535{
 536        struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
 537        mhdr->present = val;
 538}
 539
 540/*
 541 * Create a message queue.
 542 *      qlines - message queue size in cache lines. Includes 2-line header.
 543 */
 544int gru_create_message_queue(struct gru_message_queue_desc *mqd,
 545                void *p, unsigned int bytes, int nasid, int vector, int apicid)
 546{
 547        struct message_queue *mq = p;
 548        unsigned int qlines;
 549
 550        qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
 551        memset(mq, 0, bytes);
 552        mq->start = &mq->data;
 553        mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
 554        mq->next = &mq->data;
 555        mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
 556        mq->qlines = qlines;
 557        mq->hstatus[0] = 0;
 558        mq->hstatus[1] = 1;
 559        mq->head = gru_mesq_head(2, qlines / 2 + 1);
 560        mqd->mq = mq;
 561        mqd->mq_gpa = uv_gpa(mq);
 562        mqd->qlines = qlines;
 563        mqd->interrupt_pnode = nasid >> 1;
 564        mqd->interrupt_vector = vector;
 565        mqd->interrupt_apicid = apicid;
 566        return 0;
 567}
 568EXPORT_SYMBOL_GPL(gru_create_message_queue);
 569
 570/*
 571 * Send a NOOP message to a message queue
 572 *      Returns:
 573 *               0 - if queue is full after the send. This is the normal case
 574 *                   but various races can change this.
 575 *              -1 - if mesq sent successfully but queue not full
 576 *              >0 - unexpected error. MQE_xxx returned
 577 */
 578static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd,
 579                                void *mesg)
 580{
 581        const struct message_header noop_header = {
 582                                        .present = MQS_NOOP, .lines = 1};
 583        unsigned long m;
 584        int substatus, ret;
 585        struct message_header save_mhdr, *mhdr = mesg;
 586
 587        STAT(mesq_noop);
 588        save_mhdr = *mhdr;
 589        *mhdr = noop_header;
 590        gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA);
 591        ret = gru_wait(cb);
 592
 593        if (ret) {
 594                substatus = gru_get_cb_message_queue_substatus(cb);
 595                switch (substatus) {
 596                case CBSS_NO_ERROR:
 597                        STAT(mesq_noop_unexpected_error);
 598                        ret = MQE_UNEXPECTED_CB_ERR;
 599                        break;
 600                case CBSS_LB_OVERFLOWED:
 601                        STAT(mesq_noop_lb_overflow);
 602                        ret = MQE_CONGESTION;
 603                        break;
 604                case CBSS_QLIMIT_REACHED:
 605                        STAT(mesq_noop_qlimit_reached);
 606                        ret = 0;
 607                        break;
 608                case CBSS_AMO_NACKED:
 609                        STAT(mesq_noop_amo_nacked);
 610                        ret = MQE_CONGESTION;
 611                        break;
 612                case CBSS_PUT_NACKED:
 613                        STAT(mesq_noop_put_nacked);
 614                        m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
 615                        gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
 616                                                IMA);
 617                        if (gru_wait(cb) == CBS_IDLE)
 618                                ret = MQIE_AGAIN;
 619                        else
 620                                ret = MQE_UNEXPECTED_CB_ERR;
 621                        break;
 622                case CBSS_PAGE_OVERFLOW:
 623                        STAT(mesq_noop_page_overflow);
 624                        /* fall through */
 625                default:
 626                        BUG();
 627                }
 628        }
 629        *mhdr = save_mhdr;
 630        return ret;
 631}
 632
 633/*
 634 * Handle a gru_mesq full.
 635 */
 636static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
 637                                void *mesg, int lines)
 638{
 639        union gru_mesqhead mqh;
 640        unsigned int limit, head;
 641        unsigned long avalue;
 642        int half, qlines;
 643
 644        /* Determine if switching to first/second half of q */
 645        avalue = gru_get_amo_value(cb);
 646        head = gru_get_amo_value_head(cb);
 647        limit = gru_get_amo_value_limit(cb);
 648
 649        qlines = mqd->qlines;
 650        half = (limit != qlines);
 651
 652        if (half)
 653                mqh = gru_mesq_head(qlines / 2 + 1, qlines);
 654        else
 655                mqh = gru_mesq_head(2, qlines / 2 + 1);
 656
 657        /* Try to get lock for switching head pointer */
 658        gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA);
 659        if (gru_wait(cb) != CBS_IDLE)
 660                goto cberr;
 661        if (!gru_get_amo_value(cb)) {
 662                STAT(mesq_qf_locked);
 663                return MQE_QUEUE_FULL;
 664        }
 665
 666        /* Got the lock. Send optional NOP if queue not full, */
 667        if (head != limit) {
 668                if (send_noop_message(cb, mqd, mesg)) {
 669                        gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half),
 670                                        XTYPE_DW, IMA);
 671                        if (gru_wait(cb) != CBS_IDLE)
 672                                goto cberr;
 673                        STAT(mesq_qf_noop_not_full);
 674                        return MQIE_AGAIN;
 675                }
 676                avalue++;
 677        }
 678
 679        /* Then flip queuehead to other half of queue. */
 680        gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue,
 681                                                        IMA);
 682        if (gru_wait(cb) != CBS_IDLE)
 683                goto cberr;
 684
 685        /* If not successfully in swapping queue head, clear the hstatus lock */
 686        if (gru_get_amo_value(cb) != avalue) {
 687                STAT(mesq_qf_switch_head_failed);
 688                gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW,
 689                                                        IMA);
 690                if (gru_wait(cb) != CBS_IDLE)
 691                        goto cberr;
 692        }
 693        return MQIE_AGAIN;
 694cberr:
 695        STAT(mesq_qf_unexpected_error);
 696        return MQE_UNEXPECTED_CB_ERR;
 697}
 698
 699/*
 700 * Handle a PUT failure. Note: if message was a 2-line message, one of the
 701 * lines might have successfully have been written. Before sending the
 702 * message, "present" must be cleared in BOTH lines to prevent the receiver
 703 * from prematurely seeing the full message.
 704 */
 705static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
 706                        void *mesg, int lines)
 707{
 708        unsigned long m;
 709        int ret, loops = 200;   /* experimentally determined */
 710
 711        m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
 712        if (lines == 2) {
 713                gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA);
 714                if (gru_wait(cb) != CBS_IDLE)
 715                        return MQE_UNEXPECTED_CB_ERR;
 716        }
 717        gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
 718        if (gru_wait(cb) != CBS_IDLE)
 719                return MQE_UNEXPECTED_CB_ERR;
 720
 721        if (!mqd->interrupt_vector)
 722                return MQE_OK;
 723
 724        /*
 725         * Send a noop message in order to deliver a cross-partition interrupt
 726         * to the SSI that contains the target message queue. Normally, the
 727         * interrupt is automatically delivered by hardware following mesq
 728         * operations, but some error conditions require explicit delivery.
 729         * The noop message will trigger delivery. Otherwise partition failures
 730         * could cause unrecovered errors.
 731         */
 732        do {
 733                ret = send_noop_message(cb, mqd, mesg);
 734        } while ((ret == MQIE_AGAIN || ret == MQE_CONGESTION) && (loops-- > 0));
 735
 736        if (ret == MQIE_AGAIN || ret == MQE_CONGESTION) {
 737                /*
 738                 * Don't indicate to the app to resend the message, as it's
 739                 * already been successfully sent.  We simply send an OK
 740                 * (rather than fail the send with MQE_UNEXPECTED_CB_ERR),
 741                 * assuming that the other side is receiving enough
 742                 * interrupts to get this message processed anyway.
 743                 */
 744                ret = MQE_OK;
 745        }
 746        return ret;
 747}
 748
 749/*
 750 * Handle a gru_mesq failure. Some of these failures are software recoverable
 751 * or retryable.
 752 */
 753static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd,
 754                                void *mesg, int lines)
 755{
 756        int substatus, ret = 0;
 757
 758        substatus = gru_get_cb_message_queue_substatus(cb);
 759        switch (substatus) {
 760        case CBSS_NO_ERROR:
 761                STAT(mesq_send_unexpected_error);
 762                ret = MQE_UNEXPECTED_CB_ERR;
 763                break;
 764        case CBSS_LB_OVERFLOWED:
 765                STAT(mesq_send_lb_overflow);
 766                ret = MQE_CONGESTION;
 767                break;
 768        case CBSS_QLIMIT_REACHED:
 769                STAT(mesq_send_qlimit_reached);
 770                ret = send_message_queue_full(cb, mqd, mesg, lines);
 771                break;
 772        case CBSS_AMO_NACKED:
 773                STAT(mesq_send_amo_nacked);
 774                ret = MQE_CONGESTION;
 775                break;
 776        case CBSS_PUT_NACKED:
 777                STAT(mesq_send_put_nacked);
 778                ret = send_message_put_nacked(cb, mqd, mesg, lines);
 779                break;
 780        case CBSS_PAGE_OVERFLOW:
 781                STAT(mesq_page_overflow);
 782                /* fall through */
 783        default:
 784                BUG();
 785        }
 786        return ret;
 787}
 788
 789/*
 790 * Send a message to a message queue
 791 *      mqd     message queue descriptor
 792 *      mesg    message. ust be vaddr within a GSEG
 793 *      bytes   message size (<= 2 CL)
 794 */
 795int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg,
 796                                unsigned int bytes)
 797{
 798        struct message_header *mhdr;
 799        void *cb;
 800        void *dsr;
 801        int istatus, clines, ret;
 802
 803        STAT(mesq_send);
 804        BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
 805
 806        clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES);
 807        if (gru_get_cpu_resources(bytes, &cb, &dsr))
 808                return MQE_BUG_NO_RESOURCES;
 809        memcpy(dsr, mesg, bytes);
 810        mhdr = dsr;
 811        mhdr->present = MQS_FULL;
 812        mhdr->lines = clines;
 813        if (clines == 2) {
 814                mhdr->present2 = get_present2(mhdr);
 815                restore_present2(mhdr, MQS_FULL);
 816        }
 817
 818        do {
 819                ret = MQE_OK;
 820                gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA);
 821                istatus = gru_wait(cb);
 822                if (istatus != CBS_IDLE)
 823                        ret = send_message_failure(cb, mqd, dsr, clines);
 824        } while (ret == MQIE_AGAIN);
 825        gru_free_cpu_resources(cb, dsr);
 826
 827        if (ret)
 828                STAT(mesq_send_failed);
 829        return ret;
 830}
 831EXPORT_SYMBOL_GPL(gru_send_message_gpa);
 832
 833/*
 834 * Advance the receive pointer for the queue to the next message.
 835 */
 836void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg)
 837{
 838        struct message_queue *mq = mqd->mq;
 839        struct message_header *mhdr = mq->next;
 840        void *next, *pnext;
 841        int half = -1;
 842        int lines = mhdr->lines;
 843
 844        if (lines == 2)
 845                restore_present2(mhdr, MQS_EMPTY);
 846        mhdr->present = MQS_EMPTY;
 847
 848        pnext = mq->next;
 849        next = pnext + GRU_CACHE_LINE_BYTES * lines;
 850        if (next == mq->limit) {
 851                next = mq->start;
 852                half = 1;
 853        } else if (pnext < mq->start2 && next >= mq->start2) {
 854                half = 0;
 855        }
 856
 857        if (half >= 0)
 858                mq->hstatus[half] = 1;
 859        mq->next = next;
 860}
 861EXPORT_SYMBOL_GPL(gru_free_message);
 862
 863/*
 864 * Get next message from message queue. Return NULL if no message
 865 * present. User must call next_message() to move to next message.
 866 *      rmq     message queue
 867 */
 868void *gru_get_next_message(struct gru_message_queue_desc *mqd)
 869{
 870        struct message_queue *mq = mqd->mq;
 871        struct message_header *mhdr = mq->next;
 872        int present = mhdr->present;
 873
 874        /* skip NOOP messages */
 875        while (present == MQS_NOOP) {
 876                gru_free_message(mqd, mhdr);
 877                mhdr = mq->next;
 878                present = mhdr->present;
 879        }
 880
 881        /* Wait for both halves of 2 line messages */
 882        if (present == MQS_FULL && mhdr->lines == 2 &&
 883                                get_present2(mhdr) == MQS_EMPTY)
 884                present = MQS_EMPTY;
 885
 886        if (!present) {
 887                STAT(mesq_receive_none);
 888                return NULL;
 889        }
 890
 891        if (mhdr->lines == 2)
 892                restore_present2(mhdr, mhdr->present2);
 893
 894        STAT(mesq_receive);
 895        return mhdr;
 896}
 897EXPORT_SYMBOL_GPL(gru_get_next_message);
 898
 899/* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
 900
 901/*
 902 * Load a DW from a global GPA. The GPA can be a memory or MMR address.
 903 */
 904int gru_read_gpa(unsigned long *value, unsigned long gpa)
 905{
 906        void *cb;
 907        void *dsr;
 908        int ret, iaa;
 909
 910        STAT(read_gpa);
 911        if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
 912                return MQE_BUG_NO_RESOURCES;
 913        iaa = gpa >> 62;
 914        gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA);
 915        ret = gru_wait(cb);
 916        if (ret == CBS_IDLE)
 917                *value = *(unsigned long *)dsr;
 918        gru_free_cpu_resources(cb, dsr);
 919        return ret;
 920}
 921EXPORT_SYMBOL_GPL(gru_read_gpa);
 922
 923
 924/*
 925 * Copy a block of data using the GRU resources
 926 */
 927int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
 928                                unsigned int bytes)
 929{
 930        void *cb;
 931        void *dsr;
 932        int ret;
 933
 934        STAT(copy_gpa);
 935        if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
 936                return MQE_BUG_NO_RESOURCES;
 937        gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
 938                  XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA);
 939        ret = gru_wait(cb);
 940        gru_free_cpu_resources(cb, dsr);
 941        return ret;
 942}
 943EXPORT_SYMBOL_GPL(gru_copy_gpa);
 944
 945/* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
 946/*      Temp - will delete after we gain confidence in the GRU          */
 947
 948static int quicktest0(unsigned long arg)
 949{
 950        unsigned long word0;
 951        unsigned long word1;
 952        void *cb;
 953        void *dsr;
 954        unsigned long *p;
 955        int ret = -EIO;
 956
 957        if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr))
 958                return MQE_BUG_NO_RESOURCES;
 959        p = dsr;
 960        word0 = MAGIC;
 961        word1 = 0;
 962
 963        gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
 964        if (gru_wait(cb) != CBS_IDLE) {
 965                printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
 966                goto done;
 967        }
 968
 969        if (*p != MAGIC) {
 970                printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p);
 971                goto done;
 972        }
 973        gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
 974        if (gru_wait(cb) != CBS_IDLE) {
 975                printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
 976                goto done;
 977        }
 978
 979        if (word0 != word1 || word1 != MAGIC) {
 980                printk(KERN_DEBUG
 981                       "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
 982                     smp_processor_id(), word1, MAGIC);
 983                goto done;
 984        }
 985        ret = 0;
 986
 987done:
 988        gru_free_cpu_resources(cb, dsr);
 989        return ret;
 990}
 991
 992#define ALIGNUP(p, q)   ((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
 993
 994static int quicktest1(unsigned long arg)
 995{
 996        struct gru_message_queue_desc mqd;
 997        void *p, *mq;
 998        int i, ret = -EIO;
 999        char mes[GRU_CACHE_LINE_BYTES], *m;
1000
1001        /* Need  1K cacheline aligned that does not cross page boundary */
1002        p = kmalloc(4096, 0);
1003        if (p == NULL)
1004                return -ENOMEM;
1005        mq = ALIGNUP(p, 1024);
1006        memset(mes, 0xee, sizeof(mes));
1007
1008        gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0);
1009        for (i = 0; i < 6; i++) {
1010                mes[8] = i;
1011                do {
1012                        ret = gru_send_message_gpa(&mqd, mes, sizeof(mes));
1013                } while (ret == MQE_CONGESTION);
1014                if (ret)
1015                        break;
1016        }
1017        if (ret != MQE_QUEUE_FULL || i != 4) {
1018                printk(KERN_DEBUG "GRU:%d quicktest1: unexpect status %d, i %d\n",
1019                       smp_processor_id(), ret, i);
1020                goto done;
1021        }
1022
1023        for (i = 0; i < 6; i++) {
1024                m = gru_get_next_message(&mqd);
1025                if (!m || m[8] != i)
1026                        break;
1027                gru_free_message(&mqd, m);
1028        }
1029        if (i != 4) {
1030                printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
1031                        smp_processor_id(), i, m, m ? m[8] : -1);
1032                goto done;
1033        }
1034        ret = 0;
1035
1036done:
1037        kfree(p);
1038        return ret;
1039}
1040
1041static int quicktest2(unsigned long arg)
1042{
1043        static DECLARE_COMPLETION(cmp);
1044        unsigned long han;
1045        int blade_id = 0;
1046        int numcb = 4;
1047        int ret = 0;
1048        unsigned long *buf;
1049        void *cb0, *cb;
1050        struct gru_control_block_status *gen;
1051        int i, k, istatus, bytes;
1052
1053        bytes = numcb * 4 * 8;
1054        buf = kmalloc(bytes, GFP_KERNEL);
1055        if (!buf)
1056                return -ENOMEM;
1057
1058        ret = -EBUSY;
1059        han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp);
1060        if (!han)
1061                goto done;
1062
1063        gru_lock_async_resource(han, &cb0, NULL);
1064        memset(buf, 0xee, bytes);
1065        for (i = 0; i < numcb; i++)
1066                gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0,
1067                                XTYPE_DW, 4, 1, IMA_INTERRUPT);
1068
1069        ret = 0;
1070        k = numcb;
1071        do {
1072                gru_wait_async_cbr(han);
1073                for (i = 0; i < numcb; i++) {
1074                        cb = cb0 + i * GRU_HANDLE_STRIDE;
1075                        istatus = gru_check_status(cb);
1076                        if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS)
1077                                break;
1078                }
1079                if (i == numcb)
1080                        continue;
1081                if (istatus != CBS_IDLE) {
1082                        printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i);
1083                        ret = -EFAULT;
1084                } else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] ||
1085                                buf[4 * i + 3]) {
1086                        printk(KERN_DEBUG "GRU:%d quicktest2:cb %d,  buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
1087                               smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]);
1088                        ret = -EIO;
1089                }
1090                k--;
1091                gen = cb;
1092                gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */
1093        } while (k);
1094        BUG_ON(cmp.done);
1095
1096        gru_unlock_async_resource(han);
1097        gru_release_async_resources(han);
1098done:
1099        kfree(buf);
1100        return ret;
1101}
1102
1103#define BUFSIZE 200
1104static int quicktest3(unsigned long arg)
1105{
1106        char buf1[BUFSIZE], buf2[BUFSIZE];
1107        int ret = 0;
1108
1109        memset(buf2, 0, sizeof(buf2));
1110        memset(buf1, get_cycles() & 255, sizeof(buf1));
1111        gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE);
1112        if (memcmp(buf1, buf2, BUFSIZE)) {
1113                printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id());
1114                ret = -EIO;
1115        }
1116        return ret;
1117}
1118
1119/*
1120 * Debugging only. User hook for various kernel tests
1121 * of driver & gru.
1122 */
1123int gru_ktest(unsigned long arg)
1124{
1125        int ret = -EINVAL;
1126
1127        switch (arg & 0xff) {
1128        case 0:
1129                ret = quicktest0(arg);
1130                break;
1131        case 1:
1132                ret = quicktest1(arg);
1133                break;
1134        case 2:
1135                ret = quicktest2(arg);
1136                break;
1137        case 3:
1138                ret = quicktest3(arg);
1139                break;
1140        case 99:
1141                ret = gru_free_kernel_contexts();
1142                break;
1143        }
1144        return ret;
1145
1146}
1147
1148int gru_kservices_init(void)
1149{
1150        return 0;
1151}
1152
1153void gru_kservices_exit(void)
1154{
1155        if (gru_free_kernel_contexts())
1156                BUG();
1157}
1158
1159