linux/drivers/pinctrl/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Core driver for the pin control subsystem
   4 *
   5 * Copyright (C) 2011-2012 ST-Ericsson SA
   6 * Written on behalf of Linaro for ST-Ericsson
   7 * Based on bits of regulator core, gpio core and clk core
   8 *
   9 * Author: Linus Walleij <linus.walleij@linaro.org>
  10 *
  11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  12 */
  13#define pr_fmt(fmt) "pinctrl core: " fmt
  14
  15#include <linux/kernel.h>
  16#include <linux/kref.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/err.h>
  22#include <linux/list.h>
  23#include <linux/debugfs.h>
  24#include <linux/seq_file.h>
  25#include <linux/pinctrl/consumer.h>
  26#include <linux/pinctrl/pinctrl.h>
  27#include <linux/pinctrl/machine.h>
  28
  29#ifdef CONFIG_GPIOLIB
  30#include <asm-generic/gpio.h>
  31#endif
  32
  33#include "core.h"
  34#include "devicetree.h"
  35#include "pinmux.h"
  36#include "pinconf.h"
  37
  38
  39static bool pinctrl_dummy_state;
  40
  41/* Mutex taken to protect pinctrl_list */
  42static DEFINE_MUTEX(pinctrl_list_mutex);
  43
  44/* Mutex taken to protect pinctrl_maps */
  45DEFINE_MUTEX(pinctrl_maps_mutex);
  46
  47/* Mutex taken to protect pinctrldev_list */
  48static DEFINE_MUTEX(pinctrldev_list_mutex);
  49
  50/* Global list of pin control devices (struct pinctrl_dev) */
  51static LIST_HEAD(pinctrldev_list);
  52
  53/* List of pin controller handles (struct pinctrl) */
  54static LIST_HEAD(pinctrl_list);
  55
  56/* List of pinctrl maps (struct pinctrl_maps) */
  57LIST_HEAD(pinctrl_maps);
  58
  59
  60/**
  61 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  62 *
  63 * Usually this function is called by platforms without pinctrl driver support
  64 * but run with some shared drivers using pinctrl APIs.
  65 * After calling this function, the pinctrl core will return successfully
  66 * with creating a dummy state for the driver to keep going smoothly.
  67 */
  68void pinctrl_provide_dummies(void)
  69{
  70        pinctrl_dummy_state = true;
  71}
  72
  73const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  74{
  75        /* We're not allowed to register devices without name */
  76        return pctldev->desc->name;
  77}
  78EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  79
  80const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  81{
  82        return dev_name(pctldev->dev);
  83}
  84EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  85
  86void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  87{
  88        return pctldev->driver_data;
  89}
  90EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  91
  92/**
  93 * get_pinctrl_dev_from_devname() - look up pin controller device
  94 * @devname: the name of a device instance, as returned by dev_name()
  95 *
  96 * Looks up a pin control device matching a certain device name or pure device
  97 * pointer, the pure device pointer will take precedence.
  98 */
  99struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
 100{
 101        struct pinctrl_dev *pctldev;
 102
 103        if (!devname)
 104                return NULL;
 105
 106        mutex_lock(&pinctrldev_list_mutex);
 107
 108        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 109                if (!strcmp(dev_name(pctldev->dev), devname)) {
 110                        /* Matched on device name */
 111                        mutex_unlock(&pinctrldev_list_mutex);
 112                        return pctldev;
 113                }
 114        }
 115
 116        mutex_unlock(&pinctrldev_list_mutex);
 117
 118        return NULL;
 119}
 120
 121struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
 122{
 123        struct pinctrl_dev *pctldev;
 124
 125        mutex_lock(&pinctrldev_list_mutex);
 126
 127        list_for_each_entry(pctldev, &pinctrldev_list, node)
 128                if (pctldev->dev->of_node == np) {
 129                        mutex_unlock(&pinctrldev_list_mutex);
 130                        return pctldev;
 131                }
 132
 133        mutex_unlock(&pinctrldev_list_mutex);
 134
 135        return NULL;
 136}
 137
 138/**
 139 * pin_get_from_name() - look up a pin number from a name
 140 * @pctldev: the pin control device to lookup the pin on
 141 * @name: the name of the pin to look up
 142 */
 143int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
 144{
 145        unsigned i, pin;
 146
 147        /* The pin number can be retrived from the pin controller descriptor */
 148        for (i = 0; i < pctldev->desc->npins; i++) {
 149                struct pin_desc *desc;
 150
 151                pin = pctldev->desc->pins[i].number;
 152                desc = pin_desc_get(pctldev, pin);
 153                /* Pin space may be sparse */
 154                if (desc && !strcmp(name, desc->name))
 155                        return pin;
 156        }
 157
 158        return -EINVAL;
 159}
 160
 161/**
 162 * pin_get_name_from_id() - look up a pin name from a pin id
 163 * @pctldev: the pin control device to lookup the pin on
 164 * @name: the name of the pin to look up
 165 */
 166const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
 167{
 168        const struct pin_desc *desc;
 169
 170        desc = pin_desc_get(pctldev, pin);
 171        if (!desc) {
 172                dev_err(pctldev->dev, "failed to get pin(%d) name\n",
 173                        pin);
 174                return NULL;
 175        }
 176
 177        return desc->name;
 178}
 179EXPORT_SYMBOL_GPL(pin_get_name);
 180
 181/* Deletes a range of pin descriptors */
 182static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
 183                                  const struct pinctrl_pin_desc *pins,
 184                                  unsigned num_pins)
 185{
 186        int i;
 187
 188        for (i = 0; i < num_pins; i++) {
 189                struct pin_desc *pindesc;
 190
 191                pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
 192                                            pins[i].number);
 193                if (pindesc) {
 194                        radix_tree_delete(&pctldev->pin_desc_tree,
 195                                          pins[i].number);
 196                        if (pindesc->dynamic_name)
 197                                kfree(pindesc->name);
 198                }
 199                kfree(pindesc);
 200        }
 201}
 202
 203static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
 204                                    const struct pinctrl_pin_desc *pin)
 205{
 206        struct pin_desc *pindesc;
 207
 208        pindesc = pin_desc_get(pctldev, pin->number);
 209        if (pindesc) {
 210                dev_err(pctldev->dev, "pin %d already registered\n",
 211                        pin->number);
 212                return -EINVAL;
 213        }
 214
 215        pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
 216        if (!pindesc)
 217                return -ENOMEM;
 218
 219        /* Set owner */
 220        pindesc->pctldev = pctldev;
 221
 222        /* Copy basic pin info */
 223        if (pin->name) {
 224                pindesc->name = pin->name;
 225        } else {
 226                pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
 227                if (!pindesc->name) {
 228                        kfree(pindesc);
 229                        return -ENOMEM;
 230                }
 231                pindesc->dynamic_name = true;
 232        }
 233
 234        pindesc->drv_data = pin->drv_data;
 235
 236        radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
 237        pr_debug("registered pin %d (%s) on %s\n",
 238                 pin->number, pindesc->name, pctldev->desc->name);
 239        return 0;
 240}
 241
 242static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
 243                                 const struct pinctrl_pin_desc *pins,
 244                                 unsigned num_descs)
 245{
 246        unsigned i;
 247        int ret = 0;
 248
 249        for (i = 0; i < num_descs; i++) {
 250                ret = pinctrl_register_one_pin(pctldev, &pins[i]);
 251                if (ret)
 252                        return ret;
 253        }
 254
 255        return 0;
 256}
 257
 258/**
 259 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 260 * @range: GPIO range used for the translation
 261 * @gpio: gpio pin to translate to a pin number
 262 *
 263 * Finds the pin number for a given GPIO using the specified GPIO range
 264 * as a base for translation. The distinction between linear GPIO ranges
 265 * and pin list based GPIO ranges is managed correctly by this function.
 266 *
 267 * This function assumes the gpio is part of the specified GPIO range, use
 268 * only after making sure this is the case (e.g. by calling it on the
 269 * result of successful pinctrl_get_device_gpio_range calls)!
 270 */
 271static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
 272                                unsigned int gpio)
 273{
 274        unsigned int offset = gpio - range->base;
 275        if (range->pins)
 276                return range->pins[offset];
 277        else
 278                return range->pin_base + offset;
 279}
 280
 281/**
 282 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 283 * @pctldev: pin controller device to check
 284 * @gpio: gpio pin to check taken from the global GPIO pin space
 285 *
 286 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 287 * controller, return the range or NULL
 288 */
 289static struct pinctrl_gpio_range *
 290pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
 291{
 292        struct pinctrl_gpio_range *range;
 293
 294        mutex_lock(&pctldev->mutex);
 295        /* Loop over the ranges */
 296        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 297                /* Check if we're in the valid range */
 298                if (gpio >= range->base &&
 299                    gpio < range->base + range->npins) {
 300                        mutex_unlock(&pctldev->mutex);
 301                        return range;
 302                }
 303        }
 304        mutex_unlock(&pctldev->mutex);
 305        return NULL;
 306}
 307
 308/**
 309 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 310 * the same GPIO chip are in range
 311 * @gpio: gpio pin to check taken from the global GPIO pin space
 312 *
 313 * This function is complement of pinctrl_match_gpio_range(). If the return
 314 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 315 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 316 * of the same GPIO chip don't have back-end pinctrl interface.
 317 * If the return value is true, it means that pinctrl device is ready & the
 318 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 319 * is false, it means that pinctrl device may not be ready.
 320 */
 321#ifdef CONFIG_GPIOLIB
 322static bool pinctrl_ready_for_gpio_range(unsigned gpio)
 323{
 324        struct pinctrl_dev *pctldev;
 325        struct pinctrl_gpio_range *range = NULL;
 326        struct gpio_chip *chip = gpio_to_chip(gpio);
 327
 328        if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
 329                return false;
 330
 331        mutex_lock(&pinctrldev_list_mutex);
 332
 333        /* Loop over the pin controllers */
 334        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 335                /* Loop over the ranges */
 336                mutex_lock(&pctldev->mutex);
 337                list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 338                        /* Check if any gpio range overlapped with gpio chip */
 339                        if (range->base + range->npins - 1 < chip->base ||
 340                            range->base > chip->base + chip->ngpio - 1)
 341                                continue;
 342                        mutex_unlock(&pctldev->mutex);
 343                        mutex_unlock(&pinctrldev_list_mutex);
 344                        return true;
 345                }
 346                mutex_unlock(&pctldev->mutex);
 347        }
 348
 349        mutex_unlock(&pinctrldev_list_mutex);
 350
 351        return false;
 352}
 353#else
 354static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
 355#endif
 356
 357/**
 358 * pinctrl_get_device_gpio_range() - find device for GPIO range
 359 * @gpio: the pin to locate the pin controller for
 360 * @outdev: the pin control device if found
 361 * @outrange: the GPIO range if found
 362 *
 363 * Find the pin controller handling a certain GPIO pin from the pinspace of
 364 * the GPIO subsystem, return the device and the matching GPIO range. Returns
 365 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 366 * may still have not been registered.
 367 */
 368static int pinctrl_get_device_gpio_range(unsigned gpio,
 369                                         struct pinctrl_dev **outdev,
 370                                         struct pinctrl_gpio_range **outrange)
 371{
 372        struct pinctrl_dev *pctldev;
 373
 374        mutex_lock(&pinctrldev_list_mutex);
 375
 376        /* Loop over the pin controllers */
 377        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 378                struct pinctrl_gpio_range *range;
 379
 380                range = pinctrl_match_gpio_range(pctldev, gpio);
 381                if (range) {
 382                        *outdev = pctldev;
 383                        *outrange = range;
 384                        mutex_unlock(&pinctrldev_list_mutex);
 385                        return 0;
 386                }
 387        }
 388
 389        mutex_unlock(&pinctrldev_list_mutex);
 390
 391        return -EPROBE_DEFER;
 392}
 393
 394/**
 395 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 396 * @pctldev: pin controller device to add the range to
 397 * @range: the GPIO range to add
 398 *
 399 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 400 * this to register handled ranges after registering your pin controller.
 401 */
 402void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
 403                            struct pinctrl_gpio_range *range)
 404{
 405        mutex_lock(&pctldev->mutex);
 406        list_add_tail(&range->node, &pctldev->gpio_ranges);
 407        mutex_unlock(&pctldev->mutex);
 408}
 409EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
 410
 411void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
 412                             struct pinctrl_gpio_range *ranges,
 413                             unsigned nranges)
 414{
 415        int i;
 416
 417        for (i = 0; i < nranges; i++)
 418                pinctrl_add_gpio_range(pctldev, &ranges[i]);
 419}
 420EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
 421
 422struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
 423                struct pinctrl_gpio_range *range)
 424{
 425        struct pinctrl_dev *pctldev;
 426
 427        pctldev = get_pinctrl_dev_from_devname(devname);
 428
 429        /*
 430         * If we can't find this device, let's assume that is because
 431         * it has not probed yet, so the driver trying to register this
 432         * range need to defer probing.
 433         */
 434        if (!pctldev) {
 435                return ERR_PTR(-EPROBE_DEFER);
 436        }
 437        pinctrl_add_gpio_range(pctldev, range);
 438
 439        return pctldev;
 440}
 441EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
 442
 443int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
 444                                const unsigned **pins, unsigned *num_pins)
 445{
 446        const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 447        int gs;
 448
 449        if (!pctlops->get_group_pins)
 450                return -EINVAL;
 451
 452        gs = pinctrl_get_group_selector(pctldev, pin_group);
 453        if (gs < 0)
 454                return gs;
 455
 456        return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
 457}
 458EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
 459
 460struct pinctrl_gpio_range *
 461pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
 462                                        unsigned int pin)
 463{
 464        struct pinctrl_gpio_range *range;
 465
 466        /* Loop over the ranges */
 467        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 468                /* Check if we're in the valid range */
 469                if (range->pins) {
 470                        int a;
 471                        for (a = 0; a < range->npins; a++) {
 472                                if (range->pins[a] == pin)
 473                                        return range;
 474                        }
 475                } else if (pin >= range->pin_base &&
 476                           pin < range->pin_base + range->npins)
 477                        return range;
 478        }
 479
 480        return NULL;
 481}
 482EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
 483
 484/**
 485 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 486 * @pctldev: the pin controller device to look in
 487 * @pin: a controller-local number to find the range for
 488 */
 489struct pinctrl_gpio_range *
 490pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
 491                                 unsigned int pin)
 492{
 493        struct pinctrl_gpio_range *range;
 494
 495        mutex_lock(&pctldev->mutex);
 496        range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
 497        mutex_unlock(&pctldev->mutex);
 498
 499        return range;
 500}
 501EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
 502
 503/**
 504 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
 505 * @pctldev: pin controller device to remove the range from
 506 * @range: the GPIO range to remove
 507 */
 508void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
 509                               struct pinctrl_gpio_range *range)
 510{
 511        mutex_lock(&pctldev->mutex);
 512        list_del(&range->node);
 513        mutex_unlock(&pctldev->mutex);
 514}
 515EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
 516
 517#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
 518
 519/**
 520 * pinctrl_generic_get_group_count() - returns the number of pin groups
 521 * @pctldev: pin controller device
 522 */
 523int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
 524{
 525        return pctldev->num_groups;
 526}
 527EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
 528
 529/**
 530 * pinctrl_generic_get_group_name() - returns the name of a pin group
 531 * @pctldev: pin controller device
 532 * @selector: group number
 533 */
 534const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
 535                                           unsigned int selector)
 536{
 537        struct group_desc *group;
 538
 539        group = radix_tree_lookup(&pctldev->pin_group_tree,
 540                                  selector);
 541        if (!group)
 542                return NULL;
 543
 544        return group->name;
 545}
 546EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
 547
 548/**
 549 * pinctrl_generic_get_group_pins() - gets the pin group pins
 550 * @pctldev: pin controller device
 551 * @selector: group number
 552 * @pins: pins in the group
 553 * @num_pins: number of pins in the group
 554 */
 555int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
 556                                   unsigned int selector,
 557                                   const unsigned int **pins,
 558                                   unsigned int *num_pins)
 559{
 560        struct group_desc *group;
 561
 562        group = radix_tree_lookup(&pctldev->pin_group_tree,
 563                                  selector);
 564        if (!group) {
 565                dev_err(pctldev->dev, "%s could not find pingroup%i\n",
 566                        __func__, selector);
 567                return -EINVAL;
 568        }
 569
 570        *pins = group->pins;
 571        *num_pins = group->num_pins;
 572
 573        return 0;
 574}
 575EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
 576
 577/**
 578 * pinctrl_generic_get_group() - returns a pin group based on the number
 579 * @pctldev: pin controller device
 580 * @gselector: group number
 581 */
 582struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
 583                                             unsigned int selector)
 584{
 585        struct group_desc *group;
 586
 587        group = radix_tree_lookup(&pctldev->pin_group_tree,
 588                                  selector);
 589        if (!group)
 590                return NULL;
 591
 592        return group;
 593}
 594EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
 595
 596static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
 597                                                  const char *function)
 598{
 599        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
 600        int ngroups = ops->get_groups_count(pctldev);
 601        int selector = 0;
 602
 603        /* See if this pctldev has this group */
 604        while (selector < ngroups) {
 605                const char *gname = ops->get_group_name(pctldev, selector);
 606
 607                if (gname && !strcmp(function, gname))
 608                        return selector;
 609
 610                selector++;
 611        }
 612
 613        return -EINVAL;
 614}
 615
 616/**
 617 * pinctrl_generic_add_group() - adds a new pin group
 618 * @pctldev: pin controller device
 619 * @name: name of the pin group
 620 * @pins: pins in the pin group
 621 * @num_pins: number of pins in the pin group
 622 * @data: pin controller driver specific data
 623 *
 624 * Note that the caller must take care of locking.
 625 */
 626int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
 627                              int *pins, int num_pins, void *data)
 628{
 629        struct group_desc *group;
 630        int selector;
 631
 632        if (!name)
 633                return -EINVAL;
 634
 635        selector = pinctrl_generic_group_name_to_selector(pctldev, name);
 636        if (selector >= 0)
 637                return selector;
 638
 639        selector = pctldev->num_groups;
 640
 641        group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
 642        if (!group)
 643                return -ENOMEM;
 644
 645        group->name = name;
 646        group->pins = pins;
 647        group->num_pins = num_pins;
 648        group->data = data;
 649
 650        radix_tree_insert(&pctldev->pin_group_tree, selector, group);
 651
 652        pctldev->num_groups++;
 653
 654        return selector;
 655}
 656EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
 657
 658/**
 659 * pinctrl_generic_remove_group() - removes a numbered pin group
 660 * @pctldev: pin controller device
 661 * @selector: group number
 662 *
 663 * Note that the caller must take care of locking.
 664 */
 665int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
 666                                 unsigned int selector)
 667{
 668        struct group_desc *group;
 669
 670        group = radix_tree_lookup(&pctldev->pin_group_tree,
 671                                  selector);
 672        if (!group)
 673                return -ENOENT;
 674
 675        radix_tree_delete(&pctldev->pin_group_tree, selector);
 676        devm_kfree(pctldev->dev, group);
 677
 678        pctldev->num_groups--;
 679
 680        return 0;
 681}
 682EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
 683
 684/**
 685 * pinctrl_generic_free_groups() - removes all pin groups
 686 * @pctldev: pin controller device
 687 *
 688 * Note that the caller must take care of locking. The pinctrl groups
 689 * are allocated with devm_kzalloc() so no need to free them here.
 690 */
 691static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 692{
 693        struct radix_tree_iter iter;
 694        void __rcu **slot;
 695
 696        radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
 697                radix_tree_delete(&pctldev->pin_group_tree, iter.index);
 698
 699        pctldev->num_groups = 0;
 700}
 701
 702#else
 703static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 704{
 705}
 706#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
 707
 708/**
 709 * pinctrl_get_group_selector() - returns the group selector for a group
 710 * @pctldev: the pin controller handling the group
 711 * @pin_group: the pin group to look up
 712 */
 713int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
 714                               const char *pin_group)
 715{
 716        const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 717        unsigned ngroups = pctlops->get_groups_count(pctldev);
 718        unsigned group_selector = 0;
 719
 720        while (group_selector < ngroups) {
 721                const char *gname = pctlops->get_group_name(pctldev,
 722                                                            group_selector);
 723                if (gname && !strcmp(gname, pin_group)) {
 724                        dev_dbg(pctldev->dev,
 725                                "found group selector %u for %s\n",
 726                                group_selector,
 727                                pin_group);
 728                        return group_selector;
 729                }
 730
 731                group_selector++;
 732        }
 733
 734        dev_err(pctldev->dev, "does not have pin group %s\n",
 735                pin_group);
 736
 737        return -EINVAL;
 738}
 739
 740bool pinctrl_gpio_can_use_line(unsigned gpio)
 741{
 742        struct pinctrl_dev *pctldev;
 743        struct pinctrl_gpio_range *range;
 744        bool result;
 745        int pin;
 746
 747        /*
 748         * Try to obtain GPIO range, if it fails
 749         * we're probably dealing with GPIO driver
 750         * without a backing pin controller - bail out.
 751         */
 752        if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
 753                return true;
 754
 755        mutex_lock(&pctldev->mutex);
 756
 757        /* Convert to the pin controllers number space */
 758        pin = gpio_to_pin(range, gpio);
 759
 760        result = pinmux_can_be_used_for_gpio(pctldev, pin);
 761
 762        mutex_unlock(&pctldev->mutex);
 763
 764        return result;
 765}
 766EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
 767
 768/**
 769 * pinctrl_gpio_request() - request a single pin to be used as GPIO
 770 * @gpio: the GPIO pin number from the GPIO subsystem number space
 771 *
 772 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 773 * as part of their gpio_request() semantics, platforms and individual drivers
 774 * shall *NOT* request GPIO pins to be muxed in.
 775 */
 776int pinctrl_gpio_request(unsigned gpio)
 777{
 778        struct pinctrl_dev *pctldev;
 779        struct pinctrl_gpio_range *range;
 780        int ret;
 781        int pin;
 782
 783        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 784        if (ret) {
 785                if (pinctrl_ready_for_gpio_range(gpio))
 786                        ret = 0;
 787                return ret;
 788        }
 789
 790        mutex_lock(&pctldev->mutex);
 791
 792        /* Convert to the pin controllers number space */
 793        pin = gpio_to_pin(range, gpio);
 794
 795        ret = pinmux_request_gpio(pctldev, range, pin, gpio);
 796
 797        mutex_unlock(&pctldev->mutex);
 798
 799        return ret;
 800}
 801EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
 802
 803/**
 804 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
 805 * @gpio: the GPIO pin number from the GPIO subsystem number space
 806 *
 807 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 808 * as part of their gpio_free() semantics, platforms and individual drivers
 809 * shall *NOT* request GPIO pins to be muxed out.
 810 */
 811void pinctrl_gpio_free(unsigned gpio)
 812{
 813        struct pinctrl_dev *pctldev;
 814        struct pinctrl_gpio_range *range;
 815        int ret;
 816        int pin;
 817
 818        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 819        if (ret) {
 820                return;
 821        }
 822        mutex_lock(&pctldev->mutex);
 823
 824        /* Convert to the pin controllers number space */
 825        pin = gpio_to_pin(range, gpio);
 826
 827        pinmux_free_gpio(pctldev, pin, range);
 828
 829        mutex_unlock(&pctldev->mutex);
 830}
 831EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
 832
 833static int pinctrl_gpio_direction(unsigned gpio, bool input)
 834{
 835        struct pinctrl_dev *pctldev;
 836        struct pinctrl_gpio_range *range;
 837        int ret;
 838        int pin;
 839
 840        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 841        if (ret) {
 842                return ret;
 843        }
 844
 845        mutex_lock(&pctldev->mutex);
 846
 847        /* Convert to the pin controllers number space */
 848        pin = gpio_to_pin(range, gpio);
 849        ret = pinmux_gpio_direction(pctldev, range, pin, input);
 850
 851        mutex_unlock(&pctldev->mutex);
 852
 853        return ret;
 854}
 855
 856/**
 857 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 858 * @gpio: the GPIO pin number from the GPIO subsystem number space
 859 *
 860 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 861 * as part of their gpio_direction_input() semantics, platforms and individual
 862 * drivers shall *NOT* touch pin control GPIO calls.
 863 */
 864int pinctrl_gpio_direction_input(unsigned gpio)
 865{
 866        return pinctrl_gpio_direction(gpio, true);
 867}
 868EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
 869
 870/**
 871 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 872 * @gpio: the GPIO pin number from the GPIO subsystem number space
 873 *
 874 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 875 * as part of their gpio_direction_output() semantics, platforms and individual
 876 * drivers shall *NOT* touch pin control GPIO calls.
 877 */
 878int pinctrl_gpio_direction_output(unsigned gpio)
 879{
 880        return pinctrl_gpio_direction(gpio, false);
 881}
 882EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
 883
 884/**
 885 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
 886 * @gpio: the GPIO pin number from the GPIO subsystem number space
 887 * @config: the configuration to apply to the GPIO
 888 *
 889 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
 890 * they need to call the underlying pin controller to change GPIO config
 891 * (for example set debounce time).
 892 */
 893int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
 894{
 895        unsigned long configs[] = { config };
 896        struct pinctrl_gpio_range *range;
 897        struct pinctrl_dev *pctldev;
 898        int ret, pin;
 899
 900        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 901        if (ret)
 902                return ret;
 903
 904        mutex_lock(&pctldev->mutex);
 905        pin = gpio_to_pin(range, gpio);
 906        ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
 907        mutex_unlock(&pctldev->mutex);
 908
 909        return ret;
 910}
 911EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
 912
 913static struct pinctrl_state *find_state(struct pinctrl *p,
 914                                        const char *name)
 915{
 916        struct pinctrl_state *state;
 917
 918        list_for_each_entry(state, &p->states, node)
 919                if (!strcmp(state->name, name))
 920                        return state;
 921
 922        return NULL;
 923}
 924
 925static struct pinctrl_state *create_state(struct pinctrl *p,
 926                                          const char *name)
 927{
 928        struct pinctrl_state *state;
 929
 930        state = kzalloc(sizeof(*state), GFP_KERNEL);
 931        if (!state)
 932                return ERR_PTR(-ENOMEM);
 933
 934        state->name = name;
 935        INIT_LIST_HEAD(&state->settings);
 936
 937        list_add_tail(&state->node, &p->states);
 938
 939        return state;
 940}
 941
 942static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
 943                       const struct pinctrl_map *map)
 944{
 945        struct pinctrl_state *state;
 946        struct pinctrl_setting *setting;
 947        int ret;
 948
 949        state = find_state(p, map->name);
 950        if (!state)
 951                state = create_state(p, map->name);
 952        if (IS_ERR(state))
 953                return PTR_ERR(state);
 954
 955        if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
 956                return 0;
 957
 958        setting = kzalloc(sizeof(*setting), GFP_KERNEL);
 959        if (!setting)
 960                return -ENOMEM;
 961
 962        setting->type = map->type;
 963
 964        if (pctldev)
 965                setting->pctldev = pctldev;
 966        else
 967                setting->pctldev =
 968                        get_pinctrl_dev_from_devname(map->ctrl_dev_name);
 969        if (!setting->pctldev) {
 970                kfree(setting);
 971                /* Do not defer probing of hogs (circular loop) */
 972                if (!strcmp(map->ctrl_dev_name, map->dev_name))
 973                        return -ENODEV;
 974                /*
 975                 * OK let us guess that the driver is not there yet, and
 976                 * let's defer obtaining this pinctrl handle to later...
 977                 */
 978                dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
 979                        map->ctrl_dev_name);
 980                return -EPROBE_DEFER;
 981        }
 982
 983        setting->dev_name = map->dev_name;
 984
 985        switch (map->type) {
 986        case PIN_MAP_TYPE_MUX_GROUP:
 987                ret = pinmux_map_to_setting(map, setting);
 988                break;
 989        case PIN_MAP_TYPE_CONFIGS_PIN:
 990        case PIN_MAP_TYPE_CONFIGS_GROUP:
 991                ret = pinconf_map_to_setting(map, setting);
 992                break;
 993        default:
 994                ret = -EINVAL;
 995                break;
 996        }
 997        if (ret < 0) {
 998                kfree(setting);
 999                return ret;
1000        }
1001
1002        list_add_tail(&setting->node, &state->settings);
1003
1004        return 0;
1005}
1006
1007static struct pinctrl *find_pinctrl(struct device *dev)
1008{
1009        struct pinctrl *p;
1010
1011        mutex_lock(&pinctrl_list_mutex);
1012        list_for_each_entry(p, &pinctrl_list, node)
1013                if (p->dev == dev) {
1014                        mutex_unlock(&pinctrl_list_mutex);
1015                        return p;
1016                }
1017
1018        mutex_unlock(&pinctrl_list_mutex);
1019        return NULL;
1020}
1021
1022static void pinctrl_free(struct pinctrl *p, bool inlist);
1023
1024static struct pinctrl *create_pinctrl(struct device *dev,
1025                                      struct pinctrl_dev *pctldev)
1026{
1027        struct pinctrl *p;
1028        const char *devname;
1029        struct pinctrl_maps *maps_node;
1030        int i;
1031        const struct pinctrl_map *map;
1032        int ret;
1033
1034        /*
1035         * create the state cookie holder struct pinctrl for each
1036         * mapping, this is what consumers will get when requesting
1037         * a pin control handle with pinctrl_get()
1038         */
1039        p = kzalloc(sizeof(*p), GFP_KERNEL);
1040        if (!p)
1041                return ERR_PTR(-ENOMEM);
1042        p->dev = dev;
1043        INIT_LIST_HEAD(&p->states);
1044        INIT_LIST_HEAD(&p->dt_maps);
1045
1046        ret = pinctrl_dt_to_map(p, pctldev);
1047        if (ret < 0) {
1048                kfree(p);
1049                return ERR_PTR(ret);
1050        }
1051
1052        devname = dev_name(dev);
1053
1054        mutex_lock(&pinctrl_maps_mutex);
1055        /* Iterate over the pin control maps to locate the right ones */
1056        for_each_maps(maps_node, i, map) {
1057                /* Map must be for this device */
1058                if (strcmp(map->dev_name, devname))
1059                        continue;
1060                /*
1061                 * If pctldev is not null, we are claiming hog for it,
1062                 * that means, setting that is served by pctldev by itself.
1063                 *
1064                 * Thus we must skip map that is for this device but is served
1065                 * by other device.
1066                 */
1067                if (pctldev &&
1068                    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1069                        continue;
1070
1071                ret = add_setting(p, pctldev, map);
1072                /*
1073                 * At this point the adding of a setting may:
1074                 *
1075                 * - Defer, if the pinctrl device is not yet available
1076                 * - Fail, if the pinctrl device is not yet available,
1077                 *   AND the setting is a hog. We cannot defer that, since
1078                 *   the hog will kick in immediately after the device
1079                 *   is registered.
1080                 *
1081                 * If the error returned was not -EPROBE_DEFER then we
1082                 * accumulate the errors to see if we end up with
1083                 * an -EPROBE_DEFER later, as that is the worst case.
1084                 */
1085                if (ret == -EPROBE_DEFER) {
1086                        pinctrl_free(p, false);
1087                        mutex_unlock(&pinctrl_maps_mutex);
1088                        return ERR_PTR(ret);
1089                }
1090        }
1091        mutex_unlock(&pinctrl_maps_mutex);
1092
1093        if (ret < 0) {
1094                /* If some other error than deferral occurred, return here */
1095                pinctrl_free(p, false);
1096                return ERR_PTR(ret);
1097        }
1098
1099        kref_init(&p->users);
1100
1101        /* Add the pinctrl handle to the global list */
1102        mutex_lock(&pinctrl_list_mutex);
1103        list_add_tail(&p->node, &pinctrl_list);
1104        mutex_unlock(&pinctrl_list_mutex);
1105
1106        return p;
1107}
1108
1109/**
1110 * pinctrl_get() - retrieves the pinctrl handle for a device
1111 * @dev: the device to obtain the handle for
1112 */
1113struct pinctrl *pinctrl_get(struct device *dev)
1114{
1115        struct pinctrl *p;
1116
1117        if (WARN_ON(!dev))
1118                return ERR_PTR(-EINVAL);
1119
1120        /*
1121         * See if somebody else (such as the device core) has already
1122         * obtained a handle to the pinctrl for this device. In that case,
1123         * return another pointer to it.
1124         */
1125        p = find_pinctrl(dev);
1126        if (p) {
1127                dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1128                kref_get(&p->users);
1129                return p;
1130        }
1131
1132        return create_pinctrl(dev, NULL);
1133}
1134EXPORT_SYMBOL_GPL(pinctrl_get);
1135
1136static void pinctrl_free_setting(bool disable_setting,
1137                                 struct pinctrl_setting *setting)
1138{
1139        switch (setting->type) {
1140        case PIN_MAP_TYPE_MUX_GROUP:
1141                if (disable_setting)
1142                        pinmux_disable_setting(setting);
1143                pinmux_free_setting(setting);
1144                break;
1145        case PIN_MAP_TYPE_CONFIGS_PIN:
1146        case PIN_MAP_TYPE_CONFIGS_GROUP:
1147                pinconf_free_setting(setting);
1148                break;
1149        default:
1150                break;
1151        }
1152}
1153
1154static void pinctrl_free(struct pinctrl *p, bool inlist)
1155{
1156        struct pinctrl_state *state, *n1;
1157        struct pinctrl_setting *setting, *n2;
1158
1159        mutex_lock(&pinctrl_list_mutex);
1160        list_for_each_entry_safe(state, n1, &p->states, node) {
1161                list_for_each_entry_safe(setting, n2, &state->settings, node) {
1162                        pinctrl_free_setting(state == p->state, setting);
1163                        list_del(&setting->node);
1164                        kfree(setting);
1165                }
1166                list_del(&state->node);
1167                kfree(state);
1168        }
1169
1170        pinctrl_dt_free_maps(p);
1171
1172        if (inlist)
1173                list_del(&p->node);
1174        kfree(p);
1175        mutex_unlock(&pinctrl_list_mutex);
1176}
1177
1178/**
1179 * pinctrl_release() - release the pinctrl handle
1180 * @kref: the kref in the pinctrl being released
1181 */
1182static void pinctrl_release(struct kref *kref)
1183{
1184        struct pinctrl *p = container_of(kref, struct pinctrl, users);
1185
1186        pinctrl_free(p, true);
1187}
1188
1189/**
1190 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1191 * @p: the pinctrl handle to release
1192 */
1193void pinctrl_put(struct pinctrl *p)
1194{
1195        kref_put(&p->users, pinctrl_release);
1196}
1197EXPORT_SYMBOL_GPL(pinctrl_put);
1198
1199/**
1200 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1201 * @p: the pinctrl handle to retrieve the state from
1202 * @name: the state name to retrieve
1203 */
1204struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1205                                                 const char *name)
1206{
1207        struct pinctrl_state *state;
1208
1209        state = find_state(p, name);
1210        if (!state) {
1211                if (pinctrl_dummy_state) {
1212                        /* create dummy state */
1213                        dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1214                                name);
1215                        state = create_state(p, name);
1216                } else
1217                        state = ERR_PTR(-ENODEV);
1218        }
1219
1220        return state;
1221}
1222EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1223
1224static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1225                             struct device *consumer)
1226{
1227        if (pctldev->desc->link_consumers)
1228                device_link_add(consumer, pctldev->dev,
1229                                DL_FLAG_PM_RUNTIME |
1230                                DL_FLAG_AUTOREMOVE_CONSUMER);
1231}
1232
1233/**
1234 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1235 * @p: the pinctrl handle for the device that requests configuration
1236 * @state: the state handle to select/activate/program
1237 */
1238static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1239{
1240        struct pinctrl_setting *setting, *setting2;
1241        struct pinctrl_state *old_state = p->state;
1242        int ret;
1243
1244        if (p->state) {
1245                /*
1246                 * For each pinmux setting in the old state, forget SW's record
1247                 * of mux owner for that pingroup. Any pingroups which are
1248                 * still owned by the new state will be re-acquired by the call
1249                 * to pinmux_enable_setting() in the loop below.
1250                 */
1251                list_for_each_entry(setting, &p->state->settings, node) {
1252                        if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1253                                continue;
1254                        pinmux_disable_setting(setting);
1255                }
1256        }
1257
1258        p->state = NULL;
1259
1260        /* Apply all the settings for the new state */
1261        list_for_each_entry(setting, &state->settings, node) {
1262                switch (setting->type) {
1263                case PIN_MAP_TYPE_MUX_GROUP:
1264                        ret = pinmux_enable_setting(setting);
1265                        break;
1266                case PIN_MAP_TYPE_CONFIGS_PIN:
1267                case PIN_MAP_TYPE_CONFIGS_GROUP:
1268                        ret = pinconf_apply_setting(setting);
1269                        break;
1270                default:
1271                        ret = -EINVAL;
1272                        break;
1273                }
1274
1275                if (ret < 0) {
1276                        goto unapply_new_state;
1277                }
1278
1279                /* Do not link hogs (circular dependency) */
1280                if (p != setting->pctldev->p)
1281                        pinctrl_link_add(setting->pctldev, p->dev);
1282        }
1283
1284        p->state = state;
1285
1286        return 0;
1287
1288unapply_new_state:
1289        dev_err(p->dev, "Error applying setting, reverse things back\n");
1290
1291        list_for_each_entry(setting2, &state->settings, node) {
1292                if (&setting2->node == &setting->node)
1293                        break;
1294                /*
1295                 * All we can do here is pinmux_disable_setting.
1296                 * That means that some pins are muxed differently now
1297                 * than they were before applying the setting (We can't
1298                 * "unmux a pin"!), but it's not a big deal since the pins
1299                 * are free to be muxed by another apply_setting.
1300                 */
1301                if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1302                        pinmux_disable_setting(setting2);
1303        }
1304
1305        /* There's no infinite recursive loop here because p->state is NULL */
1306        if (old_state)
1307                pinctrl_select_state(p, old_state);
1308
1309        return ret;
1310}
1311
1312/**
1313 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1314 * @p: the pinctrl handle for the device that requests configuration
1315 * @state: the state handle to select/activate/program
1316 */
1317int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1318{
1319        if (p->state == state)
1320                return 0;
1321
1322        return pinctrl_commit_state(p, state);
1323}
1324EXPORT_SYMBOL_GPL(pinctrl_select_state);
1325
1326static void devm_pinctrl_release(struct device *dev, void *res)
1327{
1328        pinctrl_put(*(struct pinctrl **)res);
1329}
1330
1331/**
1332 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1333 * @dev: the device to obtain the handle for
1334 *
1335 * If there is a need to explicitly destroy the returned struct pinctrl,
1336 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1337 */
1338struct pinctrl *devm_pinctrl_get(struct device *dev)
1339{
1340        struct pinctrl **ptr, *p;
1341
1342        ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1343        if (!ptr)
1344                return ERR_PTR(-ENOMEM);
1345
1346        p = pinctrl_get(dev);
1347        if (!IS_ERR(p)) {
1348                *ptr = p;
1349                devres_add(dev, ptr);
1350        } else {
1351                devres_free(ptr);
1352        }
1353
1354        return p;
1355}
1356EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1357
1358static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1359{
1360        struct pinctrl **p = res;
1361
1362        return *p == data;
1363}
1364
1365/**
1366 * devm_pinctrl_put() - Resource managed pinctrl_put()
1367 * @p: the pinctrl handle to release
1368 *
1369 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1370 * this function will not need to be called and the resource management
1371 * code will ensure that the resource is freed.
1372 */
1373void devm_pinctrl_put(struct pinctrl *p)
1374{
1375        WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1376                               devm_pinctrl_match, p));
1377}
1378EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1379
1380/**
1381 * pinctrl_register_mappings() - register a set of pin controller mappings
1382 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1383 *      keeps a reference to the passed in maps, so they should _not_ be
1384 *      marked with __initdata.
1385 * @num_maps: the number of maps in the mapping table
1386 */
1387int pinctrl_register_mappings(const struct pinctrl_map *maps,
1388                              unsigned num_maps)
1389{
1390        int i, ret;
1391        struct pinctrl_maps *maps_node;
1392
1393        pr_debug("add %u pinctrl maps\n", num_maps);
1394
1395        /* First sanity check the new mapping */
1396        for (i = 0; i < num_maps; i++) {
1397                if (!maps[i].dev_name) {
1398                        pr_err("failed to register map %s (%d): no device given\n",
1399                               maps[i].name, i);
1400                        return -EINVAL;
1401                }
1402
1403                if (!maps[i].name) {
1404                        pr_err("failed to register map %d: no map name given\n",
1405                               i);
1406                        return -EINVAL;
1407                }
1408
1409                if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1410                                !maps[i].ctrl_dev_name) {
1411                        pr_err("failed to register map %s (%d): no pin control device given\n",
1412                               maps[i].name, i);
1413                        return -EINVAL;
1414                }
1415
1416                switch (maps[i].type) {
1417                case PIN_MAP_TYPE_DUMMY_STATE:
1418                        break;
1419                case PIN_MAP_TYPE_MUX_GROUP:
1420                        ret = pinmux_validate_map(&maps[i], i);
1421                        if (ret < 0)
1422                                return ret;
1423                        break;
1424                case PIN_MAP_TYPE_CONFIGS_PIN:
1425                case PIN_MAP_TYPE_CONFIGS_GROUP:
1426                        ret = pinconf_validate_map(&maps[i], i);
1427                        if (ret < 0)
1428                                return ret;
1429                        break;
1430                default:
1431                        pr_err("failed to register map %s (%d): invalid type given\n",
1432                               maps[i].name, i);
1433                        return -EINVAL;
1434                }
1435        }
1436
1437        maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1438        if (!maps_node)
1439                return -ENOMEM;
1440
1441        maps_node->maps = maps;
1442        maps_node->num_maps = num_maps;
1443
1444        mutex_lock(&pinctrl_maps_mutex);
1445        list_add_tail(&maps_node->node, &pinctrl_maps);
1446        mutex_unlock(&pinctrl_maps_mutex);
1447
1448        return 0;
1449}
1450EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1451
1452/**
1453 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1454 * @maps: the pincontrol mappings table passed to pinctrl_register_mappings()
1455 *      when registering the mappings.
1456 */
1457void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1458{
1459        struct pinctrl_maps *maps_node;
1460
1461        mutex_lock(&pinctrl_maps_mutex);
1462        list_for_each_entry(maps_node, &pinctrl_maps, node) {
1463                if (maps_node->maps == map) {
1464                        list_del(&maps_node->node);
1465                        kfree(maps_node);
1466                        mutex_unlock(&pinctrl_maps_mutex);
1467                        return;
1468                }
1469        }
1470        mutex_unlock(&pinctrl_maps_mutex);
1471}
1472EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1473
1474/**
1475 * pinctrl_force_sleep() - turn a given controller device into sleep state
1476 * @pctldev: pin controller device
1477 */
1478int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1479{
1480        if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1481                return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1482        return 0;
1483}
1484EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1485
1486/**
1487 * pinctrl_force_default() - turn a given controller device into default state
1488 * @pctldev: pin controller device
1489 */
1490int pinctrl_force_default(struct pinctrl_dev *pctldev)
1491{
1492        if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1493                return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1494        return 0;
1495}
1496EXPORT_SYMBOL_GPL(pinctrl_force_default);
1497
1498/**
1499 * pinctrl_init_done() - tell pinctrl probe is done
1500 *
1501 * We'll use this time to switch the pins from "init" to "default" unless the
1502 * driver selected some other state.
1503 *
1504 * @dev: device to that's done probing
1505 */
1506int pinctrl_init_done(struct device *dev)
1507{
1508        struct dev_pin_info *pins = dev->pins;
1509        int ret;
1510
1511        if (!pins)
1512                return 0;
1513
1514        if (IS_ERR(pins->init_state))
1515                return 0; /* No such state */
1516
1517        if (pins->p->state != pins->init_state)
1518                return 0; /* Not at init anyway */
1519
1520        if (IS_ERR(pins->default_state))
1521                return 0; /* No default state */
1522
1523        ret = pinctrl_select_state(pins->p, pins->default_state);
1524        if (ret)
1525                dev_err(dev, "failed to activate default pinctrl state\n");
1526
1527        return ret;
1528}
1529
1530static int pinctrl_select_bound_state(struct device *dev,
1531                                      struct pinctrl_state *state)
1532{
1533        struct dev_pin_info *pins = dev->pins;
1534        int ret;
1535
1536        if (IS_ERR(state))
1537                return 0; /* No such state */
1538        ret = pinctrl_select_state(pins->p, state);
1539        if (ret)
1540                dev_err(dev, "failed to activate pinctrl state %s\n",
1541                        state->name);
1542        return ret;
1543}
1544
1545/**
1546 * pinctrl_select_default_state() - select default pinctrl state
1547 * @dev: device to select default state for
1548 */
1549int pinctrl_select_default_state(struct device *dev)
1550{
1551        if (!dev->pins)
1552                return 0;
1553
1554        return pinctrl_select_bound_state(dev, dev->pins->default_state);
1555}
1556EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1557
1558#ifdef CONFIG_PM
1559
1560/**
1561 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1562 * @dev: device to select default state for
1563 */
1564int pinctrl_pm_select_default_state(struct device *dev)
1565{
1566        return pinctrl_select_default_state(dev);
1567}
1568EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1569
1570/**
1571 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1572 * @dev: device to select sleep state for
1573 */
1574int pinctrl_pm_select_sleep_state(struct device *dev)
1575{
1576        if (!dev->pins)
1577                return 0;
1578
1579        return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1580}
1581EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1582
1583/**
1584 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1585 * @dev: device to select idle state for
1586 */
1587int pinctrl_pm_select_idle_state(struct device *dev)
1588{
1589        if (!dev->pins)
1590                return 0;
1591
1592        return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1593}
1594EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1595#endif
1596
1597#ifdef CONFIG_DEBUG_FS
1598
1599static int pinctrl_pins_show(struct seq_file *s, void *what)
1600{
1601        struct pinctrl_dev *pctldev = s->private;
1602        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1603        unsigned i, pin;
1604
1605        seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1606
1607        mutex_lock(&pctldev->mutex);
1608
1609        /* The pin number can be retrived from the pin controller descriptor */
1610        for (i = 0; i < pctldev->desc->npins; i++) {
1611                struct pin_desc *desc;
1612
1613                pin = pctldev->desc->pins[i].number;
1614                desc = pin_desc_get(pctldev, pin);
1615                /* Pin space may be sparse */
1616                if (!desc)
1617                        continue;
1618
1619                seq_printf(s, "pin %d (%s) ", pin, desc->name);
1620
1621                /* Driver-specific info per pin */
1622                if (ops->pin_dbg_show)
1623                        ops->pin_dbg_show(pctldev, s, pin);
1624
1625                seq_puts(s, "\n");
1626        }
1627
1628        mutex_unlock(&pctldev->mutex);
1629
1630        return 0;
1631}
1632DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1633
1634static int pinctrl_groups_show(struct seq_file *s, void *what)
1635{
1636        struct pinctrl_dev *pctldev = s->private;
1637        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1638        unsigned ngroups, selector = 0;
1639
1640        mutex_lock(&pctldev->mutex);
1641
1642        ngroups = ops->get_groups_count(pctldev);
1643
1644        seq_puts(s, "registered pin groups:\n");
1645        while (selector < ngroups) {
1646                const unsigned *pins = NULL;
1647                unsigned num_pins = 0;
1648                const char *gname = ops->get_group_name(pctldev, selector);
1649                const char *pname;
1650                int ret = 0;
1651                int i;
1652
1653                if (ops->get_group_pins)
1654                        ret = ops->get_group_pins(pctldev, selector,
1655                                                  &pins, &num_pins);
1656                if (ret)
1657                        seq_printf(s, "%s [ERROR GETTING PINS]\n",
1658                                   gname);
1659                else {
1660                        seq_printf(s, "group: %s\n", gname);
1661                        for (i = 0; i < num_pins; i++) {
1662                                pname = pin_get_name(pctldev, pins[i]);
1663                                if (WARN_ON(!pname)) {
1664                                        mutex_unlock(&pctldev->mutex);
1665                                        return -EINVAL;
1666                                }
1667                                seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1668                        }
1669                        seq_puts(s, "\n");
1670                }
1671                selector++;
1672        }
1673
1674        mutex_unlock(&pctldev->mutex);
1675
1676        return 0;
1677}
1678DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1679
1680static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1681{
1682        struct pinctrl_dev *pctldev = s->private;
1683        struct pinctrl_gpio_range *range;
1684
1685        seq_puts(s, "GPIO ranges handled:\n");
1686
1687        mutex_lock(&pctldev->mutex);
1688
1689        /* Loop over the ranges */
1690        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1691                if (range->pins) {
1692                        int a;
1693                        seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1694                                range->id, range->name,
1695                                range->base, (range->base + range->npins - 1));
1696                        for (a = 0; a < range->npins - 1; a++)
1697                                seq_printf(s, "%u, ", range->pins[a]);
1698                        seq_printf(s, "%u}\n", range->pins[a]);
1699                }
1700                else
1701                        seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1702                                range->id, range->name,
1703                                range->base, (range->base + range->npins - 1),
1704                                range->pin_base,
1705                                (range->pin_base + range->npins - 1));
1706        }
1707
1708        mutex_unlock(&pctldev->mutex);
1709
1710        return 0;
1711}
1712DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1713
1714static int pinctrl_devices_show(struct seq_file *s, void *what)
1715{
1716        struct pinctrl_dev *pctldev;
1717
1718        seq_puts(s, "name [pinmux] [pinconf]\n");
1719
1720        mutex_lock(&pinctrldev_list_mutex);
1721
1722        list_for_each_entry(pctldev, &pinctrldev_list, node) {
1723                seq_printf(s, "%s ", pctldev->desc->name);
1724                if (pctldev->desc->pmxops)
1725                        seq_puts(s, "yes ");
1726                else
1727                        seq_puts(s, "no ");
1728                if (pctldev->desc->confops)
1729                        seq_puts(s, "yes");
1730                else
1731                        seq_puts(s, "no");
1732                seq_puts(s, "\n");
1733        }
1734
1735        mutex_unlock(&pinctrldev_list_mutex);
1736
1737        return 0;
1738}
1739DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1740
1741static inline const char *map_type(enum pinctrl_map_type type)
1742{
1743        static const char * const names[] = {
1744                "INVALID",
1745                "DUMMY_STATE",
1746                "MUX_GROUP",
1747                "CONFIGS_PIN",
1748                "CONFIGS_GROUP",
1749        };
1750
1751        if (type >= ARRAY_SIZE(names))
1752                return "UNKNOWN";
1753
1754        return names[type];
1755}
1756
1757static int pinctrl_maps_show(struct seq_file *s, void *what)
1758{
1759        struct pinctrl_maps *maps_node;
1760        int i;
1761        const struct pinctrl_map *map;
1762
1763        seq_puts(s, "Pinctrl maps:\n");
1764
1765        mutex_lock(&pinctrl_maps_mutex);
1766        for_each_maps(maps_node, i, map) {
1767                seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1768                           map->dev_name, map->name, map_type(map->type),
1769                           map->type);
1770
1771                if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1772                        seq_printf(s, "controlling device %s\n",
1773                                   map->ctrl_dev_name);
1774
1775                switch (map->type) {
1776                case PIN_MAP_TYPE_MUX_GROUP:
1777                        pinmux_show_map(s, map);
1778                        break;
1779                case PIN_MAP_TYPE_CONFIGS_PIN:
1780                case PIN_MAP_TYPE_CONFIGS_GROUP:
1781                        pinconf_show_map(s, map);
1782                        break;
1783                default:
1784                        break;
1785                }
1786
1787                seq_putc(s, '\n');
1788        }
1789        mutex_unlock(&pinctrl_maps_mutex);
1790
1791        return 0;
1792}
1793DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1794
1795static int pinctrl_show(struct seq_file *s, void *what)
1796{
1797        struct pinctrl *p;
1798        struct pinctrl_state *state;
1799        struct pinctrl_setting *setting;
1800
1801        seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1802
1803        mutex_lock(&pinctrl_list_mutex);
1804
1805        list_for_each_entry(p, &pinctrl_list, node) {
1806                seq_printf(s, "device: %s current state: %s\n",
1807                           dev_name(p->dev),
1808                           p->state ? p->state->name : "none");
1809
1810                list_for_each_entry(state, &p->states, node) {
1811                        seq_printf(s, "  state: %s\n", state->name);
1812
1813                        list_for_each_entry(setting, &state->settings, node) {
1814                                struct pinctrl_dev *pctldev = setting->pctldev;
1815
1816                                seq_printf(s, "    type: %s controller %s ",
1817                                           map_type(setting->type),
1818                                           pinctrl_dev_get_name(pctldev));
1819
1820                                switch (setting->type) {
1821                                case PIN_MAP_TYPE_MUX_GROUP:
1822                                        pinmux_show_setting(s, setting);
1823                                        break;
1824                                case PIN_MAP_TYPE_CONFIGS_PIN:
1825                                case PIN_MAP_TYPE_CONFIGS_GROUP:
1826                                        pinconf_show_setting(s, setting);
1827                                        break;
1828                                default:
1829                                        break;
1830                                }
1831                        }
1832                }
1833        }
1834
1835        mutex_unlock(&pinctrl_list_mutex);
1836
1837        return 0;
1838}
1839DEFINE_SHOW_ATTRIBUTE(pinctrl);
1840
1841static struct dentry *debugfs_root;
1842
1843static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1844{
1845        struct dentry *device_root;
1846        const char *debugfs_name;
1847
1848        if (pctldev->desc->name &&
1849                        strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1850                debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1851                                "%s-%s", dev_name(pctldev->dev),
1852                                pctldev->desc->name);
1853                if (!debugfs_name) {
1854                        pr_warn("failed to determine debugfs dir name for %s\n",
1855                                dev_name(pctldev->dev));
1856                        return;
1857                }
1858        } else {
1859                debugfs_name = dev_name(pctldev->dev);
1860        }
1861
1862        device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1863        pctldev->device_root = device_root;
1864
1865        if (IS_ERR(device_root) || !device_root) {
1866                pr_warn("failed to create debugfs directory for %s\n",
1867                        dev_name(pctldev->dev));
1868                return;
1869        }
1870        debugfs_create_file("pins", S_IFREG | S_IRUGO,
1871                            device_root, pctldev, &pinctrl_pins_fops);
1872        debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1873                            device_root, pctldev, &pinctrl_groups_fops);
1874        debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1875                            device_root, pctldev, &pinctrl_gpioranges_fops);
1876        if (pctldev->desc->pmxops)
1877                pinmux_init_device_debugfs(device_root, pctldev);
1878        if (pctldev->desc->confops)
1879                pinconf_init_device_debugfs(device_root, pctldev);
1880}
1881
1882static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1883{
1884        debugfs_remove_recursive(pctldev->device_root);
1885}
1886
1887static void pinctrl_init_debugfs(void)
1888{
1889        debugfs_root = debugfs_create_dir("pinctrl", NULL);
1890        if (IS_ERR(debugfs_root) || !debugfs_root) {
1891                pr_warn("failed to create debugfs directory\n");
1892                debugfs_root = NULL;
1893                return;
1894        }
1895
1896        debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1897                            debugfs_root, NULL, &pinctrl_devices_fops);
1898        debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1899                            debugfs_root, NULL, &pinctrl_maps_fops);
1900        debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1901                            debugfs_root, NULL, &pinctrl_fops);
1902}
1903
1904#else /* CONFIG_DEBUG_FS */
1905
1906static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1907{
1908}
1909
1910static void pinctrl_init_debugfs(void)
1911{
1912}
1913
1914static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1915{
1916}
1917
1918#endif
1919
1920static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1921{
1922        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1923
1924        if (!ops ||
1925            !ops->get_groups_count ||
1926            !ops->get_group_name)
1927                return -EINVAL;
1928
1929        return 0;
1930}
1931
1932/**
1933 * pinctrl_init_controller() - init a pin controller device
1934 * @pctldesc: descriptor for this pin controller
1935 * @dev: parent device for this pin controller
1936 * @driver_data: private pin controller data for this pin controller
1937 */
1938static struct pinctrl_dev *
1939pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1940                        void *driver_data)
1941{
1942        struct pinctrl_dev *pctldev;
1943        int ret;
1944
1945        if (!pctldesc)
1946                return ERR_PTR(-EINVAL);
1947        if (!pctldesc->name)
1948                return ERR_PTR(-EINVAL);
1949
1950        pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1951        if (!pctldev)
1952                return ERR_PTR(-ENOMEM);
1953
1954        /* Initialize pin control device struct */
1955        pctldev->owner = pctldesc->owner;
1956        pctldev->desc = pctldesc;
1957        pctldev->driver_data = driver_data;
1958        INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1959#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1960        INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1961#endif
1962#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1963        INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1964#endif
1965        INIT_LIST_HEAD(&pctldev->gpio_ranges);
1966        INIT_LIST_HEAD(&pctldev->node);
1967        pctldev->dev = dev;
1968        mutex_init(&pctldev->mutex);
1969
1970        /* check core ops for sanity */
1971        ret = pinctrl_check_ops(pctldev);
1972        if (ret) {
1973                dev_err(dev, "pinctrl ops lacks necessary functions\n");
1974                goto out_err;
1975        }
1976
1977        /* If we're implementing pinmuxing, check the ops for sanity */
1978        if (pctldesc->pmxops) {
1979                ret = pinmux_check_ops(pctldev);
1980                if (ret)
1981                        goto out_err;
1982        }
1983
1984        /* If we're implementing pinconfig, check the ops for sanity */
1985        if (pctldesc->confops) {
1986                ret = pinconf_check_ops(pctldev);
1987                if (ret)
1988                        goto out_err;
1989        }
1990
1991        /* Register all the pins */
1992        dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1993        ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1994        if (ret) {
1995                dev_err(dev, "error during pin registration\n");
1996                pinctrl_free_pindescs(pctldev, pctldesc->pins,
1997                                      pctldesc->npins);
1998                goto out_err;
1999        }
2000
2001        return pctldev;
2002
2003out_err:
2004        mutex_destroy(&pctldev->mutex);
2005        kfree(pctldev);
2006        return ERR_PTR(ret);
2007}
2008
2009static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2010{
2011        pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2012        if (PTR_ERR(pctldev->p) == -ENODEV) {
2013                dev_dbg(pctldev->dev, "no hogs found\n");
2014
2015                return 0;
2016        }
2017
2018        if (IS_ERR(pctldev->p)) {
2019                dev_err(pctldev->dev, "error claiming hogs: %li\n",
2020                        PTR_ERR(pctldev->p));
2021
2022                return PTR_ERR(pctldev->p);
2023        }
2024
2025        pctldev->hog_default =
2026                pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2027        if (IS_ERR(pctldev->hog_default)) {
2028                dev_dbg(pctldev->dev,
2029                        "failed to lookup the default state\n");
2030        } else {
2031                if (pinctrl_select_state(pctldev->p,
2032                                         pctldev->hog_default))
2033                        dev_err(pctldev->dev,
2034                                "failed to select default state\n");
2035        }
2036
2037        pctldev->hog_sleep =
2038                pinctrl_lookup_state(pctldev->p,
2039                                     PINCTRL_STATE_SLEEP);
2040        if (IS_ERR(pctldev->hog_sleep))
2041                dev_dbg(pctldev->dev,
2042                        "failed to lookup the sleep state\n");
2043
2044        return 0;
2045}
2046
2047int pinctrl_enable(struct pinctrl_dev *pctldev)
2048{
2049        int error;
2050
2051        error = pinctrl_claim_hogs(pctldev);
2052        if (error) {
2053                dev_err(pctldev->dev, "could not claim hogs: %i\n",
2054                        error);
2055                mutex_destroy(&pctldev->mutex);
2056                kfree(pctldev);
2057
2058                return error;
2059        }
2060
2061        mutex_lock(&pinctrldev_list_mutex);
2062        list_add_tail(&pctldev->node, &pinctrldev_list);
2063        mutex_unlock(&pinctrldev_list_mutex);
2064
2065        pinctrl_init_device_debugfs(pctldev);
2066
2067        return 0;
2068}
2069EXPORT_SYMBOL_GPL(pinctrl_enable);
2070
2071/**
2072 * pinctrl_register() - register a pin controller device
2073 * @pctldesc: descriptor for this pin controller
2074 * @dev: parent device for this pin controller
2075 * @driver_data: private pin controller data for this pin controller
2076 *
2077 * Note that pinctrl_register() is known to have problems as the pin
2078 * controller driver functions are called before the driver has a
2079 * struct pinctrl_dev handle. To avoid issues later on, please use the
2080 * new pinctrl_register_and_init() below instead.
2081 */
2082struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2083                                    struct device *dev, void *driver_data)
2084{
2085        struct pinctrl_dev *pctldev;
2086        int error;
2087
2088        pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2089        if (IS_ERR(pctldev))
2090                return pctldev;
2091
2092        error = pinctrl_enable(pctldev);
2093        if (error)
2094                return ERR_PTR(error);
2095
2096        return pctldev;
2097
2098}
2099EXPORT_SYMBOL_GPL(pinctrl_register);
2100
2101/**
2102 * pinctrl_register_and_init() - register and init pin controller device
2103 * @pctldesc: descriptor for this pin controller
2104 * @dev: parent device for this pin controller
2105 * @driver_data: private pin controller data for this pin controller
2106 * @pctldev: pin controller device
2107 *
2108 * Note that pinctrl_enable() still needs to be manually called after
2109 * this once the driver is ready.
2110 */
2111int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2112                              struct device *dev, void *driver_data,
2113                              struct pinctrl_dev **pctldev)
2114{
2115        struct pinctrl_dev *p;
2116
2117        p = pinctrl_init_controller(pctldesc, dev, driver_data);
2118        if (IS_ERR(p))
2119                return PTR_ERR(p);
2120
2121        /*
2122         * We have pinctrl_start() call functions in the pin controller
2123         * driver with create_pinctrl() for at least dt_node_to_map(). So
2124         * let's make sure pctldev is properly initialized for the
2125         * pin controller driver before we do anything.
2126         */
2127        *pctldev = p;
2128
2129        return 0;
2130}
2131EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2132
2133/**
2134 * pinctrl_unregister() - unregister pinmux
2135 * @pctldev: pin controller to unregister
2136 *
2137 * Called by pinmux drivers to unregister a pinmux.
2138 */
2139void pinctrl_unregister(struct pinctrl_dev *pctldev)
2140{
2141        struct pinctrl_gpio_range *range, *n;
2142
2143        if (!pctldev)
2144                return;
2145
2146        mutex_lock(&pctldev->mutex);
2147        pinctrl_remove_device_debugfs(pctldev);
2148        mutex_unlock(&pctldev->mutex);
2149
2150        if (!IS_ERR_OR_NULL(pctldev->p))
2151                pinctrl_put(pctldev->p);
2152
2153        mutex_lock(&pinctrldev_list_mutex);
2154        mutex_lock(&pctldev->mutex);
2155        /* TODO: check that no pinmuxes are still active? */
2156        list_del(&pctldev->node);
2157        pinmux_generic_free_functions(pctldev);
2158        pinctrl_generic_free_groups(pctldev);
2159        /* Destroy descriptor tree */
2160        pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2161                              pctldev->desc->npins);
2162        /* remove gpio ranges map */
2163        list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2164                list_del(&range->node);
2165
2166        mutex_unlock(&pctldev->mutex);
2167        mutex_destroy(&pctldev->mutex);
2168        kfree(pctldev);
2169        mutex_unlock(&pinctrldev_list_mutex);
2170}
2171EXPORT_SYMBOL_GPL(pinctrl_unregister);
2172
2173static void devm_pinctrl_dev_release(struct device *dev, void *res)
2174{
2175        struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2176
2177        pinctrl_unregister(pctldev);
2178}
2179
2180static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2181{
2182        struct pctldev **r = res;
2183
2184        if (WARN_ON(!r || !*r))
2185                return 0;
2186
2187        return *r == data;
2188}
2189
2190/**
2191 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2192 * @dev: parent device for this pin controller
2193 * @pctldesc: descriptor for this pin controller
2194 * @driver_data: private pin controller data for this pin controller
2195 *
2196 * Returns an error pointer if pincontrol register failed. Otherwise
2197 * it returns valid pinctrl handle.
2198 *
2199 * The pinctrl device will be automatically released when the device is unbound.
2200 */
2201struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2202                                          struct pinctrl_desc *pctldesc,
2203                                          void *driver_data)
2204{
2205        struct pinctrl_dev **ptr, *pctldev;
2206
2207        ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2208        if (!ptr)
2209                return ERR_PTR(-ENOMEM);
2210
2211        pctldev = pinctrl_register(pctldesc, dev, driver_data);
2212        if (IS_ERR(pctldev)) {
2213                devres_free(ptr);
2214                return pctldev;
2215        }
2216
2217        *ptr = pctldev;
2218        devres_add(dev, ptr);
2219
2220        return pctldev;
2221}
2222EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2223
2224/**
2225 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2226 * @dev: parent device for this pin controller
2227 * @pctldesc: descriptor for this pin controller
2228 * @driver_data: private pin controller data for this pin controller
2229 *
2230 * Returns an error pointer if pincontrol register failed. Otherwise
2231 * it returns valid pinctrl handle.
2232 *
2233 * The pinctrl device will be automatically released when the device is unbound.
2234 */
2235int devm_pinctrl_register_and_init(struct device *dev,
2236                                   struct pinctrl_desc *pctldesc,
2237                                   void *driver_data,
2238                                   struct pinctrl_dev **pctldev)
2239{
2240        struct pinctrl_dev **ptr;
2241        int error;
2242
2243        ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2244        if (!ptr)
2245                return -ENOMEM;
2246
2247        error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2248        if (error) {
2249                devres_free(ptr);
2250                return error;
2251        }
2252
2253        *ptr = *pctldev;
2254        devres_add(dev, ptr);
2255
2256        return 0;
2257}
2258EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2259
2260/**
2261 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2262 * @dev: device for which which resource was allocated
2263 * @pctldev: the pinctrl device to unregister.
2264 */
2265void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2266{
2267        WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2268                               devm_pinctrl_dev_match, pctldev));
2269}
2270EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2271
2272static int __init pinctrl_init(void)
2273{
2274        pr_info("initialized pinctrl subsystem\n");
2275        pinctrl_init_debugfs();
2276        return 0;
2277}
2278
2279/* init early since many drivers really need to initialized pinmux early */
2280core_initcall(pinctrl_init);
2281