linux/drivers/scsi/libfc/fc_exch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright(c) 2007 Intel Corporation. All rights reserved.
   4 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
   5 * Copyright(c) 2008 Mike Christie
   6 *
   7 * Maintained at www.Open-FCoE.org
   8 */
   9
  10/*
  11 * Fibre Channel exchange and sequence handling.
  12 */
  13
  14#include <linux/timer.h>
  15#include <linux/slab.h>
  16#include <linux/err.h>
  17#include <linux/export.h>
  18#include <linux/log2.h>
  19
  20#include <scsi/fc/fc_fc2.h>
  21
  22#include <scsi/libfc.h>
  23#include <scsi/fc_encode.h>
  24
  25#include "fc_libfc.h"
  26
  27u16     fc_cpu_mask;            /* cpu mask for possible cpus */
  28EXPORT_SYMBOL(fc_cpu_mask);
  29static u16      fc_cpu_order;   /* 2's power to represent total possible cpus */
  30static struct kmem_cache *fc_em_cachep;        /* cache for exchanges */
  31static struct workqueue_struct *fc_exch_workqueue;
  32
  33/*
  34 * Structure and function definitions for managing Fibre Channel Exchanges
  35 * and Sequences.
  36 *
  37 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
  38 *
  39 * fc_exch_mgr holds the exchange state for an N port
  40 *
  41 * fc_exch holds state for one exchange and links to its active sequence.
  42 *
  43 * fc_seq holds the state for an individual sequence.
  44 */
  45
  46/**
  47 * struct fc_exch_pool - Per cpu exchange pool
  48 * @next_index:   Next possible free exchange index
  49 * @total_exches: Total allocated exchanges
  50 * @lock:         Exch pool lock
  51 * @ex_list:      List of exchanges
  52 *
  53 * This structure manages per cpu exchanges in array of exchange pointers.
  54 * This array is allocated followed by struct fc_exch_pool memory for
  55 * assigned range of exchanges to per cpu pool.
  56 */
  57struct fc_exch_pool {
  58        spinlock_t       lock;
  59        struct list_head ex_list;
  60        u16              next_index;
  61        u16              total_exches;
  62
  63        /* two cache of free slot in exch array */
  64        u16              left;
  65        u16              right;
  66} ____cacheline_aligned_in_smp;
  67
  68/**
  69 * struct fc_exch_mgr - The Exchange Manager (EM).
  70 * @class:          Default class for new sequences
  71 * @kref:           Reference counter
  72 * @min_xid:        Minimum exchange ID
  73 * @max_xid:        Maximum exchange ID
  74 * @ep_pool:        Reserved exchange pointers
  75 * @pool_max_index: Max exch array index in exch pool
  76 * @pool:           Per cpu exch pool
  77 * @stats:          Statistics structure
  78 *
  79 * This structure is the center for creating exchanges and sequences.
  80 * It manages the allocation of exchange IDs.
  81 */
  82struct fc_exch_mgr {
  83        struct fc_exch_pool __percpu *pool;
  84        mempool_t       *ep_pool;
  85        struct fc_lport *lport;
  86        enum fc_class   class;
  87        struct kref     kref;
  88        u16             min_xid;
  89        u16             max_xid;
  90        u16             pool_max_index;
  91
  92        struct {
  93                atomic_t no_free_exch;
  94                atomic_t no_free_exch_xid;
  95                atomic_t xid_not_found;
  96                atomic_t xid_busy;
  97                atomic_t seq_not_found;
  98                atomic_t non_bls_resp;
  99        } stats;
 100};
 101
 102/**
 103 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 104 * @ema_list: Exchange Manager Anchor list
 105 * @mp:       Exchange Manager associated with this anchor
 106 * @match:    Routine to determine if this anchor's EM should be used
 107 *
 108 * When walking the list of anchors the match routine will be called
 109 * for each anchor to determine if that EM should be used. The last
 110 * anchor in the list will always match to handle any exchanges not
 111 * handled by other EMs. The non-default EMs would be added to the
 112 * anchor list by HW that provides offloads.
 113 */
 114struct fc_exch_mgr_anchor {
 115        struct list_head ema_list;
 116        struct fc_exch_mgr *mp;
 117        bool (*match)(struct fc_frame *);
 118};
 119
 120static void fc_exch_rrq(struct fc_exch *);
 121static void fc_seq_ls_acc(struct fc_frame *);
 122static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
 123                          enum fc_els_rjt_explan);
 124static void fc_exch_els_rec(struct fc_frame *);
 125static void fc_exch_els_rrq(struct fc_frame *);
 126
 127/*
 128 * Internal implementation notes.
 129 *
 130 * The exchange manager is one by default in libfc but LLD may choose
 131 * to have one per CPU. The sequence manager is one per exchange manager
 132 * and currently never separated.
 133 *
 134 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 135 * assigned by the Sequence Initiator that shall be unique for a specific
 136 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 137 * qualified by exchange ID, which one might think it would be.
 138 * In practice this limits the number of open sequences and exchanges to 256
 139 * per session.  For most targets we could treat this limit as per exchange.
 140 *
 141 * The exchange and its sequence are freed when the last sequence is received.
 142 * It's possible for the remote port to leave an exchange open without
 143 * sending any sequences.
 144 *
 145 * Notes on reference counts:
 146 *
 147 * Exchanges are reference counted and exchange gets freed when the reference
 148 * count becomes zero.
 149 *
 150 * Timeouts:
 151 * Sequences are timed out for E_D_TOV and R_A_TOV.
 152 *
 153 * Sequence event handling:
 154 *
 155 * The following events may occur on initiator sequences:
 156 *
 157 *      Send.
 158 *          For now, the whole thing is sent.
 159 *      Receive ACK
 160 *          This applies only to class F.
 161 *          The sequence is marked complete.
 162 *      ULP completion.
 163 *          The upper layer calls fc_exch_done() when done
 164 *          with exchange and sequence tuple.
 165 *      RX-inferred completion.
 166 *          When we receive the next sequence on the same exchange, we can
 167 *          retire the previous sequence ID.  (XXX not implemented).
 168 *      Timeout.
 169 *          R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 170 *          E_D_TOV causes abort and calls upper layer response handler
 171 *          with FC_EX_TIMEOUT error.
 172 *      Receive RJT
 173 *          XXX defer.
 174 *      Send ABTS
 175 *          On timeout.
 176 *
 177 * The following events may occur on recipient sequences:
 178 *
 179 *      Receive
 180 *          Allocate sequence for first frame received.
 181 *          Hold during receive handler.
 182 *          Release when final frame received.
 183 *          Keep status of last N of these for the ELS RES command.  XXX TBD.
 184 *      Receive ABTS
 185 *          Deallocate sequence
 186 *      Send RJT
 187 *          Deallocate
 188 *
 189 * For now, we neglect conditions where only part of a sequence was
 190 * received or transmitted, or where out-of-order receipt is detected.
 191 */
 192
 193/*
 194 * Locking notes:
 195 *
 196 * The EM code run in a per-CPU worker thread.
 197 *
 198 * To protect against concurrency between a worker thread code and timers,
 199 * sequence allocation and deallocation must be locked.
 200 *  - exchange refcnt can be done atomicly without locks.
 201 *  - sequence allocation must be locked by exch lock.
 202 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 203 *    EM pool lock must be taken before the ex_lock.
 204 */
 205
 206/*
 207 * opcode names for debugging.
 208 */
 209static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
 210
 211/**
 212 * fc_exch_name_lookup() - Lookup name by opcode
 213 * @op:        Opcode to be looked up
 214 * @table:     Opcode/name table
 215 * @max_index: Index not to be exceeded
 216 *
 217 * This routine is used to determine a human-readable string identifying
 218 * a R_CTL opcode.
 219 */
 220static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
 221                                              unsigned int max_index)
 222{
 223        const char *name = NULL;
 224
 225        if (op < max_index)
 226                name = table[op];
 227        if (!name)
 228                name = "unknown";
 229        return name;
 230}
 231
 232/**
 233 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 234 * @op: The opcode to be looked up
 235 */
 236static const char *fc_exch_rctl_name(unsigned int op)
 237{
 238        return fc_exch_name_lookup(op, fc_exch_rctl_names,
 239                                   ARRAY_SIZE(fc_exch_rctl_names));
 240}
 241
 242/**
 243 * fc_exch_hold() - Increment an exchange's reference count
 244 * @ep: Echange to be held
 245 */
 246static inline void fc_exch_hold(struct fc_exch *ep)
 247{
 248        atomic_inc(&ep->ex_refcnt);
 249}
 250
 251/**
 252 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 253 *                       and determine SOF and EOF.
 254 * @ep:    The exchange to that will use the header
 255 * @fp:    The frame whose header is to be modified
 256 * @f_ctl: F_CTL bits that will be used for the frame header
 257 *
 258 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 259 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 260 */
 261static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
 262                              u32 f_ctl)
 263{
 264        struct fc_frame_header *fh = fc_frame_header_get(fp);
 265        u16 fill;
 266
 267        fr_sof(fp) = ep->class;
 268        if (ep->seq.cnt)
 269                fr_sof(fp) = fc_sof_normal(ep->class);
 270
 271        if (f_ctl & FC_FC_END_SEQ) {
 272                fr_eof(fp) = FC_EOF_T;
 273                if (fc_sof_needs_ack(ep->class))
 274                        fr_eof(fp) = FC_EOF_N;
 275                /*
 276                 * From F_CTL.
 277                 * The number of fill bytes to make the length a 4-byte
 278                 * multiple is the low order 2-bits of the f_ctl.
 279                 * The fill itself will have been cleared by the frame
 280                 * allocation.
 281                 * After this, the length will be even, as expected by
 282                 * the transport.
 283                 */
 284                fill = fr_len(fp) & 3;
 285                if (fill) {
 286                        fill = 4 - fill;
 287                        /* TODO, this may be a problem with fragmented skb */
 288                        skb_put(fp_skb(fp), fill);
 289                        hton24(fh->fh_f_ctl, f_ctl | fill);
 290                }
 291        } else {
 292                WARN_ON(fr_len(fp) % 4 != 0);   /* no pad to non last frame */
 293                fr_eof(fp) = FC_EOF_N;
 294        }
 295
 296        /* Initialize remaining fh fields from fc_fill_fc_hdr */
 297        fh->fh_ox_id = htons(ep->oxid);
 298        fh->fh_rx_id = htons(ep->rxid);
 299        fh->fh_seq_id = ep->seq.id;
 300        fh->fh_seq_cnt = htons(ep->seq.cnt);
 301}
 302
 303/**
 304 * fc_exch_release() - Decrement an exchange's reference count
 305 * @ep: Exchange to be released
 306 *
 307 * If the reference count reaches zero and the exchange is complete,
 308 * it is freed.
 309 */
 310static void fc_exch_release(struct fc_exch *ep)
 311{
 312        struct fc_exch_mgr *mp;
 313
 314        if (atomic_dec_and_test(&ep->ex_refcnt)) {
 315                mp = ep->em;
 316                if (ep->destructor)
 317                        ep->destructor(&ep->seq, ep->arg);
 318                WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
 319                mempool_free(ep, mp->ep_pool);
 320        }
 321}
 322
 323/**
 324 * fc_exch_timer_cancel() - cancel exch timer
 325 * @ep:         The exchange whose timer to be canceled
 326 */
 327static inline void fc_exch_timer_cancel(struct fc_exch *ep)
 328{
 329        if (cancel_delayed_work(&ep->timeout_work)) {
 330                FC_EXCH_DBG(ep, "Exchange timer canceled\n");
 331                atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
 332        }
 333}
 334
 335/**
 336 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 337 *                              the exchange lock held
 338 * @ep:         The exchange whose timer will start
 339 * @timer_msec: The timeout period
 340 *
 341 * Used for upper level protocols to time out the exchange.
 342 * The timer is cancelled when it fires or when the exchange completes.
 343 */
 344static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
 345                                            unsigned int timer_msec)
 346{
 347        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 348                return;
 349
 350        FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
 351
 352        fc_exch_hold(ep);               /* hold for timer */
 353        if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
 354                                msecs_to_jiffies(timer_msec))) {
 355                FC_EXCH_DBG(ep, "Exchange already queued\n");
 356                fc_exch_release(ep);
 357        }
 358}
 359
 360/**
 361 * fc_exch_timer_set() - Lock the exchange and set the timer
 362 * @ep:         The exchange whose timer will start
 363 * @timer_msec: The timeout period
 364 */
 365static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
 366{
 367        spin_lock_bh(&ep->ex_lock);
 368        fc_exch_timer_set_locked(ep, timer_msec);
 369        spin_unlock_bh(&ep->ex_lock);
 370}
 371
 372/**
 373 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 374 * @ep: The exchange that is complete
 375 *
 376 * Note: May sleep if invoked from outside a response handler.
 377 */
 378static int fc_exch_done_locked(struct fc_exch *ep)
 379{
 380        int rc = 1;
 381
 382        /*
 383         * We must check for completion in case there are two threads
 384         * tyring to complete this. But the rrq code will reuse the
 385         * ep, and in that case we only clear the resp and set it as
 386         * complete, so it can be reused by the timer to send the rrq.
 387         */
 388        if (ep->state & FC_EX_DONE)
 389                return rc;
 390        ep->esb_stat |= ESB_ST_COMPLETE;
 391
 392        if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
 393                ep->state |= FC_EX_DONE;
 394                fc_exch_timer_cancel(ep);
 395                rc = 0;
 396        }
 397        return rc;
 398}
 399
 400static struct fc_exch fc_quarantine_exch;
 401
 402/**
 403 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 404 * @pool:  Exchange Pool to get an exchange from
 405 * @index: Index of the exchange within the pool
 406 *
 407 * Use the index to get an exchange from within an exchange pool. exches
 408 * will point to an array of exchange pointers. The index will select
 409 * the exchange within the array.
 410 */
 411static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
 412                                              u16 index)
 413{
 414        struct fc_exch **exches = (struct fc_exch **)(pool + 1);
 415        return exches[index];
 416}
 417
 418/**
 419 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 420 * @pool:  The pool to assign the exchange to
 421 * @index: The index in the pool where the exchange will be assigned
 422 * @ep:    The exchange to assign to the pool
 423 */
 424static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
 425                                   struct fc_exch *ep)
 426{
 427        ((struct fc_exch **)(pool + 1))[index] = ep;
 428}
 429
 430/**
 431 * fc_exch_delete() - Delete an exchange
 432 * @ep: The exchange to be deleted
 433 */
 434static void fc_exch_delete(struct fc_exch *ep)
 435{
 436        struct fc_exch_pool *pool;
 437        u16 index;
 438
 439        pool = ep->pool;
 440        spin_lock_bh(&pool->lock);
 441        WARN_ON(pool->total_exches <= 0);
 442        pool->total_exches--;
 443
 444        /* update cache of free slot */
 445        index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
 446        if (!(ep->state & FC_EX_QUARANTINE)) {
 447                if (pool->left == FC_XID_UNKNOWN)
 448                        pool->left = index;
 449                else if (pool->right == FC_XID_UNKNOWN)
 450                        pool->right = index;
 451                else
 452                        pool->next_index = index;
 453                fc_exch_ptr_set(pool, index, NULL);
 454        } else {
 455                fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
 456        }
 457        list_del(&ep->ex_list);
 458        spin_unlock_bh(&pool->lock);
 459        fc_exch_release(ep);    /* drop hold for exch in mp */
 460}
 461
 462static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
 463                              struct fc_frame *fp)
 464{
 465        struct fc_exch *ep;
 466        struct fc_frame_header *fh = fc_frame_header_get(fp);
 467        int error = -ENXIO;
 468        u32 f_ctl;
 469        u8 fh_type = fh->fh_type;
 470
 471        ep = fc_seq_exch(sp);
 472
 473        if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
 474                fc_frame_free(fp);
 475                goto out;
 476        }
 477
 478        WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
 479
 480        f_ctl = ntoh24(fh->fh_f_ctl);
 481        fc_exch_setup_hdr(ep, fp, f_ctl);
 482        fr_encaps(fp) = ep->encaps;
 483
 484        /*
 485         * update sequence count if this frame is carrying
 486         * multiple FC frames when sequence offload is enabled
 487         * by LLD.
 488         */
 489        if (fr_max_payload(fp))
 490                sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
 491                                        fr_max_payload(fp));
 492        else
 493                sp->cnt++;
 494
 495        /*
 496         * Send the frame.
 497         */
 498        error = lport->tt.frame_send(lport, fp);
 499
 500        if (fh_type == FC_TYPE_BLS)
 501                goto out;
 502
 503        /*
 504         * Update the exchange and sequence flags,
 505         * assuming all frames for the sequence have been sent.
 506         * We can only be called to send once for each sequence.
 507         */
 508        ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;   /* not first seq */
 509        if (f_ctl & FC_FC_SEQ_INIT)
 510                ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 511out:
 512        return error;
 513}
 514
 515/**
 516 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 517 * @lport: The local port that the exchange will be sent on
 518 * @sp:    The sequence to be sent
 519 * @fp:    The frame to be sent on the exchange
 520 *
 521 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
 522 * or indirectly by calling libfc_function_template.frame_send().
 523 */
 524int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
 525{
 526        struct fc_exch *ep;
 527        int error;
 528        ep = fc_seq_exch(sp);
 529        spin_lock_bh(&ep->ex_lock);
 530        error = fc_seq_send_locked(lport, sp, fp);
 531        spin_unlock_bh(&ep->ex_lock);
 532        return error;
 533}
 534EXPORT_SYMBOL(fc_seq_send);
 535
 536/**
 537 * fc_seq_alloc() - Allocate a sequence for a given exchange
 538 * @ep:     The exchange to allocate a new sequence for
 539 * @seq_id: The sequence ID to be used
 540 *
 541 * We don't support multiple originated sequences on the same exchange.
 542 * By implication, any previously originated sequence on this exchange
 543 * is complete, and we reallocate the same sequence.
 544 */
 545static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
 546{
 547        struct fc_seq *sp;
 548
 549        sp = &ep->seq;
 550        sp->ssb_stat = 0;
 551        sp->cnt = 0;
 552        sp->id = seq_id;
 553        return sp;
 554}
 555
 556/**
 557 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 558 *                              exchange as the supplied sequence
 559 * @sp: The sequence/exchange to get a new sequence for
 560 */
 561static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
 562{
 563        struct fc_exch *ep = fc_seq_exch(sp);
 564
 565        sp = fc_seq_alloc(ep, ep->seq_id++);
 566        FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
 567                    ep->f_ctl, sp->id);
 568        return sp;
 569}
 570
 571/**
 572 * fc_seq_start_next() - Lock the exchange and get a new sequence
 573 *                       for a given sequence/exchange pair
 574 * @sp: The sequence/exchange to get a new exchange for
 575 */
 576struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
 577{
 578        struct fc_exch *ep = fc_seq_exch(sp);
 579
 580        spin_lock_bh(&ep->ex_lock);
 581        sp = fc_seq_start_next_locked(sp);
 582        spin_unlock_bh(&ep->ex_lock);
 583
 584        return sp;
 585}
 586EXPORT_SYMBOL(fc_seq_start_next);
 587
 588/*
 589 * Set the response handler for the exchange associated with a sequence.
 590 *
 591 * Note: May sleep if invoked from outside a response handler.
 592 */
 593void fc_seq_set_resp(struct fc_seq *sp,
 594                     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
 595                     void *arg)
 596{
 597        struct fc_exch *ep = fc_seq_exch(sp);
 598        DEFINE_WAIT(wait);
 599
 600        spin_lock_bh(&ep->ex_lock);
 601        while (ep->resp_active && ep->resp_task != current) {
 602                prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
 603                spin_unlock_bh(&ep->ex_lock);
 604
 605                schedule();
 606
 607                spin_lock_bh(&ep->ex_lock);
 608        }
 609        finish_wait(&ep->resp_wq, &wait);
 610        ep->resp = resp;
 611        ep->arg = arg;
 612        spin_unlock_bh(&ep->ex_lock);
 613}
 614EXPORT_SYMBOL(fc_seq_set_resp);
 615
 616/**
 617 * fc_exch_abort_locked() - Abort an exchange
 618 * @ep: The exchange to be aborted
 619 * @timer_msec: The period of time to wait before aborting
 620 *
 621 * Abort an exchange and sequence. Generally called because of a
 622 * exchange timeout or an abort from the upper layer.
 623 *
 624 * A timer_msec can be specified for abort timeout, if non-zero
 625 * timer_msec value is specified then exchange resp handler
 626 * will be called with timeout error if no response to abort.
 627 *
 628 * Locking notes:  Called with exch lock held
 629 *
 630 * Return value: 0 on success else error code
 631 */
 632static int fc_exch_abort_locked(struct fc_exch *ep,
 633                                unsigned int timer_msec)
 634{
 635        struct fc_seq *sp;
 636        struct fc_frame *fp;
 637        int error;
 638
 639        FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
 640        if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
 641            ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
 642                FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
 643                            ep->esb_stat, ep->state);
 644                return -ENXIO;
 645        }
 646
 647        /*
 648         * Send the abort on a new sequence if possible.
 649         */
 650        sp = fc_seq_start_next_locked(&ep->seq);
 651        if (!sp)
 652                return -ENOMEM;
 653
 654        if (timer_msec)
 655                fc_exch_timer_set_locked(ep, timer_msec);
 656
 657        if (ep->sid) {
 658                /*
 659                 * Send an abort for the sequence that timed out.
 660                 */
 661                fp = fc_frame_alloc(ep->lp, 0);
 662                if (fp) {
 663                        ep->esb_stat |= ESB_ST_SEQ_INIT;
 664                        fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
 665                                       FC_TYPE_BLS, FC_FC_END_SEQ |
 666                                       FC_FC_SEQ_INIT, 0);
 667                        error = fc_seq_send_locked(ep->lp, sp, fp);
 668                } else {
 669                        error = -ENOBUFS;
 670                }
 671        } else {
 672                /*
 673                 * If not logged into the fabric, don't send ABTS but leave
 674                 * sequence active until next timeout.
 675                 */
 676                error = 0;
 677        }
 678        ep->esb_stat |= ESB_ST_ABNORMAL;
 679        return error;
 680}
 681
 682/**
 683 * fc_seq_exch_abort() - Abort an exchange and sequence
 684 * @req_sp:     The sequence to be aborted
 685 * @timer_msec: The period of time to wait before aborting
 686 *
 687 * Generally called because of a timeout or an abort from the upper layer.
 688 *
 689 * Return value: 0 on success else error code
 690 */
 691int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
 692{
 693        struct fc_exch *ep;
 694        int error;
 695
 696        ep = fc_seq_exch(req_sp);
 697        spin_lock_bh(&ep->ex_lock);
 698        error = fc_exch_abort_locked(ep, timer_msec);
 699        spin_unlock_bh(&ep->ex_lock);
 700        return error;
 701}
 702
 703/**
 704 * fc_invoke_resp() - invoke ep->resp()
 705 *
 706 * Notes:
 707 * It is assumed that after initialization finished (this means the
 708 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
 709 * modified only via fc_seq_set_resp(). This guarantees that none of these
 710 * two variables changes if ep->resp_active > 0.
 711 *
 712 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
 713 * this function is invoked, the first spin_lock_bh() call in this function
 714 * will wait until fc_seq_set_resp() has finished modifying these variables.
 715 *
 716 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
 717 * ep->resp() won't be invoked after fc_exch_done() has returned.
 718 *
 719 * The response handler itself may invoke fc_exch_done(), which will clear the
 720 * ep->resp pointer.
 721 *
 722 * Return value:
 723 * Returns true if and only if ep->resp has been invoked.
 724 */
 725static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
 726                           struct fc_frame *fp)
 727{
 728        void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
 729        void *arg;
 730        bool res = false;
 731
 732        spin_lock_bh(&ep->ex_lock);
 733        ep->resp_active++;
 734        if (ep->resp_task != current)
 735                ep->resp_task = !ep->resp_task ? current : NULL;
 736        resp = ep->resp;
 737        arg = ep->arg;
 738        spin_unlock_bh(&ep->ex_lock);
 739
 740        if (resp) {
 741                resp(sp, fp, arg);
 742                res = true;
 743        }
 744
 745        spin_lock_bh(&ep->ex_lock);
 746        if (--ep->resp_active == 0)
 747                ep->resp_task = NULL;
 748        spin_unlock_bh(&ep->ex_lock);
 749
 750        if (ep->resp_active == 0)
 751                wake_up(&ep->resp_wq);
 752
 753        return res;
 754}
 755
 756/**
 757 * fc_exch_timeout() - Handle exchange timer expiration
 758 * @work: The work_struct identifying the exchange that timed out
 759 */
 760static void fc_exch_timeout(struct work_struct *work)
 761{
 762        struct fc_exch *ep = container_of(work, struct fc_exch,
 763                                          timeout_work.work);
 764        struct fc_seq *sp = &ep->seq;
 765        u32 e_stat;
 766        int rc = 1;
 767
 768        FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
 769
 770        spin_lock_bh(&ep->ex_lock);
 771        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 772                goto unlock;
 773
 774        e_stat = ep->esb_stat;
 775        if (e_stat & ESB_ST_COMPLETE) {
 776                ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
 777                spin_unlock_bh(&ep->ex_lock);
 778                if (e_stat & ESB_ST_REC_QUAL)
 779                        fc_exch_rrq(ep);
 780                goto done;
 781        } else {
 782                if (e_stat & ESB_ST_ABNORMAL)
 783                        rc = fc_exch_done_locked(ep);
 784                spin_unlock_bh(&ep->ex_lock);
 785                if (!rc)
 786                        fc_exch_delete(ep);
 787                fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
 788                fc_seq_set_resp(sp, NULL, ep->arg);
 789                fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
 790                goto done;
 791        }
 792unlock:
 793        spin_unlock_bh(&ep->ex_lock);
 794done:
 795        /*
 796         * This release matches the hold taken when the timer was set.
 797         */
 798        fc_exch_release(ep);
 799}
 800
 801/**
 802 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 803 * @lport: The local port that the exchange is for
 804 * @mp:    The exchange manager that will allocate the exchange
 805 *
 806 * Returns pointer to allocated fc_exch with exch lock held.
 807 */
 808static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 809                                        struct fc_exch_mgr *mp)
 810{
 811        struct fc_exch *ep;
 812        unsigned int cpu;
 813        u16 index;
 814        struct fc_exch_pool *pool;
 815
 816        /* allocate memory for exchange */
 817        ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
 818        if (!ep) {
 819                atomic_inc(&mp->stats.no_free_exch);
 820                goto out;
 821        }
 822        memset(ep, 0, sizeof(*ep));
 823
 824        cpu = get_cpu();
 825        pool = per_cpu_ptr(mp->pool, cpu);
 826        spin_lock_bh(&pool->lock);
 827        put_cpu();
 828
 829        /* peek cache of free slot */
 830        if (pool->left != FC_XID_UNKNOWN) {
 831                if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
 832                        index = pool->left;
 833                        pool->left = FC_XID_UNKNOWN;
 834                        goto hit;
 835                }
 836        }
 837        if (pool->right != FC_XID_UNKNOWN) {
 838                if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
 839                        index = pool->right;
 840                        pool->right = FC_XID_UNKNOWN;
 841                        goto hit;
 842                }
 843        }
 844
 845        index = pool->next_index;
 846        /* allocate new exch from pool */
 847        while (fc_exch_ptr_get(pool, index)) {
 848                index = index == mp->pool_max_index ? 0 : index + 1;
 849                if (index == pool->next_index)
 850                        goto err;
 851        }
 852        pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
 853hit:
 854        fc_exch_hold(ep);       /* hold for exch in mp */
 855        spin_lock_init(&ep->ex_lock);
 856        /*
 857         * Hold exch lock for caller to prevent fc_exch_reset()
 858         * from releasing exch  while fc_exch_alloc() caller is
 859         * still working on exch.
 860         */
 861        spin_lock_bh(&ep->ex_lock);
 862
 863        fc_exch_ptr_set(pool, index, ep);
 864        list_add_tail(&ep->ex_list, &pool->ex_list);
 865        fc_seq_alloc(ep, ep->seq_id++);
 866        pool->total_exches++;
 867        spin_unlock_bh(&pool->lock);
 868
 869        /*
 870         *  update exchange
 871         */
 872        ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
 873        ep->em = mp;
 874        ep->pool = pool;
 875        ep->lp = lport;
 876        ep->f_ctl = FC_FC_FIRST_SEQ;    /* next seq is first seq */
 877        ep->rxid = FC_XID_UNKNOWN;
 878        ep->class = mp->class;
 879        ep->resp_active = 0;
 880        init_waitqueue_head(&ep->resp_wq);
 881        INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
 882out:
 883        return ep;
 884err:
 885        spin_unlock_bh(&pool->lock);
 886        atomic_inc(&mp->stats.no_free_exch_xid);
 887        mempool_free(ep, mp->ep_pool);
 888        return NULL;
 889}
 890
 891/**
 892 * fc_exch_alloc() - Allocate an exchange from an EM on a
 893 *                   local port's list of EMs.
 894 * @lport: The local port that will own the exchange
 895 * @fp:    The FC frame that the exchange will be for
 896 *
 897 * This function walks the list of exchange manager(EM)
 898 * anchors to select an EM for a new exchange allocation. The
 899 * EM is selected when a NULL match function pointer is encountered
 900 * or when a call to a match function returns true.
 901 */
 902static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
 903                                     struct fc_frame *fp)
 904{
 905        struct fc_exch_mgr_anchor *ema;
 906        struct fc_exch *ep;
 907
 908        list_for_each_entry(ema, &lport->ema_list, ema_list) {
 909                if (!ema->match || ema->match(fp)) {
 910                        ep = fc_exch_em_alloc(lport, ema->mp);
 911                        if (ep)
 912                                return ep;
 913                }
 914        }
 915        return NULL;
 916}
 917
 918/**
 919 * fc_exch_find() - Lookup and hold an exchange
 920 * @mp:  The exchange manager to lookup the exchange from
 921 * @xid: The XID of the exchange to look up
 922 */
 923static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
 924{
 925        struct fc_lport *lport = mp->lport;
 926        struct fc_exch_pool *pool;
 927        struct fc_exch *ep = NULL;
 928        u16 cpu = xid & fc_cpu_mask;
 929
 930        if (xid == FC_XID_UNKNOWN)
 931                return NULL;
 932
 933        if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 934                pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
 935                       lport->host->host_no, lport->port_id, xid, cpu);
 936                return NULL;
 937        }
 938
 939        if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
 940                pool = per_cpu_ptr(mp->pool, cpu);
 941                spin_lock_bh(&pool->lock);
 942                ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
 943                if (ep == &fc_quarantine_exch) {
 944                        FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
 945                        ep = NULL;
 946                }
 947                if (ep) {
 948                        WARN_ON(ep->xid != xid);
 949                        fc_exch_hold(ep);
 950                }
 951                spin_unlock_bh(&pool->lock);
 952        }
 953        return ep;
 954}
 955
 956
 957/**
 958 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 959 *                  the memory allocated for the related objects may be freed.
 960 * @sp: The sequence that has completed
 961 *
 962 * Note: May sleep if invoked from outside a response handler.
 963 */
 964void fc_exch_done(struct fc_seq *sp)
 965{
 966        struct fc_exch *ep = fc_seq_exch(sp);
 967        int rc;
 968
 969        spin_lock_bh(&ep->ex_lock);
 970        rc = fc_exch_done_locked(ep);
 971        spin_unlock_bh(&ep->ex_lock);
 972
 973        fc_seq_set_resp(sp, NULL, ep->arg);
 974        if (!rc)
 975                fc_exch_delete(ep);
 976}
 977EXPORT_SYMBOL(fc_exch_done);
 978
 979/**
 980 * fc_exch_resp() - Allocate a new exchange for a response frame
 981 * @lport: The local port that the exchange was for
 982 * @mp:    The exchange manager to allocate the exchange from
 983 * @fp:    The response frame
 984 *
 985 * Sets the responder ID in the frame header.
 986 */
 987static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
 988                                    struct fc_exch_mgr *mp,
 989                                    struct fc_frame *fp)
 990{
 991        struct fc_exch *ep;
 992        struct fc_frame_header *fh;
 993
 994        ep = fc_exch_alloc(lport, fp);
 995        if (ep) {
 996                ep->class = fc_frame_class(fp);
 997
 998                /*
 999                 * Set EX_CTX indicating we're responding on this exchange.
1000                 */
1001                ep->f_ctl |= FC_FC_EX_CTX;      /* we're responding */
1002                ep->f_ctl &= ~FC_FC_FIRST_SEQ;  /* not new */
1003                fh = fc_frame_header_get(fp);
1004                ep->sid = ntoh24(fh->fh_d_id);
1005                ep->did = ntoh24(fh->fh_s_id);
1006                ep->oid = ep->did;
1007
1008                /*
1009                 * Allocated exchange has placed the XID in the
1010                 * originator field. Move it to the responder field,
1011                 * and set the originator XID from the frame.
1012                 */
1013                ep->rxid = ep->xid;
1014                ep->oxid = ntohs(fh->fh_ox_id);
1015                ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1016                if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1017                        ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1018
1019                fc_exch_hold(ep);       /* hold for caller */
1020                spin_unlock_bh(&ep->ex_lock);   /* lock from fc_exch_alloc */
1021        }
1022        return ep;
1023}
1024
1025/**
1026 * fc_seq_lookup_recip() - Find a sequence where the other end
1027 *                         originated the sequence
1028 * @lport: The local port that the frame was sent to
1029 * @mp:    The Exchange Manager to lookup the exchange from
1030 * @fp:    The frame associated with the sequence we're looking for
1031 *
1032 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1033 * on the ep that should be released by the caller.
1034 */
1035static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1036                                                 struct fc_exch_mgr *mp,
1037                                                 struct fc_frame *fp)
1038{
1039        struct fc_frame_header *fh = fc_frame_header_get(fp);
1040        struct fc_exch *ep = NULL;
1041        struct fc_seq *sp = NULL;
1042        enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1043        u32 f_ctl;
1044        u16 xid;
1045
1046        f_ctl = ntoh24(fh->fh_f_ctl);
1047        WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1048
1049        /*
1050         * Lookup or create the exchange if we will be creating the sequence.
1051         */
1052        if (f_ctl & FC_FC_EX_CTX) {
1053                xid = ntohs(fh->fh_ox_id);      /* we originated exch */
1054                ep = fc_exch_find(mp, xid);
1055                if (!ep) {
1056                        atomic_inc(&mp->stats.xid_not_found);
1057                        reject = FC_RJT_OX_ID;
1058                        goto out;
1059                }
1060                if (ep->rxid == FC_XID_UNKNOWN)
1061                        ep->rxid = ntohs(fh->fh_rx_id);
1062                else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1063                        reject = FC_RJT_OX_ID;
1064                        goto rel;
1065                }
1066        } else {
1067                xid = ntohs(fh->fh_rx_id);      /* we are the responder */
1068
1069                /*
1070                 * Special case for MDS issuing an ELS TEST with a
1071                 * bad rxid of 0.
1072                 * XXX take this out once we do the proper reject.
1073                 */
1074                if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1075                    fc_frame_payload_op(fp) == ELS_TEST) {
1076                        fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1077                        xid = FC_XID_UNKNOWN;
1078                }
1079
1080                /*
1081                 * new sequence - find the exchange
1082                 */
1083                ep = fc_exch_find(mp, xid);
1084                if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1085                        if (ep) {
1086                                atomic_inc(&mp->stats.xid_busy);
1087                                reject = FC_RJT_RX_ID;
1088                                goto rel;
1089                        }
1090                        ep = fc_exch_resp(lport, mp, fp);
1091                        if (!ep) {
1092                                reject = FC_RJT_EXCH_EST;       /* XXX */
1093                                goto out;
1094                        }
1095                        xid = ep->xid;  /* get our XID */
1096                } else if (!ep) {
1097                        atomic_inc(&mp->stats.xid_not_found);
1098                        reject = FC_RJT_RX_ID;  /* XID not found */
1099                        goto out;
1100                }
1101        }
1102
1103        spin_lock_bh(&ep->ex_lock);
1104        /*
1105         * At this point, we have the exchange held.
1106         * Find or create the sequence.
1107         */
1108        if (fc_sof_is_init(fr_sof(fp))) {
1109                sp = &ep->seq;
1110                sp->ssb_stat |= SSB_ST_RESP;
1111                sp->id = fh->fh_seq_id;
1112        } else {
1113                sp = &ep->seq;
1114                if (sp->id != fh->fh_seq_id) {
1115                        atomic_inc(&mp->stats.seq_not_found);
1116                        if (f_ctl & FC_FC_END_SEQ) {
1117                                /*
1118                                 * Update sequence_id based on incoming last
1119                                 * frame of sequence exchange. This is needed
1120                                 * for FC target where DDP has been used
1121                                 * on target where, stack is indicated only
1122                                 * about last frame's (payload _header) header.
1123                                 * Whereas "seq_id" which is part of
1124                                 * frame_header is allocated by initiator
1125                                 * which is totally different from "seq_id"
1126                                 * allocated when XFER_RDY was sent by target.
1127                                 * To avoid false -ve which results into not
1128                                 * sending RSP, hence write request on other
1129                                 * end never finishes.
1130                                 */
1131                                sp->ssb_stat |= SSB_ST_RESP;
1132                                sp->id = fh->fh_seq_id;
1133                        } else {
1134                                spin_unlock_bh(&ep->ex_lock);
1135
1136                                /* sequence/exch should exist */
1137                                reject = FC_RJT_SEQ_ID;
1138                                goto rel;
1139                        }
1140                }
1141        }
1142        WARN_ON(ep != fc_seq_exch(sp));
1143
1144        if (f_ctl & FC_FC_SEQ_INIT)
1145                ep->esb_stat |= ESB_ST_SEQ_INIT;
1146        spin_unlock_bh(&ep->ex_lock);
1147
1148        fr_seq(fp) = sp;
1149out:
1150        return reject;
1151rel:
1152        fc_exch_done(&ep->seq);
1153        fc_exch_release(ep);    /* hold from fc_exch_find/fc_exch_resp */
1154        return reject;
1155}
1156
1157/**
1158 * fc_seq_lookup_orig() - Find a sequence where this end
1159 *                        originated the sequence
1160 * @mp:    The Exchange Manager to lookup the exchange from
1161 * @fp:    The frame associated with the sequence we're looking for
1162 *
1163 * Does not hold the sequence for the caller.
1164 */
1165static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1166                                         struct fc_frame *fp)
1167{
1168        struct fc_frame_header *fh = fc_frame_header_get(fp);
1169        struct fc_exch *ep;
1170        struct fc_seq *sp = NULL;
1171        u32 f_ctl;
1172        u16 xid;
1173
1174        f_ctl = ntoh24(fh->fh_f_ctl);
1175        WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1176        xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1177        ep = fc_exch_find(mp, xid);
1178        if (!ep)
1179                return NULL;
1180        if (ep->seq.id == fh->fh_seq_id) {
1181                /*
1182                 * Save the RX_ID if we didn't previously know it.
1183                 */
1184                sp = &ep->seq;
1185                if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1186                    ep->rxid == FC_XID_UNKNOWN) {
1187                        ep->rxid = ntohs(fh->fh_rx_id);
1188                }
1189        }
1190        fc_exch_release(ep);
1191        return sp;
1192}
1193
1194/**
1195 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1196 * @ep:      The exchange to set the addresses for
1197 * @orig_id: The originator's ID
1198 * @resp_id: The responder's ID
1199 *
1200 * Note this must be done before the first sequence of the exchange is sent.
1201 */
1202static void fc_exch_set_addr(struct fc_exch *ep,
1203                             u32 orig_id, u32 resp_id)
1204{
1205        ep->oid = orig_id;
1206        if (ep->esb_stat & ESB_ST_RESP) {
1207                ep->sid = resp_id;
1208                ep->did = orig_id;
1209        } else {
1210                ep->sid = orig_id;
1211                ep->did = resp_id;
1212        }
1213}
1214
1215/**
1216 * fc_seq_els_rsp_send() - Send an ELS response using information from
1217 *                         the existing sequence/exchange.
1218 * @fp:       The received frame
1219 * @els_cmd:  The ELS command to be sent
1220 * @els_data: The ELS data to be sent
1221 *
1222 * The received frame is not freed.
1223 */
1224void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1225                         struct fc_seq_els_data *els_data)
1226{
1227        switch (els_cmd) {
1228        case ELS_LS_RJT:
1229                fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1230                break;
1231        case ELS_LS_ACC:
1232                fc_seq_ls_acc(fp);
1233                break;
1234        case ELS_RRQ:
1235                fc_exch_els_rrq(fp);
1236                break;
1237        case ELS_REC:
1238                fc_exch_els_rec(fp);
1239                break;
1240        default:
1241                FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1242        }
1243}
1244EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1245
1246/**
1247 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1248 * @sp:      The sequence that is to be sent
1249 * @fp:      The frame that will be sent on the sequence
1250 * @rctl:    The R_CTL information to be sent
1251 * @fh_type: The frame header type
1252 */
1253static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1254                             enum fc_rctl rctl, enum fc_fh_type fh_type)
1255{
1256        u32 f_ctl;
1257        struct fc_exch *ep = fc_seq_exch(sp);
1258
1259        f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1260        f_ctl |= ep->f_ctl;
1261        fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1262        fc_seq_send_locked(ep->lp, sp, fp);
1263}
1264
1265/**
1266 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1267 * @sp:    The sequence to send the ACK on
1268 * @rx_fp: The received frame that is being acknoledged
1269 *
1270 * Send ACK_1 (or equiv.) indicating we received something.
1271 */
1272static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1273{
1274        struct fc_frame *fp;
1275        struct fc_frame_header *rx_fh;
1276        struct fc_frame_header *fh;
1277        struct fc_exch *ep = fc_seq_exch(sp);
1278        struct fc_lport *lport = ep->lp;
1279        unsigned int f_ctl;
1280
1281        /*
1282         * Don't send ACKs for class 3.
1283         */
1284        if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1285                fp = fc_frame_alloc(lport, 0);
1286                if (!fp) {
1287                        FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1288                        return;
1289                }
1290
1291                fh = fc_frame_header_get(fp);
1292                fh->fh_r_ctl = FC_RCTL_ACK_1;
1293                fh->fh_type = FC_TYPE_BLS;
1294
1295                /*
1296                 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1297                 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1298                 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1299                 * Last ACK uses bits 7-6 (continue sequence),
1300                 * bits 5-4 are meaningful (what kind of ACK to use).
1301                 */
1302                rx_fh = fc_frame_header_get(rx_fp);
1303                f_ctl = ntoh24(rx_fh->fh_f_ctl);
1304                f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1305                        FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1306                        FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1307                        FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1308                f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1309                hton24(fh->fh_f_ctl, f_ctl);
1310
1311                fc_exch_setup_hdr(ep, fp, f_ctl);
1312                fh->fh_seq_id = rx_fh->fh_seq_id;
1313                fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1314                fh->fh_parm_offset = htonl(1);  /* ack single frame */
1315
1316                fr_sof(fp) = fr_sof(rx_fp);
1317                if (f_ctl & FC_FC_END_SEQ)
1318                        fr_eof(fp) = FC_EOF_T;
1319                else
1320                        fr_eof(fp) = FC_EOF_N;
1321
1322                lport->tt.frame_send(lport, fp);
1323        }
1324}
1325
1326/**
1327 * fc_exch_send_ba_rjt() - Send BLS Reject
1328 * @rx_fp:  The frame being rejected
1329 * @reason: The reason the frame is being rejected
1330 * @explan: The explanation for the rejection
1331 *
1332 * This is for rejecting BA_ABTS only.
1333 */
1334static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1335                                enum fc_ba_rjt_reason reason,
1336                                enum fc_ba_rjt_explan explan)
1337{
1338        struct fc_frame *fp;
1339        struct fc_frame_header *rx_fh;
1340        struct fc_frame_header *fh;
1341        struct fc_ba_rjt *rp;
1342        struct fc_seq *sp;
1343        struct fc_lport *lport;
1344        unsigned int f_ctl;
1345
1346        lport = fr_dev(rx_fp);
1347        sp = fr_seq(rx_fp);
1348        fp = fc_frame_alloc(lport, sizeof(*rp));
1349        if (!fp) {
1350                FC_EXCH_DBG(fc_seq_exch(sp),
1351                             "Drop BA_RJT request, out of memory\n");
1352                return;
1353        }
1354        fh = fc_frame_header_get(fp);
1355        rx_fh = fc_frame_header_get(rx_fp);
1356
1357        memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1358
1359        rp = fc_frame_payload_get(fp, sizeof(*rp));
1360        rp->br_reason = reason;
1361        rp->br_explan = explan;
1362
1363        /*
1364         * seq_id, cs_ctl, df_ctl and param/offset are zero.
1365         */
1366        memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1367        memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1368        fh->fh_ox_id = rx_fh->fh_ox_id;
1369        fh->fh_rx_id = rx_fh->fh_rx_id;
1370        fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1371        fh->fh_r_ctl = FC_RCTL_BA_RJT;
1372        fh->fh_type = FC_TYPE_BLS;
1373
1374        /*
1375         * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1376         * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1377         * Bits 9-8 are meaningful (retransmitted or unidirectional).
1378         * Last ACK uses bits 7-6 (continue sequence),
1379         * bits 5-4 are meaningful (what kind of ACK to use).
1380         * Always set LAST_SEQ, END_SEQ.
1381         */
1382        f_ctl = ntoh24(rx_fh->fh_f_ctl);
1383        f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1384                FC_FC_END_CONN | FC_FC_SEQ_INIT |
1385                FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1386        f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1387        f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1388        f_ctl &= ~FC_FC_FIRST_SEQ;
1389        hton24(fh->fh_f_ctl, f_ctl);
1390
1391        fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1392        fr_eof(fp) = FC_EOF_T;
1393        if (fc_sof_needs_ack(fr_sof(fp)))
1394                fr_eof(fp) = FC_EOF_N;
1395
1396        lport->tt.frame_send(lport, fp);
1397}
1398
1399/**
1400 * fc_exch_recv_abts() - Handle an incoming ABTS
1401 * @ep:    The exchange the abort was on
1402 * @rx_fp: The ABTS frame
1403 *
1404 * This would be for target mode usually, but could be due to lost
1405 * FCP transfer ready, confirm or RRQ. We always handle this as an
1406 * exchange abort, ignoring the parameter.
1407 */
1408static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1409{
1410        struct fc_frame *fp;
1411        struct fc_ba_acc *ap;
1412        struct fc_frame_header *fh;
1413        struct fc_seq *sp;
1414
1415        if (!ep)
1416                goto reject;
1417
1418        FC_EXCH_DBG(ep, "exch: ABTS received\n");
1419        fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1420        if (!fp) {
1421                FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1422                goto free;
1423        }
1424
1425        spin_lock_bh(&ep->ex_lock);
1426        if (ep->esb_stat & ESB_ST_COMPLETE) {
1427                spin_unlock_bh(&ep->ex_lock);
1428                FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1429                fc_frame_free(fp);
1430                goto reject;
1431        }
1432        if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1433                ep->esb_stat |= ESB_ST_REC_QUAL;
1434                fc_exch_hold(ep);               /* hold for REC_QUAL */
1435        }
1436        fc_exch_timer_set_locked(ep, ep->r_a_tov);
1437        fh = fc_frame_header_get(fp);
1438        ap = fc_frame_payload_get(fp, sizeof(*ap));
1439        memset(ap, 0, sizeof(*ap));
1440        sp = &ep->seq;
1441        ap->ba_high_seq_cnt = htons(0xffff);
1442        if (sp->ssb_stat & SSB_ST_RESP) {
1443                ap->ba_seq_id = sp->id;
1444                ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1445                ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1446                ap->ba_low_seq_cnt = htons(sp->cnt);
1447        }
1448        sp = fc_seq_start_next_locked(sp);
1449        fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1450        ep->esb_stat |= ESB_ST_ABNORMAL;
1451        spin_unlock_bh(&ep->ex_lock);
1452
1453free:
1454        fc_frame_free(rx_fp);
1455        return;
1456
1457reject:
1458        fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1459        goto free;
1460}
1461
1462/**
1463 * fc_seq_assign() - Assign exchange and sequence for incoming request
1464 * @lport: The local port that received the request
1465 * @fp:    The request frame
1466 *
1467 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1468 * A reference will be held on the exchange/sequence for the caller, which
1469 * must call fc_seq_release().
1470 */
1471struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1472{
1473        struct fc_exch_mgr_anchor *ema;
1474
1475        WARN_ON(lport != fr_dev(fp));
1476        WARN_ON(fr_seq(fp));
1477        fr_seq(fp) = NULL;
1478
1479        list_for_each_entry(ema, &lport->ema_list, ema_list)
1480                if ((!ema->match || ema->match(fp)) &&
1481                    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1482                        break;
1483        return fr_seq(fp);
1484}
1485EXPORT_SYMBOL(fc_seq_assign);
1486
1487/**
1488 * fc_seq_release() - Release the hold
1489 * @sp:    The sequence.
1490 */
1491void fc_seq_release(struct fc_seq *sp)
1492{
1493        fc_exch_release(fc_seq_exch(sp));
1494}
1495EXPORT_SYMBOL(fc_seq_release);
1496
1497/**
1498 * fc_exch_recv_req() - Handler for an incoming request
1499 * @lport: The local port that received the request
1500 * @mp:    The EM that the exchange is on
1501 * @fp:    The request frame
1502 *
1503 * This is used when the other end is originating the exchange
1504 * and the sequence.
1505 */
1506static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1507                             struct fc_frame *fp)
1508{
1509        struct fc_frame_header *fh = fc_frame_header_get(fp);
1510        struct fc_seq *sp = NULL;
1511        struct fc_exch *ep = NULL;
1512        enum fc_pf_rjt_reason reject;
1513
1514        /* We can have the wrong fc_lport at this point with NPIV, which is a
1515         * problem now that we know a new exchange needs to be allocated
1516         */
1517        lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1518        if (!lport) {
1519                fc_frame_free(fp);
1520                return;
1521        }
1522        fr_dev(fp) = lport;
1523
1524        BUG_ON(fr_seq(fp));             /* XXX remove later */
1525
1526        /*
1527         * If the RX_ID is 0xffff, don't allocate an exchange.
1528         * The upper-level protocol may request one later, if needed.
1529         */
1530        if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1531                return fc_lport_recv(lport, fp);
1532
1533        reject = fc_seq_lookup_recip(lport, mp, fp);
1534        if (reject == FC_RJT_NONE) {
1535                sp = fr_seq(fp);        /* sequence will be held */
1536                ep = fc_seq_exch(sp);
1537                fc_seq_send_ack(sp, fp);
1538                ep->encaps = fr_encaps(fp);
1539
1540                /*
1541                 * Call the receive function.
1542                 *
1543                 * The receive function may allocate a new sequence
1544                 * over the old one, so we shouldn't change the
1545                 * sequence after this.
1546                 *
1547                 * The frame will be freed by the receive function.
1548                 * If new exch resp handler is valid then call that
1549                 * first.
1550                 */
1551                if (!fc_invoke_resp(ep, sp, fp))
1552                        fc_lport_recv(lport, fp);
1553                fc_exch_release(ep);    /* release from lookup */
1554        } else {
1555                FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1556                             reject);
1557                fc_frame_free(fp);
1558        }
1559}
1560
1561/**
1562 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1563 *                           end is the originator of the sequence that is a
1564 *                           response to our initial exchange
1565 * @mp: The EM that the exchange is on
1566 * @fp: The response frame
1567 */
1568static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1569{
1570        struct fc_frame_header *fh = fc_frame_header_get(fp);
1571        struct fc_seq *sp;
1572        struct fc_exch *ep;
1573        enum fc_sof sof;
1574        u32 f_ctl;
1575        int rc;
1576
1577        ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1578        if (!ep) {
1579                atomic_inc(&mp->stats.xid_not_found);
1580                goto out;
1581        }
1582        if (ep->esb_stat & ESB_ST_COMPLETE) {
1583                atomic_inc(&mp->stats.xid_not_found);
1584                goto rel;
1585        }
1586        if (ep->rxid == FC_XID_UNKNOWN)
1587                ep->rxid = ntohs(fh->fh_rx_id);
1588        if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1589                atomic_inc(&mp->stats.xid_not_found);
1590                goto rel;
1591        }
1592        if (ep->did != ntoh24(fh->fh_s_id) &&
1593            ep->did != FC_FID_FLOGI) {
1594                atomic_inc(&mp->stats.xid_not_found);
1595                goto rel;
1596        }
1597        sof = fr_sof(fp);
1598        sp = &ep->seq;
1599        if (fc_sof_is_init(sof)) {
1600                sp->ssb_stat |= SSB_ST_RESP;
1601                sp->id = fh->fh_seq_id;
1602        }
1603
1604        f_ctl = ntoh24(fh->fh_f_ctl);
1605        fr_seq(fp) = sp;
1606
1607        spin_lock_bh(&ep->ex_lock);
1608        if (f_ctl & FC_FC_SEQ_INIT)
1609                ep->esb_stat |= ESB_ST_SEQ_INIT;
1610        spin_unlock_bh(&ep->ex_lock);
1611
1612        if (fc_sof_needs_ack(sof))
1613                fc_seq_send_ack(sp, fp);
1614
1615        if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1616            (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1617            (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1618                spin_lock_bh(&ep->ex_lock);
1619                rc = fc_exch_done_locked(ep);
1620                WARN_ON(fc_seq_exch(sp) != ep);
1621                spin_unlock_bh(&ep->ex_lock);
1622                if (!rc)
1623                        fc_exch_delete(ep);
1624        }
1625
1626        /*
1627         * Call the receive function.
1628         * The sequence is held (has a refcnt) for us,
1629         * but not for the receive function.
1630         *
1631         * The receive function may allocate a new sequence
1632         * over the old one, so we shouldn't change the
1633         * sequence after this.
1634         *
1635         * The frame will be freed by the receive function.
1636         * If new exch resp handler is valid then call that
1637         * first.
1638         */
1639        if (!fc_invoke_resp(ep, sp, fp))
1640                fc_frame_free(fp);
1641
1642        fc_exch_release(ep);
1643        return;
1644rel:
1645        fc_exch_release(ep);
1646out:
1647        fc_frame_free(fp);
1648}
1649
1650/**
1651 * fc_exch_recv_resp() - Handler for a sequence where other end is
1652 *                       responding to our sequence
1653 * @mp: The EM that the exchange is on
1654 * @fp: The response frame
1655 */
1656static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1657{
1658        struct fc_seq *sp;
1659
1660        sp = fc_seq_lookup_orig(mp, fp);        /* doesn't hold sequence */
1661
1662        if (!sp)
1663                atomic_inc(&mp->stats.xid_not_found);
1664        else
1665                atomic_inc(&mp->stats.non_bls_resp);
1666
1667        fc_frame_free(fp);
1668}
1669
1670/**
1671 * fc_exch_abts_resp() - Handler for a response to an ABT
1672 * @ep: The exchange that the frame is on
1673 * @fp: The response frame
1674 *
1675 * This response would be to an ABTS cancelling an exchange or sequence.
1676 * The response can be either BA_ACC or BA_RJT
1677 */
1678static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1679{
1680        struct fc_frame_header *fh;
1681        struct fc_ba_acc *ap;
1682        struct fc_seq *sp;
1683        u16 low;
1684        u16 high;
1685        int rc = 1, has_rec = 0;
1686
1687        fh = fc_frame_header_get(fp);
1688        FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1689                    fc_exch_rctl_name(fh->fh_r_ctl));
1690
1691        if (cancel_delayed_work_sync(&ep->timeout_work)) {
1692                FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1693                fc_exch_release(ep);    /* release from pending timer hold */
1694        }
1695
1696        spin_lock_bh(&ep->ex_lock);
1697        switch (fh->fh_r_ctl) {
1698        case FC_RCTL_BA_ACC:
1699                ap = fc_frame_payload_get(fp, sizeof(*ap));
1700                if (!ap)
1701                        break;
1702
1703                /*
1704                 * Decide whether to establish a Recovery Qualifier.
1705                 * We do this if there is a non-empty SEQ_CNT range and
1706                 * SEQ_ID is the same as the one we aborted.
1707                 */
1708                low = ntohs(ap->ba_low_seq_cnt);
1709                high = ntohs(ap->ba_high_seq_cnt);
1710                if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1711                    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1712                     ap->ba_seq_id == ep->seq_id) && low != high) {
1713                        ep->esb_stat |= ESB_ST_REC_QUAL;
1714                        fc_exch_hold(ep);  /* hold for recovery qualifier */
1715                        has_rec = 1;
1716                }
1717                break;
1718        case FC_RCTL_BA_RJT:
1719                break;
1720        default:
1721                break;
1722        }
1723
1724        /* do we need to do some other checks here. Can we reuse more of
1725         * fc_exch_recv_seq_resp
1726         */
1727        sp = &ep->seq;
1728        /*
1729         * do we want to check END_SEQ as well as LAST_SEQ here?
1730         */
1731        if (ep->fh_type != FC_TYPE_FCP &&
1732            ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1733                rc = fc_exch_done_locked(ep);
1734        spin_unlock_bh(&ep->ex_lock);
1735
1736        fc_exch_hold(ep);
1737        if (!rc)
1738                fc_exch_delete(ep);
1739        if (!fc_invoke_resp(ep, sp, fp))
1740                fc_frame_free(fp);
1741        if (has_rec)
1742                fc_exch_timer_set(ep, ep->r_a_tov);
1743        fc_exch_release(ep);
1744}
1745
1746/**
1747 * fc_exch_recv_bls() - Handler for a BLS sequence
1748 * @mp: The EM that the exchange is on
1749 * @fp: The request frame
1750 *
1751 * The BLS frame is always a sequence initiated by the remote side.
1752 * We may be either the originator or recipient of the exchange.
1753 */
1754static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1755{
1756        struct fc_frame_header *fh;
1757        struct fc_exch *ep;
1758        u32 f_ctl;
1759
1760        fh = fc_frame_header_get(fp);
1761        f_ctl = ntoh24(fh->fh_f_ctl);
1762        fr_seq(fp) = NULL;
1763
1764        ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1765                          ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1766        if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1767                spin_lock_bh(&ep->ex_lock);
1768                ep->esb_stat |= ESB_ST_SEQ_INIT;
1769                spin_unlock_bh(&ep->ex_lock);
1770        }
1771        if (f_ctl & FC_FC_SEQ_CTX) {
1772                /*
1773                 * A response to a sequence we initiated.
1774                 * This should only be ACKs for class 2 or F.
1775                 */
1776                switch (fh->fh_r_ctl) {
1777                case FC_RCTL_ACK_1:
1778                case FC_RCTL_ACK_0:
1779                        break;
1780                default:
1781                        if (ep)
1782                                FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1783                                            fh->fh_r_ctl,
1784                                            fc_exch_rctl_name(fh->fh_r_ctl));
1785                        break;
1786                }
1787                fc_frame_free(fp);
1788        } else {
1789                switch (fh->fh_r_ctl) {
1790                case FC_RCTL_BA_RJT:
1791                case FC_RCTL_BA_ACC:
1792                        if (ep)
1793                                fc_exch_abts_resp(ep, fp);
1794                        else
1795                                fc_frame_free(fp);
1796                        break;
1797                case FC_RCTL_BA_ABTS:
1798                        if (ep)
1799                                fc_exch_recv_abts(ep, fp);
1800                        else
1801                                fc_frame_free(fp);
1802                        break;
1803                default:                        /* ignore junk */
1804                        fc_frame_free(fp);
1805                        break;
1806                }
1807        }
1808        if (ep)
1809                fc_exch_release(ep);    /* release hold taken by fc_exch_find */
1810}
1811
1812/**
1813 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1814 * @rx_fp: The received frame, not freed here.
1815 *
1816 * If this fails due to allocation or transmit congestion, assume the
1817 * originator will repeat the sequence.
1818 */
1819static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1820{
1821        struct fc_lport *lport;
1822        struct fc_els_ls_acc *acc;
1823        struct fc_frame *fp;
1824        struct fc_seq *sp;
1825
1826        lport = fr_dev(rx_fp);
1827        sp = fr_seq(rx_fp);
1828        fp = fc_frame_alloc(lport, sizeof(*acc));
1829        if (!fp) {
1830                FC_EXCH_DBG(fc_seq_exch(sp),
1831                            "exch: drop LS_ACC, out of memory\n");
1832                return;
1833        }
1834        acc = fc_frame_payload_get(fp, sizeof(*acc));
1835        memset(acc, 0, sizeof(*acc));
1836        acc->la_cmd = ELS_LS_ACC;
1837        fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1838        lport->tt.frame_send(lport, fp);
1839}
1840
1841/**
1842 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1843 * @rx_fp: The received frame, not freed here.
1844 * @reason: The reason the sequence is being rejected
1845 * @explan: The explanation for the rejection
1846 *
1847 * If this fails due to allocation or transmit congestion, assume the
1848 * originator will repeat the sequence.
1849 */
1850static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1851                          enum fc_els_rjt_explan explan)
1852{
1853        struct fc_lport *lport;
1854        struct fc_els_ls_rjt *rjt;
1855        struct fc_frame *fp;
1856        struct fc_seq *sp;
1857
1858        lport = fr_dev(rx_fp);
1859        sp = fr_seq(rx_fp);
1860        fp = fc_frame_alloc(lport, sizeof(*rjt));
1861        if (!fp) {
1862                FC_EXCH_DBG(fc_seq_exch(sp),
1863                            "exch: drop LS_ACC, out of memory\n");
1864                return;
1865        }
1866        rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1867        memset(rjt, 0, sizeof(*rjt));
1868        rjt->er_cmd = ELS_LS_RJT;
1869        rjt->er_reason = reason;
1870        rjt->er_explan = explan;
1871        fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1872        lport->tt.frame_send(lport, fp);
1873}
1874
1875/**
1876 * fc_exch_reset() - Reset an exchange
1877 * @ep: The exchange to be reset
1878 *
1879 * Note: May sleep if invoked from outside a response handler.
1880 */
1881static void fc_exch_reset(struct fc_exch *ep)
1882{
1883        struct fc_seq *sp;
1884        int rc = 1;
1885
1886        spin_lock_bh(&ep->ex_lock);
1887        ep->state |= FC_EX_RST_CLEANUP;
1888        fc_exch_timer_cancel(ep);
1889        if (ep->esb_stat & ESB_ST_REC_QUAL)
1890                atomic_dec(&ep->ex_refcnt);     /* drop hold for rec_qual */
1891        ep->esb_stat &= ~ESB_ST_REC_QUAL;
1892        sp = &ep->seq;
1893        rc = fc_exch_done_locked(ep);
1894        spin_unlock_bh(&ep->ex_lock);
1895
1896        fc_exch_hold(ep);
1897
1898        if (!rc)
1899                fc_exch_delete(ep);
1900
1901        fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1902        fc_seq_set_resp(sp, NULL, ep->arg);
1903        fc_exch_release(ep);
1904}
1905
1906/**
1907 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1908 * @lport: The local port that the exchange pool is on
1909 * @pool:  The exchange pool to be reset
1910 * @sid:   The source ID
1911 * @did:   The destination ID
1912 *
1913 * Resets a per cpu exches pool, releasing all of its sequences
1914 * and exchanges. If sid is non-zero then reset only exchanges
1915 * we sourced from the local port's FID. If did is non-zero then
1916 * only reset exchanges destined for the local port's FID.
1917 */
1918static void fc_exch_pool_reset(struct fc_lport *lport,
1919                               struct fc_exch_pool *pool,
1920                               u32 sid, u32 did)
1921{
1922        struct fc_exch *ep;
1923        struct fc_exch *next;
1924
1925        spin_lock_bh(&pool->lock);
1926restart:
1927        list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1928                if ((lport == ep->lp) &&
1929                    (sid == 0 || sid == ep->sid) &&
1930                    (did == 0 || did == ep->did)) {
1931                        fc_exch_hold(ep);
1932                        spin_unlock_bh(&pool->lock);
1933
1934                        fc_exch_reset(ep);
1935
1936                        fc_exch_release(ep);
1937                        spin_lock_bh(&pool->lock);
1938
1939                        /*
1940                         * must restart loop incase while lock
1941                         * was down multiple eps were released.
1942                         */
1943                        goto restart;
1944                }
1945        }
1946        pool->next_index = 0;
1947        pool->left = FC_XID_UNKNOWN;
1948        pool->right = FC_XID_UNKNOWN;
1949        spin_unlock_bh(&pool->lock);
1950}
1951
1952/**
1953 * fc_exch_mgr_reset() - Reset all EMs of a local port
1954 * @lport: The local port whose EMs are to be reset
1955 * @sid:   The source ID
1956 * @did:   The destination ID
1957 *
1958 * Reset all EMs associated with a given local port. Release all
1959 * sequences and exchanges. If sid is non-zero then reset only the
1960 * exchanges sent from the local port's FID. If did is non-zero then
1961 * reset only exchanges destined for the local port's FID.
1962 */
1963void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1964{
1965        struct fc_exch_mgr_anchor *ema;
1966        unsigned int cpu;
1967
1968        list_for_each_entry(ema, &lport->ema_list, ema_list) {
1969                for_each_possible_cpu(cpu)
1970                        fc_exch_pool_reset(lport,
1971                                           per_cpu_ptr(ema->mp->pool, cpu),
1972                                           sid, did);
1973        }
1974}
1975EXPORT_SYMBOL(fc_exch_mgr_reset);
1976
1977/**
1978 * fc_exch_lookup() - find an exchange
1979 * @lport: The local port
1980 * @xid: The exchange ID
1981 *
1982 * Returns exchange pointer with hold for caller, or NULL if not found.
1983 */
1984static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1985{
1986        struct fc_exch_mgr_anchor *ema;
1987
1988        list_for_each_entry(ema, &lport->ema_list, ema_list)
1989                if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1990                        return fc_exch_find(ema->mp, xid);
1991        return NULL;
1992}
1993
1994/**
1995 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1996 * @rfp: The REC frame, not freed here.
1997 *
1998 * Note that the requesting port may be different than the S_ID in the request.
1999 */
2000static void fc_exch_els_rec(struct fc_frame *rfp)
2001{
2002        struct fc_lport *lport;
2003        struct fc_frame *fp;
2004        struct fc_exch *ep;
2005        struct fc_els_rec *rp;
2006        struct fc_els_rec_acc *acc;
2007        enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2008        enum fc_els_rjt_explan explan;
2009        u32 sid;
2010        u16 xid, rxid, oxid;
2011
2012        lport = fr_dev(rfp);
2013        rp = fc_frame_payload_get(rfp, sizeof(*rp));
2014        explan = ELS_EXPL_INV_LEN;
2015        if (!rp)
2016                goto reject;
2017        sid = ntoh24(rp->rec_s_id);
2018        rxid = ntohs(rp->rec_rx_id);
2019        oxid = ntohs(rp->rec_ox_id);
2020
2021        explan = ELS_EXPL_OXID_RXID;
2022        if (sid == fc_host_port_id(lport->host))
2023                xid = oxid;
2024        else
2025                xid = rxid;
2026        if (xid == FC_XID_UNKNOWN) {
2027                FC_LPORT_DBG(lport,
2028                             "REC request from %x: invalid rxid %x oxid %x\n",
2029                             sid, rxid, oxid);
2030                goto reject;
2031        }
2032        ep = fc_exch_lookup(lport, xid);
2033        if (!ep) {
2034                FC_LPORT_DBG(lport,
2035                             "REC request from %x: rxid %x oxid %x not found\n",
2036                             sid, rxid, oxid);
2037                goto reject;
2038        }
2039        FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2040                    sid, rxid, oxid);
2041        if (ep->oid != sid || oxid != ep->oxid)
2042                goto rel;
2043        if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2044                goto rel;
2045        fp = fc_frame_alloc(lport, sizeof(*acc));
2046        if (!fp) {
2047                FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2048                goto out;
2049        }
2050
2051        acc = fc_frame_payload_get(fp, sizeof(*acc));
2052        memset(acc, 0, sizeof(*acc));
2053        acc->reca_cmd = ELS_LS_ACC;
2054        acc->reca_ox_id = rp->rec_ox_id;
2055        memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2056        acc->reca_rx_id = htons(ep->rxid);
2057        if (ep->sid == ep->oid)
2058                hton24(acc->reca_rfid, ep->did);
2059        else
2060                hton24(acc->reca_rfid, ep->sid);
2061        acc->reca_fc4value = htonl(ep->seq.rec_data);
2062        acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2063                                                 ESB_ST_SEQ_INIT |
2064                                                 ESB_ST_COMPLETE));
2065        fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2066        lport->tt.frame_send(lport, fp);
2067out:
2068        fc_exch_release(ep);
2069        return;
2070
2071rel:
2072        fc_exch_release(ep);
2073reject:
2074        fc_seq_ls_rjt(rfp, reason, explan);
2075}
2076
2077/**
2078 * fc_exch_rrq_resp() - Handler for RRQ responses
2079 * @sp:  The sequence that the RRQ is on
2080 * @fp:  The RRQ frame
2081 * @arg: The exchange that the RRQ is on
2082 *
2083 * TODO: fix error handler.
2084 */
2085static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2086{
2087        struct fc_exch *aborted_ep = arg;
2088        unsigned int op;
2089
2090        if (IS_ERR(fp)) {
2091                int err = PTR_ERR(fp);
2092
2093                if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2094                        goto cleanup;
2095                FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2096                            "frame error %d\n", err);
2097                return;
2098        }
2099
2100        op = fc_frame_payload_op(fp);
2101        fc_frame_free(fp);
2102
2103        switch (op) {
2104        case ELS_LS_RJT:
2105                FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2106                /* fall through */
2107        case ELS_LS_ACC:
2108                goto cleanup;
2109        default:
2110                FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2111                            op);
2112                return;
2113        }
2114
2115cleanup:
2116        fc_exch_done(&aborted_ep->seq);
2117        /* drop hold for rec qual */
2118        fc_exch_release(aborted_ep);
2119}
2120
2121
2122/**
2123 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2124 * @lport:      The local port to send the frame on
2125 * @fp:         The frame to be sent
2126 * @resp:       The response handler for this request
2127 * @destructor: The destructor for the exchange
2128 * @arg:        The argument to be passed to the response handler
2129 * @timer_msec: The timeout period for the exchange
2130 *
2131 * The exchange response handler is set in this routine to resp()
2132 * function pointer. It can be called in two scenarios: if a timeout
2133 * occurs or if a response frame is received for the exchange. The
2134 * fc_frame pointer in response handler will also indicate timeout
2135 * as error using IS_ERR related macros.
2136 *
2137 * The exchange destructor handler is also set in this routine.
2138 * The destructor handler is invoked by EM layer when exchange
2139 * is about to free, this can be used by caller to free its
2140 * resources along with exchange free.
2141 *
2142 * The arg is passed back to resp and destructor handler.
2143 *
2144 * The timeout value (in msec) for an exchange is set if non zero
2145 * timer_msec argument is specified. The timer is canceled when
2146 * it fires or when the exchange is done. The exchange timeout handler
2147 * is registered by EM layer.
2148 *
2149 * The frame pointer with some of the header's fields must be
2150 * filled before calling this routine, those fields are:
2151 *
2152 * - routing control
2153 * - FC port did
2154 * - FC port sid
2155 * - FC header type
2156 * - frame control
2157 * - parameter or relative offset
2158 */
2159struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2160                                struct fc_frame *fp,
2161                                void (*resp)(struct fc_seq *,
2162                                             struct fc_frame *fp,
2163                                             void *arg),
2164                                void (*destructor)(struct fc_seq *, void *),
2165                                void *arg, u32 timer_msec)
2166{
2167        struct fc_exch *ep;
2168        struct fc_seq *sp = NULL;
2169        struct fc_frame_header *fh;
2170        struct fc_fcp_pkt *fsp = NULL;
2171        int rc = 1;
2172
2173        ep = fc_exch_alloc(lport, fp);
2174        if (!ep) {
2175                fc_frame_free(fp);
2176                return NULL;
2177        }
2178        ep->esb_stat |= ESB_ST_SEQ_INIT;
2179        fh = fc_frame_header_get(fp);
2180        fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2181        ep->resp = resp;
2182        ep->destructor = destructor;
2183        ep->arg = arg;
2184        ep->r_a_tov = lport->r_a_tov;
2185        ep->lp = lport;
2186        sp = &ep->seq;
2187
2188        ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2189        ep->f_ctl = ntoh24(fh->fh_f_ctl);
2190        fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2191        sp->cnt++;
2192
2193        if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2194                fsp = fr_fsp(fp);
2195                fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2196        }
2197
2198        if (unlikely(lport->tt.frame_send(lport, fp)))
2199                goto err;
2200
2201        if (timer_msec)
2202                fc_exch_timer_set_locked(ep, timer_msec);
2203        ep->f_ctl &= ~FC_FC_FIRST_SEQ;  /* not first seq */
2204
2205        if (ep->f_ctl & FC_FC_SEQ_INIT)
2206                ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2207        spin_unlock_bh(&ep->ex_lock);
2208        return sp;
2209err:
2210        if (fsp)
2211                fc_fcp_ddp_done(fsp);
2212        rc = fc_exch_done_locked(ep);
2213        spin_unlock_bh(&ep->ex_lock);
2214        if (!rc)
2215                fc_exch_delete(ep);
2216        return NULL;
2217}
2218EXPORT_SYMBOL(fc_exch_seq_send);
2219
2220/**
2221 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2222 * @ep: The exchange to send the RRQ on
2223 *
2224 * This tells the remote port to stop blocking the use of
2225 * the exchange and the seq_cnt range.
2226 */
2227static void fc_exch_rrq(struct fc_exch *ep)
2228{
2229        struct fc_lport *lport;
2230        struct fc_els_rrq *rrq;
2231        struct fc_frame *fp;
2232        u32 did;
2233
2234        lport = ep->lp;
2235
2236        fp = fc_frame_alloc(lport, sizeof(*rrq));
2237        if (!fp)
2238                goto retry;
2239
2240        rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2241        memset(rrq, 0, sizeof(*rrq));
2242        rrq->rrq_cmd = ELS_RRQ;
2243        hton24(rrq->rrq_s_id, ep->sid);
2244        rrq->rrq_ox_id = htons(ep->oxid);
2245        rrq->rrq_rx_id = htons(ep->rxid);
2246
2247        did = ep->did;
2248        if (ep->esb_stat & ESB_ST_RESP)
2249                did = ep->sid;
2250
2251        fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2252                       lport->port_id, FC_TYPE_ELS,
2253                       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2254
2255        if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2256                             lport->e_d_tov))
2257                return;
2258
2259retry:
2260        FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2261        spin_lock_bh(&ep->ex_lock);
2262        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2263                spin_unlock_bh(&ep->ex_lock);
2264                /* drop hold for rec qual */
2265                fc_exch_release(ep);
2266                return;
2267        }
2268        ep->esb_stat |= ESB_ST_REC_QUAL;
2269        fc_exch_timer_set_locked(ep, ep->r_a_tov);
2270        spin_unlock_bh(&ep->ex_lock);
2271}
2272
2273/**
2274 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2275 * @fp: The RRQ frame, not freed here.
2276 */
2277static void fc_exch_els_rrq(struct fc_frame *fp)
2278{
2279        struct fc_lport *lport;
2280        struct fc_exch *ep = NULL;      /* request or subject exchange */
2281        struct fc_els_rrq *rp;
2282        u32 sid;
2283        u16 xid;
2284        enum fc_els_rjt_explan explan;
2285
2286        lport = fr_dev(fp);
2287        rp = fc_frame_payload_get(fp, sizeof(*rp));
2288        explan = ELS_EXPL_INV_LEN;
2289        if (!rp)
2290                goto reject;
2291
2292        /*
2293         * lookup subject exchange.
2294         */
2295        sid = ntoh24(rp->rrq_s_id);             /* subject source */
2296        xid = fc_host_port_id(lport->host) == sid ?
2297                        ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2298        ep = fc_exch_lookup(lport, xid);
2299        explan = ELS_EXPL_OXID_RXID;
2300        if (!ep)
2301                goto reject;
2302        spin_lock_bh(&ep->ex_lock);
2303        FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2304                    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2305        if (ep->oxid != ntohs(rp->rrq_ox_id))
2306                goto unlock_reject;
2307        if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2308            ep->rxid != FC_XID_UNKNOWN)
2309                goto unlock_reject;
2310        explan = ELS_EXPL_SID;
2311        if (ep->sid != sid)
2312                goto unlock_reject;
2313
2314        /*
2315         * Clear Recovery Qualifier state, and cancel timer if complete.
2316         */
2317        if (ep->esb_stat & ESB_ST_REC_QUAL) {
2318                ep->esb_stat &= ~ESB_ST_REC_QUAL;
2319                atomic_dec(&ep->ex_refcnt);     /* drop hold for rec qual */
2320        }
2321        if (ep->esb_stat & ESB_ST_COMPLETE)
2322                fc_exch_timer_cancel(ep);
2323
2324        spin_unlock_bh(&ep->ex_lock);
2325
2326        /*
2327         * Send LS_ACC.
2328         */
2329        fc_seq_ls_acc(fp);
2330        goto out;
2331
2332unlock_reject:
2333        spin_unlock_bh(&ep->ex_lock);
2334reject:
2335        fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2336out:
2337        if (ep)
2338                fc_exch_release(ep);    /* drop hold from fc_exch_find */
2339}
2340
2341/**
2342 * fc_exch_update_stats() - update exches stats to lport
2343 * @lport: The local port to update exchange manager stats
2344 */
2345void fc_exch_update_stats(struct fc_lport *lport)
2346{
2347        struct fc_host_statistics *st;
2348        struct fc_exch_mgr_anchor *ema;
2349        struct fc_exch_mgr *mp;
2350
2351        st = &lport->host_stats;
2352
2353        list_for_each_entry(ema, &lport->ema_list, ema_list) {
2354                mp = ema->mp;
2355                st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2356                st->fc_no_free_exch_xid +=
2357                                atomic_read(&mp->stats.no_free_exch_xid);
2358                st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2359                st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2360                st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2361                st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2362        }
2363}
2364EXPORT_SYMBOL(fc_exch_update_stats);
2365
2366/**
2367 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2368 * @lport: The local port to add the exchange manager to
2369 * @mp:    The exchange manager to be added to the local port
2370 * @match: The match routine that indicates when this EM should be used
2371 */
2372struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2373                                           struct fc_exch_mgr *mp,
2374                                           bool (*match)(struct fc_frame *))
2375{
2376        struct fc_exch_mgr_anchor *ema;
2377
2378        ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2379        if (!ema)
2380                return ema;
2381
2382        ema->mp = mp;
2383        ema->match = match;
2384        /* add EM anchor to EM anchors list */
2385        list_add_tail(&ema->ema_list, &lport->ema_list);
2386        kref_get(&mp->kref);
2387        return ema;
2388}
2389EXPORT_SYMBOL(fc_exch_mgr_add);
2390
2391/**
2392 * fc_exch_mgr_destroy() - Destroy an exchange manager
2393 * @kref: The reference to the EM to be destroyed
2394 */
2395static void fc_exch_mgr_destroy(struct kref *kref)
2396{
2397        struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2398
2399        mempool_destroy(mp->ep_pool);
2400        free_percpu(mp->pool);
2401        kfree(mp);
2402}
2403
2404/**
2405 * fc_exch_mgr_del() - Delete an EM from a local port's list
2406 * @ema: The exchange manager anchor identifying the EM to be deleted
2407 */
2408void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2409{
2410        /* remove EM anchor from EM anchors list */
2411        list_del(&ema->ema_list);
2412        kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2413        kfree(ema);
2414}
2415EXPORT_SYMBOL(fc_exch_mgr_del);
2416
2417/**
2418 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2419 * @src: Source lport to clone exchange managers from
2420 * @dst: New lport that takes references to all the exchange managers
2421 */
2422int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2423{
2424        struct fc_exch_mgr_anchor *ema, *tmp;
2425
2426        list_for_each_entry(ema, &src->ema_list, ema_list) {
2427                if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2428                        goto err;
2429        }
2430        return 0;
2431err:
2432        list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2433                fc_exch_mgr_del(ema);
2434        return -ENOMEM;
2435}
2436EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2437
2438/**
2439 * fc_exch_mgr_alloc() - Allocate an exchange manager
2440 * @lport:   The local port that the new EM will be associated with
2441 * @class:   The default FC class for new exchanges
2442 * @min_xid: The minimum XID for exchanges from the new EM
2443 * @max_xid: The maximum XID for exchanges from the new EM
2444 * @match:   The match routine for the new EM
2445 */
2446struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2447                                      enum fc_class class,
2448                                      u16 min_xid, u16 max_xid,
2449                                      bool (*match)(struct fc_frame *))
2450{
2451        struct fc_exch_mgr *mp;
2452        u16 pool_exch_range;
2453        size_t pool_size;
2454        unsigned int cpu;
2455        struct fc_exch_pool *pool;
2456
2457        if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2458            (min_xid & fc_cpu_mask) != 0) {
2459                FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2460                             min_xid, max_xid);
2461                return NULL;
2462        }
2463
2464        /*
2465         * allocate memory for EM
2466         */
2467        mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2468        if (!mp)
2469                return NULL;
2470
2471        mp->class = class;
2472        mp->lport = lport;
2473        /* adjust em exch xid range for offload */
2474        mp->min_xid = min_xid;
2475
2476       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2477        pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2478                sizeof(struct fc_exch *);
2479        if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2480                mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2481                        min_xid - 1;
2482        } else {
2483                mp->max_xid = max_xid;
2484                pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2485                        (fc_cpu_mask + 1);
2486        }
2487
2488        mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2489        if (!mp->ep_pool)
2490                goto free_mp;
2491
2492        /*
2493         * Setup per cpu exch pool with entire exchange id range equally
2494         * divided across all cpus. The exch pointers array memory is
2495         * allocated for exch range per pool.
2496         */
2497        mp->pool_max_index = pool_exch_range - 1;
2498
2499        /*
2500         * Allocate and initialize per cpu exch pool
2501         */
2502        pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2503        mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2504        if (!mp->pool)
2505                goto free_mempool;
2506        for_each_possible_cpu(cpu) {
2507                pool = per_cpu_ptr(mp->pool, cpu);
2508                pool->next_index = 0;
2509                pool->left = FC_XID_UNKNOWN;
2510                pool->right = FC_XID_UNKNOWN;
2511                spin_lock_init(&pool->lock);
2512                INIT_LIST_HEAD(&pool->ex_list);
2513        }
2514
2515        kref_init(&mp->kref);
2516        if (!fc_exch_mgr_add(lport, mp, match)) {
2517                free_percpu(mp->pool);
2518                goto free_mempool;
2519        }
2520
2521        /*
2522         * Above kref_init() sets mp->kref to 1 and then
2523         * call to fc_exch_mgr_add incremented mp->kref again,
2524         * so adjust that extra increment.
2525         */
2526        kref_put(&mp->kref, fc_exch_mgr_destroy);
2527        return mp;
2528
2529free_mempool:
2530        mempool_destroy(mp->ep_pool);
2531free_mp:
2532        kfree(mp);
2533        return NULL;
2534}
2535EXPORT_SYMBOL(fc_exch_mgr_alloc);
2536
2537/**
2538 * fc_exch_mgr_free() - Free all exchange managers on a local port
2539 * @lport: The local port whose EMs are to be freed
2540 */
2541void fc_exch_mgr_free(struct fc_lport *lport)
2542{
2543        struct fc_exch_mgr_anchor *ema, *next;
2544
2545        flush_workqueue(fc_exch_workqueue);
2546        list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2547                fc_exch_mgr_del(ema);
2548}
2549EXPORT_SYMBOL(fc_exch_mgr_free);
2550
2551/**
2552 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2553 * upon 'xid'.
2554 * @f_ctl: f_ctl
2555 * @lport: The local port the frame was received on
2556 * @fh: The received frame header
2557 */
2558static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2559                                              struct fc_lport *lport,
2560                                              struct fc_frame_header *fh)
2561{
2562        struct fc_exch_mgr_anchor *ema;
2563        u16 xid;
2564
2565        if (f_ctl & FC_FC_EX_CTX)
2566                xid = ntohs(fh->fh_ox_id);
2567        else {
2568                xid = ntohs(fh->fh_rx_id);
2569                if (xid == FC_XID_UNKNOWN)
2570                        return list_entry(lport->ema_list.prev,
2571                                          typeof(*ema), ema_list);
2572        }
2573
2574        list_for_each_entry(ema, &lport->ema_list, ema_list) {
2575                if ((xid >= ema->mp->min_xid) &&
2576                    (xid <= ema->mp->max_xid))
2577                        return ema;
2578        }
2579        return NULL;
2580}
2581/**
2582 * fc_exch_recv() - Handler for received frames
2583 * @lport: The local port the frame was received on
2584 * @fp: The received frame
2585 */
2586void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2587{
2588        struct fc_frame_header *fh = fc_frame_header_get(fp);
2589        struct fc_exch_mgr_anchor *ema;
2590        u32 f_ctl;
2591
2592        /* lport lock ? */
2593        if (!lport || lport->state == LPORT_ST_DISABLED) {
2594                FC_LIBFC_DBG("Receiving frames for an lport that "
2595                             "has not been initialized correctly\n");
2596                fc_frame_free(fp);
2597                return;
2598        }
2599
2600        f_ctl = ntoh24(fh->fh_f_ctl);
2601        ema = fc_find_ema(f_ctl, lport, fh);
2602        if (!ema) {
2603                FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2604                                    "fc_ctl <0x%x>, xid <0x%x>\n",
2605                                     f_ctl,
2606                                     (f_ctl & FC_FC_EX_CTX) ?
2607                                     ntohs(fh->fh_ox_id) :
2608                                     ntohs(fh->fh_rx_id));
2609                fc_frame_free(fp);
2610                return;
2611        }
2612
2613        /*
2614         * If frame is marked invalid, just drop it.
2615         */
2616        switch (fr_eof(fp)) {
2617        case FC_EOF_T:
2618                if (f_ctl & FC_FC_END_SEQ)
2619                        skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2620                /* fall through */
2621        case FC_EOF_N:
2622                if (fh->fh_type == FC_TYPE_BLS)
2623                        fc_exch_recv_bls(ema->mp, fp);
2624                else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2625                         FC_FC_EX_CTX)
2626                        fc_exch_recv_seq_resp(ema->mp, fp);
2627                else if (f_ctl & FC_FC_SEQ_CTX)
2628                        fc_exch_recv_resp(ema->mp, fp);
2629                else    /* no EX_CTX and no SEQ_CTX */
2630                        fc_exch_recv_req(lport, ema->mp, fp);
2631                break;
2632        default:
2633                FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2634                             fr_eof(fp));
2635                fc_frame_free(fp);
2636        }
2637}
2638EXPORT_SYMBOL(fc_exch_recv);
2639
2640/**
2641 * fc_exch_init() - Initialize the exchange layer for a local port
2642 * @lport: The local port to initialize the exchange layer for
2643 */
2644int fc_exch_init(struct fc_lport *lport)
2645{
2646        if (!lport->tt.exch_mgr_reset)
2647                lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2648
2649        return 0;
2650}
2651EXPORT_SYMBOL(fc_exch_init);
2652
2653/**
2654 * fc_setup_exch_mgr() - Setup an exchange manager
2655 */
2656int fc_setup_exch_mgr(void)
2657{
2658        fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2659                                         0, SLAB_HWCACHE_ALIGN, NULL);
2660        if (!fc_em_cachep)
2661                return -ENOMEM;
2662
2663        /*
2664         * Initialize fc_cpu_mask and fc_cpu_order. The
2665         * fc_cpu_mask is set for nr_cpu_ids rounded up
2666         * to order of 2's * power and order is stored
2667         * in fc_cpu_order as this is later required in
2668         * mapping between an exch id and exch array index
2669         * in per cpu exch pool.
2670         *
2671         * This round up is required to align fc_cpu_mask
2672         * to exchange id's lower bits such that all incoming
2673         * frames of an exchange gets delivered to the same
2674         * cpu on which exchange originated by simple bitwise
2675         * AND operation between fc_cpu_mask and exchange id.
2676         */
2677        fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2678        fc_cpu_mask = (1 << fc_cpu_order) - 1;
2679
2680        fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2681        if (!fc_exch_workqueue)
2682                goto err;
2683        return 0;
2684err:
2685        kmem_cache_destroy(fc_em_cachep);
2686        return -ENOMEM;
2687}
2688
2689/**
2690 * fc_destroy_exch_mgr() - Destroy an exchange manager
2691 */
2692void fc_destroy_exch_mgr(void)
2693{
2694        destroy_workqueue(fc_exch_workqueue);
2695        kmem_cache_destroy(fc_em_cachep);
2696}
2697