linux/drivers/net/ethernet/freescale/fec_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
  41#include <net/tso.h>
  42#include <linux/tcp.h>
  43#include <linux/udp.h>
  44#include <linux/icmp.h>
  45#include <linux/spinlock.h>
  46#include <linux/workqueue.h>
  47#include <linux/bitops.h>
  48#include <linux/io.h>
  49#include <linux/irq.h>
  50#include <linux/clk.h>
  51#include <linux/crc32.h>
  52#include <linux/platform_device.h>
  53#include <linux/mdio.h>
  54#include <linux/phy.h>
  55#include <linux/fec.h>
  56#include <linux/of.h>
  57#include <linux/of_device.h>
  58#include <linux/of_gpio.h>
  59#include <linux/of_mdio.h>
  60#include <linux/of_net.h>
  61#include <linux/regulator/consumer.h>
  62#include <linux/if_vlan.h>
  63#include <linux/pinctrl/consumer.h>
  64#include <linux/prefetch.h>
  65#include <linux/mfd/syscon.h>
  66#include <linux/regmap.h>
  67#include <soc/imx/cpuidle.h>
  68
  69#include <asm/cacheflush.h>
  70
  71#include "fec.h"
  72
  73static void set_multicast_list(struct net_device *ndev);
  74static void fec_enet_itr_coal_init(struct net_device *ndev);
  75
  76#define DRIVER_NAME     "fec"
  77
  78/* Pause frame feild and FIFO threshold */
  79#define FEC_ENET_FCE    (1 << 5)
  80#define FEC_ENET_RSEM_V 0x84
  81#define FEC_ENET_RSFL_V 16
  82#define FEC_ENET_RAEM_V 0x8
  83#define FEC_ENET_RAFL_V 0x8
  84#define FEC_ENET_OPD_V  0xFFF0
  85#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  86
  87struct fec_devinfo {
  88        u32 quirks;
  89};
  90
  91static const struct fec_devinfo fec_imx25_info = {
  92        .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
  93                  FEC_QUIRK_HAS_FRREG,
  94};
  95
  96static const struct fec_devinfo fec_imx27_info = {
  97        .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
  98};
  99
 100static const struct fec_devinfo fec_imx28_info = {
 101        .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 102                  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
 103                  FEC_QUIRK_HAS_FRREG,
 104};
 105
 106static const struct fec_devinfo fec_imx6q_info = {
 107        .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 108                  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 109                  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 110                  FEC_QUIRK_HAS_RACC,
 111};
 112
 113static const struct fec_devinfo fec_mvf600_info = {
 114        .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 115};
 116
 117static const struct fec_devinfo fec_imx6x_info = {
 118        .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 119                  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 120                  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 121                  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 122                  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
 123};
 124
 125static const struct fec_devinfo fec_imx6ul_info = {
 126        .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 127                  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 128                  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 129                  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 130                  FEC_QUIRK_HAS_COALESCE,
 131};
 132
 133static struct platform_device_id fec_devtype[] = {
 134        {
 135                /* keep it for coldfire */
 136                .name = DRIVER_NAME,
 137                .driver_data = 0,
 138        }, {
 139                .name = "imx25-fec",
 140                .driver_data = (kernel_ulong_t)&fec_imx25_info,
 141        }, {
 142                .name = "imx27-fec",
 143                .driver_data = (kernel_ulong_t)&fec_imx27_info,
 144        }, {
 145                .name = "imx28-fec",
 146                .driver_data = (kernel_ulong_t)&fec_imx28_info,
 147        }, {
 148                .name = "imx6q-fec",
 149                .driver_data = (kernel_ulong_t)&fec_imx6q_info,
 150        }, {
 151                .name = "mvf600-fec",
 152                .driver_data = (kernel_ulong_t)&fec_mvf600_info,
 153        }, {
 154                .name = "imx6sx-fec",
 155                .driver_data = (kernel_ulong_t)&fec_imx6x_info,
 156        }, {
 157                .name = "imx6ul-fec",
 158                .driver_data = (kernel_ulong_t)&fec_imx6ul_info,
 159        }, {
 160                /* sentinel */
 161        }
 162};
 163MODULE_DEVICE_TABLE(platform, fec_devtype);
 164
 165enum imx_fec_type {
 166        IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
 167        IMX27_FEC,      /* runs on i.mx27/35/51 */
 168        IMX28_FEC,
 169        IMX6Q_FEC,
 170        MVF600_FEC,
 171        IMX6SX_FEC,
 172        IMX6UL_FEC,
 173};
 174
 175static const struct of_device_id fec_dt_ids[] = {
 176        { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 177        { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 178        { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 179        { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 180        { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 181        { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 182        { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
 183        { /* sentinel */ }
 184};
 185MODULE_DEVICE_TABLE(of, fec_dt_ids);
 186
 187static unsigned char macaddr[ETH_ALEN];
 188module_param_array(macaddr, byte, NULL, 0);
 189MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 190
 191#if defined(CONFIG_M5272)
 192/*
 193 * Some hardware gets it MAC address out of local flash memory.
 194 * if this is non-zero then assume it is the address to get MAC from.
 195 */
 196#if defined(CONFIG_NETtel)
 197#define FEC_FLASHMAC    0xf0006006
 198#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 199#define FEC_FLASHMAC    0xf0006000
 200#elif defined(CONFIG_CANCam)
 201#define FEC_FLASHMAC    0xf0020000
 202#elif defined (CONFIG_M5272C3)
 203#define FEC_FLASHMAC    (0xffe04000 + 4)
 204#elif defined(CONFIG_MOD5272)
 205#define FEC_FLASHMAC    0xffc0406b
 206#else
 207#define FEC_FLASHMAC    0
 208#endif
 209#endif /* CONFIG_M5272 */
 210
 211/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 212 *
 213 * 2048 byte skbufs are allocated. However, alignment requirements
 214 * varies between FEC variants. Worst case is 64, so round down by 64.
 215 */
 216#define PKT_MAXBUF_SIZE         (round_down(2048 - 64, 64))
 217#define PKT_MINBUF_SIZE         64
 218
 219/* FEC receive acceleration */
 220#define FEC_RACC_IPDIS          (1 << 1)
 221#define FEC_RACC_PRODIS         (1 << 2)
 222#define FEC_RACC_SHIFT16        BIT(7)
 223#define FEC_RACC_OPTIONS        (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 224
 225/* MIB Control Register */
 226#define FEC_MIB_CTRLSTAT_DISABLE        BIT(31)
 227
 228/*
 229 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 230 * size bits. Other FEC hardware does not, so we need to take that into
 231 * account when setting it.
 232 */
 233#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 234    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 235    defined(CONFIG_ARM64)
 236#define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
 237#else
 238#define OPT_FRAME_SIZE  0
 239#endif
 240
 241/* FEC MII MMFR bits definition */
 242#define FEC_MMFR_ST             (1 << 30)
 243#define FEC_MMFR_ST_C45         (0)
 244#define FEC_MMFR_OP_READ        (2 << 28)
 245#define FEC_MMFR_OP_READ_C45    (3 << 28)
 246#define FEC_MMFR_OP_WRITE       (1 << 28)
 247#define FEC_MMFR_OP_ADDR_WRITE  (0)
 248#define FEC_MMFR_PA(v)          ((v & 0x1f) << 23)
 249#define FEC_MMFR_RA(v)          ((v & 0x1f) << 18)
 250#define FEC_MMFR_TA             (2 << 16)
 251#define FEC_MMFR_DATA(v)        (v & 0xffff)
 252/* FEC ECR bits definition */
 253#define FEC_ECR_MAGICEN         (1 << 2)
 254#define FEC_ECR_SLEEP           (1 << 3)
 255
 256#define FEC_MII_TIMEOUT         30000 /* us */
 257
 258/* Transmitter timeout */
 259#define TX_TIMEOUT (2 * HZ)
 260
 261#define FEC_PAUSE_FLAG_AUTONEG  0x1
 262#define FEC_PAUSE_FLAG_ENABLE   0x2
 263#define FEC_WOL_HAS_MAGIC_PACKET        (0x1 << 0)
 264#define FEC_WOL_FLAG_ENABLE             (0x1 << 1)
 265#define FEC_WOL_FLAG_SLEEP_ON           (0x1 << 2)
 266
 267#define COPYBREAK_DEFAULT       256
 268
 269/* Max number of allowed TCP segments for software TSO */
 270#define FEC_MAX_TSO_SEGS        100
 271#define FEC_MAX_SKB_DESCS       (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 272
 273#define IS_TSO_HEADER(txq, addr) \
 274        ((addr >= txq->tso_hdrs_dma) && \
 275        (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 276
 277static int mii_cnt;
 278
 279static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 280                                             struct bufdesc_prop *bd)
 281{
 282        return (bdp >= bd->last) ? bd->base
 283                        : (struct bufdesc *)(((void *)bdp) + bd->dsize);
 284}
 285
 286static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 287                                             struct bufdesc_prop *bd)
 288{
 289        return (bdp <= bd->base) ? bd->last
 290                        : (struct bufdesc *)(((void *)bdp) - bd->dsize);
 291}
 292
 293static int fec_enet_get_bd_index(struct bufdesc *bdp,
 294                                 struct bufdesc_prop *bd)
 295{
 296        return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 297}
 298
 299static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 300{
 301        int entries;
 302
 303        entries = (((const char *)txq->dirty_tx -
 304                        (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 305
 306        return entries >= 0 ? entries : entries + txq->bd.ring_size;
 307}
 308
 309static void swap_buffer(void *bufaddr, int len)
 310{
 311        int i;
 312        unsigned int *buf = bufaddr;
 313
 314        for (i = 0; i < len; i += 4, buf++)
 315                swab32s(buf);
 316}
 317
 318static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 319{
 320        int i;
 321        unsigned int *src = src_buf;
 322        unsigned int *dst = dst_buf;
 323
 324        for (i = 0; i < len; i += 4, src++, dst++)
 325                *dst = swab32p(src);
 326}
 327
 328static void fec_dump(struct net_device *ndev)
 329{
 330        struct fec_enet_private *fep = netdev_priv(ndev);
 331        struct bufdesc *bdp;
 332        struct fec_enet_priv_tx_q *txq;
 333        int index = 0;
 334
 335        netdev_info(ndev, "TX ring dump\n");
 336        pr_info("Nr     SC     addr       len  SKB\n");
 337
 338        txq = fep->tx_queue[0];
 339        bdp = txq->bd.base;
 340
 341        do {
 342                pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 343                        index,
 344                        bdp == txq->bd.cur ? 'S' : ' ',
 345                        bdp == txq->dirty_tx ? 'H' : ' ',
 346                        fec16_to_cpu(bdp->cbd_sc),
 347                        fec32_to_cpu(bdp->cbd_bufaddr),
 348                        fec16_to_cpu(bdp->cbd_datlen),
 349                        txq->tx_skbuff[index]);
 350                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 351                index++;
 352        } while (bdp != txq->bd.base);
 353}
 354
 355static inline bool is_ipv4_pkt(struct sk_buff *skb)
 356{
 357        return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 358}
 359
 360static int
 361fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 362{
 363        /* Only run for packets requiring a checksum. */
 364        if (skb->ip_summed != CHECKSUM_PARTIAL)
 365                return 0;
 366
 367        if (unlikely(skb_cow_head(skb, 0)))
 368                return -1;
 369
 370        if (is_ipv4_pkt(skb))
 371                ip_hdr(skb)->check = 0;
 372        *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 373
 374        return 0;
 375}
 376
 377static struct bufdesc *
 378fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 379                             struct sk_buff *skb,
 380                             struct net_device *ndev)
 381{
 382        struct fec_enet_private *fep = netdev_priv(ndev);
 383        struct bufdesc *bdp = txq->bd.cur;
 384        struct bufdesc_ex *ebdp;
 385        int nr_frags = skb_shinfo(skb)->nr_frags;
 386        int frag, frag_len;
 387        unsigned short status;
 388        unsigned int estatus = 0;
 389        skb_frag_t *this_frag;
 390        unsigned int index;
 391        void *bufaddr;
 392        dma_addr_t addr;
 393        int i;
 394
 395        for (frag = 0; frag < nr_frags; frag++) {
 396                this_frag = &skb_shinfo(skb)->frags[frag];
 397                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 398                ebdp = (struct bufdesc_ex *)bdp;
 399
 400                status = fec16_to_cpu(bdp->cbd_sc);
 401                status &= ~BD_ENET_TX_STATS;
 402                status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 403                frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
 404
 405                /* Handle the last BD specially */
 406                if (frag == nr_frags - 1) {
 407                        status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 408                        if (fep->bufdesc_ex) {
 409                                estatus |= BD_ENET_TX_INT;
 410                                if (unlikely(skb_shinfo(skb)->tx_flags &
 411                                        SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 412                                        estatus |= BD_ENET_TX_TS;
 413                        }
 414                }
 415
 416                if (fep->bufdesc_ex) {
 417                        if (fep->quirks & FEC_QUIRK_HAS_AVB)
 418                                estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 419                        if (skb->ip_summed == CHECKSUM_PARTIAL)
 420                                estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 421                        ebdp->cbd_bdu = 0;
 422                        ebdp->cbd_esc = cpu_to_fec32(estatus);
 423                }
 424
 425                bufaddr = skb_frag_address(this_frag);
 426
 427                index = fec_enet_get_bd_index(bdp, &txq->bd);
 428                if (((unsigned long) bufaddr) & fep->tx_align ||
 429                        fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 430                        memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 431                        bufaddr = txq->tx_bounce[index];
 432
 433                        if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 434                                swap_buffer(bufaddr, frag_len);
 435                }
 436
 437                addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 438                                      DMA_TO_DEVICE);
 439                if (dma_mapping_error(&fep->pdev->dev, addr)) {
 440                        if (net_ratelimit())
 441                                netdev_err(ndev, "Tx DMA memory map failed\n");
 442                        goto dma_mapping_error;
 443                }
 444
 445                bdp->cbd_bufaddr = cpu_to_fec32(addr);
 446                bdp->cbd_datlen = cpu_to_fec16(frag_len);
 447                /* Make sure the updates to rest of the descriptor are
 448                 * performed before transferring ownership.
 449                 */
 450                wmb();
 451                bdp->cbd_sc = cpu_to_fec16(status);
 452        }
 453
 454        return bdp;
 455dma_mapping_error:
 456        bdp = txq->bd.cur;
 457        for (i = 0; i < frag; i++) {
 458                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 459                dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 460                                 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 461        }
 462        return ERR_PTR(-ENOMEM);
 463}
 464
 465static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 466                                   struct sk_buff *skb, struct net_device *ndev)
 467{
 468        struct fec_enet_private *fep = netdev_priv(ndev);
 469        int nr_frags = skb_shinfo(skb)->nr_frags;
 470        struct bufdesc *bdp, *last_bdp;
 471        void *bufaddr;
 472        dma_addr_t addr;
 473        unsigned short status;
 474        unsigned short buflen;
 475        unsigned int estatus = 0;
 476        unsigned int index;
 477        int entries_free;
 478
 479        entries_free = fec_enet_get_free_txdesc_num(txq);
 480        if (entries_free < MAX_SKB_FRAGS + 1) {
 481                dev_kfree_skb_any(skb);
 482                if (net_ratelimit())
 483                        netdev_err(ndev, "NOT enough BD for SG!\n");
 484                return NETDEV_TX_OK;
 485        }
 486
 487        /* Protocol checksum off-load for TCP and UDP. */
 488        if (fec_enet_clear_csum(skb, ndev)) {
 489                dev_kfree_skb_any(skb);
 490                return NETDEV_TX_OK;
 491        }
 492
 493        /* Fill in a Tx ring entry */
 494        bdp = txq->bd.cur;
 495        last_bdp = bdp;
 496        status = fec16_to_cpu(bdp->cbd_sc);
 497        status &= ~BD_ENET_TX_STATS;
 498
 499        /* Set buffer length and buffer pointer */
 500        bufaddr = skb->data;
 501        buflen = skb_headlen(skb);
 502
 503        index = fec_enet_get_bd_index(bdp, &txq->bd);
 504        if (((unsigned long) bufaddr) & fep->tx_align ||
 505                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 506                memcpy(txq->tx_bounce[index], skb->data, buflen);
 507                bufaddr = txq->tx_bounce[index];
 508
 509                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 510                        swap_buffer(bufaddr, buflen);
 511        }
 512
 513        /* Push the data cache so the CPM does not get stale memory data. */
 514        addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 515        if (dma_mapping_error(&fep->pdev->dev, addr)) {
 516                dev_kfree_skb_any(skb);
 517                if (net_ratelimit())
 518                        netdev_err(ndev, "Tx DMA memory map failed\n");
 519                return NETDEV_TX_OK;
 520        }
 521
 522        if (nr_frags) {
 523                last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 524                if (IS_ERR(last_bdp)) {
 525                        dma_unmap_single(&fep->pdev->dev, addr,
 526                                         buflen, DMA_TO_DEVICE);
 527                        dev_kfree_skb_any(skb);
 528                        return NETDEV_TX_OK;
 529                }
 530        } else {
 531                status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 532                if (fep->bufdesc_ex) {
 533                        estatus = BD_ENET_TX_INT;
 534                        if (unlikely(skb_shinfo(skb)->tx_flags &
 535                                SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 536                                estatus |= BD_ENET_TX_TS;
 537                }
 538        }
 539        bdp->cbd_bufaddr = cpu_to_fec32(addr);
 540        bdp->cbd_datlen = cpu_to_fec16(buflen);
 541
 542        if (fep->bufdesc_ex) {
 543
 544                struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 545
 546                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 547                        fep->hwts_tx_en))
 548                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 549
 550                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 551                        estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 552
 553                if (skb->ip_summed == CHECKSUM_PARTIAL)
 554                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 555
 556                ebdp->cbd_bdu = 0;
 557                ebdp->cbd_esc = cpu_to_fec32(estatus);
 558        }
 559
 560        index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 561        /* Save skb pointer */
 562        txq->tx_skbuff[index] = skb;
 563
 564        /* Make sure the updates to rest of the descriptor are performed before
 565         * transferring ownership.
 566         */
 567        wmb();
 568
 569        /* Send it on its way.  Tell FEC it's ready, interrupt when done,
 570         * it's the last BD of the frame, and to put the CRC on the end.
 571         */
 572        status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 573        bdp->cbd_sc = cpu_to_fec16(status);
 574
 575        /* If this was the last BD in the ring, start at the beginning again. */
 576        bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 577
 578        skb_tx_timestamp(skb);
 579
 580        /* Make sure the update to bdp and tx_skbuff are performed before
 581         * txq->bd.cur.
 582         */
 583        wmb();
 584        txq->bd.cur = bdp;
 585
 586        /* Trigger transmission start */
 587        writel(0, txq->bd.reg_desc_active);
 588
 589        return 0;
 590}
 591
 592static int
 593fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 594                          struct net_device *ndev,
 595                          struct bufdesc *bdp, int index, char *data,
 596                          int size, bool last_tcp, bool is_last)
 597{
 598        struct fec_enet_private *fep = netdev_priv(ndev);
 599        struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 600        unsigned short status;
 601        unsigned int estatus = 0;
 602        dma_addr_t addr;
 603
 604        status = fec16_to_cpu(bdp->cbd_sc);
 605        status &= ~BD_ENET_TX_STATS;
 606
 607        status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 608
 609        if (((unsigned long) data) & fep->tx_align ||
 610                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 611                memcpy(txq->tx_bounce[index], data, size);
 612                data = txq->tx_bounce[index];
 613
 614                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 615                        swap_buffer(data, size);
 616        }
 617
 618        addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 619        if (dma_mapping_error(&fep->pdev->dev, addr)) {
 620                dev_kfree_skb_any(skb);
 621                if (net_ratelimit())
 622                        netdev_err(ndev, "Tx DMA memory map failed\n");
 623                return NETDEV_TX_BUSY;
 624        }
 625
 626        bdp->cbd_datlen = cpu_to_fec16(size);
 627        bdp->cbd_bufaddr = cpu_to_fec32(addr);
 628
 629        if (fep->bufdesc_ex) {
 630                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 631                        estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 632                if (skb->ip_summed == CHECKSUM_PARTIAL)
 633                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 634                ebdp->cbd_bdu = 0;
 635                ebdp->cbd_esc = cpu_to_fec32(estatus);
 636        }
 637
 638        /* Handle the last BD specially */
 639        if (last_tcp)
 640                status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 641        if (is_last) {
 642                status |= BD_ENET_TX_INTR;
 643                if (fep->bufdesc_ex)
 644                        ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 645        }
 646
 647        bdp->cbd_sc = cpu_to_fec16(status);
 648
 649        return 0;
 650}
 651
 652static int
 653fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 654                         struct sk_buff *skb, struct net_device *ndev,
 655                         struct bufdesc *bdp, int index)
 656{
 657        struct fec_enet_private *fep = netdev_priv(ndev);
 658        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 659        struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 660        void *bufaddr;
 661        unsigned long dmabuf;
 662        unsigned short status;
 663        unsigned int estatus = 0;
 664
 665        status = fec16_to_cpu(bdp->cbd_sc);
 666        status &= ~BD_ENET_TX_STATS;
 667        status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 668
 669        bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 670        dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 671        if (((unsigned long)bufaddr) & fep->tx_align ||
 672                fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 673                memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 674                bufaddr = txq->tx_bounce[index];
 675
 676                if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 677                        swap_buffer(bufaddr, hdr_len);
 678
 679                dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 680                                        hdr_len, DMA_TO_DEVICE);
 681                if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 682                        dev_kfree_skb_any(skb);
 683                        if (net_ratelimit())
 684                                netdev_err(ndev, "Tx DMA memory map failed\n");
 685                        return NETDEV_TX_BUSY;
 686                }
 687        }
 688
 689        bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 690        bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 691
 692        if (fep->bufdesc_ex) {
 693                if (fep->quirks & FEC_QUIRK_HAS_AVB)
 694                        estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 695                if (skb->ip_summed == CHECKSUM_PARTIAL)
 696                        estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 697                ebdp->cbd_bdu = 0;
 698                ebdp->cbd_esc = cpu_to_fec32(estatus);
 699        }
 700
 701        bdp->cbd_sc = cpu_to_fec16(status);
 702
 703        return 0;
 704}
 705
 706static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 707                                   struct sk_buff *skb,
 708                                   struct net_device *ndev)
 709{
 710        struct fec_enet_private *fep = netdev_priv(ndev);
 711        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 712        int total_len, data_left;
 713        struct bufdesc *bdp = txq->bd.cur;
 714        struct tso_t tso;
 715        unsigned int index = 0;
 716        int ret;
 717
 718        if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 719                dev_kfree_skb_any(skb);
 720                if (net_ratelimit())
 721                        netdev_err(ndev, "NOT enough BD for TSO!\n");
 722                return NETDEV_TX_OK;
 723        }
 724
 725        /* Protocol checksum off-load for TCP and UDP. */
 726        if (fec_enet_clear_csum(skb, ndev)) {
 727                dev_kfree_skb_any(skb);
 728                return NETDEV_TX_OK;
 729        }
 730
 731        /* Initialize the TSO handler, and prepare the first payload */
 732        tso_start(skb, &tso);
 733
 734        total_len = skb->len - hdr_len;
 735        while (total_len > 0) {
 736                char *hdr;
 737
 738                index = fec_enet_get_bd_index(bdp, &txq->bd);
 739                data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 740                total_len -= data_left;
 741
 742                /* prepare packet headers: MAC + IP + TCP */
 743                hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 744                tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 745                ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 746                if (ret)
 747                        goto err_release;
 748
 749                while (data_left > 0) {
 750                        int size;
 751
 752                        size = min_t(int, tso.size, data_left);
 753                        bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 754                        index = fec_enet_get_bd_index(bdp, &txq->bd);
 755                        ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 756                                                        bdp, index,
 757                                                        tso.data, size,
 758                                                        size == data_left,
 759                                                        total_len == 0);
 760                        if (ret)
 761                                goto err_release;
 762
 763                        data_left -= size;
 764                        tso_build_data(skb, &tso, size);
 765                }
 766
 767                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 768        }
 769
 770        /* Save skb pointer */
 771        txq->tx_skbuff[index] = skb;
 772
 773        skb_tx_timestamp(skb);
 774        txq->bd.cur = bdp;
 775
 776        /* Trigger transmission start */
 777        if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 778            !readl(txq->bd.reg_desc_active) ||
 779            !readl(txq->bd.reg_desc_active) ||
 780            !readl(txq->bd.reg_desc_active) ||
 781            !readl(txq->bd.reg_desc_active))
 782                writel(0, txq->bd.reg_desc_active);
 783
 784        return 0;
 785
 786err_release:
 787        /* TODO: Release all used data descriptors for TSO */
 788        return ret;
 789}
 790
 791static netdev_tx_t
 792fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 793{
 794        struct fec_enet_private *fep = netdev_priv(ndev);
 795        int entries_free;
 796        unsigned short queue;
 797        struct fec_enet_priv_tx_q *txq;
 798        struct netdev_queue *nq;
 799        int ret;
 800
 801        queue = skb_get_queue_mapping(skb);
 802        txq = fep->tx_queue[queue];
 803        nq = netdev_get_tx_queue(ndev, queue);
 804
 805        if (skb_is_gso(skb))
 806                ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 807        else
 808                ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 809        if (ret)
 810                return ret;
 811
 812        entries_free = fec_enet_get_free_txdesc_num(txq);
 813        if (entries_free <= txq->tx_stop_threshold)
 814                netif_tx_stop_queue(nq);
 815
 816        return NETDEV_TX_OK;
 817}
 818
 819/* Init RX & TX buffer descriptors
 820 */
 821static void fec_enet_bd_init(struct net_device *dev)
 822{
 823        struct fec_enet_private *fep = netdev_priv(dev);
 824        struct fec_enet_priv_tx_q *txq;
 825        struct fec_enet_priv_rx_q *rxq;
 826        struct bufdesc *bdp;
 827        unsigned int i;
 828        unsigned int q;
 829
 830        for (q = 0; q < fep->num_rx_queues; q++) {
 831                /* Initialize the receive buffer descriptors. */
 832                rxq = fep->rx_queue[q];
 833                bdp = rxq->bd.base;
 834
 835                for (i = 0; i < rxq->bd.ring_size; i++) {
 836
 837                        /* Initialize the BD for every fragment in the page. */
 838                        if (bdp->cbd_bufaddr)
 839                                bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 840                        else
 841                                bdp->cbd_sc = cpu_to_fec16(0);
 842                        bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 843                }
 844
 845                /* Set the last buffer to wrap */
 846                bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 847                bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 848
 849                rxq->bd.cur = rxq->bd.base;
 850        }
 851
 852        for (q = 0; q < fep->num_tx_queues; q++) {
 853                /* ...and the same for transmit */
 854                txq = fep->tx_queue[q];
 855                bdp = txq->bd.base;
 856                txq->bd.cur = bdp;
 857
 858                for (i = 0; i < txq->bd.ring_size; i++) {
 859                        /* Initialize the BD for every fragment in the page. */
 860                        bdp->cbd_sc = cpu_to_fec16(0);
 861                        if (bdp->cbd_bufaddr &&
 862                            !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 863                                dma_unmap_single(&fep->pdev->dev,
 864                                                 fec32_to_cpu(bdp->cbd_bufaddr),
 865                                                 fec16_to_cpu(bdp->cbd_datlen),
 866                                                 DMA_TO_DEVICE);
 867                        if (txq->tx_skbuff[i]) {
 868                                dev_kfree_skb_any(txq->tx_skbuff[i]);
 869                                txq->tx_skbuff[i] = NULL;
 870                        }
 871                        bdp->cbd_bufaddr = cpu_to_fec32(0);
 872                        bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 873                }
 874
 875                /* Set the last buffer to wrap */
 876                bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 877                bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 878                txq->dirty_tx = bdp;
 879        }
 880}
 881
 882static void fec_enet_active_rxring(struct net_device *ndev)
 883{
 884        struct fec_enet_private *fep = netdev_priv(ndev);
 885        int i;
 886
 887        for (i = 0; i < fep->num_rx_queues; i++)
 888                writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 889}
 890
 891static void fec_enet_enable_ring(struct net_device *ndev)
 892{
 893        struct fec_enet_private *fep = netdev_priv(ndev);
 894        struct fec_enet_priv_tx_q *txq;
 895        struct fec_enet_priv_rx_q *rxq;
 896        int i;
 897
 898        for (i = 0; i < fep->num_rx_queues; i++) {
 899                rxq = fep->rx_queue[i];
 900                writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 901                writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 902
 903                /* enable DMA1/2 */
 904                if (i)
 905                        writel(RCMR_MATCHEN | RCMR_CMP(i),
 906                               fep->hwp + FEC_RCMR(i));
 907        }
 908
 909        for (i = 0; i < fep->num_tx_queues; i++) {
 910                txq = fep->tx_queue[i];
 911                writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 912
 913                /* enable DMA1/2 */
 914                if (i)
 915                        writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 916                               fep->hwp + FEC_DMA_CFG(i));
 917        }
 918}
 919
 920static void fec_enet_reset_skb(struct net_device *ndev)
 921{
 922        struct fec_enet_private *fep = netdev_priv(ndev);
 923        struct fec_enet_priv_tx_q *txq;
 924        int i, j;
 925
 926        for (i = 0; i < fep->num_tx_queues; i++) {
 927                txq = fep->tx_queue[i];
 928
 929                for (j = 0; j < txq->bd.ring_size; j++) {
 930                        if (txq->tx_skbuff[j]) {
 931                                dev_kfree_skb_any(txq->tx_skbuff[j]);
 932                                txq->tx_skbuff[j] = NULL;
 933                        }
 934                }
 935        }
 936}
 937
 938/*
 939 * This function is called to start or restart the FEC during a link
 940 * change, transmit timeout, or to reconfigure the FEC.  The network
 941 * packet processing for this device must be stopped before this call.
 942 */
 943static void
 944fec_restart(struct net_device *ndev)
 945{
 946        struct fec_enet_private *fep = netdev_priv(ndev);
 947        u32 val;
 948        u32 temp_mac[2];
 949        u32 rcntl = OPT_FRAME_SIZE | 0x04;
 950        u32 ecntl = 0x2; /* ETHEREN */
 951
 952        /* Whack a reset.  We should wait for this.
 953         * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 954         * instead of reset MAC itself.
 955         */
 956        if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 957                writel(0, fep->hwp + FEC_ECNTRL);
 958        } else {
 959                writel(1, fep->hwp + FEC_ECNTRL);
 960                udelay(10);
 961        }
 962
 963        /*
 964         * enet-mac reset will reset mac address registers too,
 965         * so need to reconfigure it.
 966         */
 967        memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 968        writel((__force u32)cpu_to_be32(temp_mac[0]),
 969               fep->hwp + FEC_ADDR_LOW);
 970        writel((__force u32)cpu_to_be32(temp_mac[1]),
 971               fep->hwp + FEC_ADDR_HIGH);
 972
 973        /* Clear any outstanding interrupt, except MDIO. */
 974        writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
 975
 976        fec_enet_bd_init(ndev);
 977
 978        fec_enet_enable_ring(ndev);
 979
 980        /* Reset tx SKB buffers. */
 981        fec_enet_reset_skb(ndev);
 982
 983        /* Enable MII mode */
 984        if (fep->full_duplex == DUPLEX_FULL) {
 985                /* FD enable */
 986                writel(0x04, fep->hwp + FEC_X_CNTRL);
 987        } else {
 988                /* No Rcv on Xmit */
 989                rcntl |= 0x02;
 990                writel(0x0, fep->hwp + FEC_X_CNTRL);
 991        }
 992
 993        /* Set MII speed */
 994        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 995
 996#if !defined(CONFIG_M5272)
 997        if (fep->quirks & FEC_QUIRK_HAS_RACC) {
 998                val = readl(fep->hwp + FEC_RACC);
 999                /* align IP header */
1000                val |= FEC_RACC_SHIFT16;
1001                if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1002                        /* set RX checksum */
1003                        val |= FEC_RACC_OPTIONS;
1004                else
1005                        val &= ~FEC_RACC_OPTIONS;
1006                writel(val, fep->hwp + FEC_RACC);
1007                writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1008        }
1009#endif
1010
1011        /*
1012         * The phy interface and speed need to get configured
1013         * differently on enet-mac.
1014         */
1015        if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1016                /* Enable flow control and length check */
1017                rcntl |= 0x40000000 | 0x00000020;
1018
1019                /* RGMII, RMII or MII */
1020                if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1021                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1022                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1023                    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1024                        rcntl |= (1 << 6);
1025                else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1026                        rcntl |= (1 << 8);
1027                else
1028                        rcntl &= ~(1 << 8);
1029
1030                /* 1G, 100M or 10M */
1031                if (ndev->phydev) {
1032                        if (ndev->phydev->speed == SPEED_1000)
1033                                ecntl |= (1 << 5);
1034                        else if (ndev->phydev->speed == SPEED_100)
1035                                rcntl &= ~(1 << 9);
1036                        else
1037                                rcntl |= (1 << 9);
1038                }
1039        } else {
1040#ifdef FEC_MIIGSK_ENR
1041                if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1042                        u32 cfgr;
1043                        /* disable the gasket and wait */
1044                        writel(0, fep->hwp + FEC_MIIGSK_ENR);
1045                        while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1046                                udelay(1);
1047
1048                        /*
1049                         * configure the gasket:
1050                         *   RMII, 50 MHz, no loopback, no echo
1051                         *   MII, 25 MHz, no loopback, no echo
1052                         */
1053                        cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1054                                ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1055                        if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1056                                cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1057                        writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1058
1059                        /* re-enable the gasket */
1060                        writel(2, fep->hwp + FEC_MIIGSK_ENR);
1061                }
1062#endif
1063        }
1064
1065#if !defined(CONFIG_M5272)
1066        /* enable pause frame*/
1067        if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1068            ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1069             ndev->phydev && ndev->phydev->pause)) {
1070                rcntl |= FEC_ENET_FCE;
1071
1072                /* set FIFO threshold parameter to reduce overrun */
1073                writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1074                writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1075                writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1076                writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1077
1078                /* OPD */
1079                writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1080        } else {
1081                rcntl &= ~FEC_ENET_FCE;
1082        }
1083#endif /* !defined(CONFIG_M5272) */
1084
1085        writel(rcntl, fep->hwp + FEC_R_CNTRL);
1086
1087        /* Setup multicast filter. */
1088        set_multicast_list(ndev);
1089#ifndef CONFIG_M5272
1090        writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1091        writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1092#endif
1093
1094        if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1095                /* enable ENET endian swap */
1096                ecntl |= (1 << 8);
1097                /* enable ENET store and forward mode */
1098                writel(1 << 8, fep->hwp + FEC_X_WMRK);
1099        }
1100
1101        if (fep->bufdesc_ex)
1102                ecntl |= (1 << 4);
1103
1104#ifndef CONFIG_M5272
1105        /* Enable the MIB statistic event counters */
1106        writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1107#endif
1108
1109        /* And last, enable the transmit and receive processing */
1110        writel(ecntl, fep->hwp + FEC_ECNTRL);
1111        fec_enet_active_rxring(ndev);
1112
1113        if (fep->bufdesc_ex)
1114                fec_ptp_start_cyclecounter(ndev);
1115
1116        /* Enable interrupts we wish to service */
1117        if (fep->link)
1118                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1119        else
1120                writel(0, fep->hwp + FEC_IMASK);
1121
1122        /* Init the interrupt coalescing */
1123        fec_enet_itr_coal_init(ndev);
1124
1125}
1126
1127static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1128{
1129        struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1130        struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1131
1132        if (stop_gpr->gpr) {
1133                if (enabled)
1134                        regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1135                                           BIT(stop_gpr->bit),
1136                                           BIT(stop_gpr->bit));
1137                else
1138                        regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1139                                           BIT(stop_gpr->bit), 0);
1140        } else if (pdata && pdata->sleep_mode_enable) {
1141                pdata->sleep_mode_enable(enabled);
1142        }
1143}
1144
1145static void
1146fec_stop(struct net_device *ndev)
1147{
1148        struct fec_enet_private *fep = netdev_priv(ndev);
1149        u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1150        u32 val;
1151
1152        /* We cannot expect a graceful transmit stop without link !!! */
1153        if (fep->link) {
1154                writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1155                udelay(10);
1156                if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1157                        netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1158        }
1159
1160        /* Whack a reset.  We should wait for this.
1161         * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1162         * instead of reset MAC itself.
1163         */
1164        if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1165                if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1166                        writel(0, fep->hwp + FEC_ECNTRL);
1167                } else {
1168                        writel(1, fep->hwp + FEC_ECNTRL);
1169                        udelay(10);
1170                }
1171                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1172        } else {
1173                writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1174                val = readl(fep->hwp + FEC_ECNTRL);
1175                val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1176                writel(val, fep->hwp + FEC_ECNTRL);
1177                fec_enet_stop_mode(fep, true);
1178        }
1179        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1180
1181        /* We have to keep ENET enabled to have MII interrupt stay working */
1182        if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1183                !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1184                writel(2, fep->hwp + FEC_ECNTRL);
1185                writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1186        }
1187}
1188
1189
1190static void
1191fec_timeout(struct net_device *ndev, unsigned int txqueue)
1192{
1193        struct fec_enet_private *fep = netdev_priv(ndev);
1194
1195        fec_dump(ndev);
1196
1197        ndev->stats.tx_errors++;
1198
1199        schedule_work(&fep->tx_timeout_work);
1200}
1201
1202static void fec_enet_timeout_work(struct work_struct *work)
1203{
1204        struct fec_enet_private *fep =
1205                container_of(work, struct fec_enet_private, tx_timeout_work);
1206        struct net_device *ndev = fep->netdev;
1207
1208        rtnl_lock();
1209        if (netif_device_present(ndev) || netif_running(ndev)) {
1210                napi_disable(&fep->napi);
1211                netif_tx_lock_bh(ndev);
1212                fec_restart(ndev);
1213                netif_tx_wake_all_queues(ndev);
1214                netif_tx_unlock_bh(ndev);
1215                napi_enable(&fep->napi);
1216        }
1217        rtnl_unlock();
1218}
1219
1220static void
1221fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1222        struct skb_shared_hwtstamps *hwtstamps)
1223{
1224        unsigned long flags;
1225        u64 ns;
1226
1227        spin_lock_irqsave(&fep->tmreg_lock, flags);
1228        ns = timecounter_cyc2time(&fep->tc, ts);
1229        spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1230
1231        memset(hwtstamps, 0, sizeof(*hwtstamps));
1232        hwtstamps->hwtstamp = ns_to_ktime(ns);
1233}
1234
1235static void
1236fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1237{
1238        struct  fec_enet_private *fep;
1239        struct bufdesc *bdp;
1240        unsigned short status;
1241        struct  sk_buff *skb;
1242        struct fec_enet_priv_tx_q *txq;
1243        struct netdev_queue *nq;
1244        int     index = 0;
1245        int     entries_free;
1246
1247        fep = netdev_priv(ndev);
1248
1249        txq = fep->tx_queue[queue_id];
1250        /* get next bdp of dirty_tx */
1251        nq = netdev_get_tx_queue(ndev, queue_id);
1252        bdp = txq->dirty_tx;
1253
1254        /* get next bdp of dirty_tx */
1255        bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1256
1257        while (bdp != READ_ONCE(txq->bd.cur)) {
1258                /* Order the load of bd.cur and cbd_sc */
1259                rmb();
1260                status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1261                if (status & BD_ENET_TX_READY)
1262                        break;
1263
1264                index = fec_enet_get_bd_index(bdp, &txq->bd);
1265
1266                skb = txq->tx_skbuff[index];
1267                txq->tx_skbuff[index] = NULL;
1268                if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1269                        dma_unmap_single(&fep->pdev->dev,
1270                                         fec32_to_cpu(bdp->cbd_bufaddr),
1271                                         fec16_to_cpu(bdp->cbd_datlen),
1272                                         DMA_TO_DEVICE);
1273                bdp->cbd_bufaddr = cpu_to_fec32(0);
1274                if (!skb)
1275                        goto skb_done;
1276
1277                /* Check for errors. */
1278                if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1279                                   BD_ENET_TX_RL | BD_ENET_TX_UN |
1280                                   BD_ENET_TX_CSL)) {
1281                        ndev->stats.tx_errors++;
1282                        if (status & BD_ENET_TX_HB)  /* No heartbeat */
1283                                ndev->stats.tx_heartbeat_errors++;
1284                        if (status & BD_ENET_TX_LC)  /* Late collision */
1285                                ndev->stats.tx_window_errors++;
1286                        if (status & BD_ENET_TX_RL)  /* Retrans limit */
1287                                ndev->stats.tx_aborted_errors++;
1288                        if (status & BD_ENET_TX_UN)  /* Underrun */
1289                                ndev->stats.tx_fifo_errors++;
1290                        if (status & BD_ENET_TX_CSL) /* Carrier lost */
1291                                ndev->stats.tx_carrier_errors++;
1292                } else {
1293                        ndev->stats.tx_packets++;
1294                        ndev->stats.tx_bytes += skb->len;
1295                }
1296
1297                /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1298                 * are to time stamp the packet, so we still need to check time
1299                 * stamping enabled flag.
1300                 */
1301                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1302                             fep->hwts_tx_en) &&
1303                    fep->bufdesc_ex) {
1304                        struct skb_shared_hwtstamps shhwtstamps;
1305                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1306
1307                        fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1308                        skb_tstamp_tx(skb, &shhwtstamps);
1309                }
1310
1311                /* Deferred means some collisions occurred during transmit,
1312                 * but we eventually sent the packet OK.
1313                 */
1314                if (status & BD_ENET_TX_DEF)
1315                        ndev->stats.collisions++;
1316
1317                /* Free the sk buffer associated with this last transmit */
1318                dev_kfree_skb_any(skb);
1319skb_done:
1320                /* Make sure the update to bdp and tx_skbuff are performed
1321                 * before dirty_tx
1322                 */
1323                wmb();
1324                txq->dirty_tx = bdp;
1325
1326                /* Update pointer to next buffer descriptor to be transmitted */
1327                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1328
1329                /* Since we have freed up a buffer, the ring is no longer full
1330                 */
1331                if (netif_tx_queue_stopped(nq)) {
1332                        entries_free = fec_enet_get_free_txdesc_num(txq);
1333                        if (entries_free >= txq->tx_wake_threshold)
1334                                netif_tx_wake_queue(nq);
1335                }
1336        }
1337
1338        /* ERR006358: Keep the transmitter going */
1339        if (bdp != txq->bd.cur &&
1340            readl(txq->bd.reg_desc_active) == 0)
1341                writel(0, txq->bd.reg_desc_active);
1342}
1343
1344static void fec_enet_tx(struct net_device *ndev)
1345{
1346        struct fec_enet_private *fep = netdev_priv(ndev);
1347        int i;
1348
1349        /* Make sure that AVB queues are processed first. */
1350        for (i = fep->num_tx_queues - 1; i >= 0; i--)
1351                fec_enet_tx_queue(ndev, i);
1352}
1353
1354static int
1355fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1356{
1357        struct  fec_enet_private *fep = netdev_priv(ndev);
1358        int off;
1359
1360        off = ((unsigned long)skb->data) & fep->rx_align;
1361        if (off)
1362                skb_reserve(skb, fep->rx_align + 1 - off);
1363
1364        bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1365        if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1366                if (net_ratelimit())
1367                        netdev_err(ndev, "Rx DMA memory map failed\n");
1368                return -ENOMEM;
1369        }
1370
1371        return 0;
1372}
1373
1374static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1375                               struct bufdesc *bdp, u32 length, bool swap)
1376{
1377        struct  fec_enet_private *fep = netdev_priv(ndev);
1378        struct sk_buff *new_skb;
1379
1380        if (length > fep->rx_copybreak)
1381                return false;
1382
1383        new_skb = netdev_alloc_skb(ndev, length);
1384        if (!new_skb)
1385                return false;
1386
1387        dma_sync_single_for_cpu(&fep->pdev->dev,
1388                                fec32_to_cpu(bdp->cbd_bufaddr),
1389                                FEC_ENET_RX_FRSIZE - fep->rx_align,
1390                                DMA_FROM_DEVICE);
1391        if (!swap)
1392                memcpy(new_skb->data, (*skb)->data, length);
1393        else
1394                swap_buffer2(new_skb->data, (*skb)->data, length);
1395        *skb = new_skb;
1396
1397        return true;
1398}
1399
1400/* During a receive, the bd_rx.cur points to the current incoming buffer.
1401 * When we update through the ring, if the next incoming buffer has
1402 * not been given to the system, we just set the empty indicator,
1403 * effectively tossing the packet.
1404 */
1405static int
1406fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1407{
1408        struct fec_enet_private *fep = netdev_priv(ndev);
1409        struct fec_enet_priv_rx_q *rxq;
1410        struct bufdesc *bdp;
1411        unsigned short status;
1412        struct  sk_buff *skb_new = NULL;
1413        struct  sk_buff *skb;
1414        ushort  pkt_len;
1415        __u8 *data;
1416        int     pkt_received = 0;
1417        struct  bufdesc_ex *ebdp = NULL;
1418        bool    vlan_packet_rcvd = false;
1419        u16     vlan_tag;
1420        int     index = 0;
1421        bool    is_copybreak;
1422        bool    need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1423
1424#ifdef CONFIG_M532x
1425        flush_cache_all();
1426#endif
1427        rxq = fep->rx_queue[queue_id];
1428
1429        /* First, grab all of the stats for the incoming packet.
1430         * These get messed up if we get called due to a busy condition.
1431         */
1432        bdp = rxq->bd.cur;
1433
1434        while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1435
1436                if (pkt_received >= budget)
1437                        break;
1438                pkt_received++;
1439
1440                writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1441
1442                /* Check for errors. */
1443                status ^= BD_ENET_RX_LAST;
1444                if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1445                           BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1446                           BD_ENET_RX_CL)) {
1447                        ndev->stats.rx_errors++;
1448                        if (status & BD_ENET_RX_OV) {
1449                                /* FIFO overrun */
1450                                ndev->stats.rx_fifo_errors++;
1451                                goto rx_processing_done;
1452                        }
1453                        if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1454                                                | BD_ENET_RX_LAST)) {
1455                                /* Frame too long or too short. */
1456                                ndev->stats.rx_length_errors++;
1457                                if (status & BD_ENET_RX_LAST)
1458                                        netdev_err(ndev, "rcv is not +last\n");
1459                        }
1460                        if (status & BD_ENET_RX_CR)     /* CRC Error */
1461                                ndev->stats.rx_crc_errors++;
1462                        /* Report late collisions as a frame error. */
1463                        if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1464                                ndev->stats.rx_frame_errors++;
1465                        goto rx_processing_done;
1466                }
1467
1468                /* Process the incoming frame. */
1469                ndev->stats.rx_packets++;
1470                pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1471                ndev->stats.rx_bytes += pkt_len;
1472
1473                index = fec_enet_get_bd_index(bdp, &rxq->bd);
1474                skb = rxq->rx_skbuff[index];
1475
1476                /* The packet length includes FCS, but we don't want to
1477                 * include that when passing upstream as it messes up
1478                 * bridging applications.
1479                 */
1480                is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1481                                                  need_swap);
1482                if (!is_copybreak) {
1483                        skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1484                        if (unlikely(!skb_new)) {
1485                                ndev->stats.rx_dropped++;
1486                                goto rx_processing_done;
1487                        }
1488                        dma_unmap_single(&fep->pdev->dev,
1489                                         fec32_to_cpu(bdp->cbd_bufaddr),
1490                                         FEC_ENET_RX_FRSIZE - fep->rx_align,
1491                                         DMA_FROM_DEVICE);
1492                }
1493
1494                prefetch(skb->data - NET_IP_ALIGN);
1495                skb_put(skb, pkt_len - 4);
1496                data = skb->data;
1497
1498                if (!is_copybreak && need_swap)
1499                        swap_buffer(data, pkt_len);
1500
1501#if !defined(CONFIG_M5272)
1502                if (fep->quirks & FEC_QUIRK_HAS_RACC)
1503                        data = skb_pull_inline(skb, 2);
1504#endif
1505
1506                /* Extract the enhanced buffer descriptor */
1507                ebdp = NULL;
1508                if (fep->bufdesc_ex)
1509                        ebdp = (struct bufdesc_ex *)bdp;
1510
1511                /* If this is a VLAN packet remove the VLAN Tag */
1512                vlan_packet_rcvd = false;
1513                if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1514                    fep->bufdesc_ex &&
1515                    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1516                        /* Push and remove the vlan tag */
1517                        struct vlan_hdr *vlan_header =
1518                                        (struct vlan_hdr *) (data + ETH_HLEN);
1519                        vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1520
1521                        vlan_packet_rcvd = true;
1522
1523                        memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1524                        skb_pull(skb, VLAN_HLEN);
1525                }
1526
1527                skb->protocol = eth_type_trans(skb, ndev);
1528
1529                /* Get receive timestamp from the skb */
1530                if (fep->hwts_rx_en && fep->bufdesc_ex)
1531                        fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1532                                          skb_hwtstamps(skb));
1533
1534                if (fep->bufdesc_ex &&
1535                    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1536                        if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1537                                /* don't check it */
1538                                skb->ip_summed = CHECKSUM_UNNECESSARY;
1539                        } else {
1540                                skb_checksum_none_assert(skb);
1541                        }
1542                }
1543
1544                /* Handle received VLAN packets */
1545                if (vlan_packet_rcvd)
1546                        __vlan_hwaccel_put_tag(skb,
1547                                               htons(ETH_P_8021Q),
1548                                               vlan_tag);
1549
1550                skb_record_rx_queue(skb, queue_id);
1551                napi_gro_receive(&fep->napi, skb);
1552
1553                if (is_copybreak) {
1554                        dma_sync_single_for_device(&fep->pdev->dev,
1555                                                   fec32_to_cpu(bdp->cbd_bufaddr),
1556                                                   FEC_ENET_RX_FRSIZE - fep->rx_align,
1557                                                   DMA_FROM_DEVICE);
1558                } else {
1559                        rxq->rx_skbuff[index] = skb_new;
1560                        fec_enet_new_rxbdp(ndev, bdp, skb_new);
1561                }
1562
1563rx_processing_done:
1564                /* Clear the status flags for this buffer */
1565                status &= ~BD_ENET_RX_STATS;
1566
1567                /* Mark the buffer empty */
1568                status |= BD_ENET_RX_EMPTY;
1569
1570                if (fep->bufdesc_ex) {
1571                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1572
1573                        ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1574                        ebdp->cbd_prot = 0;
1575                        ebdp->cbd_bdu = 0;
1576                }
1577                /* Make sure the updates to rest of the descriptor are
1578                 * performed before transferring ownership.
1579                 */
1580                wmb();
1581                bdp->cbd_sc = cpu_to_fec16(status);
1582
1583                /* Update BD pointer to next entry */
1584                bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1585
1586                /* Doing this here will keep the FEC running while we process
1587                 * incoming frames.  On a heavily loaded network, we should be
1588                 * able to keep up at the expense of system resources.
1589                 */
1590                writel(0, rxq->bd.reg_desc_active);
1591        }
1592        rxq->bd.cur = bdp;
1593        return pkt_received;
1594}
1595
1596static int fec_enet_rx(struct net_device *ndev, int budget)
1597{
1598        struct fec_enet_private *fep = netdev_priv(ndev);
1599        int i, done = 0;
1600
1601        /* Make sure that AVB queues are processed first. */
1602        for (i = fep->num_rx_queues - 1; i >= 0; i--)
1603                done += fec_enet_rx_queue(ndev, budget - done, i);
1604
1605        return done;
1606}
1607
1608static bool fec_enet_collect_events(struct fec_enet_private *fep)
1609{
1610        uint int_events;
1611
1612        int_events = readl(fep->hwp + FEC_IEVENT);
1613
1614        /* Don't clear MDIO events, we poll for those */
1615        int_events &= ~FEC_ENET_MII;
1616
1617        writel(int_events, fep->hwp + FEC_IEVENT);
1618
1619        return int_events != 0;
1620}
1621
1622static irqreturn_t
1623fec_enet_interrupt(int irq, void *dev_id)
1624{
1625        struct net_device *ndev = dev_id;
1626        struct fec_enet_private *fep = netdev_priv(ndev);
1627        irqreturn_t ret = IRQ_NONE;
1628
1629        if (fec_enet_collect_events(fep) && fep->link) {
1630                ret = IRQ_HANDLED;
1631
1632                if (napi_schedule_prep(&fep->napi)) {
1633                        /* Disable interrupts */
1634                        writel(0, fep->hwp + FEC_IMASK);
1635                        __napi_schedule(&fep->napi);
1636                }
1637        }
1638
1639        return ret;
1640}
1641
1642static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1643{
1644        struct net_device *ndev = napi->dev;
1645        struct fec_enet_private *fep = netdev_priv(ndev);
1646        int done = 0;
1647
1648        do {
1649                done += fec_enet_rx(ndev, budget - done);
1650                fec_enet_tx(ndev);
1651        } while ((done < budget) && fec_enet_collect_events(fep));
1652
1653        if (done < budget) {
1654                napi_complete_done(napi, done);
1655                writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1656        }
1657
1658        return done;
1659}
1660
1661/* ------------------------------------------------------------------------- */
1662static void fec_get_mac(struct net_device *ndev)
1663{
1664        struct fec_enet_private *fep = netdev_priv(ndev);
1665        struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1666        unsigned char *iap, tmpaddr[ETH_ALEN];
1667
1668        /*
1669         * try to get mac address in following order:
1670         *
1671         * 1) module parameter via kernel command line in form
1672         *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1673         */
1674        iap = macaddr;
1675
1676        /*
1677         * 2) from device tree data
1678         */
1679        if (!is_valid_ether_addr(iap)) {
1680                struct device_node *np = fep->pdev->dev.of_node;
1681                if (np) {
1682                        const char *mac = of_get_mac_address(np);
1683                        if (!IS_ERR(mac))
1684                                iap = (unsigned char *) mac;
1685                }
1686        }
1687
1688        /*
1689         * 3) from flash or fuse (via platform data)
1690         */
1691        if (!is_valid_ether_addr(iap)) {
1692#ifdef CONFIG_M5272
1693                if (FEC_FLASHMAC)
1694                        iap = (unsigned char *)FEC_FLASHMAC;
1695#else
1696                if (pdata)
1697                        iap = (unsigned char *)&pdata->mac;
1698#endif
1699        }
1700
1701        /*
1702         * 4) FEC mac registers set by bootloader
1703         */
1704        if (!is_valid_ether_addr(iap)) {
1705                *((__be32 *) &tmpaddr[0]) =
1706                        cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1707                *((__be16 *) &tmpaddr[4]) =
1708                        cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1709                iap = &tmpaddr[0];
1710        }
1711
1712        /*
1713         * 5) random mac address
1714         */
1715        if (!is_valid_ether_addr(iap)) {
1716                /* Report it and use a random ethernet address instead */
1717                dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1718                eth_hw_addr_random(ndev);
1719                dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1720                         ndev->dev_addr);
1721                return;
1722        }
1723
1724        memcpy(ndev->dev_addr, iap, ETH_ALEN);
1725
1726        /* Adjust MAC if using macaddr */
1727        if (iap == macaddr)
1728                 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1729}
1730
1731/* ------------------------------------------------------------------------- */
1732
1733/*
1734 * Phy section
1735 */
1736static void fec_enet_adjust_link(struct net_device *ndev)
1737{
1738        struct fec_enet_private *fep = netdev_priv(ndev);
1739        struct phy_device *phy_dev = ndev->phydev;
1740        int status_change = 0;
1741
1742        /*
1743         * If the netdev is down, or is going down, we're not interested
1744         * in link state events, so just mark our idea of the link as down
1745         * and ignore the event.
1746         */
1747        if (!netif_running(ndev) || !netif_device_present(ndev)) {
1748                fep->link = 0;
1749        } else if (phy_dev->link) {
1750                if (!fep->link) {
1751                        fep->link = phy_dev->link;
1752                        status_change = 1;
1753                }
1754
1755                if (fep->full_duplex != phy_dev->duplex) {
1756                        fep->full_duplex = phy_dev->duplex;
1757                        status_change = 1;
1758                }
1759
1760                if (phy_dev->speed != fep->speed) {
1761                        fep->speed = phy_dev->speed;
1762                        status_change = 1;
1763                }
1764
1765                /* if any of the above changed restart the FEC */
1766                if (status_change) {
1767                        napi_disable(&fep->napi);
1768                        netif_tx_lock_bh(ndev);
1769                        fec_restart(ndev);
1770                        netif_tx_wake_all_queues(ndev);
1771                        netif_tx_unlock_bh(ndev);
1772                        napi_enable(&fep->napi);
1773                }
1774        } else {
1775                if (fep->link) {
1776                        napi_disable(&fep->napi);
1777                        netif_tx_lock_bh(ndev);
1778                        fec_stop(ndev);
1779                        netif_tx_unlock_bh(ndev);
1780                        napi_enable(&fep->napi);
1781                        fep->link = phy_dev->link;
1782                        status_change = 1;
1783                }
1784        }
1785
1786        if (status_change)
1787                phy_print_status(phy_dev);
1788}
1789
1790static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1791{
1792        uint ievent;
1793        int ret;
1794
1795        ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1796                                        ievent & FEC_ENET_MII, 2, 30000);
1797
1798        if (!ret)
1799                writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1800
1801        return ret;
1802}
1803
1804static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1805{
1806        struct fec_enet_private *fep = bus->priv;
1807        struct device *dev = &fep->pdev->dev;
1808        int ret = 0, frame_start, frame_addr, frame_op;
1809        bool is_c45 = !!(regnum & MII_ADDR_C45);
1810
1811        ret = pm_runtime_get_sync(dev);
1812        if (ret < 0)
1813                return ret;
1814
1815        if (is_c45) {
1816                frame_start = FEC_MMFR_ST_C45;
1817
1818                /* write address */
1819                frame_addr = (regnum >> 16);
1820                writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1821                       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1822                       FEC_MMFR_TA | (regnum & 0xFFFF),
1823                       fep->hwp + FEC_MII_DATA);
1824
1825                /* wait for end of transfer */
1826                ret = fec_enet_mdio_wait(fep);
1827                if (ret) {
1828                        netdev_err(fep->netdev, "MDIO address write timeout\n");
1829                        goto out;
1830                }
1831
1832                frame_op = FEC_MMFR_OP_READ_C45;
1833
1834        } else {
1835                /* C22 read */
1836                frame_op = FEC_MMFR_OP_READ;
1837                frame_start = FEC_MMFR_ST;
1838                frame_addr = regnum;
1839        }
1840
1841        /* start a read op */
1842        writel(frame_start | frame_op |
1843                FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1844                FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1845
1846        /* wait for end of transfer */
1847        ret = fec_enet_mdio_wait(fep);
1848        if (ret) {
1849                netdev_err(fep->netdev, "MDIO read timeout\n");
1850                goto out;
1851        }
1852
1853        ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1854
1855out:
1856        pm_runtime_mark_last_busy(dev);
1857        pm_runtime_put_autosuspend(dev);
1858
1859        return ret;
1860}
1861
1862static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1863                           u16 value)
1864{
1865        struct fec_enet_private *fep = bus->priv;
1866        struct device *dev = &fep->pdev->dev;
1867        int ret, frame_start, frame_addr;
1868        bool is_c45 = !!(regnum & MII_ADDR_C45);
1869
1870        ret = pm_runtime_get_sync(dev);
1871        if (ret < 0)
1872                return ret;
1873        else
1874                ret = 0;
1875
1876        if (is_c45) {
1877                frame_start = FEC_MMFR_ST_C45;
1878
1879                /* write address */
1880                frame_addr = (regnum >> 16);
1881                writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1882                       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1883                       FEC_MMFR_TA | (regnum & 0xFFFF),
1884                       fep->hwp + FEC_MII_DATA);
1885
1886                /* wait for end of transfer */
1887                ret = fec_enet_mdio_wait(fep);
1888                if (ret) {
1889                        netdev_err(fep->netdev, "MDIO address write timeout\n");
1890                        goto out;
1891                }
1892        } else {
1893                /* C22 write */
1894                frame_start = FEC_MMFR_ST;
1895                frame_addr = regnum;
1896        }
1897
1898        /* start a write op */
1899        writel(frame_start | FEC_MMFR_OP_WRITE |
1900                FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1901                FEC_MMFR_TA | FEC_MMFR_DATA(value),
1902                fep->hwp + FEC_MII_DATA);
1903
1904        /* wait for end of transfer */
1905        ret = fec_enet_mdio_wait(fep);
1906        if (ret)
1907                netdev_err(fep->netdev, "MDIO write timeout\n");
1908
1909out:
1910        pm_runtime_mark_last_busy(dev);
1911        pm_runtime_put_autosuspend(dev);
1912
1913        return ret;
1914}
1915
1916static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1917{
1918        struct fec_enet_private *fep = netdev_priv(ndev);
1919        int ret;
1920
1921        if (enable) {
1922                ret = clk_prepare_enable(fep->clk_enet_out);
1923                if (ret)
1924                        return ret;
1925
1926                if (fep->clk_ptp) {
1927                        mutex_lock(&fep->ptp_clk_mutex);
1928                        ret = clk_prepare_enable(fep->clk_ptp);
1929                        if (ret) {
1930                                mutex_unlock(&fep->ptp_clk_mutex);
1931                                goto failed_clk_ptp;
1932                        } else {
1933                                fep->ptp_clk_on = true;
1934                        }
1935                        mutex_unlock(&fep->ptp_clk_mutex);
1936                }
1937
1938                ret = clk_prepare_enable(fep->clk_ref);
1939                if (ret)
1940                        goto failed_clk_ref;
1941
1942                phy_reset_after_clk_enable(ndev->phydev);
1943        } else {
1944                clk_disable_unprepare(fep->clk_enet_out);
1945                if (fep->clk_ptp) {
1946                        mutex_lock(&fep->ptp_clk_mutex);
1947                        clk_disable_unprepare(fep->clk_ptp);
1948                        fep->ptp_clk_on = false;
1949                        mutex_unlock(&fep->ptp_clk_mutex);
1950                }
1951                clk_disable_unprepare(fep->clk_ref);
1952        }
1953
1954        return 0;
1955
1956failed_clk_ref:
1957        if (fep->clk_ptp) {
1958                mutex_lock(&fep->ptp_clk_mutex);
1959                clk_disable_unprepare(fep->clk_ptp);
1960                fep->ptp_clk_on = false;
1961                mutex_unlock(&fep->ptp_clk_mutex);
1962        }
1963failed_clk_ptp:
1964        if (fep->clk_enet_out)
1965                clk_disable_unprepare(fep->clk_enet_out);
1966
1967        return ret;
1968}
1969
1970static int fec_enet_mii_probe(struct net_device *ndev)
1971{
1972        struct fec_enet_private *fep = netdev_priv(ndev);
1973        struct phy_device *phy_dev = NULL;
1974        char mdio_bus_id[MII_BUS_ID_SIZE];
1975        char phy_name[MII_BUS_ID_SIZE + 3];
1976        int phy_id;
1977        int dev_id = fep->dev_id;
1978
1979        if (fep->phy_node) {
1980                phy_dev = of_phy_connect(ndev, fep->phy_node,
1981                                         &fec_enet_adjust_link, 0,
1982                                         fep->phy_interface);
1983                if (!phy_dev) {
1984                        netdev_err(ndev, "Unable to connect to phy\n");
1985                        return -ENODEV;
1986                }
1987        } else {
1988                /* check for attached phy */
1989                for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1990                        if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1991                                continue;
1992                        if (dev_id--)
1993                                continue;
1994                        strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1995                        break;
1996                }
1997
1998                if (phy_id >= PHY_MAX_ADDR) {
1999                        netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2000                        strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2001                        phy_id = 0;
2002                }
2003
2004                snprintf(phy_name, sizeof(phy_name),
2005                         PHY_ID_FMT, mdio_bus_id, phy_id);
2006                phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2007                                      fep->phy_interface);
2008        }
2009
2010        if (IS_ERR(phy_dev)) {
2011                netdev_err(ndev, "could not attach to PHY\n");
2012                return PTR_ERR(phy_dev);
2013        }
2014
2015        /* mask with MAC supported features */
2016        if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2017                phy_set_max_speed(phy_dev, 1000);
2018                phy_remove_link_mode(phy_dev,
2019                                     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2020#if !defined(CONFIG_M5272)
2021                phy_support_sym_pause(phy_dev);
2022#endif
2023        }
2024        else
2025                phy_set_max_speed(phy_dev, 100);
2026
2027        fep->link = 0;
2028        fep->full_duplex = 0;
2029
2030        phy_attached_info(phy_dev);
2031
2032        return 0;
2033}
2034
2035static int fec_enet_mii_init(struct platform_device *pdev)
2036{
2037        static struct mii_bus *fec0_mii_bus;
2038        struct net_device *ndev = platform_get_drvdata(pdev);
2039        struct fec_enet_private *fep = netdev_priv(ndev);
2040        bool suppress_preamble = false;
2041        struct device_node *node;
2042        int err = -ENXIO;
2043        u32 mii_speed, holdtime;
2044        u32 bus_freq;
2045
2046        /*
2047         * The i.MX28 dual fec interfaces are not equal.
2048         * Here are the differences:
2049         *
2050         *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2051         *  - fec0 acts as the 1588 time master while fec1 is slave
2052         *  - external phys can only be configured by fec0
2053         *
2054         * That is to say fec1 can not work independently. It only works
2055         * when fec0 is working. The reason behind this design is that the
2056         * second interface is added primarily for Switch mode.
2057         *
2058         * Because of the last point above, both phys are attached on fec0
2059         * mdio interface in board design, and need to be configured by
2060         * fec0 mii_bus.
2061         */
2062        if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2063                /* fec1 uses fec0 mii_bus */
2064                if (mii_cnt && fec0_mii_bus) {
2065                        fep->mii_bus = fec0_mii_bus;
2066                        mii_cnt++;
2067                        return 0;
2068                }
2069                return -ENOENT;
2070        }
2071
2072        bus_freq = 2500000; /* 2.5MHz by default */
2073        node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2074        if (node) {
2075                of_property_read_u32(node, "clock-frequency", &bus_freq);
2076                suppress_preamble = of_property_read_bool(node,
2077                                                          "suppress-preamble");
2078        }
2079
2080        /*
2081         * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2082         *
2083         * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2084         * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2085         * Reference Manual has an error on this, and gets fixed on i.MX6Q
2086         * document.
2087         */
2088        mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2089        if (fep->quirks & FEC_QUIRK_ENET_MAC)
2090                mii_speed--;
2091        if (mii_speed > 63) {
2092                dev_err(&pdev->dev,
2093                        "fec clock (%lu) too fast to get right mii speed\n",
2094                        clk_get_rate(fep->clk_ipg));
2095                err = -EINVAL;
2096                goto err_out;
2097        }
2098
2099        /*
2100         * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2101         * MII_SPEED) register that defines the MDIO output hold time. Earlier
2102         * versions are RAZ there, so just ignore the difference and write the
2103         * register always.
2104         * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2105         * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2106         * output.
2107         * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2108         * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2109         * holdtime cannot result in a value greater than 3.
2110         */
2111        holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2112
2113        fep->phy_speed = mii_speed << 1 | holdtime << 8;
2114
2115        if (suppress_preamble)
2116                fep->phy_speed |= BIT(7);
2117
2118        /* Clear MMFR to avoid to generate MII event by writing MSCR.
2119         * MII event generation condition:
2120         * - writing MSCR:
2121         *      - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2122         *        mscr_reg_data_in[7:0] != 0
2123         * - writing MMFR:
2124         *      - mscr[7:0]_not_zero
2125         */
2126        writel(0, fep->hwp + FEC_MII_DATA);
2127
2128        writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2129
2130        /* Clear any pending transaction complete indication */
2131        writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2132
2133        fep->mii_bus = mdiobus_alloc();
2134        if (fep->mii_bus == NULL) {
2135                err = -ENOMEM;
2136                goto err_out;
2137        }
2138
2139        fep->mii_bus->name = "fec_enet_mii_bus";
2140        fep->mii_bus->read = fec_enet_mdio_read;
2141        fep->mii_bus->write = fec_enet_mdio_write;
2142        snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2143                pdev->name, fep->dev_id + 1);
2144        fep->mii_bus->priv = fep;
2145        fep->mii_bus->parent = &pdev->dev;
2146
2147        err = of_mdiobus_register(fep->mii_bus, node);
2148        of_node_put(node);
2149        if (err)
2150                goto err_out_free_mdiobus;
2151
2152        mii_cnt++;
2153
2154        /* save fec0 mii_bus */
2155        if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2156                fec0_mii_bus = fep->mii_bus;
2157
2158        return 0;
2159
2160err_out_free_mdiobus:
2161        mdiobus_free(fep->mii_bus);
2162err_out:
2163        return err;
2164}
2165
2166static void fec_enet_mii_remove(struct fec_enet_private *fep)
2167{
2168        if (--mii_cnt == 0) {
2169                mdiobus_unregister(fep->mii_bus);
2170                mdiobus_free(fep->mii_bus);
2171        }
2172}
2173
2174static void fec_enet_get_drvinfo(struct net_device *ndev,
2175                                 struct ethtool_drvinfo *info)
2176{
2177        struct fec_enet_private *fep = netdev_priv(ndev);
2178
2179        strlcpy(info->driver, fep->pdev->dev.driver->name,
2180                sizeof(info->driver));
2181        strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2182}
2183
2184static int fec_enet_get_regs_len(struct net_device *ndev)
2185{
2186        struct fec_enet_private *fep = netdev_priv(ndev);
2187        struct resource *r;
2188        int s = 0;
2189
2190        r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2191        if (r)
2192                s = resource_size(r);
2193
2194        return s;
2195}
2196
2197/* List of registers that can be safety be read to dump them with ethtool */
2198#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2199        defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2200        defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2201static __u32 fec_enet_register_version = 2;
2202static u32 fec_enet_register_offset[] = {
2203        FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2204        FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2205        FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2206        FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2207        FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2208        FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2209        FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2210        FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2211        FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2212        FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2213        FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2214        FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2215        RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2216        RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2217        RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2218        RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2219        RMON_T_P_GTE2048, RMON_T_OCTETS,
2220        IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2221        IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2222        IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2223        RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2224        RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2225        RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2226        RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2227        RMON_R_P_GTE2048, RMON_R_OCTETS,
2228        IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2229        IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2230};
2231#else
2232static __u32 fec_enet_register_version = 1;
2233static u32 fec_enet_register_offset[] = {
2234        FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2235        FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2236        FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2237        FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2238        FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2239        FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2240        FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2241        FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2242        FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2243};
2244#endif
2245
2246static void fec_enet_get_regs(struct net_device *ndev,
2247                              struct ethtool_regs *regs, void *regbuf)
2248{
2249        struct fec_enet_private *fep = netdev_priv(ndev);
2250        u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2251        struct device *dev = &fep->pdev->dev;
2252        u32 *buf = (u32 *)regbuf;
2253        u32 i, off;
2254        int ret;
2255
2256        ret = pm_runtime_get_sync(dev);
2257        if (ret < 0)
2258                return;
2259
2260        regs->version = fec_enet_register_version;
2261
2262        memset(buf, 0, regs->len);
2263
2264        for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2265                off = fec_enet_register_offset[i];
2266
2267                if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2268                    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2269                        continue;
2270
2271                off >>= 2;
2272                buf[off] = readl(&theregs[off]);
2273        }
2274
2275        pm_runtime_mark_last_busy(dev);
2276        pm_runtime_put_autosuspend(dev);
2277}
2278
2279static int fec_enet_get_ts_info(struct net_device *ndev,
2280                                struct ethtool_ts_info *info)
2281{
2282        struct fec_enet_private *fep = netdev_priv(ndev);
2283
2284        if (fep->bufdesc_ex) {
2285
2286                info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2287                                        SOF_TIMESTAMPING_RX_SOFTWARE |
2288                                        SOF_TIMESTAMPING_SOFTWARE |
2289                                        SOF_TIMESTAMPING_TX_HARDWARE |
2290                                        SOF_TIMESTAMPING_RX_HARDWARE |
2291                                        SOF_TIMESTAMPING_RAW_HARDWARE;
2292                if (fep->ptp_clock)
2293                        info->phc_index = ptp_clock_index(fep->ptp_clock);
2294                else
2295                        info->phc_index = -1;
2296
2297                info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2298                                 (1 << HWTSTAMP_TX_ON);
2299
2300                info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2301                                   (1 << HWTSTAMP_FILTER_ALL);
2302                return 0;
2303        } else {
2304                return ethtool_op_get_ts_info(ndev, info);
2305        }
2306}
2307
2308#if !defined(CONFIG_M5272)
2309
2310static void fec_enet_get_pauseparam(struct net_device *ndev,
2311                                    struct ethtool_pauseparam *pause)
2312{
2313        struct fec_enet_private *fep = netdev_priv(ndev);
2314
2315        pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2316        pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2317        pause->rx_pause = pause->tx_pause;
2318}
2319
2320static int fec_enet_set_pauseparam(struct net_device *ndev,
2321                                   struct ethtool_pauseparam *pause)
2322{
2323        struct fec_enet_private *fep = netdev_priv(ndev);
2324
2325        if (!ndev->phydev)
2326                return -ENODEV;
2327
2328        if (pause->tx_pause != pause->rx_pause) {
2329                netdev_info(ndev,
2330                        "hardware only support enable/disable both tx and rx");
2331                return -EINVAL;
2332        }
2333
2334        fep->pause_flag = 0;
2335
2336        /* tx pause must be same as rx pause */
2337        fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2338        fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2339
2340        phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2341                          pause->autoneg);
2342
2343        if (pause->autoneg) {
2344                if (netif_running(ndev))
2345                        fec_stop(ndev);
2346                phy_start_aneg(ndev->phydev);
2347        }
2348        if (netif_running(ndev)) {
2349                napi_disable(&fep->napi);
2350                netif_tx_lock_bh(ndev);
2351                fec_restart(ndev);
2352                netif_tx_wake_all_queues(ndev);
2353                netif_tx_unlock_bh(ndev);
2354                napi_enable(&fep->napi);
2355        }
2356
2357        return 0;
2358}
2359
2360static const struct fec_stat {
2361        char name[ETH_GSTRING_LEN];
2362        u16 offset;
2363} fec_stats[] = {
2364        /* RMON TX */
2365        { "tx_dropped", RMON_T_DROP },
2366        { "tx_packets", RMON_T_PACKETS },
2367        { "tx_broadcast", RMON_T_BC_PKT },
2368        { "tx_multicast", RMON_T_MC_PKT },
2369        { "tx_crc_errors", RMON_T_CRC_ALIGN },
2370        { "tx_undersize", RMON_T_UNDERSIZE },
2371        { "tx_oversize", RMON_T_OVERSIZE },
2372        { "tx_fragment", RMON_T_FRAG },
2373        { "tx_jabber", RMON_T_JAB },
2374        { "tx_collision", RMON_T_COL },
2375        { "tx_64byte", RMON_T_P64 },
2376        { "tx_65to127byte", RMON_T_P65TO127 },
2377        { "tx_128to255byte", RMON_T_P128TO255 },
2378        { "tx_256to511byte", RMON_T_P256TO511 },
2379        { "tx_512to1023byte", RMON_T_P512TO1023 },
2380        { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2381        { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2382        { "tx_octets", RMON_T_OCTETS },
2383
2384        /* IEEE TX */
2385        { "IEEE_tx_drop", IEEE_T_DROP },
2386        { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2387        { "IEEE_tx_1col", IEEE_T_1COL },
2388        { "IEEE_tx_mcol", IEEE_T_MCOL },
2389        { "IEEE_tx_def", IEEE_T_DEF },
2390        { "IEEE_tx_lcol", IEEE_T_LCOL },
2391        { "IEEE_tx_excol", IEEE_T_EXCOL },
2392        { "IEEE_tx_macerr", IEEE_T_MACERR },
2393        { "IEEE_tx_cserr", IEEE_T_CSERR },
2394        { "IEEE_tx_sqe", IEEE_T_SQE },
2395        { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2396        { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2397
2398        /* RMON RX */
2399        { "rx_packets", RMON_R_PACKETS },
2400        { "rx_broadcast", RMON_R_BC_PKT },
2401        { "rx_multicast", RMON_R_MC_PKT },
2402        { "rx_crc_errors", RMON_R_CRC_ALIGN },
2403        { "rx_undersize", RMON_R_UNDERSIZE },
2404        { "rx_oversize", RMON_R_OVERSIZE },
2405        { "rx_fragment", RMON_R_FRAG },
2406        { "rx_jabber", RMON_R_JAB },
2407        { "rx_64byte", RMON_R_P64 },
2408        { "rx_65to127byte", RMON_R_P65TO127 },
2409        { "rx_128to255byte", RMON_R_P128TO255 },
2410        { "rx_256to511byte", RMON_R_P256TO511 },
2411        { "rx_512to1023byte", RMON_R_P512TO1023 },
2412        { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2413        { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2414        { "rx_octets", RMON_R_OCTETS },
2415
2416        /* IEEE RX */
2417        { "IEEE_rx_drop", IEEE_R_DROP },
2418        { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2419        { "IEEE_rx_crc", IEEE_R_CRC },
2420        { "IEEE_rx_align", IEEE_R_ALIGN },
2421        { "IEEE_rx_macerr", IEEE_R_MACERR },
2422        { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2423        { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2424};
2425
2426#define FEC_STATS_SIZE          (ARRAY_SIZE(fec_stats) * sizeof(u64))
2427
2428static void fec_enet_update_ethtool_stats(struct net_device *dev)
2429{
2430        struct fec_enet_private *fep = netdev_priv(dev);
2431        int i;
2432
2433        for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2434                fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2435}
2436
2437static void fec_enet_get_ethtool_stats(struct net_device *dev,
2438                                       struct ethtool_stats *stats, u64 *data)
2439{
2440        struct fec_enet_private *fep = netdev_priv(dev);
2441
2442        if (netif_running(dev))
2443                fec_enet_update_ethtool_stats(dev);
2444
2445        memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2446}
2447
2448static void fec_enet_get_strings(struct net_device *netdev,
2449        u32 stringset, u8 *data)
2450{
2451        int i;
2452        switch (stringset) {
2453        case ETH_SS_STATS:
2454                for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2455                        memcpy(data + i * ETH_GSTRING_LEN,
2456                                fec_stats[i].name, ETH_GSTRING_LEN);
2457                break;
2458        }
2459}
2460
2461static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2462{
2463        switch (sset) {
2464        case ETH_SS_STATS:
2465                return ARRAY_SIZE(fec_stats);
2466        default:
2467                return -EOPNOTSUPP;
2468        }
2469}
2470
2471static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2472{
2473        struct fec_enet_private *fep = netdev_priv(dev);
2474        int i;
2475
2476        /* Disable MIB statistics counters */
2477        writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2478
2479        for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2480                writel(0, fep->hwp + fec_stats[i].offset);
2481
2482        /* Don't disable MIB statistics counters */
2483        writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2484}
2485
2486#else   /* !defined(CONFIG_M5272) */
2487#define FEC_STATS_SIZE  0
2488static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2489{
2490}
2491
2492static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2493{
2494}
2495#endif /* !defined(CONFIG_M5272) */
2496
2497/* ITR clock source is enet system clock (clk_ahb).
2498 * TCTT unit is cycle_ns * 64 cycle
2499 * So, the ICTT value = X us / (cycle_ns * 64)
2500 */
2501static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2502{
2503        struct fec_enet_private *fep = netdev_priv(ndev);
2504
2505        return us * (fep->itr_clk_rate / 64000) / 1000;
2506}
2507
2508/* Set threshold for interrupt coalescing */
2509static void fec_enet_itr_coal_set(struct net_device *ndev)
2510{
2511        struct fec_enet_private *fep = netdev_priv(ndev);
2512        int rx_itr, tx_itr;
2513
2514        /* Must be greater than zero to avoid unpredictable behavior */
2515        if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2516            !fep->tx_time_itr || !fep->tx_pkts_itr)
2517                return;
2518
2519        /* Select enet system clock as Interrupt Coalescing
2520         * timer Clock Source
2521         */
2522        rx_itr = FEC_ITR_CLK_SEL;
2523        tx_itr = FEC_ITR_CLK_SEL;
2524
2525        /* set ICFT and ICTT */
2526        rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2527        rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2528        tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2529        tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2530
2531        rx_itr |= FEC_ITR_EN;
2532        tx_itr |= FEC_ITR_EN;
2533
2534        writel(tx_itr, fep->hwp + FEC_TXIC0);
2535        writel(rx_itr, fep->hwp + FEC_RXIC0);
2536        if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2537                writel(tx_itr, fep->hwp + FEC_TXIC1);
2538                writel(rx_itr, fep->hwp + FEC_RXIC1);
2539                writel(tx_itr, fep->hwp + FEC_TXIC2);
2540                writel(rx_itr, fep->hwp + FEC_RXIC2);
2541        }
2542}
2543
2544static int
2545fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2546{
2547        struct fec_enet_private *fep = netdev_priv(ndev);
2548
2549        if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2550                return -EOPNOTSUPP;
2551
2552        ec->rx_coalesce_usecs = fep->rx_time_itr;
2553        ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2554
2555        ec->tx_coalesce_usecs = fep->tx_time_itr;
2556        ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2557
2558        return 0;
2559}
2560
2561static int
2562fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2563{
2564        struct fec_enet_private *fep = netdev_priv(ndev);
2565        struct device *dev = &fep->pdev->dev;
2566        unsigned int cycle;
2567
2568        if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2569                return -EOPNOTSUPP;
2570
2571        if (ec->rx_max_coalesced_frames > 255) {
2572                dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2573                return -EINVAL;
2574        }
2575
2576        if (ec->tx_max_coalesced_frames > 255) {
2577                dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2578                return -EINVAL;
2579        }
2580
2581        cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2582        if (cycle > 0xFFFF) {
2583                dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2584                return -EINVAL;
2585        }
2586
2587        cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2588        if (cycle > 0xFFFF) {
2589                dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2590                return -EINVAL;
2591        }
2592
2593        fep->rx_time_itr = ec->rx_coalesce_usecs;
2594        fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2595
2596        fep->tx_time_itr = ec->tx_coalesce_usecs;
2597        fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2598
2599        fec_enet_itr_coal_set(ndev);
2600
2601        return 0;
2602}
2603
2604static void fec_enet_itr_coal_init(struct net_device *ndev)
2605{
2606        struct ethtool_coalesce ec;
2607
2608        ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2609        ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2610
2611        ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2612        ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2613
2614        fec_enet_set_coalesce(ndev, &ec);
2615}
2616
2617static int fec_enet_get_tunable(struct net_device *netdev,
2618                                const struct ethtool_tunable *tuna,
2619                                void *data)
2620{
2621        struct fec_enet_private *fep = netdev_priv(netdev);
2622        int ret = 0;
2623
2624        switch (tuna->id) {
2625        case ETHTOOL_RX_COPYBREAK:
2626                *(u32 *)data = fep->rx_copybreak;
2627                break;
2628        default:
2629                ret = -EINVAL;
2630                break;
2631        }
2632
2633        return ret;
2634}
2635
2636static int fec_enet_set_tunable(struct net_device *netdev,
2637                                const struct ethtool_tunable *tuna,
2638                                const void *data)
2639{
2640        struct fec_enet_private *fep = netdev_priv(netdev);
2641        int ret = 0;
2642
2643        switch (tuna->id) {
2644        case ETHTOOL_RX_COPYBREAK:
2645                fep->rx_copybreak = *(u32 *)data;
2646                break;
2647        default:
2648                ret = -EINVAL;
2649                break;
2650        }
2651
2652        return ret;
2653}
2654
2655static void
2656fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2657{
2658        struct fec_enet_private *fep = netdev_priv(ndev);
2659
2660        if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2661                wol->supported = WAKE_MAGIC;
2662                wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2663        } else {
2664                wol->supported = wol->wolopts = 0;
2665        }
2666}
2667
2668static int
2669fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2670{
2671        struct fec_enet_private *fep = netdev_priv(ndev);
2672
2673        if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2674                return -EINVAL;
2675
2676        if (wol->wolopts & ~WAKE_MAGIC)
2677                return -EINVAL;
2678
2679        device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2680        if (device_may_wakeup(&ndev->dev)) {
2681                fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2682                if (fep->irq[0] > 0)
2683                        enable_irq_wake(fep->irq[0]);
2684        } else {
2685                fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2686                if (fep->irq[0] > 0)
2687                        disable_irq_wake(fep->irq[0]);
2688        }
2689
2690        return 0;
2691}
2692
2693static const struct ethtool_ops fec_enet_ethtool_ops = {
2694        .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2695                                     ETHTOOL_COALESCE_MAX_FRAMES,
2696        .get_drvinfo            = fec_enet_get_drvinfo,
2697        .get_regs_len           = fec_enet_get_regs_len,
2698        .get_regs               = fec_enet_get_regs,
2699        .nway_reset             = phy_ethtool_nway_reset,
2700        .get_link               = ethtool_op_get_link,
2701        .get_coalesce           = fec_enet_get_coalesce,
2702        .set_coalesce           = fec_enet_set_coalesce,
2703#ifndef CONFIG_M5272
2704        .get_pauseparam         = fec_enet_get_pauseparam,
2705        .set_pauseparam         = fec_enet_set_pauseparam,
2706        .get_strings            = fec_enet_get_strings,
2707        .get_ethtool_stats      = fec_enet_get_ethtool_stats,
2708        .get_sset_count         = fec_enet_get_sset_count,
2709#endif
2710        .get_ts_info            = fec_enet_get_ts_info,
2711        .get_tunable            = fec_enet_get_tunable,
2712        .set_tunable            = fec_enet_set_tunable,
2713        .get_wol                = fec_enet_get_wol,
2714        .set_wol                = fec_enet_set_wol,
2715        .get_link_ksettings     = phy_ethtool_get_link_ksettings,
2716        .set_link_ksettings     = phy_ethtool_set_link_ksettings,
2717};
2718
2719static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2720{
2721        struct fec_enet_private *fep = netdev_priv(ndev);
2722        struct phy_device *phydev = ndev->phydev;
2723
2724        if (!netif_running(ndev))
2725                return -EINVAL;
2726
2727        if (!phydev)
2728                return -ENODEV;
2729
2730        if (fep->bufdesc_ex) {
2731                bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2732
2733                if (cmd == SIOCSHWTSTAMP) {
2734                        if (use_fec_hwts)
2735                                return fec_ptp_set(ndev, rq);
2736                        fec_ptp_disable_hwts(ndev);
2737                } else if (cmd == SIOCGHWTSTAMP) {
2738                        if (use_fec_hwts)
2739                                return fec_ptp_get(ndev, rq);
2740                }
2741        }
2742
2743        return phy_mii_ioctl(phydev, rq, cmd);
2744}
2745
2746static void fec_enet_free_buffers(struct net_device *ndev)
2747{
2748        struct fec_enet_private *fep = netdev_priv(ndev);
2749        unsigned int i;
2750        struct sk_buff *skb;
2751        struct bufdesc  *bdp;
2752        struct fec_enet_priv_tx_q *txq;
2753        struct fec_enet_priv_rx_q *rxq;
2754        unsigned int q;
2755
2756        for (q = 0; q < fep->num_rx_queues; q++) {
2757                rxq = fep->rx_queue[q];
2758                bdp = rxq->bd.base;
2759                for (i = 0; i < rxq->bd.ring_size; i++) {
2760                        skb = rxq->rx_skbuff[i];
2761                        rxq->rx_skbuff[i] = NULL;
2762                        if (skb) {
2763                                dma_unmap_single(&fep->pdev->dev,
2764                                                 fec32_to_cpu(bdp->cbd_bufaddr),
2765                                                 FEC_ENET_RX_FRSIZE - fep->rx_align,
2766                                                 DMA_FROM_DEVICE);
2767                                dev_kfree_skb(skb);
2768                        }
2769                        bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2770                }
2771        }
2772
2773        for (q = 0; q < fep->num_tx_queues; q++) {
2774                txq = fep->tx_queue[q];
2775                for (i = 0; i < txq->bd.ring_size; i++) {
2776                        kfree(txq->tx_bounce[i]);
2777                        txq->tx_bounce[i] = NULL;
2778                        skb = txq->tx_skbuff[i];
2779                        txq->tx_skbuff[i] = NULL;
2780                        dev_kfree_skb(skb);
2781                }
2782        }
2783}
2784
2785static void fec_enet_free_queue(struct net_device *ndev)
2786{
2787        struct fec_enet_private *fep = netdev_priv(ndev);
2788        int i;
2789        struct fec_enet_priv_tx_q *txq;
2790
2791        for (i = 0; i < fep->num_tx_queues; i++)
2792                if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2793                        txq = fep->tx_queue[i];
2794                        dma_free_coherent(&fep->pdev->dev,
2795                                          txq->bd.ring_size * TSO_HEADER_SIZE,
2796                                          txq->tso_hdrs,
2797                                          txq->tso_hdrs_dma);
2798                }
2799
2800        for (i = 0; i < fep->num_rx_queues; i++)
2801                kfree(fep->rx_queue[i]);
2802        for (i = 0; i < fep->num_tx_queues; i++)
2803                kfree(fep->tx_queue[i]);
2804}
2805
2806static int fec_enet_alloc_queue(struct net_device *ndev)
2807{
2808        struct fec_enet_private *fep = netdev_priv(ndev);
2809        int i;
2810        int ret = 0;
2811        struct fec_enet_priv_tx_q *txq;
2812
2813        for (i = 0; i < fep->num_tx_queues; i++) {
2814                txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2815                if (!txq) {
2816                        ret = -ENOMEM;
2817                        goto alloc_failed;
2818                }
2819
2820                fep->tx_queue[i] = txq;
2821                txq->bd.ring_size = TX_RING_SIZE;
2822                fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2823
2824                txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2825                txq->tx_wake_threshold =
2826                        (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2827
2828                txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2829                                        txq->bd.ring_size * TSO_HEADER_SIZE,
2830                                        &txq->tso_hdrs_dma,
2831                                        GFP_KERNEL);
2832                if (!txq->tso_hdrs) {
2833                        ret = -ENOMEM;
2834                        goto alloc_failed;
2835                }
2836        }
2837
2838        for (i = 0; i < fep->num_rx_queues; i++) {
2839                fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2840                                           GFP_KERNEL);
2841                if (!fep->rx_queue[i]) {
2842                        ret = -ENOMEM;
2843                        goto alloc_failed;
2844                }
2845
2846                fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2847                fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2848        }
2849        return ret;
2850
2851alloc_failed:
2852        fec_enet_free_queue(ndev);
2853        return ret;
2854}
2855
2856static int
2857fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2858{
2859        struct fec_enet_private *fep = netdev_priv(ndev);
2860        unsigned int i;
2861        struct sk_buff *skb;
2862        struct bufdesc  *bdp;
2863        struct fec_enet_priv_rx_q *rxq;
2864
2865        rxq = fep->rx_queue[queue];
2866        bdp = rxq->bd.base;
2867        for (i = 0; i < rxq->bd.ring_size; i++) {
2868                skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2869                if (!skb)
2870                        goto err_alloc;
2871
2872                if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2873                        dev_kfree_skb(skb);
2874                        goto err_alloc;
2875                }
2876
2877                rxq->rx_skbuff[i] = skb;
2878                bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2879
2880                if (fep->bufdesc_ex) {
2881                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2882                        ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2883                }
2884
2885                bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2886        }
2887
2888        /* Set the last buffer to wrap. */
2889        bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2890        bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2891        return 0;
2892
2893 err_alloc:
2894        fec_enet_free_buffers(ndev);
2895        return -ENOMEM;
2896}
2897
2898static int
2899fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2900{
2901        struct fec_enet_private *fep = netdev_priv(ndev);
2902        unsigned int i;
2903        struct bufdesc  *bdp;
2904        struct fec_enet_priv_tx_q *txq;
2905
2906        txq = fep->tx_queue[queue];
2907        bdp = txq->bd.base;
2908        for (i = 0; i < txq->bd.ring_size; i++) {
2909                txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2910                if (!txq->tx_bounce[i])
2911                        goto err_alloc;
2912
2913                bdp->cbd_sc = cpu_to_fec16(0);
2914                bdp->cbd_bufaddr = cpu_to_fec32(0);
2915
2916                if (fep->bufdesc_ex) {
2917                        struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2918                        ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2919                }
2920
2921                bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2922        }
2923
2924        /* Set the last buffer to wrap. */
2925        bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2926        bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2927
2928        return 0;
2929
2930 err_alloc:
2931        fec_enet_free_buffers(ndev);
2932        return -ENOMEM;
2933}
2934
2935static int fec_enet_alloc_buffers(struct net_device *ndev)
2936{
2937        struct fec_enet_private *fep = netdev_priv(ndev);
2938        unsigned int i;
2939
2940        for (i = 0; i < fep->num_rx_queues; i++)
2941                if (fec_enet_alloc_rxq_buffers(ndev, i))
2942                        return -ENOMEM;
2943
2944        for (i = 0; i < fep->num_tx_queues; i++)
2945                if (fec_enet_alloc_txq_buffers(ndev, i))
2946                        return -ENOMEM;
2947        return 0;
2948}
2949
2950static int
2951fec_enet_open(struct net_device *ndev)
2952{
2953        struct fec_enet_private *fep = netdev_priv(ndev);
2954        int ret;
2955        bool reset_again;
2956
2957        ret = pm_runtime_get_sync(&fep->pdev->dev);
2958        if (ret < 0)
2959                return ret;
2960
2961        pinctrl_pm_select_default_state(&fep->pdev->dev);
2962        ret = fec_enet_clk_enable(ndev, true);
2963        if (ret)
2964                goto clk_enable;
2965
2966        /* During the first fec_enet_open call the PHY isn't probed at this
2967         * point. Therefore the phy_reset_after_clk_enable() call within
2968         * fec_enet_clk_enable() fails. As we need this reset in order to be
2969         * sure the PHY is working correctly we check if we need to reset again
2970         * later when the PHY is probed
2971         */
2972        if (ndev->phydev && ndev->phydev->drv)
2973                reset_again = false;
2974        else
2975                reset_again = true;
2976
2977        /* I should reset the ring buffers here, but I don't yet know
2978         * a simple way to do that.
2979         */
2980
2981        ret = fec_enet_alloc_buffers(ndev);
2982        if (ret)
2983                goto err_enet_alloc;
2984
2985        /* Init MAC prior to mii bus probe */
2986        fec_restart(ndev);
2987
2988        /* Probe and connect to PHY when open the interface */
2989        ret = fec_enet_mii_probe(ndev);
2990        if (ret)
2991                goto err_enet_mii_probe;
2992
2993        /* Call phy_reset_after_clk_enable() again if it failed during
2994         * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2995         */
2996        if (reset_again)
2997                phy_reset_after_clk_enable(ndev->phydev);
2998
2999        if (fep->quirks & FEC_QUIRK_ERR006687)
3000                imx6q_cpuidle_fec_irqs_used();
3001
3002        napi_enable(&fep->napi);
3003        phy_start(ndev->phydev);
3004        netif_tx_start_all_queues(ndev);
3005
3006        device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3007                                 FEC_WOL_FLAG_ENABLE);
3008
3009        return 0;
3010
3011err_enet_mii_probe:
3012        fec_enet_free_buffers(ndev);
3013err_enet_alloc:
3014        fec_enet_clk_enable(ndev, false);
3015clk_enable:
3016        pm_runtime_mark_last_busy(&fep->pdev->dev);
3017        pm_runtime_put_autosuspend(&fep->pdev->dev);
3018        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3019        return ret;
3020}
3021
3022static int
3023fec_enet_close(struct net_device *ndev)
3024{
3025        struct fec_enet_private *fep = netdev_priv(ndev);
3026
3027        phy_stop(ndev->phydev);
3028
3029        if (netif_device_present(ndev)) {
3030                napi_disable(&fep->napi);
3031                netif_tx_disable(ndev);
3032                fec_stop(ndev);
3033        }
3034
3035        phy_disconnect(ndev->phydev);
3036
3037        if (fep->quirks & FEC_QUIRK_ERR006687)
3038                imx6q_cpuidle_fec_irqs_unused();
3039
3040        fec_enet_update_ethtool_stats(ndev);
3041
3042        fec_enet_clk_enable(ndev, false);
3043        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3044        pm_runtime_mark_last_busy(&fep->pdev->dev);
3045        pm_runtime_put_autosuspend(&fep->pdev->dev);
3046
3047        fec_enet_free_buffers(ndev);
3048
3049        return 0;
3050}
3051
3052/* Set or clear the multicast filter for this adaptor.
3053 * Skeleton taken from sunlance driver.
3054 * The CPM Ethernet implementation allows Multicast as well as individual
3055 * MAC address filtering.  Some of the drivers check to make sure it is
3056 * a group multicast address, and discard those that are not.  I guess I
3057 * will do the same for now, but just remove the test if you want
3058 * individual filtering as well (do the upper net layers want or support
3059 * this kind of feature?).
3060 */
3061
3062#define FEC_HASH_BITS   6               /* #bits in hash */
3063
3064static void set_multicast_list(struct net_device *ndev)
3065{
3066        struct fec_enet_private *fep = netdev_priv(ndev);
3067        struct netdev_hw_addr *ha;
3068        unsigned int crc, tmp;
3069        unsigned char hash;
3070        unsigned int hash_high = 0, hash_low = 0;
3071
3072        if (ndev->flags & IFF_PROMISC) {
3073                tmp = readl(fep->hwp + FEC_R_CNTRL);
3074                tmp |= 0x8;
3075                writel(tmp, fep->hwp + FEC_R_CNTRL);
3076                return;
3077        }
3078
3079        tmp = readl(fep->hwp + FEC_R_CNTRL);
3080        tmp &= ~0x8;
3081        writel(tmp, fep->hwp + FEC_R_CNTRL);
3082
3083        if (ndev->flags & IFF_ALLMULTI) {
3084                /* Catch all multicast addresses, so set the
3085                 * filter to all 1's
3086                 */
3087                writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3088                writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3089
3090                return;
3091        }
3092
3093        /* Add the addresses in hash register */
3094        netdev_for_each_mc_addr(ha, ndev) {
3095                /* calculate crc32 value of mac address */
3096                crc = ether_crc_le(ndev->addr_len, ha->addr);
3097
3098                /* only upper 6 bits (FEC_HASH_BITS) are used
3099                 * which point to specific bit in the hash registers
3100                 */
3101                hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3102
3103                if (hash > 31)
3104                        hash_high |= 1 << (hash - 32);
3105                else
3106                        hash_low |= 1 << hash;
3107        }
3108
3109        writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3110        writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3111}
3112
3113/* Set a MAC change in hardware. */
3114static int
3115fec_set_mac_address(struct net_device *ndev, void *p)
3116{
3117        struct fec_enet_private *fep = netdev_priv(ndev);
3118        struct sockaddr *addr = p;
3119
3120        if (addr) {
3121                if (!is_valid_ether_addr(addr->sa_data))
3122                        return -EADDRNOTAVAIL;
3123                memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3124        }
3125
3126        /* Add netif status check here to avoid system hang in below case:
3127         * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3128         * After ethx down, fec all clocks are gated off and then register
3129         * access causes system hang.
3130         */
3131        if (!netif_running(ndev))
3132                return 0;
3133
3134        writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3135                (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3136                fep->hwp + FEC_ADDR_LOW);
3137        writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3138                fep->hwp + FEC_ADDR_HIGH);
3139        return 0;
3140}
3141
3142#ifdef CONFIG_NET_POLL_CONTROLLER
3143/**
3144 * fec_poll_controller - FEC Poll controller function
3145 * @dev: The FEC network adapter
3146 *
3147 * Polled functionality used by netconsole and others in non interrupt mode
3148 *
3149 */
3150static void fec_poll_controller(struct net_device *dev)
3151{
3152        int i;
3153        struct fec_enet_private *fep = netdev_priv(dev);
3154
3155        for (i = 0; i < FEC_IRQ_NUM; i++) {
3156                if (fep->irq[i] > 0) {
3157                        disable_irq(fep->irq[i]);
3158                        fec_enet_interrupt(fep->irq[i], dev);
3159                        enable_irq(fep->irq[i]);
3160                }
3161        }
3162}
3163#endif
3164
3165static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3166        netdev_features_t features)
3167{
3168        struct fec_enet_private *fep = netdev_priv(netdev);
3169        netdev_features_t changed = features ^ netdev->features;
3170
3171        netdev->features = features;
3172
3173        /* Receive checksum has been changed */
3174        if (changed & NETIF_F_RXCSUM) {
3175                if (features & NETIF_F_RXCSUM)
3176                        fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3177                else
3178                        fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3179        }
3180}
3181
3182static int fec_set_features(struct net_device *netdev,
3183        netdev_features_t features)
3184{
3185        struct fec_enet_private *fep = netdev_priv(netdev);
3186        netdev_features_t changed = features ^ netdev->features;
3187
3188        if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3189                napi_disable(&fep->napi);
3190                netif_tx_lock_bh(netdev);
3191                fec_stop(netdev);
3192                fec_enet_set_netdev_features(netdev, features);
3193                fec_restart(netdev);
3194                netif_tx_wake_all_queues(netdev);
3195                netif_tx_unlock_bh(netdev);
3196                napi_enable(&fep->napi);
3197        } else {
3198                fec_enet_set_netdev_features(netdev, features);
3199        }
3200
3201        return 0;
3202}
3203
3204static const struct net_device_ops fec_netdev_ops = {
3205        .ndo_open               = fec_enet_open,
3206        .ndo_stop               = fec_enet_close,
3207        .ndo_start_xmit         = fec_enet_start_xmit,
3208        .ndo_set_rx_mode        = set_multicast_list,
3209        .ndo_validate_addr      = eth_validate_addr,
3210        .ndo_tx_timeout         = fec_timeout,
3211        .ndo_set_mac_address    = fec_set_mac_address,
3212        .ndo_do_ioctl           = fec_enet_ioctl,
3213#ifdef CONFIG_NET_POLL_CONTROLLER
3214        .ndo_poll_controller    = fec_poll_controller,
3215#endif
3216        .ndo_set_features       = fec_set_features,
3217};
3218
3219static const unsigned short offset_des_active_rxq[] = {
3220        FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3221};
3222
3223static const unsigned short offset_des_active_txq[] = {
3224        FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3225};
3226
3227 /*
3228  * XXX:  We need to clean up on failure exits here.
3229  *
3230  */
3231static int fec_enet_init(struct net_device *ndev)
3232{
3233        struct fec_enet_private *fep = netdev_priv(ndev);
3234        struct bufdesc *cbd_base;
3235        dma_addr_t bd_dma;
3236        int bd_size;
3237        unsigned int i;
3238        unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3239                        sizeof(struct bufdesc);
3240        unsigned dsize_log2 = __fls(dsize);
3241        int ret;
3242
3243        WARN_ON(dsize != (1 << dsize_log2));
3244#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3245        fep->rx_align = 0xf;
3246        fep->tx_align = 0xf;
3247#else
3248        fep->rx_align = 0x3;
3249        fep->tx_align = 0x3;
3250#endif
3251
3252        /* Check mask of the streaming and coherent API */
3253        ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3254        if (ret < 0) {
3255                dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3256                return ret;
3257        }
3258
3259        fec_enet_alloc_queue(ndev);
3260
3261        bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3262
3263        /* Allocate memory for buffer descriptors. */
3264        cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3265                                       GFP_KERNEL);
3266        if (!cbd_base) {
3267                return -ENOMEM;
3268        }
3269
3270        /* Get the Ethernet address */
3271        fec_get_mac(ndev);
3272        /* make sure MAC we just acquired is programmed into the hw */
3273        fec_set_mac_address(ndev, NULL);
3274
3275        /* Set receive and transmit descriptor base. */
3276        for (i = 0; i < fep->num_rx_queues; i++) {
3277                struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3278                unsigned size = dsize * rxq->bd.ring_size;
3279
3280                rxq->bd.qid = i;
3281                rxq->bd.base = cbd_base;
3282                rxq->bd.cur = cbd_base;
3283                rxq->bd.dma = bd_dma;
3284                rxq->bd.dsize = dsize;
3285                rxq->bd.dsize_log2 = dsize_log2;
3286                rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3287                bd_dma += size;
3288                cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3289                rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3290        }
3291
3292        for (i = 0; i < fep->num_tx_queues; i++) {
3293                struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3294                unsigned size = dsize * txq->bd.ring_size;
3295
3296                txq->bd.qid = i;
3297                txq->bd.base = cbd_base;
3298                txq->bd.cur = cbd_base;
3299                txq->bd.dma = bd_dma;
3300                txq->bd.dsize = dsize;
3301                txq->bd.dsize_log2 = dsize_log2;
3302                txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3303                bd_dma += size;
3304                cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3305                txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3306        }
3307
3308
3309        /* The FEC Ethernet specific entries in the device structure */
3310        ndev->watchdog_timeo = TX_TIMEOUT;
3311        ndev->netdev_ops = &fec_netdev_ops;
3312        ndev->ethtool_ops = &fec_enet_ethtool_ops;
3313
3314        writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3315        netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3316
3317        if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3318                /* enable hw VLAN support */
3319                ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3320
3321        if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3322                ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3323
3324                /* enable hw accelerator */
3325                ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3326                                | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3327                fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3328        }
3329
3330        if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3331                fep->tx_align = 0;
3332                fep->rx_align = 0x3f;
3333        }
3334
3335        ndev->hw_features = ndev->features;
3336
3337        fec_restart(ndev);
3338
3339        if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3340                fec_enet_clear_ethtool_stats(ndev);
3341        else
3342                fec_enet_update_ethtool_stats(ndev);
3343
3344        return 0;
3345}
3346
3347#ifdef CONFIG_OF
3348static int fec_reset_phy(struct platform_device *pdev)
3349{
3350        int err, phy_reset;
3351        bool active_high = false;
3352        int msec = 1, phy_post_delay = 0;
3353        struct device_node *np = pdev->dev.of_node;
3354
3355        if (!np)
3356                return 0;
3357
3358        err = of_property_read_u32(np, "phy-reset-duration", &msec);
3359        /* A sane reset duration should not be longer than 1s */
3360        if (!err && msec > 1000)
3361                msec = 1;
3362
3363        phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3364        if (phy_reset == -EPROBE_DEFER)
3365                return phy_reset;
3366        else if (!gpio_is_valid(phy_reset))
3367                return 0;
3368
3369        err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3370        /* valid reset duration should be less than 1s */
3371        if (!err && phy_post_delay > 1000)
3372                return -EINVAL;
3373
3374        active_high = of_property_read_bool(np, "phy-reset-active-high");
3375
3376        err = devm_gpio_request_one(&pdev->dev, phy_reset,
3377                        active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3378                        "phy-reset");
3379        if (err) {
3380                dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3381                return err;
3382        }
3383
3384        if (msec > 20)
3385                msleep(msec);
3386        else
3387                usleep_range(msec * 1000, msec * 1000 + 1000);
3388
3389        gpio_set_value_cansleep(phy_reset, !active_high);
3390
3391        if (!phy_post_delay)
3392                return 0;
3393
3394        if (phy_post_delay > 20)
3395                msleep(phy_post_delay);
3396        else
3397                usleep_range(phy_post_delay * 1000,
3398                             phy_post_delay * 1000 + 1000);
3399
3400        return 0;
3401}
3402#else /* CONFIG_OF */
3403static int fec_reset_phy(struct platform_device *pdev)
3404{
3405        /*
3406         * In case of platform probe, the reset has been done
3407         * by machine code.
3408         */
3409        return 0;
3410}
3411#endif /* CONFIG_OF */
3412
3413static void
3414fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3415{
3416        struct device_node *np = pdev->dev.of_node;
3417
3418        *num_tx = *num_rx = 1;
3419
3420        if (!np || !of_device_is_available(np))
3421                return;
3422
3423        /* parse the num of tx and rx queues */
3424        of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3425
3426        of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3427
3428        if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3429                dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3430                         *num_tx);
3431                *num_tx = 1;
3432                return;
3433        }
3434
3435        if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3436                dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3437                         *num_rx);
3438                *num_rx = 1;
3439                return;
3440        }
3441
3442}
3443
3444static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3445{
3446        int irq_cnt = platform_irq_count(pdev);
3447
3448        if (irq_cnt > FEC_IRQ_NUM)
3449                irq_cnt = FEC_IRQ_NUM;  /* last for pps */
3450        else if (irq_cnt == 2)
3451                irq_cnt = 1;    /* last for pps */
3452        else if (irq_cnt <= 0)
3453                irq_cnt = 1;    /* At least 1 irq is needed */
3454        return irq_cnt;
3455}
3456
3457static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3458                                   struct device_node *np)
3459{
3460        struct device_node *gpr_np;
3461        u32 out_val[3];
3462        int ret = 0;
3463
3464        gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3465        if (!gpr_np)
3466                return 0;
3467
3468        ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3469                                         ARRAY_SIZE(out_val));
3470        if (ret) {
3471                dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3472                return ret;
3473        }
3474
3475        fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3476        if (IS_ERR(fep->stop_gpr.gpr)) {
3477                dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3478                ret = PTR_ERR(fep->stop_gpr.gpr);
3479                fep->stop_gpr.gpr = NULL;
3480                goto out;
3481        }
3482
3483        fep->stop_gpr.reg = out_val[1];
3484        fep->stop_gpr.bit = out_val[2];
3485
3486out:
3487        of_node_put(gpr_np);
3488
3489        return ret;
3490}
3491
3492static int
3493fec_probe(struct platform_device *pdev)
3494{
3495        struct fec_enet_private *fep;
3496        struct fec_platform_data *pdata;
3497        phy_interface_t interface;
3498        struct net_device *ndev;
3499        int i, irq, ret = 0;
3500        const struct of_device_id *of_id;
3501        static int dev_id;
3502        struct device_node *np = pdev->dev.of_node, *phy_node;
3503        int num_tx_qs;
3504        int num_rx_qs;
3505        char irq_name[8];
3506        int irq_cnt;
3507        struct fec_devinfo *dev_info;
3508
3509        fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3510
3511        /* Init network device */
3512        ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3513                                  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3514        if (!ndev)
3515                return -ENOMEM;
3516
3517        SET_NETDEV_DEV(ndev, &pdev->dev);
3518
3519        /* setup board info structure */
3520        fep = netdev_priv(ndev);
3521
3522        of_id = of_match_device(fec_dt_ids, &pdev->dev);
3523        if (of_id)
3524                pdev->id_entry = of_id->data;
3525        dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3526        if (dev_info)
3527                fep->quirks = dev_info->quirks;
3528
3529        fep->netdev = ndev;
3530        fep->num_rx_queues = num_rx_qs;
3531        fep->num_tx_queues = num_tx_qs;
3532
3533#if !defined(CONFIG_M5272)
3534        /* default enable pause frame auto negotiation */
3535        if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3536                fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3537#endif
3538
3539        /* Select default pin state */
3540        pinctrl_pm_select_default_state(&pdev->dev);
3541
3542        fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3543        if (IS_ERR(fep->hwp)) {
3544                ret = PTR_ERR(fep->hwp);
3545                goto failed_ioremap;
3546        }
3547
3548        fep->pdev = pdev;
3549        fep->dev_id = dev_id++;
3550
3551        platform_set_drvdata(pdev, ndev);
3552
3553        if ((of_machine_is_compatible("fsl,imx6q") ||
3554             of_machine_is_compatible("fsl,imx6dl")) &&
3555            !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3556                fep->quirks |= FEC_QUIRK_ERR006687;
3557
3558        if (of_get_property(np, "fsl,magic-packet", NULL))
3559                fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3560
3561        ret = fec_enet_init_stop_mode(fep, np);
3562        if (ret)
3563                goto failed_stop_mode;
3564
3565        phy_node = of_parse_phandle(np, "phy-handle", 0);
3566        if (!phy_node && of_phy_is_fixed_link(np)) {
3567                ret = of_phy_register_fixed_link(np);
3568                if (ret < 0) {
3569                        dev_err(&pdev->dev,
3570                                "broken fixed-link specification\n");
3571                        goto failed_phy;
3572                }
3573                phy_node = of_node_get(np);
3574        }
3575        fep->phy_node = phy_node;
3576
3577        ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3578        if (ret) {
3579                pdata = dev_get_platdata(&pdev->dev);
3580                if (pdata)
3581                        fep->phy_interface = pdata->phy;
3582                else
3583                        fep->phy_interface = PHY_INTERFACE_MODE_MII;
3584        } else {
3585                fep->phy_interface = interface;
3586        }
3587
3588        fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3589        if (IS_ERR(fep->clk_ipg)) {
3590                ret = PTR_ERR(fep->clk_ipg);
3591                goto failed_clk;
3592        }
3593
3594        fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3595        if (IS_ERR(fep->clk_ahb)) {
3596                ret = PTR_ERR(fep->clk_ahb);
3597                goto failed_clk;
3598        }
3599
3600        fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3601
3602        /* enet_out is optional, depends on board */
3603        fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3604        if (IS_ERR(fep->clk_enet_out))
3605                fep->clk_enet_out = NULL;
3606
3607        fep->ptp_clk_on = false;
3608        mutex_init(&fep->ptp_clk_mutex);
3609
3610        /* clk_ref is optional, depends on board */
3611        fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3612        if (IS_ERR(fep->clk_ref))
3613                fep->clk_ref = NULL;
3614
3615        fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3616        fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3617        if (IS_ERR(fep->clk_ptp)) {
3618                fep->clk_ptp = NULL;
3619                fep->bufdesc_ex = false;
3620        }
3621
3622        ret = fec_enet_clk_enable(ndev, true);
3623        if (ret)
3624                goto failed_clk;
3625
3626        ret = clk_prepare_enable(fep->clk_ipg);
3627        if (ret)
3628                goto failed_clk_ipg;
3629        ret = clk_prepare_enable(fep->clk_ahb);
3630        if (ret)
3631                goto failed_clk_ahb;
3632
3633        fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3634        if (!IS_ERR(fep->reg_phy)) {
3635                ret = regulator_enable(fep->reg_phy);
3636                if (ret) {
3637                        dev_err(&pdev->dev,
3638                                "Failed to enable phy regulator: %d\n", ret);
3639                        goto failed_regulator;
3640                }
3641        } else {
3642                if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3643                        ret = -EPROBE_DEFER;
3644                        goto failed_regulator;
3645                }
3646                fep->reg_phy = NULL;
3647        }
3648
3649        pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3650        pm_runtime_use_autosuspend(&pdev->dev);
3651        pm_runtime_get_noresume(&pdev->dev);
3652        pm_runtime_set_active(&pdev->dev);
3653        pm_runtime_enable(&pdev->dev);
3654
3655        ret = fec_reset_phy(pdev);
3656        if (ret)
3657                goto failed_reset;
3658
3659        irq_cnt = fec_enet_get_irq_cnt(pdev);
3660        if (fep->bufdesc_ex)
3661                fec_ptp_init(pdev, irq_cnt);
3662
3663        ret = fec_enet_init(ndev);
3664        if (ret)
3665                goto failed_init;
3666
3667        for (i = 0; i < irq_cnt; i++) {
3668                snprintf(irq_name, sizeof(irq_name), "int%d", i);
3669                irq = platform_get_irq_byname_optional(pdev, irq_name);
3670                if (irq < 0)
3671                        irq = platform_get_irq(pdev, i);
3672                if (irq < 0) {
3673                        ret = irq;
3674                        goto failed_irq;
3675                }
3676                ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3677                                       0, pdev->name, ndev);
3678                if (ret)
3679                        goto failed_irq;
3680
3681                fep->irq[i] = irq;
3682        }
3683
3684        ret = fec_enet_mii_init(pdev);
3685        if (ret)
3686                goto failed_mii_init;
3687
3688        /* Carrier starts down, phylib will bring it up */
3689        netif_carrier_off(ndev);
3690        fec_enet_clk_enable(ndev, false);
3691        pinctrl_pm_select_sleep_state(&pdev->dev);
3692
3693        ret = register_netdev(ndev);
3694        if (ret)
3695                goto failed_register;
3696
3697        device_init_wakeup(&ndev->dev, fep->wol_flag &
3698                           FEC_WOL_HAS_MAGIC_PACKET);
3699
3700        if (fep->bufdesc_ex && fep->ptp_clock)
3701                netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3702
3703        fep->rx_copybreak = COPYBREAK_DEFAULT;
3704        INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3705
3706        pm_runtime_mark_last_busy(&pdev->dev);
3707        pm_runtime_put_autosuspend(&pdev->dev);
3708
3709        return 0;
3710
3711failed_register:
3712        fec_enet_mii_remove(fep);
3713failed_mii_init:
3714failed_irq:
3715failed_init:
3716        fec_ptp_stop(pdev);
3717        if (fep->reg_phy)
3718                regulator_disable(fep->reg_phy);
3719failed_reset:
3720        pm_runtime_put_noidle(&pdev->dev);
3721        pm_runtime_disable(&pdev->dev);
3722failed_regulator:
3723        clk_disable_unprepare(fep->clk_ahb);
3724failed_clk_ahb:
3725        clk_disable_unprepare(fep->clk_ipg);
3726failed_clk_ipg:
3727        fec_enet_clk_enable(ndev, false);
3728failed_clk:
3729        if (of_phy_is_fixed_link(np))
3730                of_phy_deregister_fixed_link(np);
3731        of_node_put(phy_node);
3732failed_stop_mode:
3733failed_phy:
3734        dev_id--;
3735failed_ioremap:
3736        free_netdev(ndev);
3737
3738        return ret;
3739}
3740
3741static int
3742fec_drv_remove(struct platform_device *pdev)
3743{
3744        struct net_device *ndev = platform_get_drvdata(pdev);
3745        struct fec_enet_private *fep = netdev_priv(ndev);
3746        struct device_node *np = pdev->dev.of_node;
3747        int ret;
3748
3749        ret = pm_runtime_get_sync(&pdev->dev);
3750        if (ret < 0)
3751                return ret;
3752
3753        cancel_work_sync(&fep->tx_timeout_work);
3754        fec_ptp_stop(pdev);
3755        unregister_netdev(ndev);
3756        fec_enet_mii_remove(fep);
3757        if (fep->reg_phy)
3758                regulator_disable(fep->reg_phy);
3759
3760        if (of_phy_is_fixed_link(np))
3761                of_phy_deregister_fixed_link(np);
3762        of_node_put(fep->phy_node);
3763        free_netdev(ndev);
3764
3765        clk_disable_unprepare(fep->clk_ahb);
3766        clk_disable_unprepare(fep->clk_ipg);
3767        pm_runtime_put_noidle(&pdev->dev);
3768        pm_runtime_disable(&pdev->dev);
3769
3770        return 0;
3771}
3772
3773static int __maybe_unused fec_suspend(struct device *dev)
3774{
3775        struct net_device *ndev = dev_get_drvdata(dev);
3776        struct fec_enet_private *fep = netdev_priv(ndev);
3777
3778        rtnl_lock();
3779        if (netif_running(ndev)) {
3780                if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3781                        fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3782                phy_stop(ndev->phydev);
3783                napi_disable(&fep->napi);
3784                netif_tx_lock_bh(ndev);
3785                netif_device_detach(ndev);
3786                netif_tx_unlock_bh(ndev);
3787                fec_stop(ndev);
3788                fec_enet_clk_enable(ndev, false);
3789                if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3790                        pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3791        }
3792        rtnl_unlock();
3793
3794        if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3795                regulator_disable(fep->reg_phy);
3796
3797        /* SOC supply clock to phy, when clock is disabled, phy link down
3798         * SOC control phy regulator, when regulator is disabled, phy link down
3799         */
3800        if (fep->clk_enet_out || fep->reg_phy)
3801                fep->link = 0;
3802
3803        return 0;
3804}
3805
3806static int __maybe_unused fec_resume(struct device *dev)
3807{
3808        struct net_device *ndev = dev_get_drvdata(dev);
3809        struct fec_enet_private *fep = netdev_priv(ndev);
3810        int ret;
3811        int val;
3812
3813        if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3814                ret = regulator_enable(fep->reg_phy);
3815                if (ret)
3816                        return ret;
3817        }
3818
3819        rtnl_lock();
3820        if (netif_running(ndev)) {
3821                ret = fec_enet_clk_enable(ndev, true);
3822                if (ret) {
3823                        rtnl_unlock();
3824                        goto failed_clk;
3825                }
3826                if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3827                        fec_enet_stop_mode(fep, false);
3828
3829                        val = readl(fep->hwp + FEC_ECNTRL);
3830                        val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3831                        writel(val, fep->hwp + FEC_ECNTRL);
3832                        fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3833                } else {
3834                        pinctrl_pm_select_default_state(&fep->pdev->dev);
3835                }
3836                fec_restart(ndev);
3837                netif_tx_lock_bh(ndev);
3838                netif_device_attach(ndev);
3839                netif_tx_unlock_bh(ndev);
3840                napi_enable(&fep->napi);
3841                phy_start(ndev->phydev);
3842        }
3843        rtnl_unlock();
3844
3845        return 0;
3846
3847failed_clk:
3848        if (fep->reg_phy)
3849                regulator_disable(fep->reg_phy);
3850        return ret;
3851}
3852
3853static int __maybe_unused fec_runtime_suspend(struct device *dev)
3854{
3855        struct net_device *ndev = dev_get_drvdata(dev);
3856        struct fec_enet_private *fep = netdev_priv(ndev);
3857
3858        clk_disable_unprepare(fep->clk_ahb);
3859        clk_disable_unprepare(fep->clk_ipg);
3860
3861        return 0;
3862}
3863
3864static int __maybe_unused fec_runtime_resume(struct device *dev)
3865{
3866        struct net_device *ndev = dev_get_drvdata(dev);
3867        struct fec_enet_private *fep = netdev_priv(ndev);
3868        int ret;
3869
3870        ret = clk_prepare_enable(fep->clk_ahb);
3871        if (ret)
3872                return ret;
3873        ret = clk_prepare_enable(fep->clk_ipg);
3874        if (ret)
3875                goto failed_clk_ipg;
3876
3877        return 0;
3878
3879failed_clk_ipg:
3880        clk_disable_unprepare(fep->clk_ahb);
3881        return ret;
3882}
3883
3884static const struct dev_pm_ops fec_pm_ops = {
3885        SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3886        SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3887};
3888
3889static struct platform_driver fec_driver = {
3890        .driver = {
3891                .name   = DRIVER_NAME,
3892                .pm     = &fec_pm_ops,
3893                .of_match_table = fec_dt_ids,
3894                .suppress_bind_attrs = true,
3895        },
3896        .id_table = fec_devtype,
3897        .probe  = fec_probe,
3898        .remove = fec_drv_remove,
3899};
3900
3901module_platform_driver(fec_driver);
3902
3903MODULE_ALIAS("platform:"DRIVER_NAME);
3904MODULE_LICENSE("GPL");
3905