linux/drivers/net/ethernet/sfc/ptp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2011-2013 Solarflare Communications Inc.
   5 */
   6
   7/* Theory of operation:
   8 *
   9 * PTP support is assisted by firmware running on the MC, which provides
  10 * the hardware timestamping capabilities.  Both transmitted and received
  11 * PTP event packets are queued onto internal queues for subsequent processing;
  12 * this is because the MC operations are relatively long and would block
  13 * block NAPI/interrupt operation.
  14 *
  15 * Receive event processing:
  16 *      The event contains the packet's UUID and sequence number, together
  17 *      with the hardware timestamp.  The PTP receive packet queue is searched
  18 *      for this UUID/sequence number and, if found, put on a pending queue.
  19 *      Packets not matching are delivered without timestamps (MCDI events will
  20 *      always arrive after the actual packet).
  21 *      It is important for the operation of the PTP protocol that the ordering
  22 *      of packets between the event and general port is maintained.
  23 *
  24 * Work queue processing:
  25 *      If work waiting, synchronise host/hardware time
  26 *
  27 *      Transmit: send packet through MC, which returns the transmission time
  28 *      that is converted to an appropriate timestamp.
  29 *
  30 *      Receive: the packet's reception time is converted to an appropriate
  31 *      timestamp.
  32 */
  33#include <linux/ip.h>
  34#include <linux/udp.h>
  35#include <linux/time.h>
  36#include <linux/ktime.h>
  37#include <linux/module.h>
  38#include <linux/net_tstamp.h>
  39#include <linux/pps_kernel.h>
  40#include <linux/ptp_clock_kernel.h>
  41#include "net_driver.h"
  42#include "efx.h"
  43#include "mcdi.h"
  44#include "mcdi_pcol.h"
  45#include "io.h"
  46#include "farch_regs.h"
  47#include "nic.h"
  48
  49/* Maximum number of events expected to make up a PTP event */
  50#define MAX_EVENT_FRAGS                 3
  51
  52/* Maximum delay, ms, to begin synchronisation */
  53#define MAX_SYNCHRONISE_WAIT_MS         2
  54
  55/* How long, at most, to spend synchronising */
  56#define SYNCHRONISE_PERIOD_NS           250000
  57
  58/* How often to update the shared memory time */
  59#define SYNCHRONISATION_GRANULARITY_NS  200
  60
  61/* Minimum permitted length of a (corrected) synchronisation time */
  62#define DEFAULT_MIN_SYNCHRONISATION_NS  120
  63
  64/* Maximum permitted length of a (corrected) synchronisation time */
  65#define MAX_SYNCHRONISATION_NS          1000
  66
  67/* How many (MC) receive events that can be queued */
  68#define MAX_RECEIVE_EVENTS              8
  69
  70/* Length of (modified) moving average. */
  71#define AVERAGE_LENGTH                  16
  72
  73/* How long an unmatched event or packet can be held */
  74#define PKT_EVENT_LIFETIME_MS           10
  75
  76/* Offsets into PTP packet for identification.  These offsets are from the
  77 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
  78 * PTP V2 permit the use of IPV4 options.
  79 */
  80#define PTP_DPORT_OFFSET        22
  81
  82#define PTP_V1_VERSION_LENGTH   2
  83#define PTP_V1_VERSION_OFFSET   28
  84
  85#define PTP_V1_UUID_LENGTH      6
  86#define PTP_V1_UUID_OFFSET      50
  87
  88#define PTP_V1_SEQUENCE_LENGTH  2
  89#define PTP_V1_SEQUENCE_OFFSET  58
  90
  91/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
  92 * includes IP header.
  93 */
  94#define PTP_V1_MIN_LENGTH       64
  95
  96#define PTP_V2_VERSION_LENGTH   1
  97#define PTP_V2_VERSION_OFFSET   29
  98
  99#define PTP_V2_UUID_LENGTH      8
 100#define PTP_V2_UUID_OFFSET      48
 101
 102/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 103 * the MC only captures the last six bytes of the clock identity. These values
 104 * reflect those, not the ones used in the standard.  The standard permits
 105 * mapping of V1 UUIDs to V2 UUIDs with these same values.
 106 */
 107#define PTP_V2_MC_UUID_LENGTH   6
 108#define PTP_V2_MC_UUID_OFFSET   50
 109
 110#define PTP_V2_SEQUENCE_LENGTH  2
 111#define PTP_V2_SEQUENCE_OFFSET  58
 112
 113/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 114 * includes IP header.
 115 */
 116#define PTP_V2_MIN_LENGTH       63
 117
 118#define PTP_MIN_LENGTH          63
 119
 120#define PTP_ADDRESS             0xe0000181      /* 224.0.1.129 */
 121#define PTP_EVENT_PORT          319
 122#define PTP_GENERAL_PORT        320
 123
 124/* Annoyingly the format of the version numbers are different between
 125 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 126 */
 127#define PTP_VERSION_V1          1
 128
 129#define PTP_VERSION_V2          2
 130#define PTP_VERSION_V2_MASK     0x0f
 131
 132enum ptp_packet_state {
 133        PTP_PACKET_STATE_UNMATCHED = 0,
 134        PTP_PACKET_STATE_MATCHED,
 135        PTP_PACKET_STATE_TIMED_OUT,
 136        PTP_PACKET_STATE_MATCH_UNWANTED
 137};
 138
 139/* NIC synchronised with single word of time only comprising
 140 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 141 */
 142#define MC_NANOSECOND_BITS      30
 143#define MC_NANOSECOND_MASK      ((1 << MC_NANOSECOND_BITS) - 1)
 144#define MC_SECOND_MASK          ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 145
 146/* Maximum parts-per-billion adjustment that is acceptable */
 147#define MAX_PPB                 1000000
 148
 149/* Precalculate scale word to avoid long long division at runtime */
 150/* This is equivalent to 2^66 / 10^9. */
 151#define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
 152
 153/* How much to shift down after scaling to convert to FP40 */
 154#define PPB_SHIFT_FP40          26
 155/* ... and FP44. */
 156#define PPB_SHIFT_FP44          22
 157
 158#define PTP_SYNC_ATTEMPTS       4
 159
 160/**
 161 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 162 * @words: UUID and (partial) sequence number
 163 * @expiry: Time after which the packet should be delivered irrespective of
 164 *            event arrival.
 165 * @state: The state of the packet - whether it is ready for processing or
 166 *         whether that is of no interest.
 167 */
 168struct efx_ptp_match {
 169        u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
 170        unsigned long expiry;
 171        enum ptp_packet_state state;
 172};
 173
 174/**
 175 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 176 * @seq0: First part of (PTP) UUID
 177 * @seq1: Second part of (PTP) UUID and sequence number
 178 * @hwtimestamp: Event timestamp
 179 */
 180struct efx_ptp_event_rx {
 181        struct list_head link;
 182        u32 seq0;
 183        u32 seq1;
 184        ktime_t hwtimestamp;
 185        unsigned long expiry;
 186};
 187
 188/**
 189 * struct efx_ptp_timeset - Synchronisation between host and MC
 190 * @host_start: Host time immediately before hardware timestamp taken
 191 * @major: Hardware timestamp, major
 192 * @minor: Hardware timestamp, minor
 193 * @host_end: Host time immediately after hardware timestamp taken
 194 * @wait: Number of NIC clock ticks between hardware timestamp being read and
 195 *          host end time being seen
 196 * @window: Difference of host_end and host_start
 197 * @valid: Whether this timeset is valid
 198 */
 199struct efx_ptp_timeset {
 200        u32 host_start;
 201        u32 major;
 202        u32 minor;
 203        u32 host_end;
 204        u32 wait;
 205        u32 window;     /* Derived: end - start, allowing for wrap */
 206};
 207
 208/**
 209 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 210 * @efx: The NIC context
 211 * @channel: The PTP channel (Siena only)
 212 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
 213 *      separate events)
 214 * @rxq: Receive SKB queue (awaiting timestamps)
 215 * @txq: Transmit SKB queue
 216 * @evt_list: List of MC receive events awaiting packets
 217 * @evt_free_list: List of free events
 218 * @evt_lock: Lock for manipulating evt_list and evt_free_list
 219 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 220 * @workwq: Work queue for processing pending PTP operations
 221 * @work: Work task
 222 * @reset_required: A serious error has occurred and the PTP task needs to be
 223 *                  reset (disable, enable).
 224 * @rxfilter_event: Receive filter when operating
 225 * @rxfilter_general: Receive filter when operating
 226 * @config: Current timestamp configuration
 227 * @enabled: PTP operation enabled
 228 * @mode: Mode in which PTP operating (PTP version)
 229 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 230 * @nic_to_kernel_time: Function to convert from NIC to kernel time
 231 * @nic_time.minor_max: Wrap point for NIC minor times
 232 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
 233 * in packet prefix and last MCDI time sync event i.e. how much earlier than
 234 * the last sync event time a packet timestamp can be.
 235 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
 236 * in packet prefix and last MCDI time sync event i.e. how much later than
 237 * the last sync event time a packet timestamp can be.
 238 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
 239 * field in MCDI time sync event.
 240 * @min_synchronisation_ns: Minimum acceptable corrected sync window
 241 * @capabilities: Capabilities flags from the NIC
 242 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
 243 *                         timestamps
 244 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
 245 *                         timestamps
 246 * @ts_corrections.pps_out: PPS output error (information only)
 247 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
 248 * @ts_corrections.general_tx: Required driver correction of general packet
 249 *                             transmit timestamps
 250 * @ts_corrections.general_rx: Required driver correction of general packet
 251 *                             receive timestamps
 252 * @evt_frags: Partly assembled PTP events
 253 * @evt_frag_idx: Current fragment number
 254 * @evt_code: Last event code
 255 * @start: Address at which MC indicates ready for synchronisation
 256 * @host_time_pps: Host time at last PPS
 257 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
 258 * frequency adjustment into a fixed point fractional nanosecond format.
 259 * @current_adjfreq: Current ppb adjustment.
 260 * @phc_clock: Pointer to registered phc device (if primary function)
 261 * @phc_clock_info: Registration structure for phc device
 262 * @pps_work: pps work task for handling pps events
 263 * @pps_workwq: pps work queue
 264 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 265 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 266 *         allocations in main data path).
 267 * @good_syncs: Number of successful synchronisations.
 268 * @fast_syncs: Number of synchronisations requiring short delay
 269 * @bad_syncs: Number of failed synchronisations.
 270 * @sync_timeouts: Number of synchronisation timeouts
 271 * @no_time_syncs: Number of synchronisations with no good times.
 272 * @invalid_sync_windows: Number of sync windows with bad durations.
 273 * @undersize_sync_windows: Number of corrected sync windows that are too small
 274 * @oversize_sync_windows: Number of corrected sync windows that are too large
 275 * @rx_no_timestamp: Number of packets received without a timestamp.
 276 * @timeset: Last set of synchronisation statistics.
 277 * @xmit_skb: Transmit SKB function.
 278 */
 279struct efx_ptp_data {
 280        struct efx_nic *efx;
 281        struct efx_channel *channel;
 282        bool rx_ts_inline;
 283        struct sk_buff_head rxq;
 284        struct sk_buff_head txq;
 285        struct list_head evt_list;
 286        struct list_head evt_free_list;
 287        spinlock_t evt_lock;
 288        struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
 289        struct workqueue_struct *workwq;
 290        struct work_struct work;
 291        bool reset_required;
 292        u32 rxfilter_event;
 293        u32 rxfilter_general;
 294        bool rxfilter_installed;
 295        struct hwtstamp_config config;
 296        bool enabled;
 297        unsigned int mode;
 298        void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
 299        ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
 300                                      s32 correction);
 301        struct {
 302                u32 minor_max;
 303                u32 sync_event_diff_min;
 304                u32 sync_event_diff_max;
 305                unsigned int sync_event_minor_shift;
 306        } nic_time;
 307        unsigned int min_synchronisation_ns;
 308        unsigned int capabilities;
 309        struct {
 310                s32 ptp_tx;
 311                s32 ptp_rx;
 312                s32 pps_out;
 313                s32 pps_in;
 314                s32 general_tx;
 315                s32 general_rx;
 316        } ts_corrections;
 317        efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 318        int evt_frag_idx;
 319        int evt_code;
 320        struct efx_buffer start;
 321        struct pps_event_time host_time_pps;
 322        unsigned int adjfreq_ppb_shift;
 323        s64 current_adjfreq;
 324        struct ptp_clock *phc_clock;
 325        struct ptp_clock_info phc_clock_info;
 326        struct work_struct pps_work;
 327        struct workqueue_struct *pps_workwq;
 328        bool nic_ts_enabled;
 329        _MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
 330
 331        unsigned int good_syncs;
 332        unsigned int fast_syncs;
 333        unsigned int bad_syncs;
 334        unsigned int sync_timeouts;
 335        unsigned int no_time_syncs;
 336        unsigned int invalid_sync_windows;
 337        unsigned int undersize_sync_windows;
 338        unsigned int oversize_sync_windows;
 339        unsigned int rx_no_timestamp;
 340        struct efx_ptp_timeset
 341        timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 342        void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
 343};
 344
 345static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
 346static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 347static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
 348static int efx_phc_settime(struct ptp_clock_info *ptp,
 349                           const struct timespec64 *e_ts);
 350static int efx_phc_enable(struct ptp_clock_info *ptp,
 351                          struct ptp_clock_request *request, int on);
 352
 353bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
 354{
 355        return efx_has_cap(efx, TX_MAC_TIMESTAMPING, FLAGS2);
 356}
 357
 358/* PTP 'extra' channel is still a traffic channel, but we only create TX queues
 359 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
 360 */
 361static bool efx_ptp_want_txqs(struct efx_channel *channel)
 362{
 363        return efx_ptp_use_mac_tx_timestamps(channel->efx);
 364}
 365
 366#define PTP_SW_STAT(ext_name, field_name)                               \
 367        { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
 368#define PTP_MC_STAT(ext_name, mcdi_name)                                \
 369        { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
 370static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
 371        PTP_SW_STAT(ptp_good_syncs, good_syncs),
 372        PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
 373        PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
 374        PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
 375        PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
 376        PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
 377        PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
 378        PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
 379        PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
 380        PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
 381        PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
 382        PTP_MC_STAT(ptp_timestamp_packets, TS),
 383        PTP_MC_STAT(ptp_filter_matches, FM),
 384        PTP_MC_STAT(ptp_non_filter_matches, NFM),
 385};
 386#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
 387static const unsigned long efx_ptp_stat_mask[] = {
 388        [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
 389};
 390
 391size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
 392{
 393        if (!efx->ptp_data)
 394                return 0;
 395
 396        return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 397                                      efx_ptp_stat_mask, strings);
 398}
 399
 400size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
 401{
 402        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
 403        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
 404        size_t i;
 405        int rc;
 406
 407        if (!efx->ptp_data)
 408                return 0;
 409
 410        /* Copy software statistics */
 411        for (i = 0; i < PTP_STAT_COUNT; i++) {
 412                if (efx_ptp_stat_desc[i].dma_width)
 413                        continue;
 414                stats[i] = *(unsigned int *)((char *)efx->ptp_data +
 415                                             efx_ptp_stat_desc[i].offset);
 416        }
 417
 418        /* Fetch MC statistics.  We *must* fill in all statistics or
 419         * risk leaking kernel memory to userland, so if the MCDI
 420         * request fails we pretend we got zeroes.
 421         */
 422        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
 423        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 424        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 425                          outbuf, sizeof(outbuf), NULL);
 426        if (rc)
 427                memset(outbuf, 0, sizeof(outbuf));
 428        efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 429                             efx_ptp_stat_mask,
 430                             stats, _MCDI_PTR(outbuf, 0), false);
 431
 432        return PTP_STAT_COUNT;
 433}
 434
 435/* For Siena platforms NIC time is s and ns */
 436static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
 437{
 438        struct timespec64 ts = ns_to_timespec64(ns);
 439        *nic_major = (u32)ts.tv_sec;
 440        *nic_minor = ts.tv_nsec;
 441}
 442
 443static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 444                                                s32 correction)
 445{
 446        ktime_t kt = ktime_set(nic_major, nic_minor);
 447        if (correction >= 0)
 448                kt = ktime_add_ns(kt, (u64)correction);
 449        else
 450                kt = ktime_sub_ns(kt, (u64)-correction);
 451        return kt;
 452}
 453
 454/* To convert from s27 format to ns we multiply then divide by a power of 2.
 455 * For the conversion from ns to s27, the operation is also converted to a
 456 * multiply and shift.
 457 */
 458#define S27_TO_NS_SHIFT (27)
 459#define NS_TO_S27_MULT  (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
 460#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
 461#define S27_MINOR_MAX   (1 << S27_TO_NS_SHIFT)
 462
 463/* For Huntington platforms NIC time is in seconds and fractions of a second
 464 * where the minor register only uses 27 bits in units of 2^-27s.
 465 */
 466static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
 467{
 468        struct timespec64 ts = ns_to_timespec64(ns);
 469        u32 maj = (u32)ts.tv_sec;
 470        u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
 471                         (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
 472
 473        /* The conversion can result in the minor value exceeding the maximum.
 474         * In this case, round up to the next second.
 475         */
 476        if (min >= S27_MINOR_MAX) {
 477                min -= S27_MINOR_MAX;
 478                maj++;
 479        }
 480
 481        *nic_major = maj;
 482        *nic_minor = min;
 483}
 484
 485static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
 486{
 487        u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
 488                        (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
 489        return ktime_set(nic_major, ns);
 490}
 491
 492static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
 493                                               s32 correction)
 494{
 495        /* Apply the correction and deal with carry */
 496        nic_minor += correction;
 497        if ((s32)nic_minor < 0) {
 498                nic_minor += S27_MINOR_MAX;
 499                nic_major--;
 500        } else if (nic_minor >= S27_MINOR_MAX) {
 501                nic_minor -= S27_MINOR_MAX;
 502                nic_major++;
 503        }
 504
 505        return efx_ptp_s27_to_ktime(nic_major, nic_minor);
 506}
 507
 508/* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
 509static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
 510{
 511        struct timespec64 ts = ns_to_timespec64(ns);
 512
 513        *nic_major = (u32)ts.tv_sec;
 514        *nic_minor = ts.tv_nsec * 4;
 515}
 516
 517static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 518                                                 s32 correction)
 519{
 520        ktime_t kt;
 521
 522        nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
 523        correction = DIV_ROUND_CLOSEST(correction, 4);
 524
 525        kt = ktime_set(nic_major, nic_minor);
 526
 527        if (correction >= 0)
 528                kt = ktime_add_ns(kt, (u64)correction);
 529        else
 530                kt = ktime_sub_ns(kt, (u64)-correction);
 531        return kt;
 532}
 533
 534struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
 535{
 536        return efx->ptp_data ? efx->ptp_data->channel : NULL;
 537}
 538
 539static u32 last_sync_timestamp_major(struct efx_nic *efx)
 540{
 541        struct efx_channel *channel = efx_ptp_channel(efx);
 542        u32 major = 0;
 543
 544        if (channel)
 545                major = channel->sync_timestamp_major;
 546        return major;
 547}
 548
 549/* The 8000 series and later can provide the time from the MAC, which is only
 550 * 48 bits long and provides meta-information in the top 2 bits.
 551 */
 552static ktime_t
 553efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
 554                                    struct efx_ptp_data *ptp,
 555                                    u32 nic_major, u32 nic_minor,
 556                                    s32 correction)
 557{
 558        u32 sync_timestamp;
 559        ktime_t kt = { 0 };
 560        s16 delta;
 561
 562        if (!(nic_major & 0x80000000)) {
 563                WARN_ON_ONCE(nic_major >> 16);
 564
 565                /* Medford provides 48 bits of timestamp, so we must get the top
 566                 * 16 bits from the timesync event state.
 567                 *
 568                 * We only have the lower 16 bits of the time now, but we do
 569                 * have a full resolution timestamp at some point in past. As
 570                 * long as the difference between the (real) now and the sync
 571                 * is less than 2^15, then we can reconstruct the difference
 572                 * between those two numbers using only the lower 16 bits of
 573                 * each.
 574                 *
 575                 * Put another way
 576                 *
 577                 * a - b = ((a mod k) - b) mod k
 578                 *
 579                 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
 580                 * (a mod k) and b, so can calculate the delta, a - b.
 581                 *
 582                 */
 583                sync_timestamp = last_sync_timestamp_major(efx);
 584
 585                /* Because delta is s16 this does an implicit mask down to
 586                 * 16 bits which is what we need, assuming
 587                 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
 588                 * we can deal with the (unlikely) case of sync timestamps
 589                 * arriving from the future.
 590                 */
 591                delta = nic_major - sync_timestamp;
 592
 593                /* Recover the fully specified time now, by applying the offset
 594                 * to the (fully specified) sync time.
 595                 */
 596                nic_major = sync_timestamp + delta;
 597
 598                kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
 599                                             correction);
 600        }
 601        return kt;
 602}
 603
 604ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
 605{
 606        struct efx_nic *efx = tx_queue->efx;
 607        struct efx_ptp_data *ptp = efx->ptp_data;
 608        ktime_t kt;
 609
 610        if (efx_ptp_use_mac_tx_timestamps(efx))
 611                kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
 612                                tx_queue->completed_timestamp_major,
 613                                tx_queue->completed_timestamp_minor,
 614                                ptp->ts_corrections.general_tx);
 615        else
 616                kt = ptp->nic_to_kernel_time(
 617                                tx_queue->completed_timestamp_major,
 618                                tx_queue->completed_timestamp_minor,
 619                                ptp->ts_corrections.general_tx);
 620        return kt;
 621}
 622
 623/* Get PTP attributes and set up time conversions */
 624static int efx_ptp_get_attributes(struct efx_nic *efx)
 625{
 626        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
 627        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
 628        struct efx_ptp_data *ptp = efx->ptp_data;
 629        int rc;
 630        u32 fmt;
 631        size_t out_len;
 632
 633        /* Get the PTP attributes. If the NIC doesn't support the operation we
 634         * use the default format for compatibility with older NICs i.e.
 635         * seconds and nanoseconds.
 636         */
 637        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
 638        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 639        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 640                                outbuf, sizeof(outbuf), &out_len);
 641        if (rc == 0) {
 642                fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
 643        } else if (rc == -EINVAL) {
 644                fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
 645        } else if (rc == -EPERM) {
 646                netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 647                return rc;
 648        } else {
 649                efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
 650                                       outbuf, sizeof(outbuf), rc);
 651                return rc;
 652        }
 653
 654        switch (fmt) {
 655        case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
 656                ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
 657                ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
 658                ptp->nic_time.minor_max = 1 << 27;
 659                ptp->nic_time.sync_event_minor_shift = 19;
 660                break;
 661        case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
 662                ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
 663                ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
 664                ptp->nic_time.minor_max = 1000000000;
 665                ptp->nic_time.sync_event_minor_shift = 22;
 666                break;
 667        case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
 668                ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
 669                ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
 670                ptp->nic_time.minor_max = 4000000000UL;
 671                ptp->nic_time.sync_event_minor_shift = 24;
 672                break;
 673        default:
 674                return -ERANGE;
 675        }
 676
 677        /* Precalculate acceptable difference between the minor time in the
 678         * packet prefix and the last MCDI time sync event. We expect the
 679         * packet prefix timestamp to be after of sync event by up to one
 680         * sync event interval (0.25s) but we allow it to exceed this by a
 681         * fuzz factor of (0.1s)
 682         */
 683        ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
 684                - (ptp->nic_time.minor_max / 10);
 685        ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
 686                + (ptp->nic_time.minor_max / 10);
 687
 688        /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
 689         * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
 690         * a value to use for the minimum acceptable corrected synchronization
 691         * window and may return further capabilities.
 692         * If we have the extra information store it. For older firmware that
 693         * does not implement the extended command use the default value.
 694         */
 695        if (rc == 0 &&
 696            out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
 697                ptp->min_synchronisation_ns =
 698                        MCDI_DWORD(outbuf,
 699                                   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
 700        else
 701                ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
 702
 703        if (rc == 0 &&
 704            out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
 705                ptp->capabilities = MCDI_DWORD(outbuf,
 706                                        PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
 707        else
 708                ptp->capabilities = 0;
 709
 710        /* Set up the shift for conversion between frequency
 711         * adjustments in parts-per-billion and the fixed-point
 712         * fractional ns format that the adapter uses.
 713         */
 714        if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
 715                ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
 716        else
 717                ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
 718
 719        return 0;
 720}
 721
 722/* Get PTP timestamp corrections */
 723static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
 724{
 725        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
 726        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
 727        int rc;
 728        size_t out_len;
 729
 730        /* Get the timestamp corrections from the NIC. If this operation is
 731         * not supported (older NICs) then no correction is required.
 732         */
 733        MCDI_SET_DWORD(inbuf, PTP_IN_OP,
 734                       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
 735        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 736
 737        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 738                                outbuf, sizeof(outbuf), &out_len);
 739        if (rc == 0) {
 740                efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
 741                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
 742                efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
 743                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
 744                efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
 745                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
 746                efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
 747                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
 748
 749                if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
 750                        efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
 751                                outbuf,
 752                                PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
 753                        efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
 754                                outbuf,
 755                                PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
 756                } else {
 757                        efx->ptp_data->ts_corrections.general_tx =
 758                                efx->ptp_data->ts_corrections.ptp_tx;
 759                        efx->ptp_data->ts_corrections.general_rx =
 760                                efx->ptp_data->ts_corrections.ptp_rx;
 761                }
 762        } else if (rc == -EINVAL) {
 763                efx->ptp_data->ts_corrections.ptp_tx = 0;
 764                efx->ptp_data->ts_corrections.ptp_rx = 0;
 765                efx->ptp_data->ts_corrections.pps_out = 0;
 766                efx->ptp_data->ts_corrections.pps_in = 0;
 767                efx->ptp_data->ts_corrections.general_tx = 0;
 768                efx->ptp_data->ts_corrections.general_rx = 0;
 769        } else {
 770                efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
 771                                       sizeof(outbuf), rc);
 772                return rc;
 773        }
 774
 775        return 0;
 776}
 777
 778/* Enable MCDI PTP support. */
 779static int efx_ptp_enable(struct efx_nic *efx)
 780{
 781        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
 782        MCDI_DECLARE_BUF_ERR(outbuf);
 783        int rc;
 784
 785        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 786        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 787        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 788                       efx->ptp_data->channel ?
 789                       efx->ptp_data->channel->channel : 0);
 790        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 791
 792        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 793                                outbuf, sizeof(outbuf), NULL);
 794        rc = (rc == -EALREADY) ? 0 : rc;
 795        if (rc)
 796                efx_mcdi_display_error(efx, MC_CMD_PTP,
 797                                       MC_CMD_PTP_IN_ENABLE_LEN,
 798                                       outbuf, sizeof(outbuf), rc);
 799        return rc;
 800}
 801
 802/* Disable MCDI PTP support.
 803 *
 804 * Note that this function should never rely on the presence of ptp_data -
 805 * may be called before that exists.
 806 */
 807static int efx_ptp_disable(struct efx_nic *efx)
 808{
 809        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
 810        MCDI_DECLARE_BUF_ERR(outbuf);
 811        int rc;
 812
 813        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 814        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 815        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 816                                outbuf, sizeof(outbuf), NULL);
 817        rc = (rc == -EALREADY) ? 0 : rc;
 818        /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
 819         * should only have been called during probe.
 820         */
 821        if (rc == -ENOSYS || rc == -EPERM)
 822                netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 823        else if (rc)
 824                efx_mcdi_display_error(efx, MC_CMD_PTP,
 825                                       MC_CMD_PTP_IN_DISABLE_LEN,
 826                                       outbuf, sizeof(outbuf), rc);
 827        return rc;
 828}
 829
 830static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 831{
 832        struct sk_buff *skb;
 833
 834        while ((skb = skb_dequeue(q))) {
 835                local_bh_disable();
 836                netif_receive_skb(skb);
 837                local_bh_enable();
 838        }
 839}
 840
 841static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 842{
 843        netif_err(efx, drv, efx->net_dev,
 844                  "ERROR: PTP requires MSI-X and 1 additional interrupt"
 845                  "vector. PTP disabled\n");
 846}
 847
 848/* Repeatedly send the host time to the MC which will capture the hardware
 849 * time.
 850 */
 851static void efx_ptp_send_times(struct efx_nic *efx,
 852                               struct pps_event_time *last_time)
 853{
 854        struct pps_event_time now;
 855        struct timespec64 limit;
 856        struct efx_ptp_data *ptp = efx->ptp_data;
 857        int *mc_running = ptp->start.addr;
 858
 859        pps_get_ts(&now);
 860        limit = now.ts_real;
 861        timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 862
 863        /* Write host time for specified period or until MC is done */
 864        while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
 865               READ_ONCE(*mc_running)) {
 866                struct timespec64 update_time;
 867                unsigned int host_time;
 868
 869                /* Don't update continuously to avoid saturating the PCIe bus */
 870                update_time = now.ts_real;
 871                timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 872                do {
 873                        pps_get_ts(&now);
 874                } while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
 875                         READ_ONCE(*mc_running));
 876
 877                /* Synchronise NIC with single word of time only */
 878                host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 879                             now.ts_real.tv_nsec);
 880                /* Update host time in NIC memory */
 881                efx->type->ptp_write_host_time(efx, host_time);
 882        }
 883        *last_time = now;
 884}
 885
 886/* Read a timeset from the MC's results and partial process. */
 887static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
 888                                 struct efx_ptp_timeset *timeset)
 889{
 890        unsigned start_ns, end_ns;
 891
 892        timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 893        timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
 894        timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
 895        timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
 896        timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 897
 898        /* Ignore seconds */
 899        start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 900        end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 901        /* Allow for rollover */
 902        if (end_ns < start_ns)
 903                end_ns += NSEC_PER_SEC;
 904        /* Determine duration of operation */
 905        timeset->window = end_ns - start_ns;
 906}
 907
 908/* Process times received from MC.
 909 *
 910 * Extract times from returned results, and establish the minimum value
 911 * seen.  The minimum value represents the "best" possible time and events
 912 * too much greater than this are rejected - the machine is, perhaps, too
 913 * busy. A number of readings are taken so that, hopefully, at least one good
 914 * synchronisation will be seen in the results.
 915 */
 916static int
 917efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
 918                      size_t response_length,
 919                      const struct pps_event_time *last_time)
 920{
 921        unsigned number_readings =
 922                MCDI_VAR_ARRAY_LEN(response_length,
 923                                   PTP_OUT_SYNCHRONIZE_TIMESET);
 924        unsigned i;
 925        unsigned ngood = 0;
 926        unsigned last_good = 0;
 927        struct efx_ptp_data *ptp = efx->ptp_data;
 928        u32 last_sec;
 929        u32 start_sec;
 930        struct timespec64 delta;
 931        ktime_t mc_time;
 932
 933        if (number_readings == 0)
 934                return -EAGAIN;
 935
 936        /* Read the set of results and find the last good host-MC
 937         * synchronization result. The MC times when it finishes reading the
 938         * host time so the corrected window time should be fairly constant
 939         * for a given platform. Increment stats for any results that appear
 940         * to be erroneous.
 941         */
 942        for (i = 0; i < number_readings; i++) {
 943                s32 window, corrected;
 944                struct timespec64 wait;
 945
 946                efx_ptp_read_timeset(
 947                        MCDI_ARRAY_STRUCT_PTR(synch_buf,
 948                                              PTP_OUT_SYNCHRONIZE_TIMESET, i),
 949                        &ptp->timeset[i]);
 950
 951                wait = ktime_to_timespec64(
 952                        ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
 953                window = ptp->timeset[i].window;
 954                corrected = window - wait.tv_nsec;
 955
 956                /* We expect the uncorrected synchronization window to be at
 957                 * least as large as the interval between host start and end
 958                 * times. If it is smaller than this then this is mostly likely
 959                 * to be a consequence of the host's time being adjusted.
 960                 * Check that the corrected sync window is in a reasonable
 961                 * range. If it is out of range it is likely to be because an
 962                 * interrupt or other delay occurred between reading the system
 963                 * time and writing it to MC memory.
 964                 */
 965                if (window < SYNCHRONISATION_GRANULARITY_NS) {
 966                        ++ptp->invalid_sync_windows;
 967                } else if (corrected >= MAX_SYNCHRONISATION_NS) {
 968                        ++ptp->oversize_sync_windows;
 969                } else if (corrected < ptp->min_synchronisation_ns) {
 970                        ++ptp->undersize_sync_windows;
 971                } else {
 972                        ngood++;
 973                        last_good = i;
 974                }
 975        }
 976
 977        if (ngood == 0) {
 978                netif_warn(efx, drv, efx->net_dev,
 979                           "PTP no suitable synchronisations\n");
 980                return -EAGAIN;
 981        }
 982
 983        /* Calculate delay from last good sync (host time) to last_time.
 984         * It is possible that the seconds rolled over between taking
 985         * the start reading and the last value written by the host.  The
 986         * timescales are such that a gap of more than one second is never
 987         * expected.  delta is *not* normalised.
 988         */
 989        start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
 990        last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
 991        if (start_sec != last_sec &&
 992            ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
 993                netif_warn(efx, hw, efx->net_dev,
 994                           "PTP bad synchronisation seconds\n");
 995                return -EAGAIN;
 996        }
 997        delta.tv_sec = (last_sec - start_sec) & 1;
 998        delta.tv_nsec =
 999                last_time->ts_real.tv_nsec -
1000                (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
1001
1002        /* Convert the NIC time at last good sync into kernel time.
1003         * No correction is required - this time is the output of a
1004         * firmware process.
1005         */
1006        mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
1007                                          ptp->timeset[last_good].minor, 0);
1008
1009        /* Calculate delay from NIC top of second to last_time */
1010        delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
1011
1012        /* Set PPS timestamp to match NIC top of second */
1013        ptp->host_time_pps = *last_time;
1014        pps_sub_ts(&ptp->host_time_pps, delta);
1015
1016        return 0;
1017}
1018
1019/* Synchronize times between the host and the MC */
1020static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1021{
1022        struct efx_ptp_data *ptp = efx->ptp_data;
1023        MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1024        size_t response_length;
1025        int rc;
1026        unsigned long timeout;
1027        struct pps_event_time last_time = {};
1028        unsigned int loops = 0;
1029        int *start = ptp->start.addr;
1030
1031        MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1032        MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1033        MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1034                       num_readings);
1035        MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1036                       ptp->start.dma_addr);
1037
1038        /* Clear flag that signals MC ready */
1039        WRITE_ONCE(*start, 0);
1040        rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1041                                MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1042        EFX_WARN_ON_ONCE_PARANOID(rc);
1043
1044        /* Wait for start from MCDI (or timeout) */
1045        timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1046        while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1047                udelay(20);     /* Usually start MCDI execution quickly */
1048                loops++;
1049        }
1050
1051        if (loops <= 1)
1052                ++ptp->fast_syncs;
1053        if (!time_before(jiffies, timeout))
1054                ++ptp->sync_timeouts;
1055
1056        if (READ_ONCE(*start))
1057                efx_ptp_send_times(efx, &last_time);
1058
1059        /* Collect results */
1060        rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1061                                 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1062                                 synch_buf, sizeof(synch_buf),
1063                                 &response_length);
1064        if (rc == 0) {
1065                rc = efx_ptp_process_times(efx, synch_buf, response_length,
1066                                           &last_time);
1067                if (rc == 0)
1068                        ++ptp->good_syncs;
1069                else
1070                        ++ptp->no_time_syncs;
1071        }
1072
1073        /* Increment the bad syncs counter if the synchronize fails, whatever
1074         * the reason.
1075         */
1076        if (rc != 0)
1077                ++ptp->bad_syncs;
1078
1079        return rc;
1080}
1081
1082/* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1083static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1084{
1085        struct efx_ptp_data *ptp_data = efx->ptp_data;
1086        struct efx_tx_queue *tx_queue;
1087        u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
1088
1089        tx_queue = &ptp_data->channel->tx_queue[type];
1090        if (tx_queue && tx_queue->timestamping) {
1091                efx_enqueue_skb(tx_queue, skb);
1092        } else {
1093                WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1094                dev_kfree_skb_any(skb);
1095        }
1096}
1097
1098/* Transmit a PTP packet, via the MCDI interface, to the wire. */
1099static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1100{
1101        struct efx_ptp_data *ptp_data = efx->ptp_data;
1102        struct skb_shared_hwtstamps timestamps;
1103        int rc = -EIO;
1104        MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1105        size_t len;
1106
1107        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1108        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1109        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1110        if (skb_shinfo(skb)->nr_frags != 0) {
1111                rc = skb_linearize(skb);
1112                if (rc != 0)
1113                        goto fail;
1114        }
1115
1116        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1117                rc = skb_checksum_help(skb);
1118                if (rc != 0)
1119                        goto fail;
1120        }
1121        skb_copy_from_linear_data(skb,
1122                                  MCDI_PTR(ptp_data->txbuf,
1123                                           PTP_IN_TRANSMIT_PACKET),
1124                                  skb->len);
1125        rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1126                          ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1127                          txtime, sizeof(txtime), &len);
1128        if (rc != 0)
1129                goto fail;
1130
1131        memset(&timestamps, 0, sizeof(timestamps));
1132        timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1133                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1134                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1135                ptp_data->ts_corrections.ptp_tx);
1136
1137        skb_tstamp_tx(skb, &timestamps);
1138
1139        rc = 0;
1140
1141fail:
1142        dev_kfree_skb_any(skb);
1143
1144        return;
1145}
1146
1147static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1148{
1149        struct efx_ptp_data *ptp = efx->ptp_data;
1150        struct list_head *cursor;
1151        struct list_head *next;
1152
1153        if (ptp->rx_ts_inline)
1154                return;
1155
1156        /* Drop time-expired events */
1157        spin_lock_bh(&ptp->evt_lock);
1158        if (!list_empty(&ptp->evt_list)) {
1159                list_for_each_safe(cursor, next, &ptp->evt_list) {
1160                        struct efx_ptp_event_rx *evt;
1161
1162                        evt = list_entry(cursor, struct efx_ptp_event_rx,
1163                                         link);
1164                        if (time_after(jiffies, evt->expiry)) {
1165                                list_move(&evt->link, &ptp->evt_free_list);
1166                                netif_warn(efx, hw, efx->net_dev,
1167                                           "PTP rx event dropped\n");
1168                        }
1169                }
1170        }
1171        spin_unlock_bh(&ptp->evt_lock);
1172}
1173
1174static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1175                                              struct sk_buff *skb)
1176{
1177        struct efx_ptp_data *ptp = efx->ptp_data;
1178        bool evts_waiting;
1179        struct list_head *cursor;
1180        struct list_head *next;
1181        struct efx_ptp_match *match;
1182        enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1183
1184        WARN_ON_ONCE(ptp->rx_ts_inline);
1185
1186        spin_lock_bh(&ptp->evt_lock);
1187        evts_waiting = !list_empty(&ptp->evt_list);
1188        spin_unlock_bh(&ptp->evt_lock);
1189
1190        if (!evts_waiting)
1191                return PTP_PACKET_STATE_UNMATCHED;
1192
1193        match = (struct efx_ptp_match *)skb->cb;
1194        /* Look for a matching timestamp in the event queue */
1195        spin_lock_bh(&ptp->evt_lock);
1196        list_for_each_safe(cursor, next, &ptp->evt_list) {
1197                struct efx_ptp_event_rx *evt;
1198
1199                evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1200                if ((evt->seq0 == match->words[0]) &&
1201                    (evt->seq1 == match->words[1])) {
1202                        struct skb_shared_hwtstamps *timestamps;
1203
1204                        /* Match - add in hardware timestamp */
1205                        timestamps = skb_hwtstamps(skb);
1206                        timestamps->hwtstamp = evt->hwtimestamp;
1207
1208                        match->state = PTP_PACKET_STATE_MATCHED;
1209                        rc = PTP_PACKET_STATE_MATCHED;
1210                        list_move(&evt->link, &ptp->evt_free_list);
1211                        break;
1212                }
1213        }
1214        spin_unlock_bh(&ptp->evt_lock);
1215
1216        return rc;
1217}
1218
1219/* Process any queued receive events and corresponding packets
1220 *
1221 * q is returned with all the packets that are ready for delivery.
1222 */
1223static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1224{
1225        struct efx_ptp_data *ptp = efx->ptp_data;
1226        struct sk_buff *skb;
1227
1228        while ((skb = skb_dequeue(&ptp->rxq))) {
1229                struct efx_ptp_match *match;
1230
1231                match = (struct efx_ptp_match *)skb->cb;
1232                if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1233                        __skb_queue_tail(q, skb);
1234                } else if (efx_ptp_match_rx(efx, skb) ==
1235                           PTP_PACKET_STATE_MATCHED) {
1236                        __skb_queue_tail(q, skb);
1237                } else if (time_after(jiffies, match->expiry)) {
1238                        match->state = PTP_PACKET_STATE_TIMED_OUT;
1239                        ++ptp->rx_no_timestamp;
1240                        __skb_queue_tail(q, skb);
1241                } else {
1242                        /* Replace unprocessed entry and stop */
1243                        skb_queue_head(&ptp->rxq, skb);
1244                        break;
1245                }
1246        }
1247}
1248
1249/* Complete processing of a received packet */
1250static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1251{
1252        local_bh_disable();
1253        netif_receive_skb(skb);
1254        local_bh_enable();
1255}
1256
1257static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1258{
1259        struct efx_ptp_data *ptp = efx->ptp_data;
1260
1261        if (ptp->rxfilter_installed) {
1262                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1263                                          ptp->rxfilter_general);
1264                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1265                                          ptp->rxfilter_event);
1266                ptp->rxfilter_installed = false;
1267        }
1268}
1269
1270static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1271{
1272        struct efx_ptp_data *ptp = efx->ptp_data;
1273        struct efx_filter_spec rxfilter;
1274        int rc;
1275
1276        if (!ptp->channel || ptp->rxfilter_installed)
1277                return 0;
1278
1279        /* Must filter on both event and general ports to ensure
1280         * that there is no packet re-ordering.
1281         */
1282        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1283                           efx_rx_queue_index(
1284                                   efx_channel_get_rx_queue(ptp->channel)));
1285        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1286                                       htonl(PTP_ADDRESS),
1287                                       htons(PTP_EVENT_PORT));
1288        if (rc != 0)
1289                return rc;
1290
1291        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1292        if (rc < 0)
1293                return rc;
1294        ptp->rxfilter_event = rc;
1295
1296        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1297                           efx_rx_queue_index(
1298                                   efx_channel_get_rx_queue(ptp->channel)));
1299        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1300                                       htonl(PTP_ADDRESS),
1301                                       htons(PTP_GENERAL_PORT));
1302        if (rc != 0)
1303                goto fail;
1304
1305        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1306        if (rc < 0)
1307                goto fail;
1308        ptp->rxfilter_general = rc;
1309
1310        ptp->rxfilter_installed = true;
1311        return 0;
1312
1313fail:
1314        efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1315                                  ptp->rxfilter_event);
1316        return rc;
1317}
1318
1319static int efx_ptp_start(struct efx_nic *efx)
1320{
1321        struct efx_ptp_data *ptp = efx->ptp_data;
1322        int rc;
1323
1324        ptp->reset_required = false;
1325
1326        rc = efx_ptp_insert_multicast_filters(efx);
1327        if (rc)
1328                return rc;
1329
1330        rc = efx_ptp_enable(efx);
1331        if (rc != 0)
1332                goto fail;
1333
1334        ptp->evt_frag_idx = 0;
1335        ptp->current_adjfreq = 0;
1336
1337        return 0;
1338
1339fail:
1340        efx_ptp_remove_multicast_filters(efx);
1341        return rc;
1342}
1343
1344static int efx_ptp_stop(struct efx_nic *efx)
1345{
1346        struct efx_ptp_data *ptp = efx->ptp_data;
1347        struct list_head *cursor;
1348        struct list_head *next;
1349        int rc;
1350
1351        if (ptp == NULL)
1352                return 0;
1353
1354        rc = efx_ptp_disable(efx);
1355
1356        efx_ptp_remove_multicast_filters(efx);
1357
1358        /* Make sure RX packets are really delivered */
1359        efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1360        skb_queue_purge(&efx->ptp_data->txq);
1361
1362        /* Drop any pending receive events */
1363        spin_lock_bh(&efx->ptp_data->evt_lock);
1364        list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1365                list_move(cursor, &efx->ptp_data->evt_free_list);
1366        }
1367        spin_unlock_bh(&efx->ptp_data->evt_lock);
1368
1369        return rc;
1370}
1371
1372static int efx_ptp_restart(struct efx_nic *efx)
1373{
1374        if (efx->ptp_data && efx->ptp_data->enabled)
1375                return efx_ptp_start(efx);
1376        return 0;
1377}
1378
1379static void efx_ptp_pps_worker(struct work_struct *work)
1380{
1381        struct efx_ptp_data *ptp =
1382                container_of(work, struct efx_ptp_data, pps_work);
1383        struct efx_nic *efx = ptp->efx;
1384        struct ptp_clock_event ptp_evt;
1385
1386        if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1387                return;
1388
1389        ptp_evt.type = PTP_CLOCK_PPSUSR;
1390        ptp_evt.pps_times = ptp->host_time_pps;
1391        ptp_clock_event(ptp->phc_clock, &ptp_evt);
1392}
1393
1394static void efx_ptp_worker(struct work_struct *work)
1395{
1396        struct efx_ptp_data *ptp_data =
1397                container_of(work, struct efx_ptp_data, work);
1398        struct efx_nic *efx = ptp_data->efx;
1399        struct sk_buff *skb;
1400        struct sk_buff_head tempq;
1401
1402        if (ptp_data->reset_required) {
1403                efx_ptp_stop(efx);
1404                efx_ptp_start(efx);
1405                return;
1406        }
1407
1408        efx_ptp_drop_time_expired_events(efx);
1409
1410        __skb_queue_head_init(&tempq);
1411        efx_ptp_process_events(efx, &tempq);
1412
1413        while ((skb = skb_dequeue(&ptp_data->txq)))
1414                ptp_data->xmit_skb(efx, skb);
1415
1416        while ((skb = __skb_dequeue(&tempq)))
1417                efx_ptp_process_rx(efx, skb);
1418}
1419
1420static const struct ptp_clock_info efx_phc_clock_info = {
1421        .owner          = THIS_MODULE,
1422        .name           = "sfc",
1423        .max_adj        = MAX_PPB,
1424        .n_alarm        = 0,
1425        .n_ext_ts       = 0,
1426        .n_per_out      = 0,
1427        .n_pins         = 0,
1428        .pps            = 1,
1429        .adjfreq        = efx_phc_adjfreq,
1430        .adjtime        = efx_phc_adjtime,
1431        .gettime64      = efx_phc_gettime,
1432        .settime64      = efx_phc_settime,
1433        .enable         = efx_phc_enable,
1434};
1435
1436/* Initialise PTP state. */
1437int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1438{
1439        struct efx_ptp_data *ptp;
1440        int rc = 0;
1441        unsigned int pos;
1442
1443        ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1444        efx->ptp_data = ptp;
1445        if (!efx->ptp_data)
1446                return -ENOMEM;
1447
1448        ptp->efx = efx;
1449        ptp->channel = channel;
1450        ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1451
1452        rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1453        if (rc != 0)
1454                goto fail1;
1455
1456        skb_queue_head_init(&ptp->rxq);
1457        skb_queue_head_init(&ptp->txq);
1458        ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1459        if (!ptp->workwq) {
1460                rc = -ENOMEM;
1461                goto fail2;
1462        }
1463
1464        if (efx_ptp_use_mac_tx_timestamps(efx)) {
1465                ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1466                /* Request sync events on this channel. */
1467                channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1468        } else {
1469                ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1470        }
1471
1472        INIT_WORK(&ptp->work, efx_ptp_worker);
1473        ptp->config.flags = 0;
1474        ptp->config.tx_type = HWTSTAMP_TX_OFF;
1475        ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1476        INIT_LIST_HEAD(&ptp->evt_list);
1477        INIT_LIST_HEAD(&ptp->evt_free_list);
1478        spin_lock_init(&ptp->evt_lock);
1479        for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1480                list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1481
1482        /* Get the NIC PTP attributes and set up time conversions */
1483        rc = efx_ptp_get_attributes(efx);
1484        if (rc < 0)
1485                goto fail3;
1486
1487        /* Get the timestamp corrections */
1488        rc = efx_ptp_get_timestamp_corrections(efx);
1489        if (rc < 0)
1490                goto fail3;
1491
1492        if (efx->mcdi->fn_flags &
1493            (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1494                ptp->phc_clock_info = efx_phc_clock_info;
1495                ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1496                                                    &efx->pci_dev->dev);
1497                if (IS_ERR(ptp->phc_clock)) {
1498                        rc = PTR_ERR(ptp->phc_clock);
1499                        goto fail3;
1500                } else if (ptp->phc_clock) {
1501                        INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1502                        ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1503                        if (!ptp->pps_workwq) {
1504                                rc = -ENOMEM;
1505                                goto fail4;
1506                        }
1507                }
1508        }
1509        ptp->nic_ts_enabled = false;
1510
1511        return 0;
1512fail4:
1513        ptp_clock_unregister(efx->ptp_data->phc_clock);
1514
1515fail3:
1516        destroy_workqueue(efx->ptp_data->workwq);
1517
1518fail2:
1519        efx_nic_free_buffer(efx, &ptp->start);
1520
1521fail1:
1522        kfree(efx->ptp_data);
1523        efx->ptp_data = NULL;
1524
1525        return rc;
1526}
1527
1528/* Initialise PTP channel.
1529 *
1530 * Setting core_index to zero causes the queue to be initialised and doesn't
1531 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1532 */
1533static int efx_ptp_probe_channel(struct efx_channel *channel)
1534{
1535        struct efx_nic *efx = channel->efx;
1536        int rc;
1537
1538        channel->irq_moderation_us = 0;
1539        channel->rx_queue.core_index = 0;
1540
1541        rc = efx_ptp_probe(efx, channel);
1542        /* Failure to probe PTP is not fatal; this channel will just not be
1543         * used for anything.
1544         * In the case of EPERM, efx_ptp_probe will print its own message (in
1545         * efx_ptp_get_attributes()), so we don't need to.
1546         */
1547        if (rc && rc != -EPERM)
1548                netif_warn(efx, drv, efx->net_dev,
1549                           "Failed to probe PTP, rc=%d\n", rc);
1550        return 0;
1551}
1552
1553void efx_ptp_remove(struct efx_nic *efx)
1554{
1555        if (!efx->ptp_data)
1556                return;
1557
1558        (void)efx_ptp_disable(efx);
1559
1560        cancel_work_sync(&efx->ptp_data->work);
1561        if (efx->ptp_data->pps_workwq)
1562                cancel_work_sync(&efx->ptp_data->pps_work);
1563
1564        skb_queue_purge(&efx->ptp_data->rxq);
1565        skb_queue_purge(&efx->ptp_data->txq);
1566
1567        if (efx->ptp_data->phc_clock) {
1568                destroy_workqueue(efx->ptp_data->pps_workwq);
1569                ptp_clock_unregister(efx->ptp_data->phc_clock);
1570        }
1571
1572        destroy_workqueue(efx->ptp_data->workwq);
1573
1574        efx_nic_free_buffer(efx, &efx->ptp_data->start);
1575        kfree(efx->ptp_data);
1576        efx->ptp_data = NULL;
1577}
1578
1579static void efx_ptp_remove_channel(struct efx_channel *channel)
1580{
1581        efx_ptp_remove(channel->efx);
1582}
1583
1584static void efx_ptp_get_channel_name(struct efx_channel *channel,
1585                                     char *buf, size_t len)
1586{
1587        snprintf(buf, len, "%s-ptp", channel->efx->name);
1588}
1589
1590/* Determine whether this packet should be processed by the PTP module
1591 * or transmitted conventionally.
1592 */
1593bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1594{
1595        return efx->ptp_data &&
1596                efx->ptp_data->enabled &&
1597                skb->len >= PTP_MIN_LENGTH &&
1598                skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1599                likely(skb->protocol == htons(ETH_P_IP)) &&
1600                skb_transport_header_was_set(skb) &&
1601                skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1602                ip_hdr(skb)->protocol == IPPROTO_UDP &&
1603                skb_headlen(skb) >=
1604                skb_transport_offset(skb) + sizeof(struct udphdr) &&
1605                udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1606}
1607
1608/* Receive a PTP packet.  Packets are queued until the arrival of
1609 * the receive timestamp from the MC - this will probably occur after the
1610 * packet arrival because of the processing in the MC.
1611 */
1612static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1613{
1614        struct efx_nic *efx = channel->efx;
1615        struct efx_ptp_data *ptp = efx->ptp_data;
1616        struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1617        u8 *match_data_012, *match_data_345;
1618        unsigned int version;
1619        u8 *data;
1620
1621        match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1622
1623        /* Correct version? */
1624        if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1625                if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1626                        return false;
1627                }
1628                data = skb->data;
1629                version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1630                if (version != PTP_VERSION_V1) {
1631                        return false;
1632                }
1633
1634                /* PTP V1 uses all six bytes of the UUID to match the packet
1635                 * to the timestamp
1636                 */
1637                match_data_012 = data + PTP_V1_UUID_OFFSET;
1638                match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1639        } else {
1640                if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1641                        return false;
1642                }
1643                data = skb->data;
1644                version = data[PTP_V2_VERSION_OFFSET];
1645                if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1646                        return false;
1647                }
1648
1649                /* The original V2 implementation uses bytes 2-7 of
1650                 * the UUID to match the packet to the timestamp. This
1651                 * discards two of the bytes of the MAC address used
1652                 * to create the UUID (SF bug 33070).  The PTP V2
1653                 * enhanced mode fixes this issue and uses bytes 0-2
1654                 * and byte 5-7 of the UUID.
1655                 */
1656                match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1657                if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1658                        match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1659                } else {
1660                        match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1661                        BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1662                }
1663        }
1664
1665        /* Does this packet require timestamping? */
1666        if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1667                match->state = PTP_PACKET_STATE_UNMATCHED;
1668
1669                /* We expect the sequence number to be in the same position in
1670                 * the packet for PTP V1 and V2
1671                 */
1672                BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1673                BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1674
1675                /* Extract UUID/Sequence information */
1676                match->words[0] = (match_data_012[0]         |
1677                                   (match_data_012[1] << 8)  |
1678                                   (match_data_012[2] << 16) |
1679                                   (match_data_345[0] << 24));
1680                match->words[1] = (match_data_345[1]         |
1681                                   (match_data_345[2] << 8)  |
1682                                   (data[PTP_V1_SEQUENCE_OFFSET +
1683                                         PTP_V1_SEQUENCE_LENGTH - 1] <<
1684                                    16));
1685        } else {
1686                match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1687        }
1688
1689        skb_queue_tail(&ptp->rxq, skb);
1690        queue_work(ptp->workwq, &ptp->work);
1691
1692        return true;
1693}
1694
1695/* Transmit a PTP packet.  This has to be transmitted by the MC
1696 * itself, through an MCDI call.  MCDI calls aren't permitted
1697 * in the transmit path so defer the actual transmission to a suitable worker.
1698 */
1699int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1700{
1701        struct efx_ptp_data *ptp = efx->ptp_data;
1702
1703        skb_queue_tail(&ptp->txq, skb);
1704
1705        if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1706            (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1707                efx_xmit_hwtstamp_pending(skb);
1708        queue_work(ptp->workwq, &ptp->work);
1709
1710        return NETDEV_TX_OK;
1711}
1712
1713int efx_ptp_get_mode(struct efx_nic *efx)
1714{
1715        return efx->ptp_data->mode;
1716}
1717
1718int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1719                        unsigned int new_mode)
1720{
1721        if ((enable_wanted != efx->ptp_data->enabled) ||
1722            (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1723                int rc = 0;
1724
1725                if (enable_wanted) {
1726                        /* Change of mode requires disable */
1727                        if (efx->ptp_data->enabled &&
1728                            (efx->ptp_data->mode != new_mode)) {
1729                                efx->ptp_data->enabled = false;
1730                                rc = efx_ptp_stop(efx);
1731                                if (rc != 0)
1732                                        return rc;
1733                        }
1734
1735                        /* Set new operating mode and establish
1736                         * baseline synchronisation, which must
1737                         * succeed.
1738                         */
1739                        efx->ptp_data->mode = new_mode;
1740                        if (netif_running(efx->net_dev))
1741                                rc = efx_ptp_start(efx);
1742                        if (rc == 0) {
1743                                rc = efx_ptp_synchronize(efx,
1744                                                         PTP_SYNC_ATTEMPTS * 2);
1745                                if (rc != 0)
1746                                        efx_ptp_stop(efx);
1747                        }
1748                } else {
1749                        rc = efx_ptp_stop(efx);
1750                }
1751
1752                if (rc != 0)
1753                        return rc;
1754
1755                efx->ptp_data->enabled = enable_wanted;
1756        }
1757
1758        return 0;
1759}
1760
1761static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1762{
1763        int rc;
1764
1765        if (init->flags)
1766                return -EINVAL;
1767
1768        if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1769            (init->tx_type != HWTSTAMP_TX_ON))
1770                return -ERANGE;
1771
1772        rc = efx->type->ptp_set_ts_config(efx, init);
1773        if (rc)
1774                return rc;
1775
1776        efx->ptp_data->config = *init;
1777        return 0;
1778}
1779
1780void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1781{
1782        struct efx_ptp_data *ptp = efx->ptp_data;
1783        struct efx_nic *primary = efx->primary;
1784
1785        ASSERT_RTNL();
1786
1787        if (!ptp)
1788                return;
1789
1790        ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1791                                     SOF_TIMESTAMPING_RX_HARDWARE |
1792                                     SOF_TIMESTAMPING_RAW_HARDWARE);
1793        /* Check licensed features.  If we don't have the license for TX
1794         * timestamps, the NIC will not support them.
1795         */
1796        if (efx_ptp_use_mac_tx_timestamps(efx)) {
1797                struct efx_ef10_nic_data *nic_data = efx->nic_data;
1798
1799                if (!(nic_data->licensed_features &
1800                      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1801                        ts_info->so_timestamping &=
1802                                ~SOF_TIMESTAMPING_TX_HARDWARE;
1803        }
1804        if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1805                ts_info->phc_index =
1806                        ptp_clock_index(primary->ptp_data->phc_clock);
1807        ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1808        ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1809}
1810
1811int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1812{
1813        struct hwtstamp_config config;
1814        int rc;
1815
1816        /* Not a PTP enabled port */
1817        if (!efx->ptp_data)
1818                return -EOPNOTSUPP;
1819
1820        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1821                return -EFAULT;
1822
1823        rc = efx_ptp_ts_init(efx, &config);
1824        if (rc != 0)
1825                return rc;
1826
1827        return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1828                ? -EFAULT : 0;
1829}
1830
1831int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1832{
1833        if (!efx->ptp_data)
1834                return -EOPNOTSUPP;
1835
1836        return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1837                            sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1838}
1839
1840static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1841{
1842        struct efx_ptp_data *ptp = efx->ptp_data;
1843
1844        netif_err(efx, hw, efx->net_dev,
1845                "PTP unexpected event length: got %d expected %d\n",
1846                ptp->evt_frag_idx, expected_frag_len);
1847        ptp->reset_required = true;
1848        queue_work(ptp->workwq, &ptp->work);
1849}
1850
1851/* Process a completed receive event.  Put it on the event queue and
1852 * start worker thread.  This is required because event and their
1853 * correspoding packets may come in either order.
1854 */
1855static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1856{
1857        struct efx_ptp_event_rx *evt = NULL;
1858
1859        if (WARN_ON_ONCE(ptp->rx_ts_inline))
1860                return;
1861
1862        if (ptp->evt_frag_idx != 3) {
1863                ptp_event_failure(efx, 3);
1864                return;
1865        }
1866
1867        spin_lock_bh(&ptp->evt_lock);
1868        if (!list_empty(&ptp->evt_free_list)) {
1869                evt = list_first_entry(&ptp->evt_free_list,
1870                                       struct efx_ptp_event_rx, link);
1871                list_del(&evt->link);
1872
1873                evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1874                evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1875                                             MCDI_EVENT_SRC)        |
1876                             (EFX_QWORD_FIELD(ptp->evt_frags[1],
1877                                              MCDI_EVENT_SRC) << 8) |
1878                             (EFX_QWORD_FIELD(ptp->evt_frags[0],
1879                                              MCDI_EVENT_SRC) << 16));
1880                evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1881                        EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1882                        EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1883                        ptp->ts_corrections.ptp_rx);
1884                evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1885                list_add_tail(&evt->link, &ptp->evt_list);
1886
1887                queue_work(ptp->workwq, &ptp->work);
1888        } else if (net_ratelimit()) {
1889                /* Log a rate-limited warning message. */
1890                netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1891        }
1892        spin_unlock_bh(&ptp->evt_lock);
1893}
1894
1895static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1896{
1897        int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1898        if (ptp->evt_frag_idx != 1) {
1899                ptp_event_failure(efx, 1);
1900                return;
1901        }
1902
1903        netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1904}
1905
1906static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1907{
1908        if (ptp->nic_ts_enabled)
1909                queue_work(ptp->pps_workwq, &ptp->pps_work);
1910}
1911
1912void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1913{
1914        struct efx_ptp_data *ptp = efx->ptp_data;
1915        int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1916
1917        if (!ptp) {
1918                if (!efx->ptp_warned) {
1919                        netif_warn(efx, drv, efx->net_dev,
1920                                   "Received PTP event but PTP not set up\n");
1921                        efx->ptp_warned = true;
1922                }
1923                return;
1924        }
1925
1926        if (!ptp->enabled)
1927                return;
1928
1929        if (ptp->evt_frag_idx == 0) {
1930                ptp->evt_code = code;
1931        } else if (ptp->evt_code != code) {
1932                netif_err(efx, hw, efx->net_dev,
1933                          "PTP out of sequence event %d\n", code);
1934                ptp->evt_frag_idx = 0;
1935        }
1936
1937        ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1938        if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1939                /* Process resulting event */
1940                switch (code) {
1941                case MCDI_EVENT_CODE_PTP_RX:
1942                        ptp_event_rx(efx, ptp);
1943                        break;
1944                case MCDI_EVENT_CODE_PTP_FAULT:
1945                        ptp_event_fault(efx, ptp);
1946                        break;
1947                case MCDI_EVENT_CODE_PTP_PPS:
1948                        ptp_event_pps(efx, ptp);
1949                        break;
1950                default:
1951                        netif_err(efx, hw, efx->net_dev,
1952                                  "PTP unknown event %d\n", code);
1953                        break;
1954                }
1955                ptp->evt_frag_idx = 0;
1956        } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1957                netif_err(efx, hw, efx->net_dev,
1958                          "PTP too many event fragments\n");
1959                ptp->evt_frag_idx = 0;
1960        }
1961}
1962
1963void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1964{
1965        struct efx_nic *efx = channel->efx;
1966        struct efx_ptp_data *ptp = efx->ptp_data;
1967
1968        /* When extracting the sync timestamp minor value, we should discard
1969         * the least significant two bits. These are not required in order
1970         * to reconstruct full-range timestamps and they are optionally used
1971         * to report status depending on the options supplied when subscribing
1972         * for sync events.
1973         */
1974        channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1975        channel->sync_timestamp_minor =
1976                (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
1977                        << ptp->nic_time.sync_event_minor_shift;
1978
1979        /* if sync events have been disabled then we want to silently ignore
1980         * this event, so throw away result.
1981         */
1982        (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1983                       SYNC_EVENTS_VALID);
1984}
1985
1986static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1987{
1988#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1989        return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1990#else
1991        const u8 *data = eh + efx->rx_packet_ts_offset;
1992        return (u32)data[0]       |
1993               (u32)data[1] << 8  |
1994               (u32)data[2] << 16 |
1995               (u32)data[3] << 24;
1996#endif
1997}
1998
1999void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2000                                   struct sk_buff *skb)
2001{
2002        struct efx_nic *efx = channel->efx;
2003        struct efx_ptp_data *ptp = efx->ptp_data;
2004        u32 pkt_timestamp_major, pkt_timestamp_minor;
2005        u32 diff, carry;
2006        struct skb_shared_hwtstamps *timestamps;
2007
2008        if (channel->sync_events_state != SYNC_EVENTS_VALID)
2009                return;
2010
2011        pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2012
2013        /* get the difference between the packet and sync timestamps,
2014         * modulo one second
2015         */
2016        diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2017        if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2018                diff += ptp->nic_time.minor_max;
2019
2020        /* do we roll over a second boundary and need to carry the one? */
2021        carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2022                1 : 0;
2023
2024        if (diff <= ptp->nic_time.sync_event_diff_max) {
2025                /* packet is ahead of the sync event by a quarter of a second or
2026                 * less (allowing for fuzz)
2027                 */
2028                pkt_timestamp_major = channel->sync_timestamp_major + carry;
2029        } else if (diff >= ptp->nic_time.sync_event_diff_min) {
2030                /* packet is behind the sync event but within the fuzz factor.
2031                 * This means the RX packet and sync event crossed as they were
2032                 * placed on the event queue, which can sometimes happen.
2033                 */
2034                pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2035        } else {
2036                /* it's outside tolerance in both directions. this might be
2037                 * indicative of us missing sync events for some reason, so
2038                 * we'll call it an error rather than risk giving a bogus
2039                 * timestamp.
2040                 */
2041                netif_vdbg(efx, drv, efx->net_dev,
2042                          "packet timestamp %x too far from sync event %x:%x\n",
2043                          pkt_timestamp_minor, channel->sync_timestamp_major,
2044                          channel->sync_timestamp_minor);
2045                return;
2046        }
2047
2048        /* attach the timestamps to the skb */
2049        timestamps = skb_hwtstamps(skb);
2050        timestamps->hwtstamp =
2051                ptp->nic_to_kernel_time(pkt_timestamp_major,
2052                                        pkt_timestamp_minor,
2053                                        ptp->ts_corrections.general_rx);
2054}
2055
2056static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2057{
2058        struct efx_ptp_data *ptp_data = container_of(ptp,
2059                                                     struct efx_ptp_data,
2060                                                     phc_clock_info);
2061        struct efx_nic *efx = ptp_data->efx;
2062        MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2063        s64 adjustment_ns;
2064        int rc;
2065
2066        if (delta > MAX_PPB)
2067                delta = MAX_PPB;
2068        else if (delta < -MAX_PPB)
2069                delta = -MAX_PPB;
2070
2071        /* Convert ppb to fixed point ns taking care to round correctly. */
2072        adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2073                         (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2074                        ptp_data->adjfreq_ppb_shift;
2075
2076        MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2077        MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2078        MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2079        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2080        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2081        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2082                          NULL, 0, NULL);
2083        if (rc != 0)
2084                return rc;
2085
2086        ptp_data->current_adjfreq = adjustment_ns;
2087        return 0;
2088}
2089
2090static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2091{
2092        u32 nic_major, nic_minor;
2093        struct efx_ptp_data *ptp_data = container_of(ptp,
2094                                                     struct efx_ptp_data,
2095                                                     phc_clock_info);
2096        struct efx_nic *efx = ptp_data->efx;
2097        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2098
2099        efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2100
2101        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2102        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2103        MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2104        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2105        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2106        return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2107                            NULL, 0, NULL);
2108}
2109
2110static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2111{
2112        struct efx_ptp_data *ptp_data = container_of(ptp,
2113                                                     struct efx_ptp_data,
2114                                                     phc_clock_info);
2115        struct efx_nic *efx = ptp_data->efx;
2116        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2117        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2118        int rc;
2119        ktime_t kt;
2120
2121        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2122        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2123
2124        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2125                          outbuf, sizeof(outbuf), NULL);
2126        if (rc != 0)
2127                return rc;
2128
2129        kt = ptp_data->nic_to_kernel_time(
2130                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2131                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2132        *ts = ktime_to_timespec64(kt);
2133        return 0;
2134}
2135
2136static int efx_phc_settime(struct ptp_clock_info *ptp,
2137                           const struct timespec64 *e_ts)
2138{
2139        /* Get the current NIC time, efx_phc_gettime.
2140         * Subtract from the desired time to get the offset
2141         * call efx_phc_adjtime with the offset
2142         */
2143        int rc;
2144        struct timespec64 time_now;
2145        struct timespec64 delta;
2146
2147        rc = efx_phc_gettime(ptp, &time_now);
2148        if (rc != 0)
2149                return rc;
2150
2151        delta = timespec64_sub(*e_ts, time_now);
2152
2153        rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2154        if (rc != 0)
2155                return rc;
2156
2157        return 0;
2158}
2159
2160static int efx_phc_enable(struct ptp_clock_info *ptp,
2161                          struct ptp_clock_request *request,
2162                          int enable)
2163{
2164        struct efx_ptp_data *ptp_data = container_of(ptp,
2165                                                     struct efx_ptp_data,
2166                                                     phc_clock_info);
2167        if (request->type != PTP_CLK_REQ_PPS)
2168                return -EOPNOTSUPP;
2169
2170        ptp_data->nic_ts_enabled = !!enable;
2171        return 0;
2172}
2173
2174static const struct efx_channel_type efx_ptp_channel_type = {
2175        .handle_no_channel      = efx_ptp_handle_no_channel,
2176        .pre_probe              = efx_ptp_probe_channel,
2177        .post_remove            = efx_ptp_remove_channel,
2178        .get_name               = efx_ptp_get_channel_name,
2179        /* no copy operation; there is no need to reallocate this channel */
2180        .receive_skb            = efx_ptp_rx,
2181        .want_txqs              = efx_ptp_want_txqs,
2182        .keep_eventq            = false,
2183};
2184
2185void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2186{
2187        /* Check whether PTP is implemented on this NIC.  The DISABLE
2188         * operation will succeed if and only if it is implemented.
2189         */
2190        if (efx_ptp_disable(efx) == 0)
2191                efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2192                        &efx_ptp_channel_type;
2193}
2194
2195void efx_ptp_start_datapath(struct efx_nic *efx)
2196{
2197        if (efx_ptp_restart(efx))
2198                netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2199        /* re-enable timestamping if it was previously enabled */
2200        if (efx->type->ptp_set_ts_sync_events)
2201                efx->type->ptp_set_ts_sync_events(efx, true, true);
2202}
2203
2204void efx_ptp_stop_datapath(struct efx_nic *efx)
2205{
2206        /* temporarily disable timestamping */
2207        if (efx->type->ptp_set_ts_sync_events)
2208                efx->type->ptp_set_ts_sync_events(efx, false, true);
2209        efx_ptp_stop(efx);
2210}
2211