1
2
3
4#include <linux/bitfield.h>
5#include <linux/bits.h>
6#include <linux/fsi.h>
7#include <linux/jiffies.h>
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/of.h>
11#include <linux/spi/spi.h>
12
13#define FSI_ENGID_SPI 0x23
14#define FSI_MBOX_ROOT_CTRL_8 0x2860
15
16#define FSI2SPI_DATA0 0x00
17#define FSI2SPI_DATA1 0x04
18#define FSI2SPI_CMD 0x08
19#define FSI2SPI_CMD_WRITE BIT(31)
20#define FSI2SPI_RESET 0x18
21#define FSI2SPI_STATUS 0x1c
22#define FSI2SPI_STATUS_ANY_ERROR BIT(31)
23#define FSI2SPI_IRQ 0x20
24
25#define SPI_FSI_BASE 0x70000
26#define SPI_FSI_INIT_TIMEOUT_MS 1000
27#define SPI_FSI_MAX_TRANSFER_SIZE 2048
28
29#define SPI_FSI_ERROR 0x0
30#define SPI_FSI_COUNTER_CFG 0x1
31#define SPI_FSI_COUNTER_CFG_LOOPS(x) (((u64)(x) & 0xffULL) << 32)
32#define SPI_FSI_CFG1 0x2
33#define SPI_FSI_CLOCK_CFG 0x3
34#define SPI_FSI_CLOCK_CFG_MM_ENABLE BIT_ULL(32)
35#define SPI_FSI_CLOCK_CFG_ECC_DISABLE (BIT_ULL(35) | BIT_ULL(33))
36#define SPI_FSI_CLOCK_CFG_RESET1 (BIT_ULL(36) | BIT_ULL(38))
37#define SPI_FSI_CLOCK_CFG_RESET2 (BIT_ULL(37) | BIT_ULL(39))
38#define SPI_FSI_CLOCK_CFG_MODE (BIT_ULL(41) | BIT_ULL(42))
39#define SPI_FSI_CLOCK_CFG_SCK_RECV_DEL GENMASK_ULL(51, 44)
40#define SPI_FSI_CLOCK_CFG_SCK_NO_DEL BIT_ULL(51)
41#define SPI_FSI_CLOCK_CFG_SCK_DIV GENMASK_ULL(63, 52)
42#define SPI_FSI_MMAP 0x4
43#define SPI_FSI_DATA_TX 0x5
44#define SPI_FSI_DATA_RX 0x6
45#define SPI_FSI_SEQUENCE 0x7
46#define SPI_FSI_SEQUENCE_STOP 0x00
47#define SPI_FSI_SEQUENCE_SEL_SLAVE(x) (0x10 | ((x) & 0xf))
48#define SPI_FSI_SEQUENCE_SHIFT_OUT(x) (0x30 | ((x) & 0xf))
49#define SPI_FSI_SEQUENCE_SHIFT_IN(x) (0x40 | ((x) & 0xf))
50#define SPI_FSI_SEQUENCE_COPY_DATA_TX 0xc0
51#define SPI_FSI_SEQUENCE_BRANCH(x) (0xe0 | ((x) & 0xf))
52#define SPI_FSI_STATUS 0x8
53#define SPI_FSI_STATUS_ERROR \
54 (GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12))
55#define SPI_FSI_STATUS_SEQ_STATE GENMASK_ULL(55, 48)
56#define SPI_FSI_STATUS_SEQ_STATE_IDLE BIT_ULL(48)
57#define SPI_FSI_STATUS_TDR_UNDERRUN BIT_ULL(57)
58#define SPI_FSI_STATUS_TDR_OVERRUN BIT_ULL(58)
59#define SPI_FSI_STATUS_TDR_FULL BIT_ULL(59)
60#define SPI_FSI_STATUS_RDR_UNDERRUN BIT_ULL(61)
61#define SPI_FSI_STATUS_RDR_OVERRUN BIT_ULL(62)
62#define SPI_FSI_STATUS_RDR_FULL BIT_ULL(63)
63#define SPI_FSI_STATUS_ANY_ERROR \
64 (SPI_FSI_STATUS_ERROR | SPI_FSI_STATUS_TDR_UNDERRUN | \
65 SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \
66 SPI_FSI_STATUS_RDR_OVERRUN)
67#define SPI_FSI_PORT_CTRL 0x9
68
69struct fsi_spi {
70 struct device *dev;
71 struct fsi_device *fsi;
72 u32 base;
73};
74
75struct fsi_spi_sequence {
76 int bit;
77 u64 data;
78};
79
80static int fsi_spi_check_status(struct fsi_spi *ctx)
81{
82 int rc;
83 u32 sts;
84 __be32 sts_be;
85
86 rc = fsi_device_read(ctx->fsi, FSI2SPI_STATUS, &sts_be,
87 sizeof(sts_be));
88 if (rc)
89 return rc;
90
91 sts = be32_to_cpu(sts_be);
92 if (sts & FSI2SPI_STATUS_ANY_ERROR) {
93 dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts);
94 return -EIO;
95 }
96
97 return 0;
98}
99
100static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value)
101{
102 int rc;
103 __be32 cmd_be;
104 __be32 data_be;
105 u32 cmd = offset + ctx->base;
106
107 *value = 0ULL;
108
109 if (cmd & FSI2SPI_CMD_WRITE)
110 return -EINVAL;
111
112 cmd_be = cpu_to_be32(cmd);
113 rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
114 if (rc)
115 return rc;
116
117 rc = fsi_spi_check_status(ctx);
118 if (rc)
119 return rc;
120
121 rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA0, &data_be,
122 sizeof(data_be));
123 if (rc)
124 return rc;
125
126 *value |= (u64)be32_to_cpu(data_be) << 32;
127
128 rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA1, &data_be,
129 sizeof(data_be));
130 if (rc)
131 return rc;
132
133 *value |= (u64)be32_to_cpu(data_be);
134 dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value);
135
136 return 0;
137}
138
139static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value)
140{
141 int rc;
142 __be32 cmd_be;
143 __be32 data_be;
144 u32 cmd = offset + ctx->base;
145
146 if (cmd & FSI2SPI_CMD_WRITE)
147 return -EINVAL;
148
149 dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value);
150
151 data_be = cpu_to_be32(upper_32_bits(value));
152 rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA0, &data_be,
153 sizeof(data_be));
154 if (rc)
155 return rc;
156
157 data_be = cpu_to_be32(lower_32_bits(value));
158 rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA1, &data_be,
159 sizeof(data_be));
160 if (rc)
161 return rc;
162
163 cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE);
164 rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
165 if (rc)
166 return rc;
167
168 return fsi_spi_check_status(ctx);
169}
170
171static int fsi_spi_data_in(u64 in, u8 *rx, int len)
172{
173 int i;
174 int num_bytes = min(len, 8);
175
176 for (i = 0; i < num_bytes; ++i)
177 rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i)));
178
179 return num_bytes;
180}
181
182static int fsi_spi_data_out(u64 *out, const u8 *tx, int len)
183{
184 int i;
185 int num_bytes = min(len, 8);
186 u8 *out_bytes = (u8 *)out;
187
188
189 *out = 0ULL;
190
191 for (i = 0; i < num_bytes; ++i)
192 out_bytes[8 - (i + 1)] = tx[i];
193
194 return num_bytes;
195}
196
197static int fsi_spi_reset(struct fsi_spi *ctx)
198{
199 int rc;
200
201 dev_dbg(ctx->dev, "Resetting SPI controller.\n");
202
203 rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
204 SPI_FSI_CLOCK_CFG_RESET1);
205 if (rc)
206 return rc;
207
208 return fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
209 SPI_FSI_CLOCK_CFG_RESET2);
210}
211
212static int fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val)
213{
214
215
216
217
218
219
220 seq->data |= (u64)val << seq->bit;
221 seq->bit -= 8;
222
223 return ((64 - seq->bit) / 8) - 2;
224}
225
226static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq)
227{
228 seq->bit = 56;
229 seq->data = 0ULL;
230}
231
232static int fsi_spi_sequence_transfer(struct fsi_spi *ctx,
233 struct fsi_spi_sequence *seq,
234 struct spi_transfer *transfer)
235{
236 int loops;
237 int idx;
238 int rc;
239 u8 len = min(transfer->len, 8U);
240 u8 rem = transfer->len % len;
241
242 loops = transfer->len / len;
243
244 if (transfer->tx_buf) {
245 idx = fsi_spi_sequence_add(seq,
246 SPI_FSI_SEQUENCE_SHIFT_OUT(len));
247 if (rem)
248 rem = SPI_FSI_SEQUENCE_SHIFT_OUT(rem);
249 } else if (transfer->rx_buf) {
250 idx = fsi_spi_sequence_add(seq,
251 SPI_FSI_SEQUENCE_SHIFT_IN(len));
252 if (rem)
253 rem = SPI_FSI_SEQUENCE_SHIFT_IN(rem);
254 } else {
255 return -EINVAL;
256 }
257
258 if (loops > 1) {
259 fsi_spi_sequence_add(seq, SPI_FSI_SEQUENCE_BRANCH(idx));
260
261 if (rem)
262 fsi_spi_sequence_add(seq, rem);
263
264 rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG,
265 SPI_FSI_COUNTER_CFG_LOOPS(loops - 1));
266 if (rc)
267 return rc;
268 }
269
270 return 0;
271}
272
273static int fsi_spi_transfer_data(struct fsi_spi *ctx,
274 struct spi_transfer *transfer)
275{
276 int rc = 0;
277 u64 status = 0ULL;
278
279 if (transfer->tx_buf) {
280 int nb;
281 int sent = 0;
282 u64 out = 0ULL;
283 const u8 *tx = transfer->tx_buf;
284
285 while (transfer->len > sent) {
286 nb = fsi_spi_data_out(&out, &tx[sent],
287 (int)transfer->len - sent);
288
289 rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out);
290 if (rc)
291 return rc;
292
293 do {
294 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
295 &status);
296 if (rc)
297 return rc;
298
299 if (status & SPI_FSI_STATUS_ANY_ERROR) {
300 rc = fsi_spi_reset(ctx);
301 if (rc)
302 return rc;
303
304 return -EREMOTEIO;
305 }
306 } while (status & SPI_FSI_STATUS_TDR_FULL);
307
308 sent += nb;
309 }
310 } else if (transfer->rx_buf) {
311 int recv = 0;
312 u64 in = 0ULL;
313 u8 *rx = transfer->rx_buf;
314
315 while (transfer->len > recv) {
316 do {
317 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
318 &status);
319 if (rc)
320 return rc;
321
322 if (status & SPI_FSI_STATUS_ANY_ERROR) {
323 rc = fsi_spi_reset(ctx);
324 if (rc)
325 return rc;
326
327 return -EREMOTEIO;
328 }
329 } while (!(status & SPI_FSI_STATUS_RDR_FULL));
330
331 rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in);
332 if (rc)
333 return rc;
334
335 recv += fsi_spi_data_in(in, &rx[recv],
336 (int)transfer->len - recv);
337 }
338 }
339
340 return 0;
341}
342
343static int fsi_spi_transfer_init(struct fsi_spi *ctx)
344{
345 int rc;
346 bool reset = false;
347 unsigned long end;
348 u64 seq_state;
349 u64 clock_cfg = 0ULL;
350 u64 status = 0ULL;
351 u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE |
352 SPI_FSI_CLOCK_CFG_SCK_NO_DEL |
353 FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 4);
354
355 end = jiffies + msecs_to_jiffies(SPI_FSI_INIT_TIMEOUT_MS);
356 do {
357 if (time_after(jiffies, end))
358 return -ETIMEDOUT;
359
360 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status);
361 if (rc)
362 return rc;
363
364 seq_state = status & SPI_FSI_STATUS_SEQ_STATE;
365
366 if (status & (SPI_FSI_STATUS_ANY_ERROR |
367 SPI_FSI_STATUS_TDR_FULL |
368 SPI_FSI_STATUS_RDR_FULL)) {
369 if (reset)
370 return -EIO;
371
372 rc = fsi_spi_reset(ctx);
373 if (rc)
374 return rc;
375
376 reset = true;
377 continue;
378 }
379 } while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE));
380
381 rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg);
382 if (rc)
383 return rc;
384
385 if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE |
386 SPI_FSI_CLOCK_CFG_ECC_DISABLE |
387 SPI_FSI_CLOCK_CFG_MODE |
388 SPI_FSI_CLOCK_CFG_SCK_RECV_DEL |
389 SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg)
390 rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
391 wanted_clock_cfg);
392
393 return rc;
394}
395
396static int fsi_spi_transfer_one_message(struct spi_controller *ctlr,
397 struct spi_message *mesg)
398{
399 int rc = 0;
400 u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(mesg->spi->chip_select + 1);
401 struct spi_transfer *transfer;
402 struct fsi_spi *ctx = spi_controller_get_devdata(ctlr);
403
404 list_for_each_entry(transfer, &mesg->transfers, transfer_list) {
405 struct fsi_spi_sequence seq;
406 struct spi_transfer *next = NULL;
407
408
409 if (!transfer->tx_buf ||
410 transfer->len > SPI_FSI_MAX_TRANSFER_SIZE) {
411 rc = -EINVAL;
412 goto error;
413 }
414
415 dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len);
416
417 rc = fsi_spi_transfer_init(ctx);
418 if (rc < 0)
419 goto error;
420
421 fsi_spi_sequence_init(&seq);
422 fsi_spi_sequence_add(&seq, seq_slave);
423
424 rc = fsi_spi_sequence_transfer(ctx, &seq, transfer);
425 if (rc)
426 goto error;
427
428 if (!list_is_last(&transfer->transfer_list,
429 &mesg->transfers)) {
430 next = list_next_entry(transfer, transfer_list);
431
432
433 if (next->rx_buf) {
434 if (next->len > SPI_FSI_MAX_TRANSFER_SIZE) {
435 rc = -EINVAL;
436 goto error;
437 }
438
439 dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n",
440 next->len);
441
442 rc = fsi_spi_sequence_transfer(ctx, &seq,
443 next);
444 if (rc)
445 goto error;
446 } else {
447 next = NULL;
448 }
449 }
450
451 fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0));
452
453 rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data);
454 if (rc)
455 goto error;
456
457 rc = fsi_spi_transfer_data(ctx, transfer);
458 if (rc)
459 goto error;
460
461 if (next) {
462 rc = fsi_spi_transfer_data(ctx, next);
463 if (rc)
464 goto error;
465
466 transfer = next;
467 }
468 }
469
470error:
471 mesg->status = rc;
472 spi_finalize_current_message(ctlr);
473
474 return rc;
475}
476
477static size_t fsi_spi_max_transfer_size(struct spi_device *spi)
478{
479 return SPI_FSI_MAX_TRANSFER_SIZE;
480}
481
482static int fsi_spi_probe(struct device *dev)
483{
484 int rc;
485 u32 root_ctrl_8;
486 struct device_node *np;
487 int num_controllers_registered = 0;
488 struct fsi_device *fsi = to_fsi_dev(dev);
489
490
491
492
493
494 rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8,
495 sizeof(root_ctrl_8));
496 if (rc)
497 return rc;
498
499 if (!root_ctrl_8) {
500 dev_dbg(dev, "SPI mux not set, aborting probe.\n");
501 return -ENODEV;
502 }
503
504 for_each_available_child_of_node(dev->of_node, np) {
505 u32 base;
506 struct fsi_spi *ctx;
507 struct spi_controller *ctlr;
508
509 if (of_property_read_u32(np, "reg", &base))
510 continue;
511
512 ctlr = spi_alloc_master(dev, sizeof(*ctx));
513 if (!ctlr)
514 break;
515
516 ctlr->dev.of_node = np;
517 ctlr->num_chipselect = of_get_available_child_count(np) ?: 1;
518 ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
519 ctlr->max_transfer_size = fsi_spi_max_transfer_size;
520 ctlr->transfer_one_message = fsi_spi_transfer_one_message;
521
522 ctx = spi_controller_get_devdata(ctlr);
523 ctx->dev = &ctlr->dev;
524 ctx->fsi = fsi;
525 ctx->base = base + SPI_FSI_BASE;
526
527 rc = devm_spi_register_controller(dev, ctlr);
528 if (rc)
529 spi_controller_put(ctlr);
530 else
531 num_controllers_registered++;
532 }
533
534 if (!num_controllers_registered)
535 return -ENODEV;
536
537 return 0;
538}
539
540static const struct fsi_device_id fsi_spi_ids[] = {
541 { FSI_ENGID_SPI, FSI_VERSION_ANY },
542 { }
543};
544MODULE_DEVICE_TABLE(fsi, fsi_spi_ids);
545
546static struct fsi_driver fsi_spi_driver = {
547 .id_table = fsi_spi_ids,
548 .drv = {
549 .name = "spi-fsi",
550 .bus = &fsi_bus_type,
551 .probe = fsi_spi_probe,
552 },
553};
554module_fsi_driver(fsi_spi_driver);
555
556MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
557MODULE_DESCRIPTION("FSI attached SPI controller");
558MODULE_LICENSE("GPL");
559