linux/drivers/scsi/aacraid/commsup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      Adaptec AAC series RAID controller driver
   4 *      (c) Copyright 2001 Red Hat Inc.
   5 *
   6 * based on the old aacraid driver that is..
   7 * Adaptec aacraid device driver for Linux.
   8 *
   9 * Copyright (c) 2000-2010 Adaptec, Inc.
  10 *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
  11 *               2016-2017 Microsemi Corp. (aacraid@microsemi.com)
  12 *
  13 * Module Name:
  14 *  commsup.c
  15 *
  16 * Abstract: Contain all routines that are required for FSA host/adapter
  17 *    communication.
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/init.h>
  22#include <linux/crash_dump.h>
  23#include <linux/types.h>
  24#include <linux/sched.h>
  25#include <linux/pci.h>
  26#include <linux/spinlock.h>
  27#include <linux/slab.h>
  28#include <linux/completion.h>
  29#include <linux/blkdev.h>
  30#include <linux/delay.h>
  31#include <linux/kthread.h>
  32#include <linux/interrupt.h>
  33#include <linux/bcd.h>
  34#include <scsi/scsi.h>
  35#include <scsi/scsi_host.h>
  36#include <scsi/scsi_device.h>
  37#include <scsi/scsi_cmnd.h>
  38
  39#include "aacraid.h"
  40
  41/**
  42 *      fib_map_alloc           -       allocate the fib objects
  43 *      @dev: Adapter to allocate for
  44 *
  45 *      Allocate and map the shared PCI space for the FIB blocks used to
  46 *      talk to the Adaptec firmware.
  47 */
  48
  49static int fib_map_alloc(struct aac_dev *dev)
  50{
  51        if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
  52                dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
  53        else
  54                dev->max_cmd_size = dev->max_fib_size;
  55        if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
  56                dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
  57        } else {
  58                dev->max_cmd_size = dev->max_fib_size;
  59        }
  60
  61        dprintk((KERN_INFO
  62          "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
  63          &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
  64          AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
  65        dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
  66                (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
  67                * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
  68                &dev->hw_fib_pa, GFP_KERNEL);
  69        if (dev->hw_fib_va == NULL)
  70                return -ENOMEM;
  71        return 0;
  72}
  73
  74/**
  75 *      aac_fib_map_free                -       free the fib objects
  76 *      @dev: Adapter to free
  77 *
  78 *      Free the PCI mappings and the memory allocated for FIB blocks
  79 *      on this adapter.
  80 */
  81
  82void aac_fib_map_free(struct aac_dev *dev)
  83{
  84        size_t alloc_size;
  85        size_t fib_size;
  86        int num_fibs;
  87
  88        if(!dev->hw_fib_va || !dev->max_cmd_size)
  89                return;
  90
  91        num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
  92        fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
  93        alloc_size = fib_size * num_fibs + ALIGN32 - 1;
  94
  95        dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
  96                          dev->hw_fib_pa);
  97
  98        dev->hw_fib_va = NULL;
  99        dev->hw_fib_pa = 0;
 100}
 101
 102void aac_fib_vector_assign(struct aac_dev *dev)
 103{
 104        u32 i = 0;
 105        u32 vector = 1;
 106        struct fib *fibptr = NULL;
 107
 108        for (i = 0, fibptr = &dev->fibs[i];
 109                i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
 110                i++, fibptr++) {
 111                if ((dev->max_msix == 1) ||
 112                  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
 113                        - dev->vector_cap))) {
 114                        fibptr->vector_no = 0;
 115                } else {
 116                        fibptr->vector_no = vector;
 117                        vector++;
 118                        if (vector == dev->max_msix)
 119                                vector = 1;
 120                }
 121        }
 122}
 123
 124/**
 125 *      aac_fib_setup   -       setup the fibs
 126 *      @dev: Adapter to set up
 127 *
 128 *      Allocate the PCI space for the fibs, map it and then initialise the
 129 *      fib area, the unmapped fib data and also the free list
 130 */
 131
 132int aac_fib_setup(struct aac_dev * dev)
 133{
 134        struct fib *fibptr;
 135        struct hw_fib *hw_fib;
 136        dma_addr_t hw_fib_pa;
 137        int i;
 138        u32 max_cmds;
 139
 140        while (((i = fib_map_alloc(dev)) == -ENOMEM)
 141         && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
 142                max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
 143                dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
 144                if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
 145                        dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
 146        }
 147        if (i<0)
 148                return -ENOMEM;
 149
 150        memset(dev->hw_fib_va, 0,
 151                (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
 152                (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
 153
 154        /* 32 byte alignment for PMC */
 155        hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
 156        hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
 157                                        (hw_fib_pa - dev->hw_fib_pa));
 158
 159        /* add Xport header */
 160        hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
 161                sizeof(struct aac_fib_xporthdr));
 162        hw_fib_pa += sizeof(struct aac_fib_xporthdr);
 163
 164        /*
 165         *      Initialise the fibs
 166         */
 167        for (i = 0, fibptr = &dev->fibs[i];
 168                i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
 169                i++, fibptr++)
 170        {
 171                fibptr->flags = 0;
 172                fibptr->size = sizeof(struct fib);
 173                fibptr->dev = dev;
 174                fibptr->hw_fib_va = hw_fib;
 175                fibptr->data = (void *) fibptr->hw_fib_va->data;
 176                fibptr->next = fibptr+1;        /* Forward chain the fibs */
 177                init_completion(&fibptr->event_wait);
 178                spin_lock_init(&fibptr->event_lock);
 179                hw_fib->header.XferState = cpu_to_le32(0xffffffff);
 180                hw_fib->header.SenderSize =
 181                        cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
 182                fibptr->hw_fib_pa = hw_fib_pa;
 183                fibptr->hw_sgl_pa = hw_fib_pa +
 184                        offsetof(struct aac_hba_cmd_req, sge[2]);
 185                /*
 186                 * one element is for the ptr to the separate sg list,
 187                 * second element for 32 byte alignment
 188                 */
 189                fibptr->hw_error_pa = hw_fib_pa +
 190                        offsetof(struct aac_native_hba, resp.resp_bytes[0]);
 191
 192                hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
 193                        dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
 194                hw_fib_pa = hw_fib_pa +
 195                        dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
 196        }
 197
 198        /*
 199         *Assign vector numbers to fibs
 200         */
 201        aac_fib_vector_assign(dev);
 202
 203        /*
 204         *      Add the fib chain to the free list
 205         */
 206        dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
 207        /*
 208        *       Set 8 fibs aside for management tools
 209        */
 210        dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
 211        return 0;
 212}
 213
 214/**
 215 *      aac_fib_alloc_tag-allocate a fib using tags
 216 *      @dev: Adapter to allocate the fib for
 217 *
 218 *      Allocate a fib from the adapter fib pool using tags
 219 *      from the blk layer.
 220 */
 221
 222struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
 223{
 224        struct fib *fibptr;
 225
 226        fibptr = &dev->fibs[scmd->request->tag];
 227        /*
 228         *      Null out fields that depend on being zero at the start of
 229         *      each I/O
 230         */
 231        fibptr->hw_fib_va->header.XferState = 0;
 232        fibptr->type = FSAFS_NTC_FIB_CONTEXT;
 233        fibptr->callback_data = NULL;
 234        fibptr->callback = NULL;
 235        fibptr->flags = 0;
 236
 237        return fibptr;
 238}
 239
 240/**
 241 *      aac_fib_alloc   -       allocate a fib
 242 *      @dev: Adapter to allocate the fib for
 243 *
 244 *      Allocate a fib from the adapter fib pool. If the pool is empty we
 245 *      return NULL.
 246 */
 247
 248struct fib *aac_fib_alloc(struct aac_dev *dev)
 249{
 250        struct fib * fibptr;
 251        unsigned long flags;
 252        spin_lock_irqsave(&dev->fib_lock, flags);
 253        fibptr = dev->free_fib;
 254        if(!fibptr){
 255                spin_unlock_irqrestore(&dev->fib_lock, flags);
 256                return fibptr;
 257        }
 258        dev->free_fib = fibptr->next;
 259        spin_unlock_irqrestore(&dev->fib_lock, flags);
 260        /*
 261         *      Set the proper node type code and node byte size
 262         */
 263        fibptr->type = FSAFS_NTC_FIB_CONTEXT;
 264        fibptr->size = sizeof(struct fib);
 265        /*
 266         *      Null out fields that depend on being zero at the start of
 267         *      each I/O
 268         */
 269        fibptr->hw_fib_va->header.XferState = 0;
 270        fibptr->flags = 0;
 271        fibptr->callback = NULL;
 272        fibptr->callback_data = NULL;
 273
 274        return fibptr;
 275}
 276
 277/**
 278 *      aac_fib_free    -       free a fib
 279 *      @fibptr: fib to free up
 280 *
 281 *      Frees up a fib and places it on the appropriate queue
 282 */
 283
 284void aac_fib_free(struct fib *fibptr)
 285{
 286        unsigned long flags;
 287
 288        if (fibptr->done == 2)
 289                return;
 290
 291        spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
 292        if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 293                aac_config.fib_timeouts++;
 294        if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
 295                fibptr->hw_fib_va->header.XferState != 0) {
 296                printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
 297                         (void*)fibptr,
 298                         le32_to_cpu(fibptr->hw_fib_va->header.XferState));
 299        }
 300        fibptr->next = fibptr->dev->free_fib;
 301        fibptr->dev->free_fib = fibptr;
 302        spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
 303}
 304
 305/**
 306 *      aac_fib_init    -       initialise a fib
 307 *      @fibptr: The fib to initialize
 308 *
 309 *      Set up the generic fib fields ready for use
 310 */
 311
 312void aac_fib_init(struct fib *fibptr)
 313{
 314        struct hw_fib *hw_fib = fibptr->hw_fib_va;
 315
 316        memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
 317        hw_fib->header.StructType = FIB_MAGIC;
 318        hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
 319        hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
 320        hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
 321        hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
 322}
 323
 324/**
 325 *      fib_deallocate          -       deallocate a fib
 326 *      @fibptr: fib to deallocate
 327 *
 328 *      Will deallocate and return to the free pool the FIB pointed to by the
 329 *      caller.
 330 */
 331
 332static void fib_dealloc(struct fib * fibptr)
 333{
 334        struct hw_fib *hw_fib = fibptr->hw_fib_va;
 335        hw_fib->header.XferState = 0;
 336}
 337
 338/*
 339 *      Commuication primitives define and support the queuing method we use to
 340 *      support host to adapter commuication. All queue accesses happen through
 341 *      these routines and are the only routines which have a knowledge of the
 342 *       how these queues are implemented.
 343 */
 344
 345/**
 346 *      aac_get_entry           -       get a queue entry
 347 *      @dev: Adapter
 348 *      @qid: Queue Number
 349 *      @entry: Entry return
 350 *      @index: Index return
 351 *      @nonotify: notification control
 352 *
 353 *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
 354 *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
 355 *      returned.
 356 */
 357
 358static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
 359{
 360        struct aac_queue * q;
 361        unsigned long idx;
 362
 363        /*
 364         *      All of the queues wrap when they reach the end, so we check
 365         *      to see if they have reached the end and if they have we just
 366         *      set the index back to zero. This is a wrap. You could or off
 367         *      the high bits in all updates but this is a bit faster I think.
 368         */
 369
 370        q = &dev->queues->queue[qid];
 371
 372        idx = *index = le32_to_cpu(*(q->headers.producer));
 373        /* Interrupt Moderation, only interrupt for first two entries */
 374        if (idx != le32_to_cpu(*(q->headers.consumer))) {
 375                if (--idx == 0) {
 376                        if (qid == AdapNormCmdQueue)
 377                                idx = ADAP_NORM_CMD_ENTRIES;
 378                        else
 379                                idx = ADAP_NORM_RESP_ENTRIES;
 380                }
 381                if (idx != le32_to_cpu(*(q->headers.consumer)))
 382                        *nonotify = 1;
 383        }
 384
 385        if (qid == AdapNormCmdQueue) {
 386                if (*index >= ADAP_NORM_CMD_ENTRIES)
 387                        *index = 0; /* Wrap to front of the Producer Queue. */
 388        } else {
 389                if (*index >= ADAP_NORM_RESP_ENTRIES)
 390                        *index = 0; /* Wrap to front of the Producer Queue. */
 391        }
 392
 393        /* Queue is full */
 394        if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
 395                printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
 396                                qid, atomic_read(&q->numpending));
 397                return 0;
 398        } else {
 399                *entry = q->base + *index;
 400                return 1;
 401        }
 402}
 403
 404/**
 405 *      aac_queue_get           -       get the next free QE
 406 *      @dev: Adapter
 407 *      @index: Returned index
 408 *      @priority: Priority of fib
 409 *      @fib: Fib to associate with the queue entry
 410 *      @wait: Wait if queue full
 411 *      @fibptr: Driver fib object to go with fib
 412 *      @nonotify: Don't notify the adapter
 413 *
 414 *      Gets the next free QE off the requested priorty adapter command
 415 *      queue and associates the Fib with the QE. The QE represented by
 416 *      index is ready to insert on the queue when this routine returns
 417 *      success.
 418 */
 419
 420int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
 421{
 422        struct aac_entry * entry = NULL;
 423        int map = 0;
 424
 425        if (qid == AdapNormCmdQueue) {
 426                /*  if no entries wait for some if caller wants to */
 427                while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
 428                        printk(KERN_ERR "GetEntries failed\n");
 429                }
 430                /*
 431                 *      Setup queue entry with a command, status and fib mapped
 432                 */
 433                entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 434                map = 1;
 435        } else {
 436                while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
 437                        /* if no entries wait for some if caller wants to */
 438                }
 439                /*
 440                 *      Setup queue entry with command, status and fib mapped
 441                 */
 442                entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
 443                entry->addr = hw_fib->header.SenderFibAddress;
 444                        /* Restore adapters pointer to the FIB */
 445                hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
 446                map = 0;
 447        }
 448        /*
 449         *      If MapFib is true than we need to map the Fib and put pointers
 450         *      in the queue entry.
 451         */
 452        if (map)
 453                entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
 454        return 0;
 455}
 456
 457/*
 458 *      Define the highest level of host to adapter communication routines.
 459 *      These routines will support host to adapter FS commuication. These
 460 *      routines have no knowledge of the commuication method used. This level
 461 *      sends and receives FIBs. This level has no knowledge of how these FIBs
 462 *      get passed back and forth.
 463 */
 464
 465/**
 466 *      aac_fib_send    -       send a fib to the adapter
 467 *      @command: Command to send
 468 *      @fibptr: The fib
 469 *      @size: Size of fib data area
 470 *      @priority: Priority of Fib
 471 *      @wait: Async/sync select
 472 *      @reply: True if a reply is wanted
 473 *      @callback: Called with reply
 474 *      @callback_data: Passed to callback
 475 *
 476 *      Sends the requested FIB to the adapter and optionally will wait for a
 477 *      response FIB. If the caller does not wish to wait for a response than
 478 *      an event to wait on must be supplied. This event will be set when a
 479 *      response FIB is received from the adapter.
 480 */
 481
 482int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
 483                int priority, int wait, int reply, fib_callback callback,
 484                void *callback_data)
 485{
 486        struct aac_dev * dev = fibptr->dev;
 487        struct hw_fib * hw_fib = fibptr->hw_fib_va;
 488        unsigned long flags = 0;
 489        unsigned long mflags = 0;
 490        unsigned long sflags = 0;
 491
 492        if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
 493                return -EBUSY;
 494
 495        if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
 496                return -EINVAL;
 497
 498        /*
 499         *      There are 5 cases with the wait and response requested flags.
 500         *      The only invalid cases are if the caller requests to wait and
 501         *      does not request a response and if the caller does not want a
 502         *      response and the Fib is not allocated from pool. If a response
 503         *      is not requested the Fib will just be deallocaed by the DPC
 504         *      routine when the response comes back from the adapter. No
 505         *      further processing will be done besides deleting the Fib. We
 506         *      will have a debug mode where the adapter can notify the host
 507         *      it had a problem and the host can log that fact.
 508         */
 509        fibptr->flags = 0;
 510        if (wait && !reply) {
 511                return -EINVAL;
 512        } else if (!wait && reply) {
 513                hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
 514                FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
 515        } else if (!wait && !reply) {
 516                hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
 517                FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
 518        } else if (wait && reply) {
 519                hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
 520                FIB_COUNTER_INCREMENT(aac_config.NormalSent);
 521        }
 522        /*
 523         *      Map the fib into 32bits by using the fib number
 524         */
 525
 526        hw_fib->header.SenderFibAddress =
 527                cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
 528
 529        /* use the same shifted value for handle to be compatible
 530         * with the new native hba command handle
 531         */
 532        hw_fib->header.Handle =
 533                cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
 534
 535        /*
 536         *      Set FIB state to indicate where it came from and if we want a
 537         *      response from the adapter. Also load the command from the
 538         *      caller.
 539         *
 540         *      Map the hw fib pointer as a 32bit value
 541         */
 542        hw_fib->header.Command = cpu_to_le16(command);
 543        hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
 544        /*
 545         *      Set the size of the Fib we want to send to the adapter
 546         */
 547        hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
 548        if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
 549                return -EMSGSIZE;
 550        }
 551        /*
 552         *      Get a queue entry connect the FIB to it and send an notify
 553         *      the adapter a command is ready.
 554         */
 555        hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
 556
 557        /*
 558         *      Fill in the Callback and CallbackContext if we are not
 559         *      going to wait.
 560         */
 561        if (!wait) {
 562                fibptr->callback = callback;
 563                fibptr->callback_data = callback_data;
 564                fibptr->flags = FIB_CONTEXT_FLAG;
 565        }
 566
 567        fibptr->done = 0;
 568
 569        FIB_COUNTER_INCREMENT(aac_config.FibsSent);
 570
 571        dprintk((KERN_DEBUG "Fib contents:.\n"));
 572        dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
 573        dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
 574        dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
 575        dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
 576        dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
 577        dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
 578
 579        if (!dev->queues)
 580                return -EBUSY;
 581
 582        if (wait) {
 583
 584                spin_lock_irqsave(&dev->manage_lock, mflags);
 585                if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
 586                        printk(KERN_INFO "No management Fibs Available:%d\n",
 587                                                dev->management_fib_count);
 588                        spin_unlock_irqrestore(&dev->manage_lock, mflags);
 589                        return -EBUSY;
 590                }
 591                dev->management_fib_count++;
 592                spin_unlock_irqrestore(&dev->manage_lock, mflags);
 593                spin_lock_irqsave(&fibptr->event_lock, flags);
 594        }
 595
 596        if (dev->sync_mode) {
 597                if (wait)
 598                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 599                spin_lock_irqsave(&dev->sync_lock, sflags);
 600                if (dev->sync_fib) {
 601                        list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
 602                        spin_unlock_irqrestore(&dev->sync_lock, sflags);
 603                } else {
 604                        dev->sync_fib = fibptr;
 605                        spin_unlock_irqrestore(&dev->sync_lock, sflags);
 606                        aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
 607                                (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
 608                                NULL, NULL, NULL, NULL, NULL);
 609                }
 610                if (wait) {
 611                        fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
 612                        if (wait_for_completion_interruptible(&fibptr->event_wait)) {
 613                                fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
 614                                return -EFAULT;
 615                        }
 616                        return 0;
 617                }
 618                return -EINPROGRESS;
 619        }
 620
 621        if (aac_adapter_deliver(fibptr) != 0) {
 622                printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
 623                if (wait) {
 624                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 625                        spin_lock_irqsave(&dev->manage_lock, mflags);
 626                        dev->management_fib_count--;
 627                        spin_unlock_irqrestore(&dev->manage_lock, mflags);
 628                }
 629                return -EBUSY;
 630        }
 631
 632
 633        /*
 634         *      If the caller wanted us to wait for response wait now.
 635         */
 636
 637        if (wait) {
 638                spin_unlock_irqrestore(&fibptr->event_lock, flags);
 639                /* Only set for first known interruptable command */
 640                if (wait < 0) {
 641                        /*
 642                         * *VERY* Dangerous to time out a command, the
 643                         * assumption is made that we have no hope of
 644                         * functioning because an interrupt routing or other
 645                         * hardware failure has occurred.
 646                         */
 647                        unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
 648                        while (!try_wait_for_completion(&fibptr->event_wait)) {
 649                                int blink;
 650                                if (time_is_before_eq_jiffies(timeout)) {
 651                                        struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
 652                                        atomic_dec(&q->numpending);
 653                                        if (wait == -1) {
 654                                                printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
 655                                                  "Usually a result of a PCI interrupt routing problem;\n"
 656                                                  "update mother board BIOS or consider utilizing one of\n"
 657                                                  "the SAFE mode kernel options (acpi, apic etc)\n");
 658                                        }
 659                                        return -ETIMEDOUT;
 660                                }
 661
 662                                if (unlikely(aac_pci_offline(dev)))
 663                                        return -EFAULT;
 664
 665                                if ((blink = aac_adapter_check_health(dev)) > 0) {
 666                                        if (wait == -1) {
 667                                                printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
 668                                                  "Usually a result of a serious unrecoverable hardware problem\n",
 669                                                  blink);
 670                                        }
 671                                        return -EFAULT;
 672                                }
 673                                /*
 674                                 * Allow other processes / CPUS to use core
 675                                 */
 676                                schedule();
 677                        }
 678                } else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
 679                        /* Do nothing ... satisfy
 680                         * wait_for_completion_interruptible must_check */
 681                }
 682
 683                spin_lock_irqsave(&fibptr->event_lock, flags);
 684                if (fibptr->done == 0) {
 685                        fibptr->done = 2; /* Tell interrupt we aborted */
 686                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 687                        return -ERESTARTSYS;
 688                }
 689                spin_unlock_irqrestore(&fibptr->event_lock, flags);
 690                BUG_ON(fibptr->done == 0);
 691
 692                if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 693                        return -ETIMEDOUT;
 694                return 0;
 695        }
 696        /*
 697         *      If the user does not want a response than return success otherwise
 698         *      return pending
 699         */
 700        if (reply)
 701                return -EINPROGRESS;
 702        else
 703                return 0;
 704}
 705
 706int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
 707                void *callback_data)
 708{
 709        struct aac_dev *dev = fibptr->dev;
 710        int wait;
 711        unsigned long flags = 0;
 712        unsigned long mflags = 0;
 713        struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
 714                        fibptr->hw_fib_va;
 715
 716        fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
 717        if (callback) {
 718                wait = 0;
 719                fibptr->callback = callback;
 720                fibptr->callback_data = callback_data;
 721        } else
 722                wait = 1;
 723
 724
 725        hbacmd->iu_type = command;
 726
 727        if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
 728                /* bit1 of request_id must be 0 */
 729                hbacmd->request_id =
 730                        cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
 731                fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
 732        } else
 733                return -EINVAL;
 734
 735
 736        if (wait) {
 737                spin_lock_irqsave(&dev->manage_lock, mflags);
 738                if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
 739                        spin_unlock_irqrestore(&dev->manage_lock, mflags);
 740                        return -EBUSY;
 741                }
 742                dev->management_fib_count++;
 743                spin_unlock_irqrestore(&dev->manage_lock, mflags);
 744                spin_lock_irqsave(&fibptr->event_lock, flags);
 745        }
 746
 747        if (aac_adapter_deliver(fibptr) != 0) {
 748                if (wait) {
 749                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 750                        spin_lock_irqsave(&dev->manage_lock, mflags);
 751                        dev->management_fib_count--;
 752                        spin_unlock_irqrestore(&dev->manage_lock, mflags);
 753                }
 754                return -EBUSY;
 755        }
 756        FIB_COUNTER_INCREMENT(aac_config.NativeSent);
 757
 758        if (wait) {
 759
 760                spin_unlock_irqrestore(&fibptr->event_lock, flags);
 761
 762                if (unlikely(aac_pci_offline(dev)))
 763                        return -EFAULT;
 764
 765                fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
 766                if (wait_for_completion_interruptible(&fibptr->event_wait))
 767                        fibptr->done = 2;
 768                fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
 769
 770                spin_lock_irqsave(&fibptr->event_lock, flags);
 771                if ((fibptr->done == 0) || (fibptr->done == 2)) {
 772                        fibptr->done = 2; /* Tell interrupt we aborted */
 773                        spin_unlock_irqrestore(&fibptr->event_lock, flags);
 774                        return -ERESTARTSYS;
 775                }
 776                spin_unlock_irqrestore(&fibptr->event_lock, flags);
 777                WARN_ON(fibptr->done == 0);
 778
 779                if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
 780                        return -ETIMEDOUT;
 781
 782                return 0;
 783        }
 784
 785        return -EINPROGRESS;
 786}
 787
 788/**
 789 *      aac_consumer_get        -       get the top of the queue
 790 *      @dev: Adapter
 791 *      @q: Queue
 792 *      @entry: Return entry
 793 *
 794 *      Will return a pointer to the entry on the top of the queue requested that
 795 *      we are a consumer of, and return the address of the queue entry. It does
 796 *      not change the state of the queue.
 797 */
 798
 799int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
 800{
 801        u32 index;
 802        int status;
 803        if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
 804                status = 0;
 805        } else {
 806                /*
 807                 *      The consumer index must be wrapped if we have reached
 808                 *      the end of the queue, else we just use the entry
 809                 *      pointed to by the header index
 810                 */
 811                if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 812                        index = 0;
 813                else
 814                        index = le32_to_cpu(*q->headers.consumer);
 815                *entry = q->base + index;
 816                status = 1;
 817        }
 818        return(status);
 819}
 820
 821/**
 822 *      aac_consumer_free       -       free consumer entry
 823 *      @dev: Adapter
 824 *      @q: Queue
 825 *      @qid: Queue ident
 826 *
 827 *      Frees up the current top of the queue we are a consumer of. If the
 828 *      queue was full notify the producer that the queue is no longer full.
 829 */
 830
 831void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
 832{
 833        int wasfull = 0;
 834        u32 notify;
 835
 836        if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
 837                wasfull = 1;
 838
 839        if (le32_to_cpu(*q->headers.consumer) >= q->entries)
 840                *q->headers.consumer = cpu_to_le32(1);
 841        else
 842                le32_add_cpu(q->headers.consumer, 1);
 843
 844        if (wasfull) {
 845                switch (qid) {
 846
 847                case HostNormCmdQueue:
 848                        notify = HostNormCmdNotFull;
 849                        break;
 850                case HostNormRespQueue:
 851                        notify = HostNormRespNotFull;
 852                        break;
 853                default:
 854                        BUG();
 855                        return;
 856                }
 857                aac_adapter_notify(dev, notify);
 858        }
 859}
 860
 861/**
 862 *      aac_fib_adapter_complete        -       complete adapter issued fib
 863 *      @fibptr: fib to complete
 864 *      @size: size of fib
 865 *
 866 *      Will do all necessary work to complete a FIB that was sent from
 867 *      the adapter.
 868 */
 869
 870int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
 871{
 872        struct hw_fib * hw_fib = fibptr->hw_fib_va;
 873        struct aac_dev * dev = fibptr->dev;
 874        struct aac_queue * q;
 875        unsigned long nointr = 0;
 876        unsigned long qflags;
 877
 878        if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
 879                dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
 880                dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
 881                kfree(hw_fib);
 882                return 0;
 883        }
 884
 885        if (hw_fib->header.XferState == 0) {
 886                if (dev->comm_interface == AAC_COMM_MESSAGE)
 887                        kfree(hw_fib);
 888                return 0;
 889        }
 890        /*
 891         *      If we plan to do anything check the structure type first.
 892         */
 893        if (hw_fib->header.StructType != FIB_MAGIC &&
 894            hw_fib->header.StructType != FIB_MAGIC2 &&
 895            hw_fib->header.StructType != FIB_MAGIC2_64) {
 896                if (dev->comm_interface == AAC_COMM_MESSAGE)
 897                        kfree(hw_fib);
 898                return -EINVAL;
 899        }
 900        /*
 901         *      This block handles the case where the adapter had sent us a
 902         *      command and we have finished processing the command. We
 903         *      call completeFib when we are done processing the command
 904         *      and want to send a response back to the adapter. This will
 905         *      send the completed cdb to the adapter.
 906         */
 907        if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
 908                if (dev->comm_interface == AAC_COMM_MESSAGE) {
 909                        kfree (hw_fib);
 910                } else {
 911                        u32 index;
 912                        hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
 913                        if (size) {
 914                                size += sizeof(struct aac_fibhdr);
 915                                if (size > le16_to_cpu(hw_fib->header.SenderSize))
 916                                        return -EMSGSIZE;
 917                                hw_fib->header.Size = cpu_to_le16(size);
 918                        }
 919                        q = &dev->queues->queue[AdapNormRespQueue];
 920                        spin_lock_irqsave(q->lock, qflags);
 921                        aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
 922                        *(q->headers.producer) = cpu_to_le32(index + 1);
 923                        spin_unlock_irqrestore(q->lock, qflags);
 924                        if (!(nointr & (int)aac_config.irq_mod))
 925                                aac_adapter_notify(dev, AdapNormRespQueue);
 926                }
 927        } else {
 928                printk(KERN_WARNING "aac_fib_adapter_complete: "
 929                        "Unknown xferstate detected.\n");
 930                BUG();
 931        }
 932        return 0;
 933}
 934
 935/**
 936 *      aac_fib_complete        -       fib completion handler
 937 *      @fib: FIB to complete
 938 *
 939 *      Will do all necessary work to complete a FIB.
 940 */
 941
 942int aac_fib_complete(struct fib *fibptr)
 943{
 944        struct hw_fib * hw_fib = fibptr->hw_fib_va;
 945
 946        if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
 947                fib_dealloc(fibptr);
 948                return 0;
 949        }
 950
 951        /*
 952         *      Check for a fib which has already been completed or with a
 953         *      status wait timeout
 954         */
 955
 956        if (hw_fib->header.XferState == 0 || fibptr->done == 2)
 957                return 0;
 958        /*
 959         *      If we plan to do anything check the structure type first.
 960         */
 961
 962        if (hw_fib->header.StructType != FIB_MAGIC &&
 963            hw_fib->header.StructType != FIB_MAGIC2 &&
 964            hw_fib->header.StructType != FIB_MAGIC2_64)
 965                return -EINVAL;
 966        /*
 967         *      This block completes a cdb which orginated on the host and we
 968         *      just need to deallocate the cdb or reinit it. At this point the
 969         *      command is complete that we had sent to the adapter and this
 970         *      cdb could be reused.
 971         */
 972
 973        if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
 974                (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
 975        {
 976                fib_dealloc(fibptr);
 977        }
 978        else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
 979        {
 980                /*
 981                 *      This handles the case when the host has aborted the I/O
 982                 *      to the adapter because the adapter is not responding
 983                 */
 984                fib_dealloc(fibptr);
 985        } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
 986                fib_dealloc(fibptr);
 987        } else {
 988                BUG();
 989        }
 990        return 0;
 991}
 992
 993/**
 994 *      aac_printf      -       handle printf from firmware
 995 *      @dev: Adapter
 996 *      @val: Message info
 997 *
 998 *      Print a message passed to us by the controller firmware on the
 999 *      Adaptec board
1000 */
1001
1002void aac_printf(struct aac_dev *dev, u32 val)
1003{
1004        char *cp = dev->printfbuf;
1005        if (dev->printf_enabled)
1006        {
1007                int length = val & 0xffff;
1008                int level = (val >> 16) & 0xffff;
1009
1010                /*
1011                 *      The size of the printfbuf is set in port.c
1012                 *      There is no variable or define for it
1013                 */
1014                if (length > 255)
1015                        length = 255;
1016                if (cp[length] != 0)
1017                        cp[length] = 0;
1018                if (level == LOG_AAC_HIGH_ERROR)
1019                        printk(KERN_WARNING "%s:%s", dev->name, cp);
1020                else
1021                        printk(KERN_INFO "%s:%s", dev->name, cp);
1022        }
1023        memset(cp, 0, 256);
1024}
1025
1026static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1027{
1028        return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1029}
1030
1031
1032static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1033{
1034        switch (aac_aif_data(aifcmd, 1)) {
1035        case AifBuCacheDataLoss:
1036                if (aac_aif_data(aifcmd, 2))
1037                        dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1038                        aac_aif_data(aifcmd, 2));
1039                else
1040                        dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1041                break;
1042        case AifBuCacheDataRecover:
1043                if (aac_aif_data(aifcmd, 2))
1044                        dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1045                        aac_aif_data(aifcmd, 2));
1046                else
1047                        dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1048                break;
1049        }
1050}
1051
1052/**
1053 *      aac_handle_aif          -       Handle a message from the firmware
1054 *      @dev: Which adapter this fib is from
1055 *      @fibptr: Pointer to fibptr from adapter
1056 *
1057 *      This routine handles a driver notify fib from the adapter and
1058 *      dispatches it to the appropriate routine for handling.
1059 */
1060
1061#define AIF_SNIFF_TIMEOUT       (500*HZ)
1062static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1063{
1064        struct hw_fib * hw_fib = fibptr->hw_fib_va;
1065        struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1066        u32 channel, id, lun, container;
1067        struct scsi_device *device;
1068        enum {
1069                NOTHING,
1070                DELETE,
1071                ADD,
1072                CHANGE
1073        } device_config_needed = NOTHING;
1074
1075        /* Sniff for container changes */
1076
1077        if (!dev || !dev->fsa_dev)
1078                return;
1079        container = channel = id = lun = (u32)-1;
1080
1081        /*
1082         *      We have set this up to try and minimize the number of
1083         * re-configures that take place. As a result of this when
1084         * certain AIF's come in we will set a flag waiting for another
1085         * type of AIF before setting the re-config flag.
1086         */
1087        switch (le32_to_cpu(aifcmd->command)) {
1088        case AifCmdDriverNotify:
1089                switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1090                case AifRawDeviceRemove:
1091                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1092                        if ((container >> 28)) {
1093                                container = (u32)-1;
1094                                break;
1095                        }
1096                        channel = (container >> 24) & 0xF;
1097                        if (channel >= dev->maximum_num_channels) {
1098                                container = (u32)-1;
1099                                break;
1100                        }
1101                        id = container & 0xFFFF;
1102                        if (id >= dev->maximum_num_physicals) {
1103                                container = (u32)-1;
1104                                break;
1105                        }
1106                        lun = (container >> 16) & 0xFF;
1107                        container = (u32)-1;
1108                        channel = aac_phys_to_logical(channel);
1109                        device_config_needed = DELETE;
1110                        break;
1111
1112                /*
1113                 *      Morph or Expand complete
1114                 */
1115                case AifDenMorphComplete:
1116                case AifDenVolumeExtendComplete:
1117                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1118                        if (container >= dev->maximum_num_containers)
1119                                break;
1120
1121                        /*
1122                         *      Find the scsi_device associated with the SCSI
1123                         * address. Make sure we have the right array, and if
1124                         * so set the flag to initiate a new re-config once we
1125                         * see an AifEnConfigChange AIF come through.
1126                         */
1127
1128                        if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1129                                device = scsi_device_lookup(dev->scsi_host_ptr,
1130                                        CONTAINER_TO_CHANNEL(container),
1131                                        CONTAINER_TO_ID(container),
1132                                        CONTAINER_TO_LUN(container));
1133                                if (device) {
1134                                        dev->fsa_dev[container].config_needed = CHANGE;
1135                                        dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1136                                        dev->fsa_dev[container].config_waiting_stamp = jiffies;
1137                                        scsi_device_put(device);
1138                                }
1139                        }
1140                }
1141
1142                /*
1143                 *      If we are waiting on something and this happens to be
1144                 * that thing then set the re-configure flag.
1145                 */
1146                if (container != (u32)-1) {
1147                        if (container >= dev->maximum_num_containers)
1148                                break;
1149                        if ((dev->fsa_dev[container].config_waiting_on ==
1150                            le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1151                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1152                                dev->fsa_dev[container].config_waiting_on = 0;
1153                } else for (container = 0;
1154                    container < dev->maximum_num_containers; ++container) {
1155                        if ((dev->fsa_dev[container].config_waiting_on ==
1156                            le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1157                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1158                                dev->fsa_dev[container].config_waiting_on = 0;
1159                }
1160                break;
1161
1162        case AifCmdEventNotify:
1163                switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1164                case AifEnBatteryEvent:
1165                        dev->cache_protected =
1166                                (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1167                        break;
1168                /*
1169                 *      Add an Array.
1170                 */
1171                case AifEnAddContainer:
1172                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1173                        if (container >= dev->maximum_num_containers)
1174                                break;
1175                        dev->fsa_dev[container].config_needed = ADD;
1176                        dev->fsa_dev[container].config_waiting_on =
1177                                AifEnConfigChange;
1178                        dev->fsa_dev[container].config_waiting_stamp = jiffies;
1179                        break;
1180
1181                /*
1182                 *      Delete an Array.
1183                 */
1184                case AifEnDeleteContainer:
1185                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186                        if (container >= dev->maximum_num_containers)
1187                                break;
1188                        dev->fsa_dev[container].config_needed = DELETE;
1189                        dev->fsa_dev[container].config_waiting_on =
1190                                AifEnConfigChange;
1191                        dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192                        break;
1193
1194                /*
1195                 *      Container change detected. If we currently are not
1196                 * waiting on something else, setup to wait on a Config Change.
1197                 */
1198                case AifEnContainerChange:
1199                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200                        if (container >= dev->maximum_num_containers)
1201                                break;
1202                        if (dev->fsa_dev[container].config_waiting_on &&
1203                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1204                                break;
1205                        dev->fsa_dev[container].config_needed = CHANGE;
1206                        dev->fsa_dev[container].config_waiting_on =
1207                                AifEnConfigChange;
1208                        dev->fsa_dev[container].config_waiting_stamp = jiffies;
1209                        break;
1210
1211                case AifEnConfigChange:
1212                        break;
1213
1214                case AifEnAddJBOD:
1215                case AifEnDeleteJBOD:
1216                        container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1217                        if ((container >> 28)) {
1218                                container = (u32)-1;
1219                                break;
1220                        }
1221                        channel = (container >> 24) & 0xF;
1222                        if (channel >= dev->maximum_num_channels) {
1223                                container = (u32)-1;
1224                                break;
1225                        }
1226                        id = container & 0xFFFF;
1227                        if (id >= dev->maximum_num_physicals) {
1228                                container = (u32)-1;
1229                                break;
1230                        }
1231                        lun = (container >> 16) & 0xFF;
1232                        container = (u32)-1;
1233                        channel = aac_phys_to_logical(channel);
1234                        device_config_needed =
1235                          (((__le32 *)aifcmd->data)[0] ==
1236                            cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1237                        if (device_config_needed == ADD) {
1238                                device = scsi_device_lookup(dev->scsi_host_ptr,
1239                                        channel,
1240                                        id,
1241                                        lun);
1242                                if (device) {
1243                                        scsi_remove_device(device);
1244                                        scsi_device_put(device);
1245                                }
1246                        }
1247                        break;
1248
1249                case AifEnEnclosureManagement:
1250                        /*
1251                         * If in JBOD mode, automatic exposure of new
1252                         * physical target to be suppressed until configured.
1253                         */
1254                        if (dev->jbod)
1255                                break;
1256                        switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1257                        case EM_DRIVE_INSERTION:
1258                        case EM_DRIVE_REMOVAL:
1259                        case EM_SES_DRIVE_INSERTION:
1260                        case EM_SES_DRIVE_REMOVAL:
1261                                container = le32_to_cpu(
1262                                        ((__le32 *)aifcmd->data)[2]);
1263                                if ((container >> 28)) {
1264                                        container = (u32)-1;
1265                                        break;
1266                                }
1267                                channel = (container >> 24) & 0xF;
1268                                if (channel >= dev->maximum_num_channels) {
1269                                        container = (u32)-1;
1270                                        break;
1271                                }
1272                                id = container & 0xFFFF;
1273                                lun = (container >> 16) & 0xFF;
1274                                container = (u32)-1;
1275                                if (id >= dev->maximum_num_physicals) {
1276                                        /* legacy dev_t ? */
1277                                        if ((0x2000 <= id) || lun || channel ||
1278                                          ((channel = (id >> 7) & 0x3F) >=
1279                                          dev->maximum_num_channels))
1280                                                break;
1281                                        lun = (id >> 4) & 7;
1282                                        id &= 0xF;
1283                                }
1284                                channel = aac_phys_to_logical(channel);
1285                                device_config_needed =
1286                                  ((((__le32 *)aifcmd->data)[3]
1287                                    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1288                                    (((__le32 *)aifcmd->data)[3]
1289                                    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1290                                  ADD : DELETE;
1291                                break;
1292                        }
1293                        break;
1294                case AifBuManagerEvent:
1295                        aac_handle_aif_bu(dev, aifcmd);
1296                        break;
1297                }
1298
1299                /*
1300                 *      If we are waiting on something and this happens to be
1301                 * that thing then set the re-configure flag.
1302                 */
1303                if (container != (u32)-1) {
1304                        if (container >= dev->maximum_num_containers)
1305                                break;
1306                        if ((dev->fsa_dev[container].config_waiting_on ==
1307                            le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1308                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1309                                dev->fsa_dev[container].config_waiting_on = 0;
1310                } else for (container = 0;
1311                    container < dev->maximum_num_containers; ++container) {
1312                        if ((dev->fsa_dev[container].config_waiting_on ==
1313                            le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1314                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1315                                dev->fsa_dev[container].config_waiting_on = 0;
1316                }
1317                break;
1318
1319        case AifCmdJobProgress:
1320                /*
1321                 *      These are job progress AIF's. When a Clear is being
1322                 * done on a container it is initially created then hidden from
1323                 * the OS. When the clear completes we don't get a config
1324                 * change so we monitor the job status complete on a clear then
1325                 * wait for a container change.
1326                 */
1327
1328                if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1329                    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1330                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1331                        for (container = 0;
1332                            container < dev->maximum_num_containers;
1333                            ++container) {
1334                                /*
1335                                 * Stomp on all config sequencing for all
1336                                 * containers?
1337                                 */
1338                                dev->fsa_dev[container].config_waiting_on =
1339                                        AifEnContainerChange;
1340                                dev->fsa_dev[container].config_needed = ADD;
1341                                dev->fsa_dev[container].config_waiting_stamp =
1342                                        jiffies;
1343                        }
1344                }
1345                if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1346                    ((__le32 *)aifcmd->data)[6] == 0 &&
1347                    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1348                        for (container = 0;
1349                            container < dev->maximum_num_containers;
1350                            ++container) {
1351                                /*
1352                                 * Stomp on all config sequencing for all
1353                                 * containers?
1354                                 */
1355                                dev->fsa_dev[container].config_waiting_on =
1356                                        AifEnContainerChange;
1357                                dev->fsa_dev[container].config_needed = DELETE;
1358                                dev->fsa_dev[container].config_waiting_stamp =
1359                                        jiffies;
1360                        }
1361                }
1362                break;
1363        }
1364
1365        container = 0;
1366retry_next:
1367        if (device_config_needed == NOTHING) {
1368                for (; container < dev->maximum_num_containers; ++container) {
1369                        if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1370                            (dev->fsa_dev[container].config_needed != NOTHING) &&
1371                            time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1372                                device_config_needed =
1373                                        dev->fsa_dev[container].config_needed;
1374                                dev->fsa_dev[container].config_needed = NOTHING;
1375                                channel = CONTAINER_TO_CHANNEL(container);
1376                                id = CONTAINER_TO_ID(container);
1377                                lun = CONTAINER_TO_LUN(container);
1378                                break;
1379                        }
1380                }
1381        }
1382        if (device_config_needed == NOTHING)
1383                return;
1384
1385        /*
1386         *      If we decided that a re-configuration needs to be done,
1387         * schedule it here on the way out the door, please close the door
1388         * behind you.
1389         */
1390
1391        /*
1392         *      Find the scsi_device associated with the SCSI address,
1393         * and mark it as changed, invalidating the cache. This deals
1394         * with changes to existing device IDs.
1395         */
1396
1397        if (!dev || !dev->scsi_host_ptr)
1398                return;
1399        /*
1400         * force reload of disk info via aac_probe_container
1401         */
1402        if ((channel == CONTAINER_CHANNEL) &&
1403          (device_config_needed != NOTHING)) {
1404                if (dev->fsa_dev[container].valid == 1)
1405                        dev->fsa_dev[container].valid = 2;
1406                aac_probe_container(dev, container);
1407        }
1408        device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1409        if (device) {
1410                switch (device_config_needed) {
1411                case DELETE:
1412#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1413                        scsi_remove_device(device);
1414#else
1415                        if (scsi_device_online(device)) {
1416                                scsi_device_set_state(device, SDEV_OFFLINE);
1417                                sdev_printk(KERN_INFO, device,
1418                                        "Device offlined - %s\n",
1419                                        (channel == CONTAINER_CHANNEL) ?
1420                                                "array deleted" :
1421                                                "enclosure services event");
1422                        }
1423#endif
1424                        break;
1425                case ADD:
1426                        if (!scsi_device_online(device)) {
1427                                sdev_printk(KERN_INFO, device,
1428                                        "Device online - %s\n",
1429                                        (channel == CONTAINER_CHANNEL) ?
1430                                                "array created" :
1431                                                "enclosure services event");
1432                                scsi_device_set_state(device, SDEV_RUNNING);
1433                        }
1434                        /* FALLTHRU */
1435                case CHANGE:
1436                        if ((channel == CONTAINER_CHANNEL)
1437                         && (!dev->fsa_dev[container].valid)) {
1438#if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1439                                scsi_remove_device(device);
1440#else
1441                                if (!scsi_device_online(device))
1442                                        break;
1443                                scsi_device_set_state(device, SDEV_OFFLINE);
1444                                sdev_printk(KERN_INFO, device,
1445                                        "Device offlined - %s\n",
1446                                        "array failed");
1447#endif
1448                                break;
1449                        }
1450                        scsi_rescan_device(&device->sdev_gendev);
1451
1452                default:
1453                        break;
1454                }
1455                scsi_device_put(device);
1456                device_config_needed = NOTHING;
1457        }
1458        if (device_config_needed == ADD)
1459                scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1460        if (channel == CONTAINER_CHANNEL) {
1461                container++;
1462                device_config_needed = NOTHING;
1463                goto retry_next;
1464        }
1465}
1466
1467static void aac_schedule_bus_scan(struct aac_dev *aac)
1468{
1469        if (aac->sa_firmware)
1470                aac_schedule_safw_scan_worker(aac);
1471        else
1472                aac_schedule_src_reinit_aif_worker(aac);
1473}
1474
1475static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1476{
1477        int index, quirks;
1478        int retval;
1479        struct Scsi_Host *host = aac->scsi_host_ptr;
1480        int jafo = 0;
1481        int bled;
1482        u64 dmamask;
1483        int num_of_fibs = 0;
1484
1485        /*
1486         * Assumptions:
1487         *      - host is locked, unless called by the aacraid thread.
1488         *        (a matter of convenience, due to legacy issues surrounding
1489         *        eh_host_adapter_reset).
1490         *      - in_reset is asserted, so no new i/o is getting to the
1491         *        card.
1492         *      - The card is dead, or will be very shortly ;-/ so no new
1493         *        commands are completing in the interrupt service.
1494         */
1495        aac_adapter_disable_int(aac);
1496        if (aac->thread && aac->thread->pid != current->pid) {
1497                spin_unlock_irq(host->host_lock);
1498                kthread_stop(aac->thread);
1499                aac->thread = NULL;
1500                jafo = 1;
1501        }
1502
1503        /*
1504         *      If a positive health, means in a known DEAD PANIC
1505         * state and the adapter could be reset to `try again'.
1506         */
1507        bled = forced ? 0 : aac_adapter_check_health(aac);
1508        retval = aac_adapter_restart(aac, bled, reset_type);
1509
1510        if (retval)
1511                goto out;
1512
1513        /*
1514         *      Loop through the fibs, close the synchronous FIBS
1515         */
1516        retval = 1;
1517        num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1518        for (index = 0; index <  num_of_fibs; index++) {
1519
1520                struct fib *fib = &aac->fibs[index];
1521                __le32 XferState = fib->hw_fib_va->header.XferState;
1522                bool is_response_expected = false;
1523
1524                if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1525                   (XferState & cpu_to_le32(ResponseExpected)))
1526                        is_response_expected = true;
1527
1528                if (is_response_expected
1529                  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1530                        unsigned long flagv;
1531                        spin_lock_irqsave(&fib->event_lock, flagv);
1532                        complete(&fib->event_wait);
1533                        spin_unlock_irqrestore(&fib->event_lock, flagv);
1534                        schedule();
1535                        retval = 0;
1536                }
1537        }
1538        /* Give some extra time for ioctls to complete. */
1539        if (retval == 0)
1540                ssleep(2);
1541        index = aac->cardtype;
1542
1543        /*
1544         * Re-initialize the adapter, first free resources, then carefully
1545         * apply the initialization sequence to come back again. Only risk
1546         * is a change in Firmware dropping cache, it is assumed the caller
1547         * will ensure that i/o is queisced and the card is flushed in that
1548         * case.
1549         */
1550        aac_free_irq(aac);
1551        aac_fib_map_free(aac);
1552        dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1553                          aac->comm_phys);
1554        aac->comm_addr = NULL;
1555        aac->comm_phys = 0;
1556        kfree(aac->queues);
1557        aac->queues = NULL;
1558        kfree(aac->fsa_dev);
1559        aac->fsa_dev = NULL;
1560
1561        dmamask = DMA_BIT_MASK(32);
1562        quirks = aac_get_driver_ident(index)->quirks;
1563        if (quirks & AAC_QUIRK_31BIT)
1564                retval = pci_set_dma_mask(aac->pdev, dmamask);
1565        else if (!(quirks & AAC_QUIRK_SRC))
1566                retval = pci_set_dma_mask(aac->pdev, dmamask);
1567        else
1568                retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1569
1570        if (quirks & AAC_QUIRK_31BIT && !retval) {
1571                dmamask = DMA_BIT_MASK(31);
1572                retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1573        }
1574
1575        if (retval)
1576                goto out;
1577
1578        if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1579                goto out;
1580
1581        if (jafo) {
1582                aac->thread = kthread_run(aac_command_thread, aac, "%s",
1583                                          aac->name);
1584                if (IS_ERR(aac->thread)) {
1585                        retval = PTR_ERR(aac->thread);
1586                        aac->thread = NULL;
1587                        goto out;
1588                }
1589        }
1590        (void)aac_get_adapter_info(aac);
1591        if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1592                host->sg_tablesize = 34;
1593                host->max_sectors = (host->sg_tablesize * 8) + 112;
1594        }
1595        if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1596                host->sg_tablesize = 17;
1597                host->max_sectors = (host->sg_tablesize * 8) + 112;
1598        }
1599        aac_get_config_status(aac, 1);
1600        aac_get_containers(aac);
1601        /*
1602         * This is where the assumption that the Adapter is quiesced
1603         * is important.
1604         */
1605        scsi_host_complete_all_commands(host, DID_RESET);
1606
1607        retval = 0;
1608out:
1609        aac->in_reset = 0;
1610
1611        /*
1612         * Issue bus rescan to catch any configuration that might have
1613         * occurred
1614         */
1615        if (!retval && !is_kdump_kernel()) {
1616                dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1617                aac_schedule_bus_scan(aac);
1618        }
1619
1620        if (jafo) {
1621                spin_lock_irq(host->host_lock);
1622        }
1623        return retval;
1624}
1625
1626int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1627{
1628        unsigned long flagv = 0;
1629        int retval, unblock_retval;
1630        struct Scsi_Host *host = aac->scsi_host_ptr;
1631        int bled;
1632
1633        if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1634                return -EBUSY;
1635
1636        if (aac->in_reset) {
1637                spin_unlock_irqrestore(&aac->fib_lock, flagv);
1638                return -EBUSY;
1639        }
1640        aac->in_reset = 1;
1641        spin_unlock_irqrestore(&aac->fib_lock, flagv);
1642
1643        /*
1644         * Wait for all commands to complete to this specific
1645         * target (block maximum 60 seconds). Although not necessary,
1646         * it does make us a good storage citizen.
1647         */
1648        scsi_host_block(host);
1649
1650        /* Quiesce build, flush cache, write through mode */
1651        if (forced < 2)
1652                aac_send_shutdown(aac);
1653        spin_lock_irqsave(host->host_lock, flagv);
1654        bled = forced ? forced :
1655                        (aac_check_reset != 0 && aac_check_reset != 1);
1656        retval = _aac_reset_adapter(aac, bled, reset_type);
1657        spin_unlock_irqrestore(host->host_lock, flagv);
1658
1659        unblock_retval = scsi_host_unblock(host, SDEV_RUNNING);
1660        if (!retval)
1661                retval = unblock_retval;
1662        if ((forced < 2) && (retval == -ENODEV)) {
1663                /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1664                struct fib * fibctx = aac_fib_alloc(aac);
1665                if (fibctx) {
1666                        struct aac_pause *cmd;
1667                        int status;
1668
1669                        aac_fib_init(fibctx);
1670
1671                        cmd = (struct aac_pause *) fib_data(fibctx);
1672
1673                        cmd->command = cpu_to_le32(VM_ContainerConfig);
1674                        cmd->type = cpu_to_le32(CT_PAUSE_IO);
1675                        cmd->timeout = cpu_to_le32(1);
1676                        cmd->min = cpu_to_le32(1);
1677                        cmd->noRescan = cpu_to_le32(1);
1678                        cmd->count = cpu_to_le32(0);
1679
1680                        status = aac_fib_send(ContainerCommand,
1681                          fibctx,
1682                          sizeof(struct aac_pause),
1683                          FsaNormal,
1684                          -2 /* Timeout silently */, 1,
1685                          NULL, NULL);
1686
1687                        if (status >= 0)
1688                                aac_fib_complete(fibctx);
1689                        /* FIB should be freed only after getting
1690                         * the response from the F/W */
1691                        if (status != -ERESTARTSYS)
1692                                aac_fib_free(fibctx);
1693                }
1694        }
1695
1696        return retval;
1697}
1698
1699int aac_check_health(struct aac_dev * aac)
1700{
1701        int BlinkLED;
1702        unsigned long time_now, flagv = 0;
1703        struct list_head * entry;
1704
1705        /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1706        if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1707                return 0;
1708
1709        if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1710                spin_unlock_irqrestore(&aac->fib_lock, flagv);
1711                return 0; /* OK */
1712        }
1713
1714        aac->in_reset = 1;
1715
1716        /* Fake up an AIF:
1717         *      aac_aifcmd.command = AifCmdEventNotify = 1
1718         *      aac_aifcmd.seqnum = 0xFFFFFFFF
1719         *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1720         *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1721         *      aac.aifcmd.data[2] = AifHighPriority = 3
1722         *      aac.aifcmd.data[3] = BlinkLED
1723         */
1724
1725        time_now = jiffies/HZ;
1726        entry = aac->fib_list.next;
1727
1728        /*
1729         * For each Context that is on the
1730         * fibctxList, make a copy of the
1731         * fib, and then set the event to wake up the
1732         * thread that is waiting for it.
1733         */
1734        while (entry != &aac->fib_list) {
1735                /*
1736                 * Extract the fibctx
1737                 */
1738                struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1739                struct hw_fib * hw_fib;
1740                struct fib * fib;
1741                /*
1742                 * Check if the queue is getting
1743                 * backlogged
1744                 */
1745                if (fibctx->count > 20) {
1746                        /*
1747                         * It's *not* jiffies folks,
1748                         * but jiffies / HZ, so do not
1749                         * panic ...
1750                         */
1751                        u32 time_last = fibctx->jiffies;
1752                        /*
1753                         * Has it been > 2 minutes
1754                         * since the last read off
1755                         * the queue?
1756                         */
1757                        if ((time_now - time_last) > aif_timeout) {
1758                                entry = entry->next;
1759                                aac_close_fib_context(aac, fibctx);
1760                                continue;
1761                        }
1762                }
1763                /*
1764                 * Warning: no sleep allowed while
1765                 * holding spinlock
1766                 */
1767                hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1768                fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1769                if (fib && hw_fib) {
1770                        struct aac_aifcmd * aif;
1771
1772                        fib->hw_fib_va = hw_fib;
1773                        fib->dev = aac;
1774                        aac_fib_init(fib);
1775                        fib->type = FSAFS_NTC_FIB_CONTEXT;
1776                        fib->size = sizeof (struct fib);
1777                        fib->data = hw_fib->data;
1778                        aif = (struct aac_aifcmd *)hw_fib->data;
1779                        aif->command = cpu_to_le32(AifCmdEventNotify);
1780                        aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1781                        ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1782                        ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1783                        ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1784                        ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1785
1786                        /*
1787                         * Put the FIB onto the
1788                         * fibctx's fibs
1789                         */
1790                        list_add_tail(&fib->fiblink, &fibctx->fib_list);
1791                        fibctx->count++;
1792                        /*
1793                         * Set the event to wake up the
1794                         * thread that will waiting.
1795                         */
1796                        complete(&fibctx->completion);
1797                } else {
1798                        printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1799                        kfree(fib);
1800                        kfree(hw_fib);
1801                }
1802                entry = entry->next;
1803        }
1804
1805        spin_unlock_irqrestore(&aac->fib_lock, flagv);
1806
1807        if (BlinkLED < 0) {
1808                printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1809                                aac->name, BlinkLED);
1810                goto out;
1811        }
1812
1813        printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1814
1815out:
1816        aac->in_reset = 0;
1817        return BlinkLED;
1818}
1819
1820static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1821{
1822        return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1823}
1824
1825static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1826                                                                int bus,
1827                                                                int target)
1828{
1829        if (bus != CONTAINER_CHANNEL)
1830                bus = aac_phys_to_logical(bus);
1831
1832        return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1833}
1834
1835static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1836{
1837        if (bus != CONTAINER_CHANNEL)
1838                bus = aac_phys_to_logical(bus);
1839
1840        return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1841}
1842
1843static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1844{
1845        if (sdev)
1846                scsi_device_put(sdev);
1847}
1848
1849static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1850{
1851        struct scsi_device *sdev;
1852
1853        sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1854        scsi_remove_device(sdev);
1855        aac_put_safw_scsi_device(sdev);
1856}
1857
1858static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1859        int bus, int target)
1860{
1861        return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1862}
1863
1864static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1865{
1866        if (is_safw_raid_volume(dev, bus, target))
1867                return dev->fsa_dev[target].valid;
1868        else
1869                return aac_is_safw_scan_count_equal(dev, bus, target);
1870}
1871
1872static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1873{
1874        int is_exposed = 0;
1875        struct scsi_device *sdev;
1876
1877        sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1878        if (sdev)
1879                is_exposed = 1;
1880        aac_put_safw_scsi_device(sdev);
1881
1882        return is_exposed;
1883}
1884
1885static int aac_update_safw_host_devices(struct aac_dev *dev)
1886{
1887        int i;
1888        int bus;
1889        int target;
1890        int is_exposed = 0;
1891        int rcode = 0;
1892
1893        rcode = aac_setup_safw_adapter(dev);
1894        if (unlikely(rcode < 0)) {
1895                goto out;
1896        }
1897
1898        for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1899
1900                bus = get_bus_number(i);
1901                target = get_target_number(i);
1902
1903                is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1904
1905                if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1906                        aac_add_safw_device(dev, bus, target);
1907                else if (!aac_is_safw_target_valid(dev, bus, target) &&
1908                                                                is_exposed)
1909                        aac_remove_safw_device(dev, bus, target);
1910        }
1911out:
1912        return rcode;
1913}
1914
1915static int aac_scan_safw_host(struct aac_dev *dev)
1916{
1917        int rcode = 0;
1918
1919        rcode = aac_update_safw_host_devices(dev);
1920        if (rcode)
1921                aac_schedule_safw_scan_worker(dev);
1922
1923        return rcode;
1924}
1925
1926int aac_scan_host(struct aac_dev *dev)
1927{
1928        int rcode = 0;
1929
1930        mutex_lock(&dev->scan_mutex);
1931        if (dev->sa_firmware)
1932                rcode = aac_scan_safw_host(dev);
1933        else
1934                scsi_scan_host(dev->scsi_host_ptr);
1935        mutex_unlock(&dev->scan_mutex);
1936
1937        return rcode;
1938}
1939
1940void aac_src_reinit_aif_worker(struct work_struct *work)
1941{
1942        struct aac_dev *dev = container_of(to_delayed_work(work),
1943                                struct aac_dev, src_reinit_aif_worker);
1944
1945        wait_event(dev->scsi_host_ptr->host_wait,
1946                        !scsi_host_in_recovery(dev->scsi_host_ptr));
1947        aac_reinit_aif(dev, dev->cardtype);
1948}
1949
1950/**
1951 *      aac_handle_sa_aif       Handle a message from the firmware
1952 *      @dev: Which adapter this fib is from
1953 *      @fibptr: Pointer to fibptr from adapter
1954 *
1955 *      This routine handles a driver notify fib from the adapter and
1956 *      dispatches it to the appropriate routine for handling.
1957 */
1958static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1959{
1960        int i;
1961        u32 events = 0;
1962
1963        if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1964                events = SA_AIF_HOTPLUG;
1965        else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1966                events = SA_AIF_HARDWARE;
1967        else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1968                events = SA_AIF_PDEV_CHANGE;
1969        else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1970                events = SA_AIF_LDEV_CHANGE;
1971        else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1972                events = SA_AIF_BPSTAT_CHANGE;
1973        else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1974                events = SA_AIF_BPCFG_CHANGE;
1975
1976        switch (events) {
1977        case SA_AIF_HOTPLUG:
1978        case SA_AIF_HARDWARE:
1979        case SA_AIF_PDEV_CHANGE:
1980        case SA_AIF_LDEV_CHANGE:
1981        case SA_AIF_BPCFG_CHANGE:
1982
1983                aac_scan_host(dev);
1984
1985                break;
1986
1987        case SA_AIF_BPSTAT_CHANGE:
1988                /* currently do nothing */
1989                break;
1990        }
1991
1992        for (i = 1; i <= 10; ++i) {
1993                events = src_readl(dev, MUnit.IDR);
1994                if (events & (1<<23)) {
1995                        pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1996                                i, 10);
1997                        ssleep(1);
1998                }
1999        }
2000}
2001
2002static int get_fib_count(struct aac_dev *dev)
2003{
2004        unsigned int num = 0;
2005        struct list_head *entry;
2006        unsigned long flagv;
2007
2008        /*
2009         * Warning: no sleep allowed while
2010         * holding spinlock. We take the estimate
2011         * and pre-allocate a set of fibs outside the
2012         * lock.
2013         */
2014        num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2015                        / sizeof(struct hw_fib); /* some extra */
2016        spin_lock_irqsave(&dev->fib_lock, flagv);
2017        entry = dev->fib_list.next;
2018        while (entry != &dev->fib_list) {
2019                entry = entry->next;
2020                ++num;
2021        }
2022        spin_unlock_irqrestore(&dev->fib_lock, flagv);
2023
2024        return num;
2025}
2026
2027static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2028                                                struct fib **fib_pool,
2029                                                unsigned int num)
2030{
2031        struct hw_fib **hw_fib_p;
2032        struct fib **fib_p;
2033
2034        hw_fib_p = hw_fib_pool;
2035        fib_p = fib_pool;
2036        while (hw_fib_p < &hw_fib_pool[num]) {
2037                *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2038                if (!(*(hw_fib_p++))) {
2039                        --hw_fib_p;
2040                        break;
2041                }
2042
2043                *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2044                if (!(*(fib_p++))) {
2045                        kfree(*(--hw_fib_p));
2046                        break;
2047                }
2048        }
2049
2050        /*
2051         * Get the actual number of allocated fibs
2052         */
2053        num = hw_fib_p - hw_fib_pool;
2054        return num;
2055}
2056
2057static void wakeup_fibctx_threads(struct aac_dev *dev,
2058                                                struct hw_fib **hw_fib_pool,
2059                                                struct fib **fib_pool,
2060                                                struct fib *fib,
2061                                                struct hw_fib *hw_fib,
2062                                                unsigned int num)
2063{
2064        unsigned long flagv;
2065        struct list_head *entry;
2066        struct hw_fib **hw_fib_p;
2067        struct fib **fib_p;
2068        u32 time_now, time_last;
2069        struct hw_fib *hw_newfib;
2070        struct fib *newfib;
2071        struct aac_fib_context *fibctx;
2072
2073        time_now = jiffies/HZ;
2074        spin_lock_irqsave(&dev->fib_lock, flagv);
2075        entry = dev->fib_list.next;
2076        /*
2077         * For each Context that is on the
2078         * fibctxList, make a copy of the
2079         * fib, and then set the event to wake up the
2080         * thread that is waiting for it.
2081         */
2082
2083        hw_fib_p = hw_fib_pool;
2084        fib_p = fib_pool;
2085        while (entry != &dev->fib_list) {
2086                /*
2087                 * Extract the fibctx
2088                 */
2089                fibctx = list_entry(entry, struct aac_fib_context,
2090                                next);
2091                /*
2092                 * Check if the queue is getting
2093                 * backlogged
2094                 */
2095                if (fibctx->count > 20) {
2096                        /*
2097                         * It's *not* jiffies folks,
2098                         * but jiffies / HZ so do not
2099                         * panic ...
2100                         */
2101                        time_last = fibctx->jiffies;
2102                        /*
2103                         * Has it been > 2 minutes
2104                         * since the last read off
2105                         * the queue?
2106                         */
2107                        if ((time_now - time_last) > aif_timeout) {
2108                                entry = entry->next;
2109                                aac_close_fib_context(dev, fibctx);
2110                                continue;
2111                        }
2112                }
2113                /*
2114                 * Warning: no sleep allowed while
2115                 * holding spinlock
2116                 */
2117                if (hw_fib_p >= &hw_fib_pool[num]) {
2118                        pr_warn("aifd: didn't allocate NewFib\n");
2119                        entry = entry->next;
2120                        continue;
2121                }
2122
2123                hw_newfib = *hw_fib_p;
2124                *(hw_fib_p++) = NULL;
2125                newfib = *fib_p;
2126                *(fib_p++) = NULL;
2127                /*
2128                 * Make the copy of the FIB
2129                 */
2130                memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2131                memcpy(newfib, fib, sizeof(struct fib));
2132                newfib->hw_fib_va = hw_newfib;
2133                /*
2134                 * Put the FIB onto the
2135                 * fibctx's fibs
2136                 */
2137                list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2138                fibctx->count++;
2139                /*
2140                 * Set the event to wake up the
2141                 * thread that is waiting.
2142                 */
2143                complete(&fibctx->completion);
2144
2145                entry = entry->next;
2146        }
2147        /*
2148         *      Set the status of this FIB
2149         */
2150        *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2151        aac_fib_adapter_complete(fib, sizeof(u32));
2152        spin_unlock_irqrestore(&dev->fib_lock, flagv);
2153
2154}
2155
2156static void aac_process_events(struct aac_dev *dev)
2157{
2158        struct hw_fib *hw_fib;
2159        struct fib *fib;
2160        unsigned long flags;
2161        spinlock_t *t_lock;
2162
2163        t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2164        spin_lock_irqsave(t_lock, flags);
2165
2166        while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2167                struct list_head *entry;
2168                struct aac_aifcmd *aifcmd;
2169                unsigned int  num;
2170                struct hw_fib **hw_fib_pool, **hw_fib_p;
2171                struct fib **fib_pool, **fib_p;
2172
2173                set_current_state(TASK_RUNNING);
2174
2175                entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2176                list_del(entry);
2177
2178                t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2179                spin_unlock_irqrestore(t_lock, flags);
2180
2181                fib = list_entry(entry, struct fib, fiblink);
2182                hw_fib = fib->hw_fib_va;
2183                if (dev->sa_firmware) {
2184                        /* Thor AIF */
2185                        aac_handle_sa_aif(dev, fib);
2186                        aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2187                        goto free_fib;
2188                }
2189                /*
2190                 *      We will process the FIB here or pass it to a
2191                 *      worker thread that is TBD. We Really can't
2192                 *      do anything at this point since we don't have
2193                 *      anything defined for this thread to do.
2194                 */
2195                memset(fib, 0, sizeof(struct fib));
2196                fib->type = FSAFS_NTC_FIB_CONTEXT;
2197                fib->size = sizeof(struct fib);
2198                fib->hw_fib_va = hw_fib;
2199                fib->data = hw_fib->data;
2200                fib->dev = dev;
2201                /*
2202                 *      We only handle AifRequest fibs from the adapter.
2203                 */
2204
2205                aifcmd = (struct aac_aifcmd *) hw_fib->data;
2206                if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2207                        /* Handle Driver Notify Events */
2208                        aac_handle_aif(dev, fib);
2209                        *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2210                        aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2211                        goto free_fib;
2212                }
2213                /*
2214                 * The u32 here is important and intended. We are using
2215                 * 32bit wrapping time to fit the adapter field
2216                 */
2217
2218                /* Sniff events */
2219                if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2220                 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2221                        aac_handle_aif(dev, fib);
2222                }
2223
2224                /*
2225                 * get number of fibs to process
2226                 */
2227                num = get_fib_count(dev);
2228                if (!num)
2229                        goto free_fib;
2230
2231                hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2232                                                GFP_KERNEL);
2233                if (!hw_fib_pool)
2234                        goto free_fib;
2235
2236                fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2237                if (!fib_pool)
2238                        goto free_hw_fib_pool;
2239
2240                /*
2241                 * Fill up fib pointer pools with actual fibs
2242                 * and hw_fibs
2243                 */
2244                num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2245                if (!num)
2246                        goto free_mem;
2247
2248                /*
2249                 * wakeup the thread that is waiting for
2250                 * the response from fw (ioctl)
2251                 */
2252                wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2253                                                            fib, hw_fib, num);
2254
2255free_mem:
2256                /* Free up the remaining resources */
2257                hw_fib_p = hw_fib_pool;
2258                fib_p = fib_pool;
2259                while (hw_fib_p < &hw_fib_pool[num]) {
2260                        kfree(*hw_fib_p);
2261                        kfree(*fib_p);
2262                        ++fib_p;
2263                        ++hw_fib_p;
2264                }
2265                kfree(fib_pool);
2266free_hw_fib_pool:
2267                kfree(hw_fib_pool);
2268free_fib:
2269                kfree(fib);
2270                t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2271                spin_lock_irqsave(t_lock, flags);
2272        }
2273        /*
2274         *      There are no more AIF's
2275         */
2276        t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2277        spin_unlock_irqrestore(t_lock, flags);
2278}
2279
2280static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2281                                                        u32 datasize)
2282{
2283        struct aac_srb *srbcmd;
2284        struct sgmap64 *sg64;
2285        dma_addr_t addr;
2286        char *dma_buf;
2287        struct fib *fibptr;
2288        int ret = -ENOMEM;
2289        u32 vbus, vid;
2290
2291        fibptr = aac_fib_alloc(dev);
2292        if (!fibptr)
2293                goto out;
2294
2295        dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2296                                     GFP_KERNEL);
2297        if (!dma_buf)
2298                goto fib_free_out;
2299
2300        aac_fib_init(fibptr);
2301
2302        vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2303        vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2304
2305        srbcmd = (struct aac_srb *)fib_data(fibptr);
2306
2307        srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2308        srbcmd->channel = cpu_to_le32(vbus);
2309        srbcmd->id = cpu_to_le32(vid);
2310        srbcmd->lun = 0;
2311        srbcmd->flags = cpu_to_le32(SRB_DataOut);
2312        srbcmd->timeout = cpu_to_le32(10);
2313        srbcmd->retry_limit = 0;
2314        srbcmd->cdb_size = cpu_to_le32(12);
2315        srbcmd->count = cpu_to_le32(datasize);
2316
2317        memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2318        srbcmd->cdb[0] = BMIC_OUT;
2319        srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2320        memcpy(dma_buf, (char *)wellness_str, datasize);
2321
2322        sg64 = (struct sgmap64 *)&srbcmd->sg;
2323        sg64->count = cpu_to_le32(1);
2324        sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2325        sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2326        sg64->sg[0].count = cpu_to_le32(datasize);
2327
2328        ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2329                                FsaNormal, 1, 1, NULL, NULL);
2330
2331        dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2332
2333        /*
2334         * Do not set XferState to zero unless
2335         * receives a response from F/W
2336         */
2337        if (ret >= 0)
2338                aac_fib_complete(fibptr);
2339
2340        /*
2341         * FIB should be freed only after
2342         * getting the response from the F/W
2343         */
2344        if (ret != -ERESTARTSYS)
2345                goto fib_free_out;
2346
2347out:
2348        return ret;
2349fib_free_out:
2350        aac_fib_free(fibptr);
2351        goto out;
2352}
2353
2354static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2355{
2356        struct tm cur_tm;
2357        char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2358        u32 datasize = sizeof(wellness_str);
2359        time64_t local_time;
2360        int ret = -ENODEV;
2361
2362        if (!dev->sa_firmware)
2363                goto out;
2364
2365        local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2366        time64_to_tm(local_time, 0, &cur_tm);
2367        cur_tm.tm_mon += 1;
2368        cur_tm.tm_year += 1900;
2369        wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2370        wellness_str[9] = bin2bcd(cur_tm.tm_min);
2371        wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2372        wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2373        wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2374        wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2375        wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2376
2377        ret = aac_send_wellness_command(dev, wellness_str, datasize);
2378
2379out:
2380        return ret;
2381}
2382
2383static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2384{
2385        int ret = -ENOMEM;
2386        struct fib *fibptr;
2387        __le32 *info;
2388
2389        fibptr = aac_fib_alloc(dev);
2390        if (!fibptr)
2391                goto out;
2392
2393        aac_fib_init(fibptr);
2394        info = (__le32 *)fib_data(fibptr);
2395        *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2396        ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2397                                        1, 1, NULL, NULL);
2398
2399        /*
2400         * Do not set XferState to zero unless
2401         * receives a response from F/W
2402         */
2403        if (ret >= 0)
2404                aac_fib_complete(fibptr);
2405
2406        /*
2407         * FIB should be freed only after
2408         * getting the response from the F/W
2409         */
2410        if (ret != -ERESTARTSYS)
2411                aac_fib_free(fibptr);
2412
2413out:
2414        return ret;
2415}
2416
2417/**
2418 *      aac_command_thread      -       command processing thread
2419 *      @dev: Adapter to monitor
2420 *
2421 *      Waits on the commandready event in it's queue. When the event gets set
2422 *      it will pull FIBs off it's queue. It will continue to pull FIBs off
2423 *      until the queue is empty. When the queue is empty it will wait for
2424 *      more FIBs.
2425 */
2426
2427int aac_command_thread(void *data)
2428{
2429        struct aac_dev *dev = data;
2430        DECLARE_WAITQUEUE(wait, current);
2431        unsigned long next_jiffies = jiffies + HZ;
2432        unsigned long next_check_jiffies = next_jiffies;
2433        long difference = HZ;
2434
2435        /*
2436         *      We can only have one thread per adapter for AIF's.
2437         */
2438        if (dev->aif_thread)
2439                return -EINVAL;
2440
2441        /*
2442         *      Let the DPC know it has a place to send the AIF's to.
2443         */
2444        dev->aif_thread = 1;
2445        add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2446        set_current_state(TASK_INTERRUPTIBLE);
2447        dprintk ((KERN_INFO "aac_command_thread start\n"));
2448        while (1) {
2449
2450                aac_process_events(dev);
2451
2452                /*
2453                 *      Background activity
2454                 */
2455                if ((time_before(next_check_jiffies,next_jiffies))
2456                 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2457                        next_check_jiffies = next_jiffies;
2458                        if (aac_adapter_check_health(dev) == 0) {
2459                                difference = ((long)(unsigned)check_interval)
2460                                           * HZ;
2461                                next_check_jiffies = jiffies + difference;
2462                        } else if (!dev->queues)
2463                                break;
2464                }
2465                if (!time_before(next_check_jiffies,next_jiffies)
2466                 && ((difference = next_jiffies - jiffies) <= 0)) {
2467                        struct timespec64 now;
2468                        int ret;
2469
2470                        /* Don't even try to talk to adapter if its sick */
2471                        ret = aac_adapter_check_health(dev);
2472                        if (ret || !dev->queues)
2473                                break;
2474                        next_check_jiffies = jiffies
2475                                           + ((long)(unsigned)check_interval)
2476                                           * HZ;
2477                        ktime_get_real_ts64(&now);
2478
2479                        /* Synchronize our watches */
2480                        if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2481                         && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2482                                difference = HZ + HZ / 2 -
2483                                             now.tv_nsec / (NSEC_PER_SEC / HZ);
2484                        else {
2485                                if (now.tv_nsec > NSEC_PER_SEC / 2)
2486                                        ++now.tv_sec;
2487
2488                                if (dev->sa_firmware)
2489                                        ret =
2490                                        aac_send_safw_hostttime(dev, &now);
2491                                else
2492                                        ret = aac_send_hosttime(dev, &now);
2493
2494                                difference = (long)(unsigned)update_interval*HZ;
2495                        }
2496                        next_jiffies = jiffies + difference;
2497                        if (time_before(next_check_jiffies,next_jiffies))
2498                                difference = next_check_jiffies - jiffies;
2499                }
2500                if (difference <= 0)
2501                        difference = 1;
2502                set_current_state(TASK_INTERRUPTIBLE);
2503
2504                if (kthread_should_stop())
2505                        break;
2506
2507                /*
2508                 * we probably want usleep_range() here instead of the
2509                 * jiffies computation
2510                 */
2511                schedule_timeout(difference);
2512
2513                if (kthread_should_stop())
2514                        break;
2515        }
2516        if (dev->queues)
2517                remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2518        dev->aif_thread = 0;
2519        return 0;
2520}
2521
2522int aac_acquire_irq(struct aac_dev *dev)
2523{
2524        int i;
2525        int j;
2526        int ret = 0;
2527
2528        if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2529                for (i = 0; i < dev->max_msix; i++) {
2530                        dev->aac_msix[i].vector_no = i;
2531                        dev->aac_msix[i].dev = dev;
2532                        if (request_irq(pci_irq_vector(dev->pdev, i),
2533                                        dev->a_ops.adapter_intr,
2534                                        0, "aacraid", &(dev->aac_msix[i]))) {
2535                                printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2536                                                dev->name, dev->id, i);
2537                                for (j = 0 ; j < i ; j++)
2538                                        free_irq(pci_irq_vector(dev->pdev, j),
2539                                                 &(dev->aac_msix[j]));
2540                                pci_disable_msix(dev->pdev);
2541                                ret = -1;
2542                        }
2543                }
2544        } else {
2545                dev->aac_msix[0].vector_no = 0;
2546                dev->aac_msix[0].dev = dev;
2547
2548                if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2549                        IRQF_SHARED, "aacraid",
2550                        &(dev->aac_msix[0])) < 0) {
2551                        if (dev->msi)
2552                                pci_disable_msi(dev->pdev);
2553                        printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2554                                        dev->name, dev->id);
2555                        ret = -1;
2556                }
2557        }
2558        return ret;
2559}
2560
2561void aac_free_irq(struct aac_dev *dev)
2562{
2563        int i;
2564
2565        if (aac_is_src(dev)) {
2566                if (dev->max_msix > 1) {
2567                        for (i = 0; i < dev->max_msix; i++)
2568                                free_irq(pci_irq_vector(dev->pdev, i),
2569                                         &(dev->aac_msix[i]));
2570                } else {
2571                        free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2572                }
2573        } else {
2574                free_irq(dev->pdev->irq, dev);
2575        }
2576        if (dev->msi)
2577                pci_disable_msi(dev->pdev);
2578        else if (dev->max_msix > 1)
2579                pci_disable_msix(dev->pdev);
2580}
2581