linux/drivers/net/wireless/ralink/rt2x00/rt2x00dev.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3        Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
   4        Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
   5        <http://rt2x00.serialmonkey.com>
   6
   7 */
   8
   9/*
  10        Module: rt2x00lib
  11        Abstract: rt2x00 generic device routines.
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/log2.h>
  18#include <linux/of.h>
  19#include <linux/of_net.h>
  20
  21#include "rt2x00.h"
  22#include "rt2x00lib.h"
  23
  24/*
  25 * Utility functions.
  26 */
  27u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
  28                         struct ieee80211_vif *vif)
  29{
  30        /*
  31         * When in STA mode, bssidx is always 0 otherwise local_address[5]
  32         * contains the bss number, see BSS_ID_MASK comments for details.
  33         */
  34        if (rt2x00dev->intf_sta_count)
  35                return 0;
  36        return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
  37}
  38EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
  39
  40/*
  41 * Radio control handlers.
  42 */
  43int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
  44{
  45        int status;
  46
  47        /*
  48         * Don't enable the radio twice.
  49         * And check if the hardware button has been disabled.
  50         */
  51        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  52                return 0;
  53
  54        /*
  55         * Initialize all data queues.
  56         */
  57        rt2x00queue_init_queues(rt2x00dev);
  58
  59        /*
  60         * Enable radio.
  61         */
  62        status =
  63            rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
  64        if (status)
  65                return status;
  66
  67        rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
  68
  69        rt2x00leds_led_radio(rt2x00dev, true);
  70        rt2x00led_led_activity(rt2x00dev, true);
  71
  72        set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
  73
  74        /*
  75         * Enable queues.
  76         */
  77        rt2x00queue_start_queues(rt2x00dev);
  78        rt2x00link_start_tuner(rt2x00dev);
  79
  80        /*
  81         * Start watchdog monitoring.
  82         */
  83        rt2x00link_start_watchdog(rt2x00dev);
  84
  85        return 0;
  86}
  87
  88void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
  89{
  90        if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  91                return;
  92
  93        /*
  94         * Stop watchdog monitoring.
  95         */
  96        rt2x00link_stop_watchdog(rt2x00dev);
  97
  98        /*
  99         * Stop all queues
 100         */
 101        rt2x00link_stop_tuner(rt2x00dev);
 102        rt2x00queue_stop_queues(rt2x00dev);
 103        rt2x00queue_flush_queues(rt2x00dev, true);
 104
 105        /*
 106         * Disable radio.
 107         */
 108        rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
 109        rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
 110        rt2x00led_led_activity(rt2x00dev, false);
 111        rt2x00leds_led_radio(rt2x00dev, false);
 112}
 113
 114static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
 115                                          struct ieee80211_vif *vif)
 116{
 117        struct rt2x00_dev *rt2x00dev = data;
 118        struct rt2x00_intf *intf = vif_to_intf(vif);
 119
 120        /*
 121         * It is possible the radio was disabled while the work had been
 122         * scheduled. If that happens we should return here immediately,
 123         * note that in the spinlock protected area above the delayed_flags
 124         * have been cleared correctly.
 125         */
 126        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 127                return;
 128
 129        if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
 130                mutex_lock(&intf->beacon_skb_mutex);
 131                rt2x00queue_update_beacon(rt2x00dev, vif);
 132                mutex_unlock(&intf->beacon_skb_mutex);
 133        }
 134}
 135
 136static void rt2x00lib_intf_scheduled(struct work_struct *work)
 137{
 138        struct rt2x00_dev *rt2x00dev =
 139            container_of(work, struct rt2x00_dev, intf_work);
 140
 141        /*
 142         * Iterate over each interface and perform the
 143         * requested configurations.
 144         */
 145        ieee80211_iterate_active_interfaces(rt2x00dev->hw,
 146                                            IEEE80211_IFACE_ITER_RESUME_ALL,
 147                                            rt2x00lib_intf_scheduled_iter,
 148                                            rt2x00dev);
 149}
 150
 151static void rt2x00lib_autowakeup(struct work_struct *work)
 152{
 153        struct rt2x00_dev *rt2x00dev =
 154            container_of(work, struct rt2x00_dev, autowakeup_work.work);
 155
 156        if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 157                return;
 158
 159        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 160                rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
 161        clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
 162}
 163
 164/*
 165 * Interrupt context handlers.
 166 */
 167static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
 168                                     struct ieee80211_vif *vif)
 169{
 170        struct ieee80211_tx_control control = {};
 171        struct rt2x00_dev *rt2x00dev = data;
 172        struct sk_buff *skb;
 173
 174        /*
 175         * Only AP mode interfaces do broad- and multicast buffering
 176         */
 177        if (vif->type != NL80211_IFTYPE_AP)
 178                return;
 179
 180        /*
 181         * Send out buffered broad- and multicast frames
 182         */
 183        skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 184        while (skb) {
 185                rt2x00mac_tx(rt2x00dev->hw, &control, skb);
 186                skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 187        }
 188}
 189
 190static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
 191                                        struct ieee80211_vif *vif)
 192{
 193        struct rt2x00_dev *rt2x00dev = data;
 194
 195        if (vif->type != NL80211_IFTYPE_AP &&
 196            vif->type != NL80211_IFTYPE_ADHOC &&
 197            vif->type != NL80211_IFTYPE_MESH_POINT &&
 198            vif->type != NL80211_IFTYPE_WDS)
 199                return;
 200
 201        /*
 202         * Update the beacon without locking. This is safe on PCI devices
 203         * as they only update the beacon periodically here. This should
 204         * never be called for USB devices.
 205         */
 206        WARN_ON(rt2x00_is_usb(rt2x00dev));
 207        rt2x00queue_update_beacon(rt2x00dev, vif);
 208}
 209
 210void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
 211{
 212        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 213                return;
 214
 215        /* send buffered bc/mc frames out for every bssid */
 216        ieee80211_iterate_active_interfaces_atomic(
 217                rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 218                rt2x00lib_bc_buffer_iter, rt2x00dev);
 219        /*
 220         * Devices with pre tbtt interrupt don't need to update the beacon
 221         * here as they will fetch the next beacon directly prior to
 222         * transmission.
 223         */
 224        if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
 225                return;
 226
 227        /* fetch next beacon */
 228        ieee80211_iterate_active_interfaces_atomic(
 229                rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 230                rt2x00lib_beaconupdate_iter, rt2x00dev);
 231}
 232EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
 233
 234void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
 235{
 236        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 237                return;
 238
 239        /* fetch next beacon */
 240        ieee80211_iterate_active_interfaces_atomic(
 241                rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 242                rt2x00lib_beaconupdate_iter, rt2x00dev);
 243}
 244EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
 245
 246void rt2x00lib_dmastart(struct queue_entry *entry)
 247{
 248        set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 249        rt2x00queue_index_inc(entry, Q_INDEX);
 250}
 251EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
 252
 253void rt2x00lib_dmadone(struct queue_entry *entry)
 254{
 255        set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
 256        clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 257        rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
 258}
 259EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
 260
 261static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
 262{
 263        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 264        struct ieee80211_bar *bar = (void *) entry->skb->data;
 265        struct rt2x00_bar_list_entry *bar_entry;
 266        int ret;
 267
 268        if (likely(!ieee80211_is_back_req(bar->frame_control)))
 269                return 0;
 270
 271        /*
 272         * Unlike all other frames, the status report for BARs does
 273         * not directly come from the hardware as it is incapable of
 274         * matching a BA to a previously send BAR. The hardware will
 275         * report all BARs as if they weren't acked at all.
 276         *
 277         * Instead the RX-path will scan for incoming BAs and set the
 278         * block_acked flag if it sees one that was likely caused by
 279         * a BAR from us.
 280         *
 281         * Remove remaining BARs here and return their status for
 282         * TX done processing.
 283         */
 284        ret = 0;
 285        rcu_read_lock();
 286        list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
 287                if (bar_entry->entry != entry)
 288                        continue;
 289
 290                spin_lock_bh(&rt2x00dev->bar_list_lock);
 291                /* Return whether this BAR was blockacked or not */
 292                ret = bar_entry->block_acked;
 293                /* Remove the BAR from our checklist */
 294                list_del_rcu(&bar_entry->list);
 295                spin_unlock_bh(&rt2x00dev->bar_list_lock);
 296                kfree_rcu(bar_entry, head);
 297
 298                break;
 299        }
 300        rcu_read_unlock();
 301
 302        return ret;
 303}
 304
 305static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
 306                                     struct ieee80211_tx_info *tx_info,
 307                                     struct skb_frame_desc *skbdesc,
 308                                     struct txdone_entry_desc *txdesc,
 309                                     bool success)
 310{
 311        u8 rate_idx, rate_flags, retry_rates;
 312        int i;
 313
 314        rate_idx = skbdesc->tx_rate_idx;
 315        rate_flags = skbdesc->tx_rate_flags;
 316        retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
 317            (txdesc->retry + 1) : 1;
 318
 319        /*
 320         * Initialize TX status
 321         */
 322        memset(&tx_info->status, 0, sizeof(tx_info->status));
 323        tx_info->status.ack_signal = 0;
 324
 325        /*
 326         * Frame was send with retries, hardware tried
 327         * different rates to send out the frame, at each
 328         * retry it lowered the rate 1 step except when the
 329         * lowest rate was used.
 330         */
 331        for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
 332                tx_info->status.rates[i].idx = rate_idx - i;
 333                tx_info->status.rates[i].flags = rate_flags;
 334
 335                if (rate_idx - i == 0) {
 336                        /*
 337                         * The lowest rate (index 0) was used until the
 338                         * number of max retries was reached.
 339                         */
 340                        tx_info->status.rates[i].count = retry_rates - i;
 341                        i++;
 342                        break;
 343                }
 344                tx_info->status.rates[i].count = 1;
 345        }
 346        if (i < (IEEE80211_TX_MAX_RATES - 1))
 347                tx_info->status.rates[i].idx = -1; /* terminate */
 348
 349        if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
 350                tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
 351
 352        if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
 353                if (success)
 354                        tx_info->flags |= IEEE80211_TX_STAT_ACK;
 355                else
 356                        rt2x00dev->low_level_stats.dot11ACKFailureCount++;
 357        }
 358
 359        /*
 360         * Every single frame has it's own tx status, hence report
 361         * every frame as ampdu of size 1.
 362         *
 363         * TODO: if we can find out how many frames were aggregated
 364         * by the hw we could provide the real ampdu_len to mac80211
 365         * which would allow the rc algorithm to better decide on
 366         * which rates are suitable.
 367         */
 368        if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
 369            tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
 370                tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
 371                                  IEEE80211_TX_CTL_AMPDU;
 372                tx_info->status.ampdu_len = 1;
 373                tx_info->status.ampdu_ack_len = success ? 1 : 0;
 374        }
 375
 376        if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 377                if (success)
 378                        rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
 379                else
 380                        rt2x00dev->low_level_stats.dot11RTSFailureCount++;
 381        }
 382}
 383
 384static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
 385                                  struct queue_entry *entry)
 386{
 387        /*
 388         * Make this entry available for reuse.
 389         */
 390        entry->skb = NULL;
 391        entry->flags = 0;
 392
 393        rt2x00dev->ops->lib->clear_entry(entry);
 394
 395        rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 396
 397        /*
 398         * If the data queue was below the threshold before the txdone
 399         * handler we must make sure the packet queue in the mac80211 stack
 400         * is reenabled when the txdone handler has finished. This has to be
 401         * serialized with rt2x00mac_tx(), otherwise we can wake up queue
 402         * before it was stopped.
 403         */
 404        spin_lock_bh(&entry->queue->tx_lock);
 405        if (!rt2x00queue_threshold(entry->queue))
 406                rt2x00queue_unpause_queue(entry->queue);
 407        spin_unlock_bh(&entry->queue->tx_lock);
 408}
 409
 410void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
 411                              struct txdone_entry_desc *txdesc)
 412{
 413        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 414        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 415        struct ieee80211_tx_info txinfo = {};
 416        bool success;
 417
 418        /*
 419         * Unmap the skb.
 420         */
 421        rt2x00queue_unmap_skb(entry);
 422
 423        /*
 424         * Signal that the TX descriptor is no longer in the skb.
 425         */
 426        skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
 427
 428        /*
 429         * Send frame to debugfs immediately, after this call is completed
 430         * we are going to overwrite the skb->cb array.
 431         */
 432        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
 433
 434        /*
 435         * Determine if the frame has been successfully transmitted and
 436         * remove BARs from our check list while checking for their
 437         * TX status.
 438         */
 439        success =
 440            rt2x00lib_txdone_bar_status(entry) ||
 441            test_bit(TXDONE_SUCCESS, &txdesc->flags);
 442
 443        if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
 444                /*
 445                 * Update TX statistics.
 446                 */
 447                rt2x00dev->link.qual.tx_success += success;
 448                rt2x00dev->link.qual.tx_failed += !success;
 449
 450                rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
 451                                         success);
 452                ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
 453        }
 454
 455        dev_kfree_skb_any(entry->skb);
 456        rt2x00lib_clear_entry(rt2x00dev, entry);
 457}
 458EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
 459
 460void rt2x00lib_txdone(struct queue_entry *entry,
 461                      struct txdone_entry_desc *txdesc)
 462{
 463        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 464        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
 465        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 466        u8 skbdesc_flags = skbdesc->flags;
 467        unsigned int header_length;
 468        bool success;
 469
 470        /*
 471         * Unmap the skb.
 472         */
 473        rt2x00queue_unmap_skb(entry);
 474
 475        /*
 476         * Remove the extra tx headroom from the skb.
 477         */
 478        skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
 479
 480        /*
 481         * Signal that the TX descriptor is no longer in the skb.
 482         */
 483        skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
 484
 485        /*
 486         * Determine the length of 802.11 header.
 487         */
 488        header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 489
 490        /*
 491         * Remove L2 padding which was added during
 492         */
 493        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
 494                rt2x00queue_remove_l2pad(entry->skb, header_length);
 495
 496        /*
 497         * If the IV/EIV data was stripped from the frame before it was
 498         * passed to the hardware, we should now reinsert it again because
 499         * mac80211 will expect the same data to be present it the
 500         * frame as it was passed to us.
 501         */
 502        if (rt2x00_has_cap_hw_crypto(rt2x00dev))
 503                rt2x00crypto_tx_insert_iv(entry->skb, header_length);
 504
 505        /*
 506         * Send frame to debugfs immediately, after this call is completed
 507         * we are going to overwrite the skb->cb array.
 508         */
 509        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
 510
 511        /*
 512         * Determine if the frame has been successfully transmitted and
 513         * remove BARs from our check list while checking for their
 514         * TX status.
 515         */
 516        success =
 517            rt2x00lib_txdone_bar_status(entry) ||
 518            test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
 519            test_bit(TXDONE_UNKNOWN, &txdesc->flags);
 520
 521        /*
 522         * Update TX statistics.
 523         */
 524        rt2x00dev->link.qual.tx_success += success;
 525        rt2x00dev->link.qual.tx_failed += !success;
 526
 527        rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
 528
 529        /*
 530         * Only send the status report to mac80211 when it's a frame
 531         * that originated in mac80211. If this was a extra frame coming
 532         * through a mac80211 library call (RTS/CTS) then we should not
 533         * send the status report back.
 534         */
 535        if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
 536                if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
 537                        ieee80211_tx_status(rt2x00dev->hw, entry->skb);
 538                else
 539                        ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
 540        } else {
 541                dev_kfree_skb_any(entry->skb);
 542        }
 543
 544        rt2x00lib_clear_entry(rt2x00dev, entry);
 545}
 546EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
 547
 548void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
 549{
 550        struct txdone_entry_desc txdesc;
 551
 552        txdesc.flags = 0;
 553        __set_bit(status, &txdesc.flags);
 554        txdesc.retry = 0;
 555
 556        rt2x00lib_txdone(entry, &txdesc);
 557}
 558EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
 559
 560static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
 561{
 562        struct ieee80211_mgmt *mgmt = (void *)data;
 563        u8 *pos, *end;
 564
 565        pos = (u8 *)mgmt->u.beacon.variable;
 566        end = data + len;
 567        while (pos < end) {
 568                if (pos + 2 + pos[1] > end)
 569                        return NULL;
 570
 571                if (pos[0] == ie)
 572                        return pos;
 573
 574                pos += 2 + pos[1];
 575        }
 576
 577        return NULL;
 578}
 579
 580static void rt2x00lib_sleep(struct work_struct *work)
 581{
 582        struct rt2x00_dev *rt2x00dev =
 583            container_of(work, struct rt2x00_dev, sleep_work);
 584
 585        if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 586                return;
 587
 588        /*
 589         * Check again is powersaving is enabled, to prevent races from delayed
 590         * work execution.
 591         */
 592        if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 593                rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
 594                                 IEEE80211_CONF_CHANGE_PS);
 595}
 596
 597static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
 598                                      struct sk_buff *skb,
 599                                      struct rxdone_entry_desc *rxdesc)
 600{
 601        struct rt2x00_bar_list_entry *entry;
 602        struct ieee80211_bar *ba = (void *)skb->data;
 603
 604        if (likely(!ieee80211_is_back(ba->frame_control)))
 605                return;
 606
 607        if (rxdesc->size < sizeof(*ba) + FCS_LEN)
 608                return;
 609
 610        rcu_read_lock();
 611        list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
 612
 613                if (ba->start_seq_num != entry->start_seq_num)
 614                        continue;
 615
 616#define TID_CHECK(a, b) (                                               \
 617        ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==        \
 618        ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))          \
 619
 620                if (!TID_CHECK(ba->control, entry->control))
 621                        continue;
 622
 623#undef TID_CHECK
 624
 625                if (!ether_addr_equal_64bits(ba->ra, entry->ta))
 626                        continue;
 627
 628                if (!ether_addr_equal_64bits(ba->ta, entry->ra))
 629                        continue;
 630
 631                /* Mark BAR since we received the according BA */
 632                spin_lock_bh(&rt2x00dev->bar_list_lock);
 633                entry->block_acked = 1;
 634                spin_unlock_bh(&rt2x00dev->bar_list_lock);
 635                break;
 636        }
 637        rcu_read_unlock();
 638
 639}
 640
 641static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
 642                                      struct sk_buff *skb,
 643                                      struct rxdone_entry_desc *rxdesc)
 644{
 645        struct ieee80211_hdr *hdr = (void *) skb->data;
 646        struct ieee80211_tim_ie *tim_ie;
 647        u8 *tim;
 648        u8 tim_len;
 649        bool cam;
 650
 651        /* If this is not a beacon, or if mac80211 has no powersaving
 652         * configured, or if the device is already in powersaving mode
 653         * we can exit now. */
 654        if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
 655                   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
 656                return;
 657
 658        /* min. beacon length + FCS_LEN */
 659        if (skb->len <= 40 + FCS_LEN)
 660                return;
 661
 662        /* and only beacons from the associated BSSID, please */
 663        if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
 664            !rt2x00dev->aid)
 665                return;
 666
 667        rt2x00dev->last_beacon = jiffies;
 668
 669        tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
 670        if (!tim)
 671                return;
 672
 673        if (tim[1] < sizeof(*tim_ie))
 674                return;
 675
 676        tim_len = tim[1];
 677        tim_ie = (struct ieee80211_tim_ie *) &tim[2];
 678
 679        /* Check whenever the PHY can be turned off again. */
 680
 681        /* 1. What about buffered unicast traffic for our AID? */
 682        cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
 683
 684        /* 2. Maybe the AP wants to send multicast/broadcast data? */
 685        cam |= (tim_ie->bitmap_ctrl & 0x01);
 686
 687        if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 688                queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
 689}
 690
 691static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
 692                                        struct rxdone_entry_desc *rxdesc)
 693{
 694        struct ieee80211_supported_band *sband;
 695        const struct rt2x00_rate *rate;
 696        unsigned int i;
 697        int signal = rxdesc->signal;
 698        int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
 699
 700        switch (rxdesc->rate_mode) {
 701        case RATE_MODE_CCK:
 702        case RATE_MODE_OFDM:
 703                /*
 704                 * For non-HT rates the MCS value needs to contain the
 705                 * actually used rate modulation (CCK or OFDM).
 706                 */
 707                if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
 708                        signal = RATE_MCS(rxdesc->rate_mode, signal);
 709
 710                sband = &rt2x00dev->bands[rt2x00dev->curr_band];
 711                for (i = 0; i < sband->n_bitrates; i++) {
 712                        rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
 713                        if (((type == RXDONE_SIGNAL_PLCP) &&
 714                             (rate->plcp == signal)) ||
 715                            ((type == RXDONE_SIGNAL_BITRATE) &&
 716                              (rate->bitrate == signal)) ||
 717                            ((type == RXDONE_SIGNAL_MCS) &&
 718                              (rate->mcs == signal))) {
 719                                return i;
 720                        }
 721                }
 722                break;
 723        case RATE_MODE_HT_MIX:
 724        case RATE_MODE_HT_GREENFIELD:
 725                if (signal >= 0 && signal <= 76)
 726                        return signal;
 727                break;
 728        default:
 729                break;
 730        }
 731
 732        rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
 733                    rxdesc->rate_mode, signal, type);
 734        return 0;
 735}
 736
 737void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
 738{
 739        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 740        struct rxdone_entry_desc rxdesc;
 741        struct sk_buff *skb;
 742        struct ieee80211_rx_status *rx_status;
 743        unsigned int header_length;
 744        int rate_idx;
 745
 746        if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
 747            !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 748                goto submit_entry;
 749
 750        if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
 751                goto submit_entry;
 752
 753        /*
 754         * Allocate a new sk_buffer. If no new buffer available, drop the
 755         * received frame and reuse the existing buffer.
 756         */
 757        skb = rt2x00queue_alloc_rxskb(entry, gfp);
 758        if (!skb)
 759                goto submit_entry;
 760
 761        /*
 762         * Unmap the skb.
 763         */
 764        rt2x00queue_unmap_skb(entry);
 765
 766        /*
 767         * Extract the RXD details.
 768         */
 769        memset(&rxdesc, 0, sizeof(rxdesc));
 770        rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
 771
 772        /*
 773         * Check for valid size in case we get corrupted descriptor from
 774         * hardware.
 775         */
 776        if (unlikely(rxdesc.size == 0 ||
 777                     rxdesc.size > entry->queue->data_size)) {
 778                rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
 779                           rxdesc.size, entry->queue->data_size);
 780                dev_kfree_skb(entry->skb);
 781                goto renew_skb;
 782        }
 783
 784        /*
 785         * The data behind the ieee80211 header must be
 786         * aligned on a 4 byte boundary.
 787         */
 788        header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 789
 790        /*
 791         * Hardware might have stripped the IV/EIV/ICV data,
 792         * in that case it is possible that the data was
 793         * provided separately (through hardware descriptor)
 794         * in which case we should reinsert the data into the frame.
 795         */
 796        if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
 797            (rxdesc.flags & RX_FLAG_IV_STRIPPED))
 798                rt2x00crypto_rx_insert_iv(entry->skb, header_length,
 799                                          &rxdesc);
 800        else if (header_length &&
 801                 (rxdesc.size > header_length) &&
 802                 (rxdesc.dev_flags & RXDONE_L2PAD))
 803                rt2x00queue_remove_l2pad(entry->skb, header_length);
 804
 805        /* Trim buffer to correct size */
 806        skb_trim(entry->skb, rxdesc.size);
 807
 808        /*
 809         * Translate the signal to the correct bitrate index.
 810         */
 811        rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
 812        if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
 813            rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
 814                rxdesc.encoding = RX_ENC_HT;
 815
 816        /*
 817         * Check if this is a beacon, and more frames have been
 818         * buffered while we were in powersaving mode.
 819         */
 820        rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
 821
 822        /*
 823         * Check for incoming BlockAcks to match to the BlockAckReqs
 824         * we've send out.
 825         */
 826        rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
 827
 828        /*
 829         * Update extra components
 830         */
 831        rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
 832        rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
 833        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
 834
 835        /*
 836         * Initialize RX status information, and send frame
 837         * to mac80211.
 838         */
 839        rx_status = IEEE80211_SKB_RXCB(entry->skb);
 840
 841        /* Ensure that all fields of rx_status are initialized
 842         * properly. The skb->cb array was used for driver
 843         * specific informations, so rx_status might contain
 844         * garbage.
 845         */
 846        memset(rx_status, 0, sizeof(*rx_status));
 847
 848        rx_status->mactime = rxdesc.timestamp;
 849        rx_status->band = rt2x00dev->curr_band;
 850        rx_status->freq = rt2x00dev->curr_freq;
 851        rx_status->rate_idx = rate_idx;
 852        rx_status->signal = rxdesc.rssi;
 853        rx_status->flag = rxdesc.flags;
 854        rx_status->enc_flags = rxdesc.enc_flags;
 855        rx_status->encoding = rxdesc.encoding;
 856        rx_status->bw = rxdesc.bw;
 857        rx_status->antenna = rt2x00dev->link.ant.active.rx;
 858
 859        ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
 860
 861renew_skb:
 862        /*
 863         * Replace the skb with the freshly allocated one.
 864         */
 865        entry->skb = skb;
 866
 867submit_entry:
 868        entry->flags = 0;
 869        rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 870        if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
 871            test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 872                rt2x00dev->ops->lib->clear_entry(entry);
 873}
 874EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
 875
 876/*
 877 * Driver initialization handlers.
 878 */
 879const struct rt2x00_rate rt2x00_supported_rates[12] = {
 880        {
 881                .flags = DEV_RATE_CCK,
 882                .bitrate = 10,
 883                .ratemask = BIT(0),
 884                .plcp = 0x00,
 885                .mcs = RATE_MCS(RATE_MODE_CCK, 0),
 886        },
 887        {
 888                .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 889                .bitrate = 20,
 890                .ratemask = BIT(1),
 891                .plcp = 0x01,
 892                .mcs = RATE_MCS(RATE_MODE_CCK, 1),
 893        },
 894        {
 895                .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 896                .bitrate = 55,
 897                .ratemask = BIT(2),
 898                .plcp = 0x02,
 899                .mcs = RATE_MCS(RATE_MODE_CCK, 2),
 900        },
 901        {
 902                .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 903                .bitrate = 110,
 904                .ratemask = BIT(3),
 905                .plcp = 0x03,
 906                .mcs = RATE_MCS(RATE_MODE_CCK, 3),
 907        },
 908        {
 909                .flags = DEV_RATE_OFDM,
 910                .bitrate = 60,
 911                .ratemask = BIT(4),
 912                .plcp = 0x0b,
 913                .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
 914        },
 915        {
 916                .flags = DEV_RATE_OFDM,
 917                .bitrate = 90,
 918                .ratemask = BIT(5),
 919                .plcp = 0x0f,
 920                .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
 921        },
 922        {
 923                .flags = DEV_RATE_OFDM,
 924                .bitrate = 120,
 925                .ratemask = BIT(6),
 926                .plcp = 0x0a,
 927                .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
 928        },
 929        {
 930                .flags = DEV_RATE_OFDM,
 931                .bitrate = 180,
 932                .ratemask = BIT(7),
 933                .plcp = 0x0e,
 934                .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
 935        },
 936        {
 937                .flags = DEV_RATE_OFDM,
 938                .bitrate = 240,
 939                .ratemask = BIT(8),
 940                .plcp = 0x09,
 941                .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
 942        },
 943        {
 944                .flags = DEV_RATE_OFDM,
 945                .bitrate = 360,
 946                .ratemask = BIT(9),
 947                .plcp = 0x0d,
 948                .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
 949        },
 950        {
 951                .flags = DEV_RATE_OFDM,
 952                .bitrate = 480,
 953                .ratemask = BIT(10),
 954                .plcp = 0x08,
 955                .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
 956        },
 957        {
 958                .flags = DEV_RATE_OFDM,
 959                .bitrate = 540,
 960                .ratemask = BIT(11),
 961                .plcp = 0x0c,
 962                .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
 963        },
 964};
 965
 966static void rt2x00lib_channel(struct ieee80211_channel *entry,
 967                              const int channel, const int tx_power,
 968                              const int value)
 969{
 970        /* XXX: this assumption about the band is wrong for 802.11j */
 971        entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
 972        entry->center_freq = ieee80211_channel_to_frequency(channel,
 973                                                            entry->band);
 974        entry->hw_value = value;
 975        entry->max_power = tx_power;
 976        entry->max_antenna_gain = 0xff;
 977}
 978
 979static void rt2x00lib_rate(struct ieee80211_rate *entry,
 980                           const u16 index, const struct rt2x00_rate *rate)
 981{
 982        entry->flags = 0;
 983        entry->bitrate = rate->bitrate;
 984        entry->hw_value = index;
 985        entry->hw_value_short = index;
 986
 987        if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
 988                entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
 989}
 990
 991void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
 992{
 993        const char *mac_addr;
 994
 995        mac_addr = of_get_mac_address(rt2x00dev->dev->of_node);
 996        if (!IS_ERR(mac_addr))
 997                ether_addr_copy(eeprom_mac_addr, mac_addr);
 998
 999        if (!is_valid_ether_addr(eeprom_mac_addr)) {
1000                eth_random_addr(eeprom_mac_addr);
1001                rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
1002        }
1003}
1004EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1005
1006static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1007                                    struct hw_mode_spec *spec)
1008{
1009        struct ieee80211_hw *hw = rt2x00dev->hw;
1010        struct ieee80211_channel *channels;
1011        struct ieee80211_rate *rates;
1012        unsigned int num_rates;
1013        unsigned int i;
1014
1015        num_rates = 0;
1016        if (spec->supported_rates & SUPPORT_RATE_CCK)
1017                num_rates += 4;
1018        if (spec->supported_rates & SUPPORT_RATE_OFDM)
1019                num_rates += 8;
1020
1021        channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1022        if (!channels)
1023                return -ENOMEM;
1024
1025        rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1026        if (!rates)
1027                goto exit_free_channels;
1028
1029        /*
1030         * Initialize Rate list.
1031         */
1032        for (i = 0; i < num_rates; i++)
1033                rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1034
1035        /*
1036         * Initialize Channel list.
1037         */
1038        for (i = 0; i < spec->num_channels; i++) {
1039                rt2x00lib_channel(&channels[i],
1040                                  spec->channels[i].channel,
1041                                  spec->channels_info[i].max_power, i);
1042        }
1043
1044        /*
1045         * Intitialize 802.11b, 802.11g
1046         * Rates: CCK, OFDM.
1047         * Channels: 2.4 GHz
1048         */
1049        if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1050                rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1051                rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1052                rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1053                rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1054                hw->wiphy->bands[NL80211_BAND_2GHZ] =
1055                    &rt2x00dev->bands[NL80211_BAND_2GHZ];
1056                memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1057                       &spec->ht, sizeof(spec->ht));
1058        }
1059
1060        /*
1061         * Intitialize 802.11a
1062         * Rates: OFDM.
1063         * Channels: OFDM, UNII, HiperLAN2.
1064         */
1065        if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1066                rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1067                    spec->num_channels - 14;
1068                rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1069                    num_rates - 4;
1070                rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1071                rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1072                hw->wiphy->bands[NL80211_BAND_5GHZ] =
1073                    &rt2x00dev->bands[NL80211_BAND_5GHZ];
1074                memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1075                       &spec->ht, sizeof(spec->ht));
1076        }
1077
1078        return 0;
1079
1080 exit_free_channels:
1081        kfree(channels);
1082        rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1083        return -ENOMEM;
1084}
1085
1086static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1087{
1088        if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1089                ieee80211_unregister_hw(rt2x00dev->hw);
1090
1091        if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1092                kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1093                kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1094                rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1095                rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1096        }
1097
1098        kfree(rt2x00dev->spec.channels_info);
1099}
1100
1101static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1102{
1103        struct hw_mode_spec *spec = &rt2x00dev->spec;
1104        int status;
1105
1106        if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1107                return 0;
1108
1109        /*
1110         * Initialize HW modes.
1111         */
1112        status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1113        if (status)
1114                return status;
1115
1116        /*
1117         * Initialize HW fields.
1118         */
1119        rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1120
1121        /*
1122         * Initialize extra TX headroom required.
1123         */
1124        rt2x00dev->hw->extra_tx_headroom =
1125                max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1126                      rt2x00dev->extra_tx_headroom);
1127
1128        /*
1129         * Take TX headroom required for alignment into account.
1130         */
1131        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1132                rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1133        else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1134                rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1135
1136        /*
1137         * Tell mac80211 about the size of our private STA structure.
1138         */
1139        rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1140
1141        /*
1142         * Allocate tx status FIFO for driver use.
1143         */
1144        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1145                /*
1146                 * Allocate the txstatus fifo. In the worst case the tx
1147                 * status fifo has to hold the tx status of all entries
1148                 * in all tx queues. Hence, calculate the kfifo size as
1149                 * tx_queues * entry_num and round up to the nearest
1150                 * power of 2.
1151                 */
1152                int kfifo_size =
1153                        roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1154                                           rt2x00dev->tx->limit *
1155                                           sizeof(u32));
1156
1157                status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1158                                     GFP_KERNEL);
1159                if (status)
1160                        return status;
1161        }
1162
1163        /*
1164         * Initialize tasklets if used by the driver. Tasklets are
1165         * disabled until the interrupts are turned on. The driver
1166         * has to handle that.
1167         */
1168#define RT2X00_TASKLET_INIT(taskletname) \
1169        if (rt2x00dev->ops->lib->taskletname) { \
1170                tasklet_init(&rt2x00dev->taskletname, \
1171                             rt2x00dev->ops->lib->taskletname, \
1172                             (unsigned long)rt2x00dev); \
1173        }
1174
1175        RT2X00_TASKLET_INIT(txstatus_tasklet);
1176        RT2X00_TASKLET_INIT(pretbtt_tasklet);
1177        RT2X00_TASKLET_INIT(tbtt_tasklet);
1178        RT2X00_TASKLET_INIT(rxdone_tasklet);
1179        RT2X00_TASKLET_INIT(autowake_tasklet);
1180
1181#undef RT2X00_TASKLET_INIT
1182
1183        /*
1184         * Register HW.
1185         */
1186        status = ieee80211_register_hw(rt2x00dev->hw);
1187        if (status)
1188                return status;
1189
1190        set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1191
1192        return 0;
1193}
1194
1195/*
1196 * Initialization/uninitialization handlers.
1197 */
1198static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1199{
1200        if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1201                return;
1202
1203        /*
1204         * Stop rfkill polling.
1205         */
1206        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1207                rt2x00rfkill_unregister(rt2x00dev);
1208
1209        /*
1210         * Allow the HW to uninitialize.
1211         */
1212        rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1213
1214        /*
1215         * Free allocated queue entries.
1216         */
1217        rt2x00queue_uninitialize(rt2x00dev);
1218}
1219
1220static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1221{
1222        int status;
1223
1224        if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1225                return 0;
1226
1227        /*
1228         * Allocate all queue entries.
1229         */
1230        status = rt2x00queue_initialize(rt2x00dev);
1231        if (status)
1232                return status;
1233
1234        /*
1235         * Initialize the device.
1236         */
1237        status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1238        if (status) {
1239                rt2x00queue_uninitialize(rt2x00dev);
1240                return status;
1241        }
1242
1243        set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1244
1245        /*
1246         * Start rfkill polling.
1247         */
1248        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1249                rt2x00rfkill_register(rt2x00dev);
1250
1251        return 0;
1252}
1253
1254int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1255{
1256        int retval = 0;
1257
1258        /*
1259         * If this is the first interface which is added,
1260         * we should load the firmware now.
1261         */
1262        retval = rt2x00lib_load_firmware(rt2x00dev);
1263        if (retval)
1264                goto out;
1265
1266        /*
1267         * Initialize the device.
1268         */
1269        retval = rt2x00lib_initialize(rt2x00dev);
1270        if (retval)
1271                goto out;
1272
1273        rt2x00dev->intf_ap_count = 0;
1274        rt2x00dev->intf_sta_count = 0;
1275        rt2x00dev->intf_associated = 0;
1276
1277        /* Enable the radio */
1278        retval = rt2x00lib_enable_radio(rt2x00dev);
1279        if (retval)
1280                goto out;
1281
1282        set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1283
1284out:
1285        return retval;
1286}
1287
1288void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1289{
1290        if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1291                return;
1292
1293        /*
1294         * Perhaps we can add something smarter here,
1295         * but for now just disabling the radio should do.
1296         */
1297        rt2x00lib_disable_radio(rt2x00dev);
1298
1299        rt2x00dev->intf_ap_count = 0;
1300        rt2x00dev->intf_sta_count = 0;
1301        rt2x00dev->intf_associated = 0;
1302}
1303
1304static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1305{
1306        struct ieee80211_iface_limit *if_limit;
1307        struct ieee80211_iface_combination *if_combination;
1308
1309        if (rt2x00dev->ops->max_ap_intf < 2)
1310                return;
1311
1312        /*
1313         * Build up AP interface limits structure.
1314         */
1315        if_limit = &rt2x00dev->if_limits_ap;
1316        if_limit->max = rt2x00dev->ops->max_ap_intf;
1317        if_limit->types = BIT(NL80211_IFTYPE_AP);
1318#ifdef CONFIG_MAC80211_MESH
1319        if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1320#endif
1321
1322        /*
1323         * Build up AP interface combinations structure.
1324         */
1325        if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1326        if_combination->limits = if_limit;
1327        if_combination->n_limits = 1;
1328        if_combination->max_interfaces = if_limit->max;
1329        if_combination->num_different_channels = 1;
1330
1331        /*
1332         * Finally, specify the possible combinations to mac80211.
1333         */
1334        rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1335        rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1336}
1337
1338static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1339{
1340        if (WARN_ON(!rt2x00dev->tx))
1341                return 0;
1342
1343        if (rt2x00_is_usb(rt2x00dev))
1344                return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1345
1346        return rt2x00dev->tx[0].winfo_size;
1347}
1348
1349/*
1350 * driver allocation handlers.
1351 */
1352int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1353{
1354        int retval = -ENOMEM;
1355
1356        /*
1357         * Set possible interface combinations.
1358         */
1359        rt2x00lib_set_if_combinations(rt2x00dev);
1360
1361        /*
1362         * Allocate the driver data memory, if necessary.
1363         */
1364        if (rt2x00dev->ops->drv_data_size > 0) {
1365                rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1366                                              GFP_KERNEL);
1367                if (!rt2x00dev->drv_data) {
1368                        retval = -ENOMEM;
1369                        goto exit;
1370                }
1371        }
1372
1373        spin_lock_init(&rt2x00dev->irqmask_lock);
1374        mutex_init(&rt2x00dev->csr_mutex);
1375        mutex_init(&rt2x00dev->conf_mutex);
1376        INIT_LIST_HEAD(&rt2x00dev->bar_list);
1377        spin_lock_init(&rt2x00dev->bar_list_lock);
1378        hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
1379                     HRTIMER_MODE_REL);
1380
1381        set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1382
1383        /*
1384         * Make room for rt2x00_intf inside the per-interface
1385         * structure ieee80211_vif.
1386         */
1387        rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1388
1389        /*
1390         * rt2x00 devices can only use the last n bits of the MAC address
1391         * for virtual interfaces.
1392         */
1393        rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1394                (rt2x00dev->ops->max_ap_intf - 1);
1395
1396        /*
1397         * Initialize work.
1398         */
1399        rt2x00dev->workqueue =
1400            alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1401        if (!rt2x00dev->workqueue) {
1402                retval = -ENOMEM;
1403                goto exit;
1404        }
1405
1406        INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1407        INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1408        INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1409
1410        /*
1411         * Let the driver probe the device to detect the capabilities.
1412         */
1413        retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1414        if (retval) {
1415                rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1416                goto exit;
1417        }
1418
1419        /*
1420         * Allocate queue array.
1421         */
1422        retval = rt2x00queue_allocate(rt2x00dev);
1423        if (retval)
1424                goto exit;
1425
1426        /* Cache TX headroom value */
1427        rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1428
1429        /*
1430         * Determine which operating modes are supported, all modes
1431         * which require beaconing, depend on the availability of
1432         * beacon entries.
1433         */
1434        rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1435        if (rt2x00dev->bcn->limit > 0)
1436                rt2x00dev->hw->wiphy->interface_modes |=
1437                    BIT(NL80211_IFTYPE_ADHOC) |
1438#ifdef CONFIG_MAC80211_MESH
1439                    BIT(NL80211_IFTYPE_MESH_POINT) |
1440#endif
1441#ifdef CONFIG_WIRELESS_WDS
1442                    BIT(NL80211_IFTYPE_WDS) |
1443#endif
1444                    BIT(NL80211_IFTYPE_AP);
1445
1446        rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1447
1448        wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1449                              NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1450
1451        /*
1452         * Initialize ieee80211 structure.
1453         */
1454        retval = rt2x00lib_probe_hw(rt2x00dev);
1455        if (retval) {
1456                rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1457                goto exit;
1458        }
1459
1460        /*
1461         * Register extra components.
1462         */
1463        rt2x00link_register(rt2x00dev);
1464        rt2x00leds_register(rt2x00dev);
1465        rt2x00debug_register(rt2x00dev);
1466
1467        /*
1468         * Start rfkill polling.
1469         */
1470        if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1471                rt2x00rfkill_register(rt2x00dev);
1472
1473        return 0;
1474
1475exit:
1476        rt2x00lib_remove_dev(rt2x00dev);
1477
1478        return retval;
1479}
1480EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1481
1482void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1483{
1484        clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1485
1486        /*
1487         * Stop rfkill polling.
1488         */
1489        if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1490                rt2x00rfkill_unregister(rt2x00dev);
1491
1492        /*
1493         * Disable radio.
1494         */
1495        rt2x00lib_disable_radio(rt2x00dev);
1496
1497        /*
1498         * Stop all work.
1499         */
1500        cancel_work_sync(&rt2x00dev->intf_work);
1501        cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1502        cancel_work_sync(&rt2x00dev->sleep_work);
1503
1504        hrtimer_cancel(&rt2x00dev->txstatus_timer);
1505
1506        /*
1507         * Kill the tx status tasklet.
1508         */
1509        tasklet_kill(&rt2x00dev->txstatus_tasklet);
1510        tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1511        tasklet_kill(&rt2x00dev->tbtt_tasklet);
1512        tasklet_kill(&rt2x00dev->rxdone_tasklet);
1513        tasklet_kill(&rt2x00dev->autowake_tasklet);
1514
1515        /*
1516         * Uninitialize device.
1517         */
1518        rt2x00lib_uninitialize(rt2x00dev);
1519
1520        if (rt2x00dev->workqueue)
1521                destroy_workqueue(rt2x00dev->workqueue);
1522
1523        /*
1524         * Free the tx status fifo.
1525         */
1526        kfifo_free(&rt2x00dev->txstatus_fifo);
1527
1528        /*
1529         * Free extra components
1530         */
1531        rt2x00debug_deregister(rt2x00dev);
1532        rt2x00leds_unregister(rt2x00dev);
1533
1534        /*
1535         * Free ieee80211_hw memory.
1536         */
1537        rt2x00lib_remove_hw(rt2x00dev);
1538
1539        /*
1540         * Free firmware image.
1541         */
1542        rt2x00lib_free_firmware(rt2x00dev);
1543
1544        /*
1545         * Free queue structures.
1546         */
1547        rt2x00queue_free(rt2x00dev);
1548
1549        /*
1550         * Free the driver data.
1551         */
1552        kfree(rt2x00dev->drv_data);
1553}
1554EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1555
1556/*
1557 * Device state handlers
1558 */
1559#ifdef CONFIG_PM
1560int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1561{
1562        rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1563
1564        /*
1565         * Prevent mac80211 from accessing driver while suspended.
1566         */
1567        if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1568                return 0;
1569
1570        /*
1571         * Cleanup as much as possible.
1572         */
1573        rt2x00lib_uninitialize(rt2x00dev);
1574
1575        /*
1576         * Suspend/disable extra components.
1577         */
1578        rt2x00leds_suspend(rt2x00dev);
1579        rt2x00debug_deregister(rt2x00dev);
1580
1581        /*
1582         * Set device mode to sleep for power management,
1583         * on some hardware this call seems to consistently fail.
1584         * From the specifications it is hard to tell why it fails,
1585         * and if this is a "bad thing".
1586         * Overall it is safe to just ignore the failure and
1587         * continue suspending. The only downside is that the
1588         * device will not be in optimal power save mode, but with
1589         * the radio and the other components already disabled the
1590         * device is as good as disabled.
1591         */
1592        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1593                rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1594
1595        return 0;
1596}
1597EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1598
1599int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1600{
1601        rt2x00_dbg(rt2x00dev, "Waking up\n");
1602
1603        /*
1604         * Restore/enable extra components.
1605         */
1606        rt2x00debug_register(rt2x00dev);
1607        rt2x00leds_resume(rt2x00dev);
1608
1609        /*
1610         * We are ready again to receive requests from mac80211.
1611         */
1612        set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1613
1614        return 0;
1615}
1616EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1617#endif /* CONFIG_PM */
1618
1619/*
1620 * rt2x00lib module information.
1621 */
1622MODULE_AUTHOR(DRV_PROJECT);
1623MODULE_VERSION(DRV_VERSION);
1624MODULE_DESCRIPTION("rt2x00 library");
1625MODULE_LICENSE("GPL");
1626