linux/drivers/nvme/host/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVM Express device driver
   4 * Copyright (c) 2011-2014, Intel Corporation.
   5 */
   6
   7#include <linux/aer.h>
   8#include <linux/async.h>
   9#include <linux/blkdev.h>
  10#include <linux/blk-mq.h>
  11#include <linux/blk-mq-pci.h>
  12#include <linux/dmi.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/mutex.h>
  19#include <linux/once.h>
  20#include <linux/pci.h>
  21#include <linux/suspend.h>
  22#include <linux/t10-pi.h>
  23#include <linux/types.h>
  24#include <linux/io-64-nonatomic-lo-hi.h>
  25#include <linux/sed-opal.h>
  26#include <linux/pci-p2pdma.h>
  27
  28#include "trace.h"
  29#include "nvme.h"
  30
  31#define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
  32#define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
  33
  34#define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
  35
  36/*
  37 * These can be higher, but we need to ensure that any command doesn't
  38 * require an sg allocation that needs more than a page of data.
  39 */
  40#define NVME_MAX_KB_SZ  4096
  41#define NVME_MAX_SEGS   127
  42
  43static int use_threaded_interrupts;
  44module_param(use_threaded_interrupts, int, 0);
  45
  46static bool use_cmb_sqes = true;
  47module_param(use_cmb_sqes, bool, 0444);
  48MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  49
  50static unsigned int max_host_mem_size_mb = 128;
  51module_param(max_host_mem_size_mb, uint, 0444);
  52MODULE_PARM_DESC(max_host_mem_size_mb,
  53        "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  54
  55static unsigned int sgl_threshold = SZ_32K;
  56module_param(sgl_threshold, uint, 0644);
  57MODULE_PARM_DESC(sgl_threshold,
  58                "Use SGLs when average request segment size is larger or equal to "
  59                "this size. Use 0 to disable SGLs.");
  60
  61static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  62static const struct kernel_param_ops io_queue_depth_ops = {
  63        .set = io_queue_depth_set,
  64        .get = param_get_int,
  65};
  66
  67static int io_queue_depth = 1024;
  68module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  69MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
  70
  71static int io_queue_count_set(const char *val, const struct kernel_param *kp)
  72{
  73        unsigned int n;
  74        int ret;
  75
  76        ret = kstrtouint(val, 10, &n);
  77        if (ret != 0 || n > num_possible_cpus())
  78                return -EINVAL;
  79        return param_set_uint(val, kp);
  80}
  81
  82static const struct kernel_param_ops io_queue_count_ops = {
  83        .set = io_queue_count_set,
  84        .get = param_get_uint,
  85};
  86
  87static unsigned int write_queues;
  88module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
  89MODULE_PARM_DESC(write_queues,
  90        "Number of queues to use for writes. If not set, reads and writes "
  91        "will share a queue set.");
  92
  93static unsigned int poll_queues;
  94module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
  95MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
  96
  97struct nvme_dev;
  98struct nvme_queue;
  99
 100static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
 101static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
 102
 103/*
 104 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
 105 */
 106struct nvme_dev {
 107        struct nvme_queue *queues;
 108        struct blk_mq_tag_set tagset;
 109        struct blk_mq_tag_set admin_tagset;
 110        u32 __iomem *dbs;
 111        struct device *dev;
 112        struct dma_pool *prp_page_pool;
 113        struct dma_pool *prp_small_pool;
 114        unsigned online_queues;
 115        unsigned max_qid;
 116        unsigned io_queues[HCTX_MAX_TYPES];
 117        unsigned int num_vecs;
 118        int q_depth;
 119        int io_sqes;
 120        u32 db_stride;
 121        void __iomem *bar;
 122        unsigned long bar_mapped_size;
 123        struct work_struct remove_work;
 124        struct mutex shutdown_lock;
 125        bool subsystem;
 126        u64 cmb_size;
 127        bool cmb_use_sqes;
 128        u32 cmbsz;
 129        u32 cmbloc;
 130        struct nvme_ctrl ctrl;
 131        u32 last_ps;
 132
 133        mempool_t *iod_mempool;
 134
 135        /* shadow doorbell buffer support: */
 136        u32 *dbbuf_dbs;
 137        dma_addr_t dbbuf_dbs_dma_addr;
 138        u32 *dbbuf_eis;
 139        dma_addr_t dbbuf_eis_dma_addr;
 140
 141        /* host memory buffer support: */
 142        u64 host_mem_size;
 143        u32 nr_host_mem_descs;
 144        dma_addr_t host_mem_descs_dma;
 145        struct nvme_host_mem_buf_desc *host_mem_descs;
 146        void **host_mem_desc_bufs;
 147        unsigned int nr_allocated_queues;
 148        unsigned int nr_write_queues;
 149        unsigned int nr_poll_queues;
 150};
 151
 152static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
 153{
 154        int n = 0, ret;
 155
 156        ret = kstrtoint(val, 10, &n);
 157        if (ret != 0 || n < 2)
 158                return -EINVAL;
 159
 160        return param_set_int(val, kp);
 161}
 162
 163static inline unsigned int sq_idx(unsigned int qid, u32 stride)
 164{
 165        return qid * 2 * stride;
 166}
 167
 168static inline unsigned int cq_idx(unsigned int qid, u32 stride)
 169{
 170        return (qid * 2 + 1) * stride;
 171}
 172
 173static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
 174{
 175        return container_of(ctrl, struct nvme_dev, ctrl);
 176}
 177
 178/*
 179 * An NVM Express queue.  Each device has at least two (one for admin
 180 * commands and one for I/O commands).
 181 */
 182struct nvme_queue {
 183        struct nvme_dev *dev;
 184        spinlock_t sq_lock;
 185        void *sq_cmds;
 186         /* only used for poll queues: */
 187        spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
 188        struct nvme_completion *cqes;
 189        dma_addr_t sq_dma_addr;
 190        dma_addr_t cq_dma_addr;
 191        u32 __iomem *q_db;
 192        u16 q_depth;
 193        u16 cq_vector;
 194        u16 sq_tail;
 195        u16 cq_head;
 196        u16 qid;
 197        u8 cq_phase;
 198        u8 sqes;
 199        unsigned long flags;
 200#define NVMEQ_ENABLED           0
 201#define NVMEQ_SQ_CMB            1
 202#define NVMEQ_DELETE_ERROR      2
 203#define NVMEQ_POLLED            3
 204        u32 *dbbuf_sq_db;
 205        u32 *dbbuf_cq_db;
 206        u32 *dbbuf_sq_ei;
 207        u32 *dbbuf_cq_ei;
 208        struct completion delete_done;
 209};
 210
 211/*
 212 * The nvme_iod describes the data in an I/O.
 213 *
 214 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
 215 * to the actual struct scatterlist.
 216 */
 217struct nvme_iod {
 218        struct nvme_request req;
 219        struct nvme_queue *nvmeq;
 220        bool use_sgl;
 221        int aborted;
 222        int npages;             /* In the PRP list. 0 means small pool in use */
 223        int nents;              /* Used in scatterlist */
 224        dma_addr_t first_dma;
 225        unsigned int dma_len;   /* length of single DMA segment mapping */
 226        dma_addr_t meta_dma;
 227        struct scatterlist *sg;
 228};
 229
 230static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
 231{
 232        return dev->nr_allocated_queues * 8 * dev->db_stride;
 233}
 234
 235static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
 236{
 237        unsigned int mem_size = nvme_dbbuf_size(dev);
 238
 239        if (dev->dbbuf_dbs)
 240                return 0;
 241
 242        dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
 243                                            &dev->dbbuf_dbs_dma_addr,
 244                                            GFP_KERNEL);
 245        if (!dev->dbbuf_dbs)
 246                return -ENOMEM;
 247        dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
 248                                            &dev->dbbuf_eis_dma_addr,
 249                                            GFP_KERNEL);
 250        if (!dev->dbbuf_eis) {
 251                dma_free_coherent(dev->dev, mem_size,
 252                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 253                dev->dbbuf_dbs = NULL;
 254                return -ENOMEM;
 255        }
 256
 257        return 0;
 258}
 259
 260static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
 261{
 262        unsigned int mem_size = nvme_dbbuf_size(dev);
 263
 264        if (dev->dbbuf_dbs) {
 265                dma_free_coherent(dev->dev, mem_size,
 266                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 267                dev->dbbuf_dbs = NULL;
 268        }
 269        if (dev->dbbuf_eis) {
 270                dma_free_coherent(dev->dev, mem_size,
 271                                  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
 272                dev->dbbuf_eis = NULL;
 273        }
 274}
 275
 276static void nvme_dbbuf_init(struct nvme_dev *dev,
 277                            struct nvme_queue *nvmeq, int qid)
 278{
 279        if (!dev->dbbuf_dbs || !qid)
 280                return;
 281
 282        nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
 283        nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
 284        nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
 285        nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
 286}
 287
 288static void nvme_dbbuf_set(struct nvme_dev *dev)
 289{
 290        struct nvme_command c;
 291
 292        if (!dev->dbbuf_dbs)
 293                return;
 294
 295        memset(&c, 0, sizeof(c));
 296        c.dbbuf.opcode = nvme_admin_dbbuf;
 297        c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
 298        c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
 299
 300        if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
 301                dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
 302                /* Free memory and continue on */
 303                nvme_dbbuf_dma_free(dev);
 304        }
 305}
 306
 307static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
 308{
 309        return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
 310}
 311
 312/* Update dbbuf and return true if an MMIO is required */
 313static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
 314                                              volatile u32 *dbbuf_ei)
 315{
 316        if (dbbuf_db) {
 317                u16 old_value;
 318
 319                /*
 320                 * Ensure that the queue is written before updating
 321                 * the doorbell in memory
 322                 */
 323                wmb();
 324
 325                old_value = *dbbuf_db;
 326                *dbbuf_db = value;
 327
 328                /*
 329                 * Ensure that the doorbell is updated before reading the event
 330                 * index from memory.  The controller needs to provide similar
 331                 * ordering to ensure the envent index is updated before reading
 332                 * the doorbell.
 333                 */
 334                mb();
 335
 336                if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
 337                        return false;
 338        }
 339
 340        return true;
 341}
 342
 343/*
 344 * Will slightly overestimate the number of pages needed.  This is OK
 345 * as it only leads to a small amount of wasted memory for the lifetime of
 346 * the I/O.
 347 */
 348static int nvme_npages(unsigned size, struct nvme_dev *dev)
 349{
 350        unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
 351                                      dev->ctrl.page_size);
 352        return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 353}
 354
 355/*
 356 * Calculates the number of pages needed for the SGL segments. For example a 4k
 357 * page can accommodate 256 SGL descriptors.
 358 */
 359static int nvme_pci_npages_sgl(unsigned int num_seg)
 360{
 361        return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
 362}
 363
 364static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
 365                unsigned int size, unsigned int nseg, bool use_sgl)
 366{
 367        size_t alloc_size;
 368
 369        if (use_sgl)
 370                alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
 371        else
 372                alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
 373
 374        return alloc_size + sizeof(struct scatterlist) * nseg;
 375}
 376
 377static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 378                                unsigned int hctx_idx)
 379{
 380        struct nvme_dev *dev = data;
 381        struct nvme_queue *nvmeq = &dev->queues[0];
 382
 383        WARN_ON(hctx_idx != 0);
 384        WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
 385
 386        hctx->driver_data = nvmeq;
 387        return 0;
 388}
 389
 390static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 391                          unsigned int hctx_idx)
 392{
 393        struct nvme_dev *dev = data;
 394        struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
 395
 396        WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
 397        hctx->driver_data = nvmeq;
 398        return 0;
 399}
 400
 401static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
 402                unsigned int hctx_idx, unsigned int numa_node)
 403{
 404        struct nvme_dev *dev = set->driver_data;
 405        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 406        int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
 407        struct nvme_queue *nvmeq = &dev->queues[queue_idx];
 408
 409        BUG_ON(!nvmeq);
 410        iod->nvmeq = nvmeq;
 411
 412        nvme_req(req)->ctrl = &dev->ctrl;
 413        return 0;
 414}
 415
 416static int queue_irq_offset(struct nvme_dev *dev)
 417{
 418        /* if we have more than 1 vec, admin queue offsets us by 1 */
 419        if (dev->num_vecs > 1)
 420                return 1;
 421
 422        return 0;
 423}
 424
 425static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
 426{
 427        struct nvme_dev *dev = set->driver_data;
 428        int i, qoff, offset;
 429
 430        offset = queue_irq_offset(dev);
 431        for (i = 0, qoff = 0; i < set->nr_maps; i++) {
 432                struct blk_mq_queue_map *map = &set->map[i];
 433
 434                map->nr_queues = dev->io_queues[i];
 435                if (!map->nr_queues) {
 436                        BUG_ON(i == HCTX_TYPE_DEFAULT);
 437                        continue;
 438                }
 439
 440                /*
 441                 * The poll queue(s) doesn't have an IRQ (and hence IRQ
 442                 * affinity), so use the regular blk-mq cpu mapping
 443                 */
 444                map->queue_offset = qoff;
 445                if (i != HCTX_TYPE_POLL && offset)
 446                        blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
 447                else
 448                        blk_mq_map_queues(map);
 449                qoff += map->nr_queues;
 450                offset += map->nr_queues;
 451        }
 452
 453        return 0;
 454}
 455
 456static inline void nvme_write_sq_db(struct nvme_queue *nvmeq)
 457{
 458        if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
 459                        nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
 460                writel(nvmeq->sq_tail, nvmeq->q_db);
 461}
 462
 463/**
 464 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 465 * @nvmeq: The queue to use
 466 * @cmd: The command to send
 467 * @write_sq: whether to write to the SQ doorbell
 468 */
 469static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
 470                            bool write_sq)
 471{
 472        spin_lock(&nvmeq->sq_lock);
 473        memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
 474               cmd, sizeof(*cmd));
 475        if (++nvmeq->sq_tail == nvmeq->q_depth)
 476                nvmeq->sq_tail = 0;
 477        if (write_sq)
 478                nvme_write_sq_db(nvmeq);
 479        spin_unlock(&nvmeq->sq_lock);
 480}
 481
 482static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
 483{
 484        struct nvme_queue *nvmeq = hctx->driver_data;
 485
 486        spin_lock(&nvmeq->sq_lock);
 487        nvme_write_sq_db(nvmeq);
 488        spin_unlock(&nvmeq->sq_lock);
 489}
 490
 491static void **nvme_pci_iod_list(struct request *req)
 492{
 493        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 494        return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
 495}
 496
 497static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
 498{
 499        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 500        int nseg = blk_rq_nr_phys_segments(req);
 501        unsigned int avg_seg_size;
 502
 503        if (nseg == 0)
 504                return false;
 505
 506        avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
 507
 508        if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
 509                return false;
 510        if (!iod->nvmeq->qid)
 511                return false;
 512        if (!sgl_threshold || avg_seg_size < sgl_threshold)
 513                return false;
 514        return true;
 515}
 516
 517static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
 518{
 519        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 520        const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
 521        dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
 522        int i;
 523
 524        if (iod->dma_len) {
 525                dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
 526                               rq_dma_dir(req));
 527                return;
 528        }
 529
 530        WARN_ON_ONCE(!iod->nents);
 531
 532        if (is_pci_p2pdma_page(sg_page(iod->sg)))
 533                pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
 534                                    rq_dma_dir(req));
 535        else
 536                dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
 537
 538
 539        if (iod->npages == 0)
 540                dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
 541                        dma_addr);
 542
 543        for (i = 0; i < iod->npages; i++) {
 544                void *addr = nvme_pci_iod_list(req)[i];
 545
 546                if (iod->use_sgl) {
 547                        struct nvme_sgl_desc *sg_list = addr;
 548
 549                        next_dma_addr =
 550                            le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
 551                } else {
 552                        __le64 *prp_list = addr;
 553
 554                        next_dma_addr = le64_to_cpu(prp_list[last_prp]);
 555                }
 556
 557                dma_pool_free(dev->prp_page_pool, addr, dma_addr);
 558                dma_addr = next_dma_addr;
 559        }
 560
 561        mempool_free(iod->sg, dev->iod_mempool);
 562}
 563
 564static void nvme_print_sgl(struct scatterlist *sgl, int nents)
 565{
 566        int i;
 567        struct scatterlist *sg;
 568
 569        for_each_sg(sgl, sg, nents, i) {
 570                dma_addr_t phys = sg_phys(sg);
 571                pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
 572                        "dma_address:%pad dma_length:%d\n",
 573                        i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
 574                        sg_dma_len(sg));
 575        }
 576}
 577
 578static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
 579                struct request *req, struct nvme_rw_command *cmnd)
 580{
 581        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 582        struct dma_pool *pool;
 583        int length = blk_rq_payload_bytes(req);
 584        struct scatterlist *sg = iod->sg;
 585        int dma_len = sg_dma_len(sg);
 586        u64 dma_addr = sg_dma_address(sg);
 587        u32 page_size = dev->ctrl.page_size;
 588        int offset = dma_addr & (page_size - 1);
 589        __le64 *prp_list;
 590        void **list = nvme_pci_iod_list(req);
 591        dma_addr_t prp_dma;
 592        int nprps, i;
 593
 594        length -= (page_size - offset);
 595        if (length <= 0) {
 596                iod->first_dma = 0;
 597                goto done;
 598        }
 599
 600        dma_len -= (page_size - offset);
 601        if (dma_len) {
 602                dma_addr += (page_size - offset);
 603        } else {
 604                sg = sg_next(sg);
 605                dma_addr = sg_dma_address(sg);
 606                dma_len = sg_dma_len(sg);
 607        }
 608
 609        if (length <= page_size) {
 610                iod->first_dma = dma_addr;
 611                goto done;
 612        }
 613
 614        nprps = DIV_ROUND_UP(length, page_size);
 615        if (nprps <= (256 / 8)) {
 616                pool = dev->prp_small_pool;
 617                iod->npages = 0;
 618        } else {
 619                pool = dev->prp_page_pool;
 620                iod->npages = 1;
 621        }
 622
 623        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 624        if (!prp_list) {
 625                iod->first_dma = dma_addr;
 626                iod->npages = -1;
 627                return BLK_STS_RESOURCE;
 628        }
 629        list[0] = prp_list;
 630        iod->first_dma = prp_dma;
 631        i = 0;
 632        for (;;) {
 633                if (i == page_size >> 3) {
 634                        __le64 *old_prp_list = prp_list;
 635                        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 636                        if (!prp_list)
 637                                return BLK_STS_RESOURCE;
 638                        list[iod->npages++] = prp_list;
 639                        prp_list[0] = old_prp_list[i - 1];
 640                        old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 641                        i = 1;
 642                }
 643                prp_list[i++] = cpu_to_le64(dma_addr);
 644                dma_len -= page_size;
 645                dma_addr += page_size;
 646                length -= page_size;
 647                if (length <= 0)
 648                        break;
 649                if (dma_len > 0)
 650                        continue;
 651                if (unlikely(dma_len < 0))
 652                        goto bad_sgl;
 653                sg = sg_next(sg);
 654                dma_addr = sg_dma_address(sg);
 655                dma_len = sg_dma_len(sg);
 656        }
 657
 658done:
 659        cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 660        cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
 661
 662        return BLK_STS_OK;
 663
 664 bad_sgl:
 665        WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
 666                        "Invalid SGL for payload:%d nents:%d\n",
 667                        blk_rq_payload_bytes(req), iod->nents);
 668        return BLK_STS_IOERR;
 669}
 670
 671static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
 672                struct scatterlist *sg)
 673{
 674        sge->addr = cpu_to_le64(sg_dma_address(sg));
 675        sge->length = cpu_to_le32(sg_dma_len(sg));
 676        sge->type = NVME_SGL_FMT_DATA_DESC << 4;
 677}
 678
 679static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
 680                dma_addr_t dma_addr, int entries)
 681{
 682        sge->addr = cpu_to_le64(dma_addr);
 683        if (entries < SGES_PER_PAGE) {
 684                sge->length = cpu_to_le32(entries * sizeof(*sge));
 685                sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
 686        } else {
 687                sge->length = cpu_to_le32(PAGE_SIZE);
 688                sge->type = NVME_SGL_FMT_SEG_DESC << 4;
 689        }
 690}
 691
 692static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
 693                struct request *req, struct nvme_rw_command *cmd, int entries)
 694{
 695        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 696        struct dma_pool *pool;
 697        struct nvme_sgl_desc *sg_list;
 698        struct scatterlist *sg = iod->sg;
 699        dma_addr_t sgl_dma;
 700        int i = 0;
 701
 702        /* setting the transfer type as SGL */
 703        cmd->flags = NVME_CMD_SGL_METABUF;
 704
 705        if (entries == 1) {
 706                nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
 707                return BLK_STS_OK;
 708        }
 709
 710        if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
 711                pool = dev->prp_small_pool;
 712                iod->npages = 0;
 713        } else {
 714                pool = dev->prp_page_pool;
 715                iod->npages = 1;
 716        }
 717
 718        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 719        if (!sg_list) {
 720                iod->npages = -1;
 721                return BLK_STS_RESOURCE;
 722        }
 723
 724        nvme_pci_iod_list(req)[0] = sg_list;
 725        iod->first_dma = sgl_dma;
 726
 727        nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
 728
 729        do {
 730                if (i == SGES_PER_PAGE) {
 731                        struct nvme_sgl_desc *old_sg_desc = sg_list;
 732                        struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
 733
 734                        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 735                        if (!sg_list)
 736                                return BLK_STS_RESOURCE;
 737
 738                        i = 0;
 739                        nvme_pci_iod_list(req)[iod->npages++] = sg_list;
 740                        sg_list[i++] = *link;
 741                        nvme_pci_sgl_set_seg(link, sgl_dma, entries);
 742                }
 743
 744                nvme_pci_sgl_set_data(&sg_list[i++], sg);
 745                sg = sg_next(sg);
 746        } while (--entries > 0);
 747
 748        return BLK_STS_OK;
 749}
 750
 751static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
 752                struct request *req, struct nvme_rw_command *cmnd,
 753                struct bio_vec *bv)
 754{
 755        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 756        unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
 757        unsigned int first_prp_len = dev->ctrl.page_size - offset;
 758
 759        iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
 760        if (dma_mapping_error(dev->dev, iod->first_dma))
 761                return BLK_STS_RESOURCE;
 762        iod->dma_len = bv->bv_len;
 763
 764        cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
 765        if (bv->bv_len > first_prp_len)
 766                cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
 767        return 0;
 768}
 769
 770static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
 771                struct request *req, struct nvme_rw_command *cmnd,
 772                struct bio_vec *bv)
 773{
 774        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 775
 776        iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
 777        if (dma_mapping_error(dev->dev, iod->first_dma))
 778                return BLK_STS_RESOURCE;
 779        iod->dma_len = bv->bv_len;
 780
 781        cmnd->flags = NVME_CMD_SGL_METABUF;
 782        cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
 783        cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
 784        cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
 785        return 0;
 786}
 787
 788static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
 789                struct nvme_command *cmnd)
 790{
 791        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 792        blk_status_t ret = BLK_STS_RESOURCE;
 793        int nr_mapped;
 794
 795        if (blk_rq_nr_phys_segments(req) == 1) {
 796                struct bio_vec bv = req_bvec(req);
 797
 798                if (!is_pci_p2pdma_page(bv.bv_page)) {
 799                        if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
 800                                return nvme_setup_prp_simple(dev, req,
 801                                                             &cmnd->rw, &bv);
 802
 803                        if (iod->nvmeq->qid &&
 804                            dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
 805                                return nvme_setup_sgl_simple(dev, req,
 806                                                             &cmnd->rw, &bv);
 807                }
 808        }
 809
 810        iod->dma_len = 0;
 811        iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
 812        if (!iod->sg)
 813                return BLK_STS_RESOURCE;
 814        sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
 815        iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
 816        if (!iod->nents)
 817                goto out;
 818
 819        if (is_pci_p2pdma_page(sg_page(iod->sg)))
 820                nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
 821                                iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
 822        else
 823                nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
 824                                             rq_dma_dir(req), DMA_ATTR_NO_WARN);
 825        if (!nr_mapped)
 826                goto out;
 827
 828        iod->use_sgl = nvme_pci_use_sgls(dev, req);
 829        if (iod->use_sgl)
 830                ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
 831        else
 832                ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
 833out:
 834        if (ret != BLK_STS_OK)
 835                nvme_unmap_data(dev, req);
 836        return ret;
 837}
 838
 839static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
 840                struct nvme_command *cmnd)
 841{
 842        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 843
 844        iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
 845                        rq_dma_dir(req), 0);
 846        if (dma_mapping_error(dev->dev, iod->meta_dma))
 847                return BLK_STS_IOERR;
 848        cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
 849        return 0;
 850}
 851
 852/*
 853 * NOTE: ns is NULL when called on the admin queue.
 854 */
 855static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 856                         const struct blk_mq_queue_data *bd)
 857{
 858        struct nvme_ns *ns = hctx->queue->queuedata;
 859        struct nvme_queue *nvmeq = hctx->driver_data;
 860        struct nvme_dev *dev = nvmeq->dev;
 861        struct request *req = bd->rq;
 862        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 863        struct nvme_command cmnd;
 864        blk_status_t ret;
 865
 866        iod->aborted = 0;
 867        iod->npages = -1;
 868        iod->nents = 0;
 869
 870        /*
 871         * We should not need to do this, but we're still using this to
 872         * ensure we can drain requests on a dying queue.
 873         */
 874        if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
 875                return BLK_STS_IOERR;
 876
 877        ret = nvme_setup_cmd(ns, req, &cmnd);
 878        if (ret)
 879                return ret;
 880
 881        if (blk_rq_nr_phys_segments(req)) {
 882                ret = nvme_map_data(dev, req, &cmnd);
 883                if (ret)
 884                        goto out_free_cmd;
 885        }
 886
 887        if (blk_integrity_rq(req)) {
 888                ret = nvme_map_metadata(dev, req, &cmnd);
 889                if (ret)
 890                        goto out_unmap_data;
 891        }
 892
 893        blk_mq_start_request(req);
 894        nvme_submit_cmd(nvmeq, &cmnd, bd->last);
 895        return BLK_STS_OK;
 896out_unmap_data:
 897        nvme_unmap_data(dev, req);
 898out_free_cmd:
 899        nvme_cleanup_cmd(req);
 900        return ret;
 901}
 902
 903static void nvme_pci_complete_rq(struct request *req)
 904{
 905        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 906        struct nvme_dev *dev = iod->nvmeq->dev;
 907
 908        if (blk_integrity_rq(req))
 909                dma_unmap_page(dev->dev, iod->meta_dma,
 910                               rq_integrity_vec(req)->bv_len, rq_data_dir(req));
 911        if (blk_rq_nr_phys_segments(req))
 912                nvme_unmap_data(dev, req);
 913        nvme_complete_rq(req);
 914}
 915
 916/* We read the CQE phase first to check if the rest of the entry is valid */
 917static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
 918{
 919        struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
 920
 921        return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
 922}
 923
 924static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
 925{
 926        u16 head = nvmeq->cq_head;
 927
 928        if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
 929                                              nvmeq->dbbuf_cq_ei))
 930                writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 931}
 932
 933static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
 934{
 935        if (!nvmeq->qid)
 936                return nvmeq->dev->admin_tagset.tags[0];
 937        return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
 938}
 939
 940static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
 941{
 942        struct nvme_completion *cqe = &nvmeq->cqes[idx];
 943        struct request *req;
 944
 945        if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
 946                dev_warn(nvmeq->dev->ctrl.device,
 947                        "invalid id %d completed on queue %d\n",
 948                        cqe->command_id, le16_to_cpu(cqe->sq_id));
 949                return;
 950        }
 951
 952        /*
 953         * AEN requests are special as they don't time out and can
 954         * survive any kind of queue freeze and often don't respond to
 955         * aborts.  We don't even bother to allocate a struct request
 956         * for them but rather special case them here.
 957         */
 958        if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) {
 959                nvme_complete_async_event(&nvmeq->dev->ctrl,
 960                                cqe->status, &cqe->result);
 961                return;
 962        }
 963
 964        req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
 965        trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
 966        nvme_end_request(req, cqe->status, cqe->result);
 967}
 968
 969static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
 970{
 971        u16 tmp = nvmeq->cq_head + 1;
 972
 973        if (tmp == nvmeq->q_depth) {
 974                nvmeq->cq_head = 0;
 975                nvmeq->cq_phase ^= 1;
 976        } else {
 977                nvmeq->cq_head = tmp;
 978        }
 979}
 980
 981static inline int nvme_process_cq(struct nvme_queue *nvmeq)
 982{
 983        int found = 0;
 984
 985        while (nvme_cqe_pending(nvmeq)) {
 986                found++;
 987                /*
 988                 * load-load control dependency between phase and the rest of
 989                 * the cqe requires a full read memory barrier
 990                 */
 991                dma_rmb();
 992                nvme_handle_cqe(nvmeq, nvmeq->cq_head);
 993                nvme_update_cq_head(nvmeq);
 994        }
 995
 996        if (found)
 997                nvme_ring_cq_doorbell(nvmeq);
 998        return found;
 999}
1000
1001static irqreturn_t nvme_irq(int irq, void *data)
1002{
1003        struct nvme_queue *nvmeq = data;
1004        irqreturn_t ret = IRQ_NONE;
1005
1006        /*
1007         * The rmb/wmb pair ensures we see all updates from a previous run of
1008         * the irq handler, even if that was on another CPU.
1009         */
1010        rmb();
1011        if (nvme_process_cq(nvmeq))
1012                ret = IRQ_HANDLED;
1013        wmb();
1014
1015        return ret;
1016}
1017
1018static irqreturn_t nvme_irq_check(int irq, void *data)
1019{
1020        struct nvme_queue *nvmeq = data;
1021        if (nvme_cqe_pending(nvmeq))
1022                return IRQ_WAKE_THREAD;
1023        return IRQ_NONE;
1024}
1025
1026/*
1027 * Poll for completions for any interrupt driven queue
1028 * Can be called from any context.
1029 */
1030static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1031{
1032        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1033
1034        WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1035
1036        disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1037        nvme_process_cq(nvmeq);
1038        enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1039}
1040
1041static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1042{
1043        struct nvme_queue *nvmeq = hctx->driver_data;
1044        bool found;
1045
1046        if (!nvme_cqe_pending(nvmeq))
1047                return 0;
1048
1049        spin_lock(&nvmeq->cq_poll_lock);
1050        found = nvme_process_cq(nvmeq);
1051        spin_unlock(&nvmeq->cq_poll_lock);
1052
1053        return found;
1054}
1055
1056static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1057{
1058        struct nvme_dev *dev = to_nvme_dev(ctrl);
1059        struct nvme_queue *nvmeq = &dev->queues[0];
1060        struct nvme_command c;
1061
1062        memset(&c, 0, sizeof(c));
1063        c.common.opcode = nvme_admin_async_event;
1064        c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1065        nvme_submit_cmd(nvmeq, &c, true);
1066}
1067
1068static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1069{
1070        struct nvme_command c;
1071
1072        memset(&c, 0, sizeof(c));
1073        c.delete_queue.opcode = opcode;
1074        c.delete_queue.qid = cpu_to_le16(id);
1075
1076        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1077}
1078
1079static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1080                struct nvme_queue *nvmeq, s16 vector)
1081{
1082        struct nvme_command c;
1083        int flags = NVME_QUEUE_PHYS_CONTIG;
1084
1085        if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1086                flags |= NVME_CQ_IRQ_ENABLED;
1087
1088        /*
1089         * Note: we (ab)use the fact that the prp fields survive if no data
1090         * is attached to the request.
1091         */
1092        memset(&c, 0, sizeof(c));
1093        c.create_cq.opcode = nvme_admin_create_cq;
1094        c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1095        c.create_cq.cqid = cpu_to_le16(qid);
1096        c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1097        c.create_cq.cq_flags = cpu_to_le16(flags);
1098        c.create_cq.irq_vector = cpu_to_le16(vector);
1099
1100        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1101}
1102
1103static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1104                                                struct nvme_queue *nvmeq)
1105{
1106        struct nvme_ctrl *ctrl = &dev->ctrl;
1107        struct nvme_command c;
1108        int flags = NVME_QUEUE_PHYS_CONTIG;
1109
1110        /*
1111         * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1112         * set. Since URGENT priority is zeroes, it makes all queues
1113         * URGENT.
1114         */
1115        if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1116                flags |= NVME_SQ_PRIO_MEDIUM;
1117
1118        /*
1119         * Note: we (ab)use the fact that the prp fields survive if no data
1120         * is attached to the request.
1121         */
1122        memset(&c, 0, sizeof(c));
1123        c.create_sq.opcode = nvme_admin_create_sq;
1124        c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1125        c.create_sq.sqid = cpu_to_le16(qid);
1126        c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1127        c.create_sq.sq_flags = cpu_to_le16(flags);
1128        c.create_sq.cqid = cpu_to_le16(qid);
1129
1130        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1131}
1132
1133static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1134{
1135        return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1136}
1137
1138static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1139{
1140        return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1141}
1142
1143static void abort_endio(struct request *req, blk_status_t error)
1144{
1145        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1146        struct nvme_queue *nvmeq = iod->nvmeq;
1147
1148        dev_warn(nvmeq->dev->ctrl.device,
1149                 "Abort status: 0x%x", nvme_req(req)->status);
1150        atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1151        blk_mq_free_request(req);
1152}
1153
1154static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1155{
1156
1157        /* If true, indicates loss of adapter communication, possibly by a
1158         * NVMe Subsystem reset.
1159         */
1160        bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1161
1162        /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1163        switch (dev->ctrl.state) {
1164        case NVME_CTRL_RESETTING:
1165        case NVME_CTRL_CONNECTING:
1166                return false;
1167        default:
1168                break;
1169        }
1170
1171        /* We shouldn't reset unless the controller is on fatal error state
1172         * _or_ if we lost the communication with it.
1173         */
1174        if (!(csts & NVME_CSTS_CFS) && !nssro)
1175                return false;
1176
1177        return true;
1178}
1179
1180static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1181{
1182        /* Read a config register to help see what died. */
1183        u16 pci_status;
1184        int result;
1185
1186        result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1187                                      &pci_status);
1188        if (result == PCIBIOS_SUCCESSFUL)
1189                dev_warn(dev->ctrl.device,
1190                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1191                         csts, pci_status);
1192        else
1193                dev_warn(dev->ctrl.device,
1194                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1195                         csts, result);
1196}
1197
1198static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1199{
1200        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1201        struct nvme_queue *nvmeq = iod->nvmeq;
1202        struct nvme_dev *dev = nvmeq->dev;
1203        struct request *abort_req;
1204        struct nvme_command cmd;
1205        u32 csts = readl(dev->bar + NVME_REG_CSTS);
1206
1207        /* If PCI error recovery process is happening, we cannot reset or
1208         * the recovery mechanism will surely fail.
1209         */
1210        mb();
1211        if (pci_channel_offline(to_pci_dev(dev->dev)))
1212                return BLK_EH_RESET_TIMER;
1213
1214        /*
1215         * Reset immediately if the controller is failed
1216         */
1217        if (nvme_should_reset(dev, csts)) {
1218                nvme_warn_reset(dev, csts);
1219                nvme_dev_disable(dev, false);
1220                nvme_reset_ctrl(&dev->ctrl);
1221                return BLK_EH_DONE;
1222        }
1223
1224        /*
1225         * Did we miss an interrupt?
1226         */
1227        if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1228                nvme_poll(req->mq_hctx);
1229        else
1230                nvme_poll_irqdisable(nvmeq);
1231
1232        if (blk_mq_request_completed(req)) {
1233                dev_warn(dev->ctrl.device,
1234                         "I/O %d QID %d timeout, completion polled\n",
1235                         req->tag, nvmeq->qid);
1236                return BLK_EH_DONE;
1237        }
1238
1239        /*
1240         * Shutdown immediately if controller times out while starting. The
1241         * reset work will see the pci device disabled when it gets the forced
1242         * cancellation error. All outstanding requests are completed on
1243         * shutdown, so we return BLK_EH_DONE.
1244         */
1245        switch (dev->ctrl.state) {
1246        case NVME_CTRL_CONNECTING:
1247                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1248                /* fall through */
1249        case NVME_CTRL_DELETING:
1250                dev_warn_ratelimited(dev->ctrl.device,
1251                         "I/O %d QID %d timeout, disable controller\n",
1252                         req->tag, nvmeq->qid);
1253                nvme_dev_disable(dev, true);
1254                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1255                return BLK_EH_DONE;
1256        case NVME_CTRL_RESETTING:
1257                return BLK_EH_RESET_TIMER;
1258        default:
1259                break;
1260        }
1261
1262        /*
1263         * Shutdown the controller immediately and schedule a reset if the
1264         * command was already aborted once before and still hasn't been
1265         * returned to the driver, or if this is the admin queue.
1266         */
1267        if (!nvmeq->qid || iod->aborted) {
1268                dev_warn(dev->ctrl.device,
1269                         "I/O %d QID %d timeout, reset controller\n",
1270                         req->tag, nvmeq->qid);
1271                nvme_dev_disable(dev, false);
1272                nvme_reset_ctrl(&dev->ctrl);
1273
1274                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1275                return BLK_EH_DONE;
1276        }
1277
1278        if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1279                atomic_inc(&dev->ctrl.abort_limit);
1280                return BLK_EH_RESET_TIMER;
1281        }
1282        iod->aborted = 1;
1283
1284        memset(&cmd, 0, sizeof(cmd));
1285        cmd.abort.opcode = nvme_admin_abort_cmd;
1286        cmd.abort.cid = req->tag;
1287        cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1288
1289        dev_warn(nvmeq->dev->ctrl.device,
1290                "I/O %d QID %d timeout, aborting\n",
1291                 req->tag, nvmeq->qid);
1292
1293        abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1294                        BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1295        if (IS_ERR(abort_req)) {
1296                atomic_inc(&dev->ctrl.abort_limit);
1297                return BLK_EH_RESET_TIMER;
1298        }
1299
1300        abort_req->timeout = ADMIN_TIMEOUT;
1301        abort_req->end_io_data = NULL;
1302        blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1303
1304        /*
1305         * The aborted req will be completed on receiving the abort req.
1306         * We enable the timer again. If hit twice, it'll cause a device reset,
1307         * as the device then is in a faulty state.
1308         */
1309        return BLK_EH_RESET_TIMER;
1310}
1311
1312static void nvme_free_queue(struct nvme_queue *nvmeq)
1313{
1314        dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1315                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1316        if (!nvmeq->sq_cmds)
1317                return;
1318
1319        if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1320                pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1321                                nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1322        } else {
1323                dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1324                                nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1325        }
1326}
1327
1328static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1329{
1330        int i;
1331
1332        for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1333                dev->ctrl.queue_count--;
1334                nvme_free_queue(&dev->queues[i]);
1335        }
1336}
1337
1338/**
1339 * nvme_suspend_queue - put queue into suspended state
1340 * @nvmeq: queue to suspend
1341 */
1342static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1343{
1344        if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1345                return 1;
1346
1347        /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1348        mb();
1349
1350        nvmeq->dev->online_queues--;
1351        if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1352                blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1353        if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1354                pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1355        return 0;
1356}
1357
1358static void nvme_suspend_io_queues(struct nvme_dev *dev)
1359{
1360        int i;
1361
1362        for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1363                nvme_suspend_queue(&dev->queues[i]);
1364}
1365
1366static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1367{
1368        struct nvme_queue *nvmeq = &dev->queues[0];
1369
1370        if (shutdown)
1371                nvme_shutdown_ctrl(&dev->ctrl);
1372        else
1373                nvme_disable_ctrl(&dev->ctrl);
1374
1375        nvme_poll_irqdisable(nvmeq);
1376}
1377
1378/*
1379 * Called only on a device that has been disabled and after all other threads
1380 * that can check this device's completion queues have synced, except
1381 * nvme_poll(). This is the last chance for the driver to see a natural
1382 * completion before nvme_cancel_request() terminates all incomplete requests.
1383 */
1384static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1385{
1386        int i;
1387
1388        for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1389                spin_lock(&dev->queues[i].cq_poll_lock);
1390                nvme_process_cq(&dev->queues[i]);
1391                spin_unlock(&dev->queues[i].cq_poll_lock);
1392        }
1393}
1394
1395static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1396                                int entry_size)
1397{
1398        int q_depth = dev->q_depth;
1399        unsigned q_size_aligned = roundup(q_depth * entry_size,
1400                                          dev->ctrl.page_size);
1401
1402        if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1403                u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1404                mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1405                q_depth = div_u64(mem_per_q, entry_size);
1406
1407                /*
1408                 * Ensure the reduced q_depth is above some threshold where it
1409                 * would be better to map queues in system memory with the
1410                 * original depth
1411                 */
1412                if (q_depth < 64)
1413                        return -ENOMEM;
1414        }
1415
1416        return q_depth;
1417}
1418
1419static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1420                                int qid)
1421{
1422        struct pci_dev *pdev = to_pci_dev(dev->dev);
1423
1424        if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1425                nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1426                if (nvmeq->sq_cmds) {
1427                        nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1428                                                        nvmeq->sq_cmds);
1429                        if (nvmeq->sq_dma_addr) {
1430                                set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1431                                return 0;
1432                        }
1433
1434                        pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1435                }
1436        }
1437
1438        nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1439                                &nvmeq->sq_dma_addr, GFP_KERNEL);
1440        if (!nvmeq->sq_cmds)
1441                return -ENOMEM;
1442        return 0;
1443}
1444
1445static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1446{
1447        struct nvme_queue *nvmeq = &dev->queues[qid];
1448
1449        if (dev->ctrl.queue_count > qid)
1450                return 0;
1451
1452        nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1453        nvmeq->q_depth = depth;
1454        nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1455                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1456        if (!nvmeq->cqes)
1457                goto free_nvmeq;
1458
1459        if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1460                goto free_cqdma;
1461
1462        nvmeq->dev = dev;
1463        spin_lock_init(&nvmeq->sq_lock);
1464        spin_lock_init(&nvmeq->cq_poll_lock);
1465        nvmeq->cq_head = 0;
1466        nvmeq->cq_phase = 1;
1467        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1468        nvmeq->qid = qid;
1469        dev->ctrl.queue_count++;
1470
1471        return 0;
1472
1473 free_cqdma:
1474        dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1475                          nvmeq->cq_dma_addr);
1476 free_nvmeq:
1477        return -ENOMEM;
1478}
1479
1480static int queue_request_irq(struct nvme_queue *nvmeq)
1481{
1482        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1483        int nr = nvmeq->dev->ctrl.instance;
1484
1485        if (use_threaded_interrupts) {
1486                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1487                                nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1488        } else {
1489                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1490                                NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1491        }
1492}
1493
1494static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1495{
1496        struct nvme_dev *dev = nvmeq->dev;
1497
1498        nvmeq->sq_tail = 0;
1499        nvmeq->cq_head = 0;
1500        nvmeq->cq_phase = 1;
1501        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1502        memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1503        nvme_dbbuf_init(dev, nvmeq, qid);
1504        dev->online_queues++;
1505        wmb(); /* ensure the first interrupt sees the initialization */
1506}
1507
1508static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1509{
1510        struct nvme_dev *dev = nvmeq->dev;
1511        int result;
1512        u16 vector = 0;
1513
1514        clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1515
1516        /*
1517         * A queue's vector matches the queue identifier unless the controller
1518         * has only one vector available.
1519         */
1520        if (!polled)
1521                vector = dev->num_vecs == 1 ? 0 : qid;
1522        else
1523                set_bit(NVMEQ_POLLED, &nvmeq->flags);
1524
1525        result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1526        if (result)
1527                return result;
1528
1529        result = adapter_alloc_sq(dev, qid, nvmeq);
1530        if (result < 0)
1531                return result;
1532        if (result)
1533                goto release_cq;
1534
1535        nvmeq->cq_vector = vector;
1536        nvme_init_queue(nvmeq, qid);
1537
1538        if (!polled) {
1539                result = queue_request_irq(nvmeq);
1540                if (result < 0)
1541                        goto release_sq;
1542        }
1543
1544        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1545        return result;
1546
1547release_sq:
1548        dev->online_queues--;
1549        adapter_delete_sq(dev, qid);
1550release_cq:
1551        adapter_delete_cq(dev, qid);
1552        return result;
1553}
1554
1555static const struct blk_mq_ops nvme_mq_admin_ops = {
1556        .queue_rq       = nvme_queue_rq,
1557        .complete       = nvme_pci_complete_rq,
1558        .init_hctx      = nvme_admin_init_hctx,
1559        .init_request   = nvme_init_request,
1560        .timeout        = nvme_timeout,
1561};
1562
1563static const struct blk_mq_ops nvme_mq_ops = {
1564        .queue_rq       = nvme_queue_rq,
1565        .complete       = nvme_pci_complete_rq,
1566        .commit_rqs     = nvme_commit_rqs,
1567        .init_hctx      = nvme_init_hctx,
1568        .init_request   = nvme_init_request,
1569        .map_queues     = nvme_pci_map_queues,
1570        .timeout        = nvme_timeout,
1571        .poll           = nvme_poll,
1572};
1573
1574static void nvme_dev_remove_admin(struct nvme_dev *dev)
1575{
1576        if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1577                /*
1578                 * If the controller was reset during removal, it's possible
1579                 * user requests may be waiting on a stopped queue. Start the
1580                 * queue to flush these to completion.
1581                 */
1582                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1583                blk_cleanup_queue(dev->ctrl.admin_q);
1584                blk_mq_free_tag_set(&dev->admin_tagset);
1585        }
1586}
1587
1588static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1589{
1590        if (!dev->ctrl.admin_q) {
1591                dev->admin_tagset.ops = &nvme_mq_admin_ops;
1592                dev->admin_tagset.nr_hw_queues = 1;
1593
1594                dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1595                dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1596                dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1597                dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1598                dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1599                dev->admin_tagset.driver_data = dev;
1600
1601                if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1602                        return -ENOMEM;
1603                dev->ctrl.admin_tagset = &dev->admin_tagset;
1604
1605                dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1606                if (IS_ERR(dev->ctrl.admin_q)) {
1607                        blk_mq_free_tag_set(&dev->admin_tagset);
1608                        return -ENOMEM;
1609                }
1610                if (!blk_get_queue(dev->ctrl.admin_q)) {
1611                        nvme_dev_remove_admin(dev);
1612                        dev->ctrl.admin_q = NULL;
1613                        return -ENODEV;
1614                }
1615        } else
1616                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1617
1618        return 0;
1619}
1620
1621static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1622{
1623        return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1624}
1625
1626static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1627{
1628        struct pci_dev *pdev = to_pci_dev(dev->dev);
1629
1630        if (size <= dev->bar_mapped_size)
1631                return 0;
1632        if (size > pci_resource_len(pdev, 0))
1633                return -ENOMEM;
1634        if (dev->bar)
1635                iounmap(dev->bar);
1636        dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1637        if (!dev->bar) {
1638                dev->bar_mapped_size = 0;
1639                return -ENOMEM;
1640        }
1641        dev->bar_mapped_size = size;
1642        dev->dbs = dev->bar + NVME_REG_DBS;
1643
1644        return 0;
1645}
1646
1647static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1648{
1649        int result;
1650        u32 aqa;
1651        struct nvme_queue *nvmeq;
1652
1653        result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1654        if (result < 0)
1655                return result;
1656
1657        dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1658                                NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1659
1660        if (dev->subsystem &&
1661            (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1662                writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1663
1664        result = nvme_disable_ctrl(&dev->ctrl);
1665        if (result < 0)
1666                return result;
1667
1668        result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1669        if (result)
1670                return result;
1671
1672        dev->ctrl.numa_node = dev_to_node(dev->dev);
1673
1674        nvmeq = &dev->queues[0];
1675        aqa = nvmeq->q_depth - 1;
1676        aqa |= aqa << 16;
1677
1678        writel(aqa, dev->bar + NVME_REG_AQA);
1679        lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1680        lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1681
1682        result = nvme_enable_ctrl(&dev->ctrl);
1683        if (result)
1684                return result;
1685
1686        nvmeq->cq_vector = 0;
1687        nvme_init_queue(nvmeq, 0);
1688        result = queue_request_irq(nvmeq);
1689        if (result) {
1690                dev->online_queues--;
1691                return result;
1692        }
1693
1694        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1695        return result;
1696}
1697
1698static int nvme_create_io_queues(struct nvme_dev *dev)
1699{
1700        unsigned i, max, rw_queues;
1701        int ret = 0;
1702
1703        for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1704                if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1705                        ret = -ENOMEM;
1706                        break;
1707                }
1708        }
1709
1710        max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1711        if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1712                rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1713                                dev->io_queues[HCTX_TYPE_READ];
1714        } else {
1715                rw_queues = max;
1716        }
1717
1718        for (i = dev->online_queues; i <= max; i++) {
1719                bool polled = i > rw_queues;
1720
1721                ret = nvme_create_queue(&dev->queues[i], i, polled);
1722                if (ret)
1723                        break;
1724        }
1725
1726        /*
1727         * Ignore failing Create SQ/CQ commands, we can continue with less
1728         * than the desired amount of queues, and even a controller without
1729         * I/O queues can still be used to issue admin commands.  This might
1730         * be useful to upgrade a buggy firmware for example.
1731         */
1732        return ret >= 0 ? 0 : ret;
1733}
1734
1735static ssize_t nvme_cmb_show(struct device *dev,
1736                             struct device_attribute *attr,
1737                             char *buf)
1738{
1739        struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1740
1741        return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1742                       ndev->cmbloc, ndev->cmbsz);
1743}
1744static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1745
1746static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1747{
1748        u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1749
1750        return 1ULL << (12 + 4 * szu);
1751}
1752
1753static u32 nvme_cmb_size(struct nvme_dev *dev)
1754{
1755        return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1756}
1757
1758static void nvme_map_cmb(struct nvme_dev *dev)
1759{
1760        u64 size, offset;
1761        resource_size_t bar_size;
1762        struct pci_dev *pdev = to_pci_dev(dev->dev);
1763        int bar;
1764
1765        if (dev->cmb_size)
1766                return;
1767
1768        dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1769        if (!dev->cmbsz)
1770                return;
1771        dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1772
1773        size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1774        offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1775        bar = NVME_CMB_BIR(dev->cmbloc);
1776        bar_size = pci_resource_len(pdev, bar);
1777
1778        if (offset > bar_size)
1779                return;
1780
1781        /*
1782         * Controllers may support a CMB size larger than their BAR,
1783         * for example, due to being behind a bridge. Reduce the CMB to
1784         * the reported size of the BAR
1785         */
1786        if (size > bar_size - offset)
1787                size = bar_size - offset;
1788
1789        if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1790                dev_warn(dev->ctrl.device,
1791                         "failed to register the CMB\n");
1792                return;
1793        }
1794
1795        dev->cmb_size = size;
1796        dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1797
1798        if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1799                        (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1800                pci_p2pmem_publish(pdev, true);
1801
1802        if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1803                                    &dev_attr_cmb.attr, NULL))
1804                dev_warn(dev->ctrl.device,
1805                         "failed to add sysfs attribute for CMB\n");
1806}
1807
1808static inline void nvme_release_cmb(struct nvme_dev *dev)
1809{
1810        if (dev->cmb_size) {
1811                sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1812                                             &dev_attr_cmb.attr, NULL);
1813                dev->cmb_size = 0;
1814        }
1815}
1816
1817static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1818{
1819        u64 dma_addr = dev->host_mem_descs_dma;
1820        struct nvme_command c;
1821        int ret;
1822
1823        memset(&c, 0, sizeof(c));
1824        c.features.opcode       = nvme_admin_set_features;
1825        c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1826        c.features.dword11      = cpu_to_le32(bits);
1827        c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1828                                              ilog2(dev->ctrl.page_size));
1829        c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1830        c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1831        c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1832
1833        ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1834        if (ret) {
1835                dev_warn(dev->ctrl.device,
1836                         "failed to set host mem (err %d, flags %#x).\n",
1837                         ret, bits);
1838        }
1839        return ret;
1840}
1841
1842static void nvme_free_host_mem(struct nvme_dev *dev)
1843{
1844        int i;
1845
1846        for (i = 0; i < dev->nr_host_mem_descs; i++) {
1847                struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1848                size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1849
1850                dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1851                               le64_to_cpu(desc->addr),
1852                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1853        }
1854
1855        kfree(dev->host_mem_desc_bufs);
1856        dev->host_mem_desc_bufs = NULL;
1857        dma_free_coherent(dev->dev,
1858                        dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1859                        dev->host_mem_descs, dev->host_mem_descs_dma);
1860        dev->host_mem_descs = NULL;
1861        dev->nr_host_mem_descs = 0;
1862}
1863
1864static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1865                u32 chunk_size)
1866{
1867        struct nvme_host_mem_buf_desc *descs;
1868        u32 max_entries, len;
1869        dma_addr_t descs_dma;
1870        int i = 0;
1871        void **bufs;
1872        u64 size, tmp;
1873
1874        tmp = (preferred + chunk_size - 1);
1875        do_div(tmp, chunk_size);
1876        max_entries = tmp;
1877
1878        if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1879                max_entries = dev->ctrl.hmmaxd;
1880
1881        descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1882                                   &descs_dma, GFP_KERNEL);
1883        if (!descs)
1884                goto out;
1885
1886        bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1887        if (!bufs)
1888                goto out_free_descs;
1889
1890        for (size = 0; size < preferred && i < max_entries; size += len) {
1891                dma_addr_t dma_addr;
1892
1893                len = min_t(u64, chunk_size, preferred - size);
1894                bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1895                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1896                if (!bufs[i])
1897                        break;
1898
1899                descs[i].addr = cpu_to_le64(dma_addr);
1900                descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1901                i++;
1902        }
1903
1904        if (!size)
1905                goto out_free_bufs;
1906
1907        dev->nr_host_mem_descs = i;
1908        dev->host_mem_size = size;
1909        dev->host_mem_descs = descs;
1910        dev->host_mem_descs_dma = descs_dma;
1911        dev->host_mem_desc_bufs = bufs;
1912        return 0;
1913
1914out_free_bufs:
1915        while (--i >= 0) {
1916                size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1917
1918                dma_free_attrs(dev->dev, size, bufs[i],
1919                               le64_to_cpu(descs[i].addr),
1920                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1921        }
1922
1923        kfree(bufs);
1924out_free_descs:
1925        dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1926                        descs_dma);
1927out:
1928        dev->host_mem_descs = NULL;
1929        return -ENOMEM;
1930}
1931
1932static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1933{
1934        u32 chunk_size;
1935
1936        /* start big and work our way down */
1937        for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1938             chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1939             chunk_size /= 2) {
1940                if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1941                        if (!min || dev->host_mem_size >= min)
1942                                return 0;
1943                        nvme_free_host_mem(dev);
1944                }
1945        }
1946
1947        return -ENOMEM;
1948}
1949
1950static int nvme_setup_host_mem(struct nvme_dev *dev)
1951{
1952        u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1953        u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1954        u64 min = (u64)dev->ctrl.hmmin * 4096;
1955        u32 enable_bits = NVME_HOST_MEM_ENABLE;
1956        int ret;
1957
1958        preferred = min(preferred, max);
1959        if (min > max) {
1960                dev_warn(dev->ctrl.device,
1961                        "min host memory (%lld MiB) above limit (%d MiB).\n",
1962                        min >> ilog2(SZ_1M), max_host_mem_size_mb);
1963                nvme_free_host_mem(dev);
1964                return 0;
1965        }
1966
1967        /*
1968         * If we already have a buffer allocated check if we can reuse it.
1969         */
1970        if (dev->host_mem_descs) {
1971                if (dev->host_mem_size >= min)
1972                        enable_bits |= NVME_HOST_MEM_RETURN;
1973                else
1974                        nvme_free_host_mem(dev);
1975        }
1976
1977        if (!dev->host_mem_descs) {
1978                if (nvme_alloc_host_mem(dev, min, preferred)) {
1979                        dev_warn(dev->ctrl.device,
1980                                "failed to allocate host memory buffer.\n");
1981                        return 0; /* controller must work without HMB */
1982                }
1983
1984                dev_info(dev->ctrl.device,
1985                        "allocated %lld MiB host memory buffer.\n",
1986                        dev->host_mem_size >> ilog2(SZ_1M));
1987        }
1988
1989        ret = nvme_set_host_mem(dev, enable_bits);
1990        if (ret)
1991                nvme_free_host_mem(dev);
1992        return ret;
1993}
1994
1995/*
1996 * nirqs is the number of interrupts available for write and read
1997 * queues. The core already reserved an interrupt for the admin queue.
1998 */
1999static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2000{
2001        struct nvme_dev *dev = affd->priv;
2002        unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2003
2004        /*
2005         * If there is no interupt available for queues, ensure that
2006         * the default queue is set to 1. The affinity set size is
2007         * also set to one, but the irq core ignores it for this case.
2008         *
2009         * If only one interrupt is available or 'write_queue' == 0, combine
2010         * write and read queues.
2011         *
2012         * If 'write_queues' > 0, ensure it leaves room for at least one read
2013         * queue.
2014         */
2015        if (!nrirqs) {
2016                nrirqs = 1;
2017                nr_read_queues = 0;
2018        } else if (nrirqs == 1 || !nr_write_queues) {
2019                nr_read_queues = 0;
2020        } else if (nr_write_queues >= nrirqs) {
2021                nr_read_queues = 1;
2022        } else {
2023                nr_read_queues = nrirqs - nr_write_queues;
2024        }
2025
2026        dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2027        affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2028        dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2029        affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2030        affd->nr_sets = nr_read_queues ? 2 : 1;
2031}
2032
2033static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2034{
2035        struct pci_dev *pdev = to_pci_dev(dev->dev);
2036        struct irq_affinity affd = {
2037                .pre_vectors    = 1,
2038                .calc_sets      = nvme_calc_irq_sets,
2039                .priv           = dev,
2040        };
2041        unsigned int irq_queues, this_p_queues;
2042
2043        /*
2044         * Poll queues don't need interrupts, but we need at least one IO
2045         * queue left over for non-polled IO.
2046         */
2047        this_p_queues = dev->nr_poll_queues;
2048        if (this_p_queues >= nr_io_queues) {
2049                this_p_queues = nr_io_queues - 1;
2050                irq_queues = 1;
2051        } else {
2052                irq_queues = nr_io_queues - this_p_queues + 1;
2053        }
2054        dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2055
2056        /* Initialize for the single interrupt case */
2057        dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2058        dev->io_queues[HCTX_TYPE_READ] = 0;
2059
2060        /*
2061         * Some Apple controllers require all queues to use the
2062         * first vector.
2063         */
2064        if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2065                irq_queues = 1;
2066
2067        return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2068                              PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2069}
2070
2071static void nvme_disable_io_queues(struct nvme_dev *dev)
2072{
2073        if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2074                __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2075}
2076
2077static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2078{
2079        return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2080}
2081
2082static int nvme_setup_io_queues(struct nvme_dev *dev)
2083{
2084        struct nvme_queue *adminq = &dev->queues[0];
2085        struct pci_dev *pdev = to_pci_dev(dev->dev);
2086        unsigned int nr_io_queues;
2087        unsigned long size;
2088        int result;
2089
2090        /*
2091         * Sample the module parameters once at reset time so that we have
2092         * stable values to work with.
2093         */
2094        dev->nr_write_queues = write_queues;
2095        dev->nr_poll_queues = poll_queues;
2096
2097        /*
2098         * If tags are shared with admin queue (Apple bug), then
2099         * make sure we only use one IO queue.
2100         */
2101        if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2102                nr_io_queues = 1;
2103        else
2104                nr_io_queues = min(nvme_max_io_queues(dev),
2105                                   dev->nr_allocated_queues - 1);
2106
2107        result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2108        if (result < 0)
2109                return result;
2110
2111        if (nr_io_queues == 0)
2112                return 0;
2113        
2114        clear_bit(NVMEQ_ENABLED, &adminq->flags);
2115
2116        if (dev->cmb_use_sqes) {
2117                result = nvme_cmb_qdepth(dev, nr_io_queues,
2118                                sizeof(struct nvme_command));
2119                if (result > 0)
2120                        dev->q_depth = result;
2121                else
2122                        dev->cmb_use_sqes = false;
2123        }
2124
2125        do {
2126                size = db_bar_size(dev, nr_io_queues);
2127                result = nvme_remap_bar(dev, size);
2128                if (!result)
2129                        break;
2130                if (!--nr_io_queues)
2131                        return -ENOMEM;
2132        } while (1);
2133        adminq->q_db = dev->dbs;
2134
2135 retry:
2136        /* Deregister the admin queue's interrupt */
2137        pci_free_irq(pdev, 0, adminq);
2138
2139        /*
2140         * If we enable msix early due to not intx, disable it again before
2141         * setting up the full range we need.
2142         */
2143        pci_free_irq_vectors(pdev);
2144
2145        result = nvme_setup_irqs(dev, nr_io_queues);
2146        if (result <= 0)
2147                return -EIO;
2148
2149        dev->num_vecs = result;
2150        result = max(result - 1, 1);
2151        dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2152
2153        /*
2154         * Should investigate if there's a performance win from allocating
2155         * more queues than interrupt vectors; it might allow the submission
2156         * path to scale better, even if the receive path is limited by the
2157         * number of interrupts.
2158         */
2159        result = queue_request_irq(adminq);
2160        if (result)
2161                return result;
2162        set_bit(NVMEQ_ENABLED, &adminq->flags);
2163
2164        result = nvme_create_io_queues(dev);
2165        if (result || dev->online_queues < 2)
2166                return result;
2167
2168        if (dev->online_queues - 1 < dev->max_qid) {
2169                nr_io_queues = dev->online_queues - 1;
2170                nvme_disable_io_queues(dev);
2171                nvme_suspend_io_queues(dev);
2172                goto retry;
2173        }
2174        dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2175                                        dev->io_queues[HCTX_TYPE_DEFAULT],
2176                                        dev->io_queues[HCTX_TYPE_READ],
2177                                        dev->io_queues[HCTX_TYPE_POLL]);
2178        return 0;
2179}
2180
2181static void nvme_del_queue_end(struct request *req, blk_status_t error)
2182{
2183        struct nvme_queue *nvmeq = req->end_io_data;
2184
2185        blk_mq_free_request(req);
2186        complete(&nvmeq->delete_done);
2187}
2188
2189static void nvme_del_cq_end(struct request *req, blk_status_t error)
2190{
2191        struct nvme_queue *nvmeq = req->end_io_data;
2192
2193        if (error)
2194                set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2195
2196        nvme_del_queue_end(req, error);
2197}
2198
2199static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2200{
2201        struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2202        struct request *req;
2203        struct nvme_command cmd;
2204
2205        memset(&cmd, 0, sizeof(cmd));
2206        cmd.delete_queue.opcode = opcode;
2207        cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2208
2209        req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2210        if (IS_ERR(req))
2211                return PTR_ERR(req);
2212
2213        req->timeout = ADMIN_TIMEOUT;
2214        req->end_io_data = nvmeq;
2215
2216        init_completion(&nvmeq->delete_done);
2217        blk_execute_rq_nowait(q, NULL, req, false,
2218                        opcode == nvme_admin_delete_cq ?
2219                                nvme_del_cq_end : nvme_del_queue_end);
2220        return 0;
2221}
2222
2223static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2224{
2225        int nr_queues = dev->online_queues - 1, sent = 0;
2226        unsigned long timeout;
2227
2228 retry:
2229        timeout = ADMIN_TIMEOUT;
2230        while (nr_queues > 0) {
2231                if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2232                        break;
2233                nr_queues--;
2234                sent++;
2235        }
2236        while (sent) {
2237                struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2238
2239                timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2240                                timeout);
2241                if (timeout == 0)
2242                        return false;
2243
2244                sent--;
2245                if (nr_queues)
2246                        goto retry;
2247        }
2248        return true;
2249}
2250
2251static void nvme_dev_add(struct nvme_dev *dev)
2252{
2253        int ret;
2254
2255        if (!dev->ctrl.tagset) {
2256                dev->tagset.ops = &nvme_mq_ops;
2257                dev->tagset.nr_hw_queues = dev->online_queues - 1;
2258                dev->tagset.nr_maps = 2; /* default + read */
2259                if (dev->io_queues[HCTX_TYPE_POLL])
2260                        dev->tagset.nr_maps++;
2261                dev->tagset.timeout = NVME_IO_TIMEOUT;
2262                dev->tagset.numa_node = dev->ctrl.numa_node;
2263                dev->tagset.queue_depth =
2264                                min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2265                dev->tagset.cmd_size = sizeof(struct nvme_iod);
2266                dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2267                dev->tagset.driver_data = dev;
2268
2269                /*
2270                 * Some Apple controllers requires tags to be unique
2271                 * across admin and IO queue, so reserve the first 32
2272                 * tags of the IO queue.
2273                 */
2274                if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2275                        dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2276
2277                ret = blk_mq_alloc_tag_set(&dev->tagset);
2278                if (ret) {
2279                        dev_warn(dev->ctrl.device,
2280                                "IO queues tagset allocation failed %d\n", ret);
2281                        return;
2282                }
2283                dev->ctrl.tagset = &dev->tagset;
2284        } else {
2285                blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2286
2287                /* Free previously allocated queues that are no longer usable */
2288                nvme_free_queues(dev, dev->online_queues);
2289        }
2290
2291        nvme_dbbuf_set(dev);
2292}
2293
2294static int nvme_pci_enable(struct nvme_dev *dev)
2295{
2296        int result = -ENOMEM;
2297        struct pci_dev *pdev = to_pci_dev(dev->dev);
2298
2299        if (pci_enable_device_mem(pdev))
2300                return result;
2301
2302        pci_set_master(pdev);
2303
2304        if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2305                goto disable;
2306
2307        if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2308                result = -ENODEV;
2309                goto disable;
2310        }
2311
2312        /*
2313         * Some devices and/or platforms don't advertise or work with INTx
2314         * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2315         * adjust this later.
2316         */
2317        result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2318        if (result < 0)
2319                return result;
2320
2321        dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2322
2323        dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2324                                io_queue_depth);
2325        dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2326        dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2327        dev->dbs = dev->bar + 4096;
2328
2329        /*
2330         * Some Apple controllers require a non-standard SQE size.
2331         * Interestingly they also seem to ignore the CC:IOSQES register
2332         * so we don't bother updating it here.
2333         */
2334        if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2335                dev->io_sqes = 7;
2336        else
2337                dev->io_sqes = NVME_NVM_IOSQES;
2338
2339        /*
2340         * Temporary fix for the Apple controller found in the MacBook8,1 and
2341         * some MacBook7,1 to avoid controller resets and data loss.
2342         */
2343        if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2344                dev->q_depth = 2;
2345                dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2346                        "set queue depth=%u to work around controller resets\n",
2347                        dev->q_depth);
2348        } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2349                   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2350                   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2351                dev->q_depth = 64;
2352                dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2353                        "set queue depth=%u\n", dev->q_depth);
2354        }
2355
2356        /*
2357         * Controllers with the shared tags quirk need the IO queue to be
2358         * big enough so that we get 32 tags for the admin queue
2359         */
2360        if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2361            (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2362                dev->q_depth = NVME_AQ_DEPTH + 2;
2363                dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2364                         dev->q_depth);
2365        }
2366
2367
2368        nvme_map_cmb(dev);
2369
2370        pci_enable_pcie_error_reporting(pdev);
2371        pci_save_state(pdev);
2372        return 0;
2373
2374 disable:
2375        pci_disable_device(pdev);
2376        return result;
2377}
2378
2379static void nvme_dev_unmap(struct nvme_dev *dev)
2380{
2381        if (dev->bar)
2382                iounmap(dev->bar);
2383        pci_release_mem_regions(to_pci_dev(dev->dev));
2384}
2385
2386static void nvme_pci_disable(struct nvme_dev *dev)
2387{
2388        struct pci_dev *pdev = to_pci_dev(dev->dev);
2389
2390        pci_free_irq_vectors(pdev);
2391
2392        if (pci_is_enabled(pdev)) {
2393                pci_disable_pcie_error_reporting(pdev);
2394                pci_disable_device(pdev);
2395        }
2396}
2397
2398static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2399{
2400        bool dead = true, freeze = false;
2401        struct pci_dev *pdev = to_pci_dev(dev->dev);
2402
2403        mutex_lock(&dev->shutdown_lock);
2404        if (pci_is_enabled(pdev)) {
2405                u32 csts = readl(dev->bar + NVME_REG_CSTS);
2406
2407                if (dev->ctrl.state == NVME_CTRL_LIVE ||
2408                    dev->ctrl.state == NVME_CTRL_RESETTING) {
2409                        freeze = true;
2410                        nvme_start_freeze(&dev->ctrl);
2411                }
2412                dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2413                        pdev->error_state  != pci_channel_io_normal);
2414        }
2415
2416        /*
2417         * Give the controller a chance to complete all entered requests if
2418         * doing a safe shutdown.
2419         */
2420        if (!dead && shutdown && freeze)
2421                nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2422
2423        nvme_stop_queues(&dev->ctrl);
2424
2425        if (!dead && dev->ctrl.queue_count > 0) {
2426                nvme_disable_io_queues(dev);
2427                nvme_disable_admin_queue(dev, shutdown);
2428        }
2429        nvme_suspend_io_queues(dev);
2430        nvme_suspend_queue(&dev->queues[0]);
2431        nvme_pci_disable(dev);
2432        nvme_reap_pending_cqes(dev);
2433
2434        blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2435        blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2436        blk_mq_tagset_wait_completed_request(&dev->tagset);
2437        blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2438
2439        /*
2440         * The driver will not be starting up queues again if shutting down so
2441         * must flush all entered requests to their failed completion to avoid
2442         * deadlocking blk-mq hot-cpu notifier.
2443         */
2444        if (shutdown) {
2445                nvme_start_queues(&dev->ctrl);
2446                if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2447                        blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2448        }
2449        mutex_unlock(&dev->shutdown_lock);
2450}
2451
2452static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2453{
2454        if (!nvme_wait_reset(&dev->ctrl))
2455                return -EBUSY;
2456        nvme_dev_disable(dev, shutdown);
2457        return 0;
2458}
2459
2460static int nvme_setup_prp_pools(struct nvme_dev *dev)
2461{
2462        dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2463                                                PAGE_SIZE, PAGE_SIZE, 0);
2464        if (!dev->prp_page_pool)
2465                return -ENOMEM;
2466
2467        /* Optimisation for I/Os between 4k and 128k */
2468        dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2469                                                256, 256, 0);
2470        if (!dev->prp_small_pool) {
2471                dma_pool_destroy(dev->prp_page_pool);
2472                return -ENOMEM;
2473        }
2474        return 0;
2475}
2476
2477static void nvme_release_prp_pools(struct nvme_dev *dev)
2478{
2479        dma_pool_destroy(dev->prp_page_pool);
2480        dma_pool_destroy(dev->prp_small_pool);
2481}
2482
2483static void nvme_free_tagset(struct nvme_dev *dev)
2484{
2485        if (dev->tagset.tags)
2486                blk_mq_free_tag_set(&dev->tagset);
2487        dev->ctrl.tagset = NULL;
2488}
2489
2490static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2491{
2492        struct nvme_dev *dev = to_nvme_dev(ctrl);
2493
2494        nvme_dbbuf_dma_free(dev);
2495        nvme_free_tagset(dev);
2496        if (dev->ctrl.admin_q)
2497                blk_put_queue(dev->ctrl.admin_q);
2498        free_opal_dev(dev->ctrl.opal_dev);
2499        mempool_destroy(dev->iod_mempool);
2500        put_device(dev->dev);
2501        kfree(dev->queues);
2502        kfree(dev);
2503}
2504
2505static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2506{
2507        /*
2508         * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2509         * may be holding this pci_dev's device lock.
2510         */
2511        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2512        nvme_get_ctrl(&dev->ctrl);
2513        nvme_dev_disable(dev, false);
2514        nvme_kill_queues(&dev->ctrl);
2515        if (!queue_work(nvme_wq, &dev->remove_work))
2516                nvme_put_ctrl(&dev->ctrl);
2517}
2518
2519static void nvme_reset_work(struct work_struct *work)
2520{
2521        struct nvme_dev *dev =
2522                container_of(work, struct nvme_dev, ctrl.reset_work);
2523        bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2524        int result;
2525
2526        if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2527                result = -ENODEV;
2528                goto out;
2529        }
2530
2531        /*
2532         * If we're called to reset a live controller first shut it down before
2533         * moving on.
2534         */
2535        if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2536                nvme_dev_disable(dev, false);
2537        nvme_sync_queues(&dev->ctrl);
2538
2539        mutex_lock(&dev->shutdown_lock);
2540        result = nvme_pci_enable(dev);
2541        if (result)
2542                goto out_unlock;
2543
2544        result = nvme_pci_configure_admin_queue(dev);
2545        if (result)
2546                goto out_unlock;
2547
2548        result = nvme_alloc_admin_tags(dev);
2549        if (result)
2550                goto out_unlock;
2551
2552        /*
2553         * Limit the max command size to prevent iod->sg allocations going
2554         * over a single page.
2555         */
2556        dev->ctrl.max_hw_sectors = min_t(u32,
2557                NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2558        dev->ctrl.max_segments = NVME_MAX_SEGS;
2559
2560        /*
2561         * Don't limit the IOMMU merged segment size.
2562         */
2563        dma_set_max_seg_size(dev->dev, 0xffffffff);
2564
2565        mutex_unlock(&dev->shutdown_lock);
2566
2567        /*
2568         * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2569         * initializing procedure here.
2570         */
2571        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2572                dev_warn(dev->ctrl.device,
2573                        "failed to mark controller CONNECTING\n");
2574                result = -EBUSY;
2575                goto out;
2576        }
2577
2578        /*
2579         * We do not support an SGL for metadata (yet), so we are limited to a
2580         * single integrity segment for the separate metadata pointer.
2581         */
2582        dev->ctrl.max_integrity_segments = 1;
2583
2584        result = nvme_init_identify(&dev->ctrl);
2585        if (result)
2586                goto out;
2587
2588        if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2589                if (!dev->ctrl.opal_dev)
2590                        dev->ctrl.opal_dev =
2591                                init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2592                else if (was_suspend)
2593                        opal_unlock_from_suspend(dev->ctrl.opal_dev);
2594        } else {
2595                free_opal_dev(dev->ctrl.opal_dev);
2596                dev->ctrl.opal_dev = NULL;
2597        }
2598
2599        if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2600                result = nvme_dbbuf_dma_alloc(dev);
2601                if (result)
2602                        dev_warn(dev->dev,
2603                                 "unable to allocate dma for dbbuf\n");
2604        }
2605
2606        if (dev->ctrl.hmpre) {
2607                result = nvme_setup_host_mem(dev);
2608                if (result < 0)
2609                        goto out;
2610        }
2611
2612        result = nvme_setup_io_queues(dev);
2613        if (result)
2614                goto out;
2615
2616        /*
2617         * Keep the controller around but remove all namespaces if we don't have
2618         * any working I/O queue.
2619         */
2620        if (dev->online_queues < 2) {
2621                dev_warn(dev->ctrl.device, "IO queues not created\n");
2622                nvme_kill_queues(&dev->ctrl);
2623                nvme_remove_namespaces(&dev->ctrl);
2624                nvme_free_tagset(dev);
2625        } else {
2626                nvme_start_queues(&dev->ctrl);
2627                nvme_wait_freeze(&dev->ctrl);
2628                nvme_dev_add(dev);
2629                nvme_unfreeze(&dev->ctrl);
2630        }
2631
2632        /*
2633         * If only admin queue live, keep it to do further investigation or
2634         * recovery.
2635         */
2636        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2637                dev_warn(dev->ctrl.device,
2638                        "failed to mark controller live state\n");
2639                result = -ENODEV;
2640                goto out;
2641        }
2642
2643        nvme_start_ctrl(&dev->ctrl);
2644        return;
2645
2646 out_unlock:
2647        mutex_unlock(&dev->shutdown_lock);
2648 out:
2649        if (result)
2650                dev_warn(dev->ctrl.device,
2651                         "Removing after probe failure status: %d\n", result);
2652        nvme_remove_dead_ctrl(dev);
2653}
2654
2655static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2656{
2657        struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2658        struct pci_dev *pdev = to_pci_dev(dev->dev);
2659
2660        if (pci_get_drvdata(pdev))
2661                device_release_driver(&pdev->dev);
2662        nvme_put_ctrl(&dev->ctrl);
2663}
2664
2665static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2666{
2667        *val = readl(to_nvme_dev(ctrl)->bar + off);
2668        return 0;
2669}
2670
2671static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2672{
2673        writel(val, to_nvme_dev(ctrl)->bar + off);
2674        return 0;
2675}
2676
2677static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2678{
2679        *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2680        return 0;
2681}
2682
2683static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2684{
2685        struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2686
2687        return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2688}
2689
2690static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2691        .name                   = "pcie",
2692        .module                 = THIS_MODULE,
2693        .flags                  = NVME_F_METADATA_SUPPORTED |
2694                                  NVME_F_PCI_P2PDMA,
2695        .reg_read32             = nvme_pci_reg_read32,
2696        .reg_write32            = nvme_pci_reg_write32,
2697        .reg_read64             = nvme_pci_reg_read64,
2698        .free_ctrl              = nvme_pci_free_ctrl,
2699        .submit_async_event     = nvme_pci_submit_async_event,
2700        .get_address            = nvme_pci_get_address,
2701};
2702
2703static int nvme_dev_map(struct nvme_dev *dev)
2704{
2705        struct pci_dev *pdev = to_pci_dev(dev->dev);
2706
2707        if (pci_request_mem_regions(pdev, "nvme"))
2708                return -ENODEV;
2709
2710        if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2711                goto release;
2712
2713        return 0;
2714  release:
2715        pci_release_mem_regions(pdev);
2716        return -ENODEV;
2717}
2718
2719static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2720{
2721        if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2722                /*
2723                 * Several Samsung devices seem to drop off the PCIe bus
2724                 * randomly when APST is on and uses the deepest sleep state.
2725                 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2726                 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2727                 * 950 PRO 256GB", but it seems to be restricted to two Dell
2728                 * laptops.
2729                 */
2730                if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2731                    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2732                     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2733                        return NVME_QUIRK_NO_DEEPEST_PS;
2734        } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2735                /*
2736                 * Samsung SSD 960 EVO drops off the PCIe bus after system
2737                 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2738                 * within few minutes after bootup on a Coffee Lake board -
2739                 * ASUS PRIME Z370-A
2740                 */
2741                if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2742                    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2743                     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2744                        return NVME_QUIRK_NO_APST;
2745        } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2746                    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2747                   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2748                /*
2749                 * Forcing to use host managed nvme power settings for
2750                 * lowest idle power with quick resume latency on
2751                 * Samsung and Toshiba SSDs based on suspend behavior
2752                 * on Coffee Lake board for LENOVO C640
2753                 */
2754                if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2755                     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2756                        return NVME_QUIRK_SIMPLE_SUSPEND;
2757        }
2758
2759        return 0;
2760}
2761
2762static void nvme_async_probe(void *data, async_cookie_t cookie)
2763{
2764        struct nvme_dev *dev = data;
2765
2766        flush_work(&dev->ctrl.reset_work);
2767        flush_work(&dev->ctrl.scan_work);
2768        nvme_put_ctrl(&dev->ctrl);
2769}
2770
2771static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2772{
2773        int node, result = -ENOMEM;
2774        struct nvme_dev *dev;
2775        unsigned long quirks = id->driver_data;
2776        size_t alloc_size;
2777
2778        node = dev_to_node(&pdev->dev);
2779        if (node == NUMA_NO_NODE)
2780                set_dev_node(&pdev->dev, first_memory_node);
2781
2782        dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2783        if (!dev)
2784                return -ENOMEM;
2785
2786        dev->nr_write_queues = write_queues;
2787        dev->nr_poll_queues = poll_queues;
2788        dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2789        dev->queues = kcalloc_node(dev->nr_allocated_queues,
2790                        sizeof(struct nvme_queue), GFP_KERNEL, node);
2791        if (!dev->queues)
2792                goto free;
2793
2794        dev->dev = get_device(&pdev->dev);
2795        pci_set_drvdata(pdev, dev);
2796
2797        result = nvme_dev_map(dev);
2798        if (result)
2799                goto put_pci;
2800
2801        INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2802        INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2803        mutex_init(&dev->shutdown_lock);
2804
2805        result = nvme_setup_prp_pools(dev);
2806        if (result)
2807                goto unmap;
2808
2809        quirks |= check_vendor_combination_bug(pdev);
2810
2811        /*
2812         * Double check that our mempool alloc size will cover the biggest
2813         * command we support.
2814         */
2815        alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2816                                                NVME_MAX_SEGS, true);
2817        WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2818
2819        dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2820                                                mempool_kfree,
2821                                                (void *) alloc_size,
2822                                                GFP_KERNEL, node);
2823        if (!dev->iod_mempool) {
2824                result = -ENOMEM;
2825                goto release_pools;
2826        }
2827
2828        result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2829                        quirks);
2830        if (result)
2831                goto release_mempool;
2832
2833        dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2834
2835        nvme_reset_ctrl(&dev->ctrl);
2836        async_schedule(nvme_async_probe, dev);
2837
2838        return 0;
2839
2840 release_mempool:
2841        mempool_destroy(dev->iod_mempool);
2842 release_pools:
2843        nvme_release_prp_pools(dev);
2844 unmap:
2845        nvme_dev_unmap(dev);
2846 put_pci:
2847        put_device(dev->dev);
2848 free:
2849        kfree(dev->queues);
2850        kfree(dev);
2851        return result;
2852}
2853
2854static void nvme_reset_prepare(struct pci_dev *pdev)
2855{
2856        struct nvme_dev *dev = pci_get_drvdata(pdev);
2857
2858        /*
2859         * We don't need to check the return value from waiting for the reset
2860         * state as pci_dev device lock is held, making it impossible to race
2861         * with ->remove().
2862         */
2863        nvme_disable_prepare_reset(dev, false);
2864        nvme_sync_queues(&dev->ctrl);
2865}
2866
2867static void nvme_reset_done(struct pci_dev *pdev)
2868{
2869        struct nvme_dev *dev = pci_get_drvdata(pdev);
2870
2871        if (!nvme_try_sched_reset(&dev->ctrl))
2872                flush_work(&dev->ctrl.reset_work);
2873}
2874
2875static void nvme_shutdown(struct pci_dev *pdev)
2876{
2877        struct nvme_dev *dev = pci_get_drvdata(pdev);
2878        nvme_disable_prepare_reset(dev, true);
2879}
2880
2881/*
2882 * The driver's remove may be called on a device in a partially initialized
2883 * state. This function must not have any dependencies on the device state in
2884 * order to proceed.
2885 */
2886static void nvme_remove(struct pci_dev *pdev)
2887{
2888        struct nvme_dev *dev = pci_get_drvdata(pdev);
2889
2890        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2891        pci_set_drvdata(pdev, NULL);
2892
2893        if (!pci_device_is_present(pdev)) {
2894                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2895                nvme_dev_disable(dev, true);
2896                nvme_dev_remove_admin(dev);
2897        }
2898
2899        flush_work(&dev->ctrl.reset_work);
2900        nvme_stop_ctrl(&dev->ctrl);
2901        nvme_remove_namespaces(&dev->ctrl);
2902        nvme_dev_disable(dev, true);
2903        nvme_release_cmb(dev);
2904        nvme_free_host_mem(dev);
2905        nvme_dev_remove_admin(dev);
2906        nvme_free_queues(dev, 0);
2907        nvme_release_prp_pools(dev);
2908        nvme_dev_unmap(dev);
2909        nvme_uninit_ctrl(&dev->ctrl);
2910}
2911
2912#ifdef CONFIG_PM_SLEEP
2913static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2914{
2915        return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2916}
2917
2918static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2919{
2920        return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2921}
2922
2923static int nvme_resume(struct device *dev)
2924{
2925        struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2926        struct nvme_ctrl *ctrl = &ndev->ctrl;
2927
2928        if (ndev->last_ps == U32_MAX ||
2929            nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2930                return nvme_try_sched_reset(&ndev->ctrl);
2931        return 0;
2932}
2933
2934static int nvme_suspend(struct device *dev)
2935{
2936        struct pci_dev *pdev = to_pci_dev(dev);
2937        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2938        struct nvme_ctrl *ctrl = &ndev->ctrl;
2939        int ret = -EBUSY;
2940
2941        ndev->last_ps = U32_MAX;
2942
2943        /*
2944         * The platform does not remove power for a kernel managed suspend so
2945         * use host managed nvme power settings for lowest idle power if
2946         * possible. This should have quicker resume latency than a full device
2947         * shutdown.  But if the firmware is involved after the suspend or the
2948         * device does not support any non-default power states, shut down the
2949         * device fully.
2950         *
2951         * If ASPM is not enabled for the device, shut down the device and allow
2952         * the PCI bus layer to put it into D3 in order to take the PCIe link
2953         * down, so as to allow the platform to achieve its minimum low-power
2954         * state (which may not be possible if the link is up).
2955         *
2956         * If a host memory buffer is enabled, shut down the device as the NVMe
2957         * specification allows the device to access the host memory buffer in
2958         * host DRAM from all power states, but hosts will fail access to DRAM
2959         * during S3.
2960         */
2961        if (pm_suspend_via_firmware() || !ctrl->npss ||
2962            !pcie_aspm_enabled(pdev) ||
2963            ndev->nr_host_mem_descs ||
2964            (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
2965                return nvme_disable_prepare_reset(ndev, true);
2966
2967        nvme_start_freeze(ctrl);
2968        nvme_wait_freeze(ctrl);
2969        nvme_sync_queues(ctrl);
2970
2971        if (ctrl->state != NVME_CTRL_LIVE)
2972                goto unfreeze;
2973
2974        ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2975        if (ret < 0)
2976                goto unfreeze;
2977
2978        /*
2979         * A saved state prevents pci pm from generically controlling the
2980         * device's power. If we're using protocol specific settings, we don't
2981         * want pci interfering.
2982         */
2983        pci_save_state(pdev);
2984
2985        ret = nvme_set_power_state(ctrl, ctrl->npss);
2986        if (ret < 0)
2987                goto unfreeze;
2988
2989        if (ret) {
2990                /* discard the saved state */
2991                pci_load_saved_state(pdev, NULL);
2992
2993                /*
2994                 * Clearing npss forces a controller reset on resume. The
2995                 * correct value will be rediscovered then.
2996                 */
2997                ret = nvme_disable_prepare_reset(ndev, true);
2998                ctrl->npss = 0;
2999        }
3000unfreeze:
3001        nvme_unfreeze(ctrl);
3002        return ret;
3003}
3004
3005static int nvme_simple_suspend(struct device *dev)
3006{
3007        struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3008        return nvme_disable_prepare_reset(ndev, true);
3009}
3010
3011static int nvme_simple_resume(struct device *dev)
3012{
3013        struct pci_dev *pdev = to_pci_dev(dev);
3014        struct nvme_dev *ndev = pci_get_drvdata(pdev);
3015
3016        return nvme_try_sched_reset(&ndev->ctrl);
3017}
3018
3019static const struct dev_pm_ops nvme_dev_pm_ops = {
3020        .suspend        = nvme_suspend,
3021        .resume         = nvme_resume,
3022        .freeze         = nvme_simple_suspend,
3023        .thaw           = nvme_simple_resume,
3024        .poweroff       = nvme_simple_suspend,
3025        .restore        = nvme_simple_resume,
3026};
3027#endif /* CONFIG_PM_SLEEP */
3028
3029static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3030                                                pci_channel_state_t state)
3031{
3032        struct nvme_dev *dev = pci_get_drvdata(pdev);
3033
3034        /*
3035         * A frozen channel requires a reset. When detected, this method will
3036         * shutdown the controller to quiesce. The controller will be restarted
3037         * after the slot reset through driver's slot_reset callback.
3038         */
3039        switch (state) {
3040        case pci_channel_io_normal:
3041                return PCI_ERS_RESULT_CAN_RECOVER;
3042        case pci_channel_io_frozen:
3043                dev_warn(dev->ctrl.device,
3044                        "frozen state error detected, reset controller\n");
3045                nvme_dev_disable(dev, false);
3046                return PCI_ERS_RESULT_NEED_RESET;
3047        case pci_channel_io_perm_failure:
3048                dev_warn(dev->ctrl.device,
3049                        "failure state error detected, request disconnect\n");
3050                return PCI_ERS_RESULT_DISCONNECT;
3051        }
3052        return PCI_ERS_RESULT_NEED_RESET;
3053}
3054
3055static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3056{
3057        struct nvme_dev *dev = pci_get_drvdata(pdev);
3058
3059        dev_info(dev->ctrl.device, "restart after slot reset\n");
3060        pci_restore_state(pdev);
3061        nvme_reset_ctrl(&dev->ctrl);
3062        return PCI_ERS_RESULT_RECOVERED;
3063}
3064
3065static void nvme_error_resume(struct pci_dev *pdev)
3066{
3067        struct nvme_dev *dev = pci_get_drvdata(pdev);
3068
3069        flush_work(&dev->ctrl.reset_work);
3070}
3071
3072static const struct pci_error_handlers nvme_err_handler = {
3073        .error_detected = nvme_error_detected,
3074        .slot_reset     = nvme_slot_reset,
3075        .resume         = nvme_error_resume,
3076        .reset_prepare  = nvme_reset_prepare,
3077        .reset_done     = nvme_reset_done,
3078};
3079
3080static const struct pci_device_id nvme_id_table[] = {
3081        { PCI_VDEVICE(INTEL, 0x0953),
3082                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3083                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3084        { PCI_VDEVICE(INTEL, 0x0a53),
3085                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3086                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3087        { PCI_VDEVICE(INTEL, 0x0a54),
3088                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3089                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3090        { PCI_VDEVICE(INTEL, 0x0a55),
3091                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3092                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3093        { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3094                .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3095                                NVME_QUIRK_MEDIUM_PRIO_SQ |
3096                                NVME_QUIRK_NO_TEMP_THRESH_CHANGE },
3097        { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3098                .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3099        { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3100                .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3101                                NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3102        { PCI_DEVICE(0x126f, 0x2263),   /* Silicon Motion unidentified */
3103                .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3104        { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3105                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3106        { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3107                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3108        { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3109                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3110        { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3111                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3112        { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3113                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3114        { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3115                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3116        { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
3117                .driver_data = NVME_QUIRK_LIGHTNVM, },
3118        { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
3119                .driver_data = NVME_QUIRK_LIGHTNVM, },
3120        { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3121                .driver_data = NVME_QUIRK_LIGHTNVM, },
3122        { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3123                .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3124        { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3125                .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3126                                NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3127        { PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3128                .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3129        { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3130        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3131                .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3132        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3133        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3134                .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3135                                NVME_QUIRK_128_BYTES_SQES |
3136                                NVME_QUIRK_SHARED_TAGS },
3137        { 0, }
3138};
3139MODULE_DEVICE_TABLE(pci, nvme_id_table);
3140
3141static struct pci_driver nvme_driver = {
3142        .name           = "nvme",
3143        .id_table       = nvme_id_table,
3144        .probe          = nvme_probe,
3145        .remove         = nvme_remove,
3146        .shutdown       = nvme_shutdown,
3147#ifdef CONFIG_PM_SLEEP
3148        .driver         = {
3149                .pm     = &nvme_dev_pm_ops,
3150        },
3151#endif
3152        .sriov_configure = pci_sriov_configure_simple,
3153        .err_handler    = &nvme_err_handler,
3154};
3155
3156static int __init nvme_init(void)
3157{
3158        BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3159        BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3160        BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3161        BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3162
3163        return pci_register_driver(&nvme_driver);
3164}
3165
3166static void __exit nvme_exit(void)
3167{
3168        pci_unregister_driver(&nvme_driver);
3169        flush_workqueue(nvme_wq);
3170}
3171
3172MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3173MODULE_LICENSE("GPL");
3174MODULE_VERSION("1.0");
3175module_init(nvme_init);
3176module_exit(nvme_exit);
3177