linux/drivers/spi/spi-rspi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SH RSPI driver
   4 *
   5 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
   6 * Copyright (C) 2014 Glider bvba
   7 *
   8 * Based on spi-sh.c:
   9 * Copyright (C) 2011 Renesas Solutions Corp.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/sched.h>
  15#include <linux/errno.h>
  16#include <linux/interrupt.h>
  17#include <linux/platform_device.h>
  18#include <linux/io.h>
  19#include <linux/clk.h>
  20#include <linux/dmaengine.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/of_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_dma.h>
  25#include <linux/spi/spi.h>
  26#include <linux/spi/rspi.h>
  27#include <linux/spinlock.h>
  28
  29#define RSPI_SPCR               0x00    /* Control Register */
  30#define RSPI_SSLP               0x01    /* Slave Select Polarity Register */
  31#define RSPI_SPPCR              0x02    /* Pin Control Register */
  32#define RSPI_SPSR               0x03    /* Status Register */
  33#define RSPI_SPDR               0x04    /* Data Register */
  34#define RSPI_SPSCR              0x08    /* Sequence Control Register */
  35#define RSPI_SPSSR              0x09    /* Sequence Status Register */
  36#define RSPI_SPBR               0x0a    /* Bit Rate Register */
  37#define RSPI_SPDCR              0x0b    /* Data Control Register */
  38#define RSPI_SPCKD              0x0c    /* Clock Delay Register */
  39#define RSPI_SSLND              0x0d    /* Slave Select Negation Delay Register */
  40#define RSPI_SPND               0x0e    /* Next-Access Delay Register */
  41#define RSPI_SPCR2              0x0f    /* Control Register 2 (SH only) */
  42#define RSPI_SPCMD0             0x10    /* Command Register 0 */
  43#define RSPI_SPCMD1             0x12    /* Command Register 1 */
  44#define RSPI_SPCMD2             0x14    /* Command Register 2 */
  45#define RSPI_SPCMD3             0x16    /* Command Register 3 */
  46#define RSPI_SPCMD4             0x18    /* Command Register 4 */
  47#define RSPI_SPCMD5             0x1a    /* Command Register 5 */
  48#define RSPI_SPCMD6             0x1c    /* Command Register 6 */
  49#define RSPI_SPCMD7             0x1e    /* Command Register 7 */
  50#define RSPI_SPCMD(i)           (RSPI_SPCMD0 + (i) * 2)
  51#define RSPI_NUM_SPCMD          8
  52#define RSPI_RZ_NUM_SPCMD       4
  53#define QSPI_NUM_SPCMD          4
  54
  55/* RSPI on RZ only */
  56#define RSPI_SPBFCR             0x20    /* Buffer Control Register */
  57#define RSPI_SPBFDR             0x22    /* Buffer Data Count Setting Register */
  58
  59/* QSPI only */
  60#define QSPI_SPBFCR             0x18    /* Buffer Control Register */
  61#define QSPI_SPBDCR             0x1a    /* Buffer Data Count Register */
  62#define QSPI_SPBMUL0            0x1c    /* Transfer Data Length Multiplier Setting Register 0 */
  63#define QSPI_SPBMUL1            0x20    /* Transfer Data Length Multiplier Setting Register 1 */
  64#define QSPI_SPBMUL2            0x24    /* Transfer Data Length Multiplier Setting Register 2 */
  65#define QSPI_SPBMUL3            0x28    /* Transfer Data Length Multiplier Setting Register 3 */
  66#define QSPI_SPBMUL(i)          (QSPI_SPBMUL0 + (i) * 4)
  67
  68/* SPCR - Control Register */
  69#define SPCR_SPRIE              0x80    /* Receive Interrupt Enable */
  70#define SPCR_SPE                0x40    /* Function Enable */
  71#define SPCR_SPTIE              0x20    /* Transmit Interrupt Enable */
  72#define SPCR_SPEIE              0x10    /* Error Interrupt Enable */
  73#define SPCR_MSTR               0x08    /* Master/Slave Mode Select */
  74#define SPCR_MODFEN             0x04    /* Mode Fault Error Detection Enable */
  75/* RSPI on SH only */
  76#define SPCR_TXMD               0x02    /* TX Only Mode (vs. Full Duplex) */
  77#define SPCR_SPMS               0x01    /* 3-wire Mode (vs. 4-wire) */
  78/* QSPI on R-Car Gen2 only */
  79#define SPCR_WSWAP              0x02    /* Word Swap of read-data for DMAC */
  80#define SPCR_BSWAP              0x01    /* Byte Swap of read-data for DMAC */
  81
  82/* SSLP - Slave Select Polarity Register */
  83#define SSLP_SSLP(i)            BIT(i)  /* SSLi Signal Polarity Setting */
  84
  85/* SPPCR - Pin Control Register */
  86#define SPPCR_MOIFE             0x20    /* MOSI Idle Value Fixing Enable */
  87#define SPPCR_MOIFV             0x10    /* MOSI Idle Fixed Value */
  88#define SPPCR_SPOM              0x04
  89#define SPPCR_SPLP2             0x02    /* Loopback Mode 2 (non-inverting) */
  90#define SPPCR_SPLP              0x01    /* Loopback Mode (inverting) */
  91
  92#define SPPCR_IO3FV             0x04    /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  93#define SPPCR_IO2FV             0x04    /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  94
  95/* SPSR - Status Register */
  96#define SPSR_SPRF               0x80    /* Receive Buffer Full Flag */
  97#define SPSR_TEND               0x40    /* Transmit End */
  98#define SPSR_SPTEF              0x20    /* Transmit Buffer Empty Flag */
  99#define SPSR_PERF               0x08    /* Parity Error Flag */
 100#define SPSR_MODF               0x04    /* Mode Fault Error Flag */
 101#define SPSR_IDLNF              0x02    /* RSPI Idle Flag */
 102#define SPSR_OVRF               0x01    /* Overrun Error Flag (RSPI only) */
 103
 104/* SPSCR - Sequence Control Register */
 105#define SPSCR_SPSLN_MASK        0x07    /* Sequence Length Specification */
 106
 107/* SPSSR - Sequence Status Register */
 108#define SPSSR_SPECM_MASK        0x70    /* Command Error Mask */
 109#define SPSSR_SPCP_MASK         0x07    /* Command Pointer Mask */
 110
 111/* SPDCR - Data Control Register */
 112#define SPDCR_TXDMY             0x80    /* Dummy Data Transmission Enable */
 113#define SPDCR_SPLW1             0x40    /* Access Width Specification (RZ) */
 114#define SPDCR_SPLW0             0x20    /* Access Width Specification (RZ) */
 115#define SPDCR_SPLLWORD          (SPDCR_SPLW1 | SPDCR_SPLW0)
 116#define SPDCR_SPLWORD           SPDCR_SPLW1
 117#define SPDCR_SPLBYTE           SPDCR_SPLW0
 118#define SPDCR_SPLW              0x20    /* Access Width Specification (SH) */
 119#define SPDCR_SPRDTD            0x10    /* Receive Transmit Data Select (SH) */
 120#define SPDCR_SLSEL1            0x08
 121#define SPDCR_SLSEL0            0x04
 122#define SPDCR_SLSEL_MASK        0x0c    /* SSL1 Output Select (SH) */
 123#define SPDCR_SPFC1             0x02
 124#define SPDCR_SPFC0             0x01
 125#define SPDCR_SPFC_MASK         0x03    /* Frame Count Setting (1-4) (SH) */
 126
 127/* SPCKD - Clock Delay Register */
 128#define SPCKD_SCKDL_MASK        0x07    /* Clock Delay Setting (1-8) */
 129
 130/* SSLND - Slave Select Negation Delay Register */
 131#define SSLND_SLNDL_MASK        0x07    /* SSL Negation Delay Setting (1-8) */
 132
 133/* SPND - Next-Access Delay Register */
 134#define SPND_SPNDL_MASK         0x07    /* Next-Access Delay Setting (1-8) */
 135
 136/* SPCR2 - Control Register 2 */
 137#define SPCR2_PTE               0x08    /* Parity Self-Test Enable */
 138#define SPCR2_SPIE              0x04    /* Idle Interrupt Enable */
 139#define SPCR2_SPOE              0x02    /* Odd Parity Enable (vs. Even) */
 140#define SPCR2_SPPE              0x01    /* Parity Enable */
 141
 142/* SPCMDn - Command Registers */
 143#define SPCMD_SCKDEN            0x8000  /* Clock Delay Setting Enable */
 144#define SPCMD_SLNDEN            0x4000  /* SSL Negation Delay Setting Enable */
 145#define SPCMD_SPNDEN            0x2000  /* Next-Access Delay Enable */
 146#define SPCMD_LSBF              0x1000  /* LSB First */
 147#define SPCMD_SPB_MASK          0x0f00  /* Data Length Setting */
 148#define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
 149#define SPCMD_SPB_8BIT          0x0000  /* QSPI only */
 150#define SPCMD_SPB_16BIT         0x0100
 151#define SPCMD_SPB_20BIT         0x0000
 152#define SPCMD_SPB_24BIT         0x0100
 153#define SPCMD_SPB_32BIT         0x0200
 154#define SPCMD_SSLKP             0x0080  /* SSL Signal Level Keeping */
 155#define SPCMD_SPIMOD_MASK       0x0060  /* SPI Operating Mode (QSPI only) */
 156#define SPCMD_SPIMOD1           0x0040
 157#define SPCMD_SPIMOD0           0x0020
 158#define SPCMD_SPIMOD_SINGLE     0
 159#define SPCMD_SPIMOD_DUAL       SPCMD_SPIMOD0
 160#define SPCMD_SPIMOD_QUAD       SPCMD_SPIMOD1
 161#define SPCMD_SPRW              0x0010  /* SPI Read/Write Access (Dual/Quad) */
 162#define SPCMD_SSLA(i)           ((i) << 4)      /* SSL Assert Signal Setting */
 163#define SPCMD_BRDV_MASK         0x000c  /* Bit Rate Division Setting */
 164#define SPCMD_CPOL              0x0002  /* Clock Polarity Setting */
 165#define SPCMD_CPHA              0x0001  /* Clock Phase Setting */
 166
 167/* SPBFCR - Buffer Control Register */
 168#define SPBFCR_TXRST            0x80    /* Transmit Buffer Data Reset */
 169#define SPBFCR_RXRST            0x40    /* Receive Buffer Data Reset */
 170#define SPBFCR_TXTRG_MASK       0x30    /* Transmit Buffer Data Triggering Number */
 171#define SPBFCR_RXTRG_MASK       0x07    /* Receive Buffer Data Triggering Number */
 172/* QSPI on R-Car Gen2 */
 173#define SPBFCR_TXTRG_1B         0x00    /* 31 bytes (1 byte available) */
 174#define SPBFCR_TXTRG_32B        0x30    /* 0 byte (32 bytes available) */
 175#define SPBFCR_RXTRG_1B         0x00    /* 1 byte (31 bytes available) */
 176#define SPBFCR_RXTRG_32B        0x07    /* 32 bytes (0 byte available) */
 177
 178#define QSPI_BUFFER_SIZE        32u
 179
 180struct rspi_data {
 181        void __iomem *addr;
 182        u32 speed_hz;
 183        struct spi_controller *ctlr;
 184        struct platform_device *pdev;
 185        wait_queue_head_t wait;
 186        spinlock_t lock;                /* Protects RMW-access to RSPI_SSLP */
 187        struct clk *clk;
 188        u16 spcmd;
 189        u8 spsr;
 190        u8 sppcr;
 191        int rx_irq, tx_irq;
 192        const struct spi_ops *ops;
 193
 194        unsigned dma_callbacked:1;
 195        unsigned byte_access:1;
 196};
 197
 198static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
 199{
 200        iowrite8(data, rspi->addr + offset);
 201}
 202
 203static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
 204{
 205        iowrite16(data, rspi->addr + offset);
 206}
 207
 208static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
 209{
 210        iowrite32(data, rspi->addr + offset);
 211}
 212
 213static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
 214{
 215        return ioread8(rspi->addr + offset);
 216}
 217
 218static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
 219{
 220        return ioread16(rspi->addr + offset);
 221}
 222
 223static void rspi_write_data(const struct rspi_data *rspi, u16 data)
 224{
 225        if (rspi->byte_access)
 226                rspi_write8(rspi, data, RSPI_SPDR);
 227        else /* 16 bit */
 228                rspi_write16(rspi, data, RSPI_SPDR);
 229}
 230
 231static u16 rspi_read_data(const struct rspi_data *rspi)
 232{
 233        if (rspi->byte_access)
 234                return rspi_read8(rspi, RSPI_SPDR);
 235        else /* 16 bit */
 236                return rspi_read16(rspi, RSPI_SPDR);
 237}
 238
 239/* optional functions */
 240struct spi_ops {
 241        int (*set_config_register)(struct rspi_data *rspi, int access_size);
 242        int (*transfer_one)(struct spi_controller *ctlr,
 243                            struct spi_device *spi, struct spi_transfer *xfer);
 244        u16 extra_mode_bits;
 245        u16 flags;
 246        u16 fifo_size;
 247        u8 num_hw_ss;
 248};
 249
 250/*
 251 * functions for RSPI on legacy SH
 252 */
 253static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
 254{
 255        int spbr;
 256
 257        /* Sets output mode, MOSI signal, and (optionally) loopback */
 258        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 259
 260        /* Sets transfer bit rate */
 261        spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->speed_hz) - 1;
 262        rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 263
 264        /* Disable dummy transmission, set 16-bit word access, 1 frame */
 265        rspi_write8(rspi, 0, RSPI_SPDCR);
 266        rspi->byte_access = 0;
 267
 268        /* Sets RSPCK, SSL, next-access delay value */
 269        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 270        rspi_write8(rspi, 0x00, RSPI_SSLND);
 271        rspi_write8(rspi, 0x00, RSPI_SPND);
 272
 273        /* Sets parity, interrupt mask */
 274        rspi_write8(rspi, 0x00, RSPI_SPCR2);
 275
 276        /* Resets sequencer */
 277        rspi_write8(rspi, 0, RSPI_SPSCR);
 278        rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 279        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 280
 281        /* Sets RSPI mode */
 282        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 283
 284        return 0;
 285}
 286
 287/*
 288 * functions for RSPI on RZ
 289 */
 290static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
 291{
 292        int spbr;
 293        int div = 0;
 294        unsigned long clksrc;
 295
 296        /* Sets output mode, MOSI signal, and (optionally) loopback */
 297        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 298
 299        clksrc = clk_get_rate(rspi->clk);
 300        while (div < 3) {
 301                if (rspi->speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
 302                        break;
 303                div++;
 304                clksrc /= 2;
 305        }
 306
 307        /* Sets transfer bit rate */
 308        spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
 309        rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 310        rspi->spcmd |= div << 2;
 311
 312        /* Disable dummy transmission, set byte access */
 313        rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
 314        rspi->byte_access = 1;
 315
 316        /* Sets RSPCK, SSL, next-access delay value */
 317        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 318        rspi_write8(rspi, 0x00, RSPI_SSLND);
 319        rspi_write8(rspi, 0x00, RSPI_SPND);
 320
 321        /* Resets sequencer */
 322        rspi_write8(rspi, 0, RSPI_SPSCR);
 323        rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 324        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 325
 326        /* Sets RSPI mode */
 327        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 328
 329        return 0;
 330}
 331
 332/*
 333 * functions for QSPI
 334 */
 335static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
 336{
 337        int spbr;
 338
 339        /* Sets output mode, MOSI signal, and (optionally) loopback */
 340        rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 341
 342        /* Sets transfer bit rate */
 343        spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->speed_hz);
 344        rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 345
 346        /* Disable dummy transmission, set byte access */
 347        rspi_write8(rspi, 0, RSPI_SPDCR);
 348        rspi->byte_access = 1;
 349
 350        /* Sets RSPCK, SSL, next-access delay value */
 351        rspi_write8(rspi, 0x00, RSPI_SPCKD);
 352        rspi_write8(rspi, 0x00, RSPI_SSLND);
 353        rspi_write8(rspi, 0x00, RSPI_SPND);
 354
 355        /* Data Length Setting */
 356        if (access_size == 8)
 357                rspi->spcmd |= SPCMD_SPB_8BIT;
 358        else if (access_size == 16)
 359                rspi->spcmd |= SPCMD_SPB_16BIT;
 360        else
 361                rspi->spcmd |= SPCMD_SPB_32BIT;
 362
 363        rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
 364
 365        /* Resets transfer data length */
 366        rspi_write32(rspi, 0, QSPI_SPBMUL0);
 367
 368        /* Resets transmit and receive buffer */
 369        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 370        /* Sets buffer to allow normal operation */
 371        rspi_write8(rspi, 0x00, QSPI_SPBFCR);
 372
 373        /* Resets sequencer */
 374        rspi_write8(rspi, 0, RSPI_SPSCR);
 375        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 376
 377        /* Sets RSPI mode */
 378        rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 379
 380        return 0;
 381}
 382
 383static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
 384{
 385        u8 data;
 386
 387        data = rspi_read8(rspi, reg);
 388        data &= ~mask;
 389        data |= (val & mask);
 390        rspi_write8(rspi, data, reg);
 391}
 392
 393static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
 394                                          unsigned int len)
 395{
 396        unsigned int n;
 397
 398        n = min(len, QSPI_BUFFER_SIZE);
 399
 400        if (len >= QSPI_BUFFER_SIZE) {
 401                /* sets triggering number to 32 bytes */
 402                qspi_update(rspi, SPBFCR_TXTRG_MASK,
 403                             SPBFCR_TXTRG_32B, QSPI_SPBFCR);
 404        } else {
 405                /* sets triggering number to 1 byte */
 406                qspi_update(rspi, SPBFCR_TXTRG_MASK,
 407                             SPBFCR_TXTRG_1B, QSPI_SPBFCR);
 408        }
 409
 410        return n;
 411}
 412
 413static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
 414{
 415        unsigned int n;
 416
 417        n = min(len, QSPI_BUFFER_SIZE);
 418
 419        if (len >= QSPI_BUFFER_SIZE) {
 420                /* sets triggering number to 32 bytes */
 421                qspi_update(rspi, SPBFCR_RXTRG_MASK,
 422                             SPBFCR_RXTRG_32B, QSPI_SPBFCR);
 423        } else {
 424                /* sets triggering number to 1 byte */
 425                qspi_update(rspi, SPBFCR_RXTRG_MASK,
 426                             SPBFCR_RXTRG_1B, QSPI_SPBFCR);
 427        }
 428        return n;
 429}
 430
 431static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
 432{
 433        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
 434}
 435
 436static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
 437{
 438        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
 439}
 440
 441static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
 442                                   u8 enable_bit)
 443{
 444        int ret;
 445
 446        rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
 447        if (rspi->spsr & wait_mask)
 448                return 0;
 449
 450        rspi_enable_irq(rspi, enable_bit);
 451        ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
 452        if (ret == 0 && !(rspi->spsr & wait_mask))
 453                return -ETIMEDOUT;
 454
 455        return 0;
 456}
 457
 458static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
 459{
 460        return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 461}
 462
 463static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
 464{
 465        return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
 466}
 467
 468static int rspi_data_out(struct rspi_data *rspi, u8 data)
 469{
 470        int error = rspi_wait_for_tx_empty(rspi);
 471        if (error < 0) {
 472                dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 473                return error;
 474        }
 475        rspi_write_data(rspi, data);
 476        return 0;
 477}
 478
 479static int rspi_data_in(struct rspi_data *rspi)
 480{
 481        int error;
 482        u8 data;
 483
 484        error = rspi_wait_for_rx_full(rspi);
 485        if (error < 0) {
 486                dev_err(&rspi->ctlr->dev, "receive timeout\n");
 487                return error;
 488        }
 489        data = rspi_read_data(rspi);
 490        return data;
 491}
 492
 493static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
 494                             unsigned int n)
 495{
 496        while (n-- > 0) {
 497                if (tx) {
 498                        int ret = rspi_data_out(rspi, *tx++);
 499                        if (ret < 0)
 500                                return ret;
 501                }
 502                if (rx) {
 503                        int ret = rspi_data_in(rspi);
 504                        if (ret < 0)
 505                                return ret;
 506                        *rx++ = ret;
 507                }
 508        }
 509
 510        return 0;
 511}
 512
 513static void rspi_dma_complete(void *arg)
 514{
 515        struct rspi_data *rspi = arg;
 516
 517        rspi->dma_callbacked = 1;
 518        wake_up_interruptible(&rspi->wait);
 519}
 520
 521static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
 522                             struct sg_table *rx)
 523{
 524        struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 525        u8 irq_mask = 0;
 526        unsigned int other_irq = 0;
 527        dma_cookie_t cookie;
 528        int ret;
 529
 530        /* First prepare and submit the DMA request(s), as this may fail */
 531        if (rx) {
 532                desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
 533                                        rx->nents, DMA_DEV_TO_MEM,
 534                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 535                if (!desc_rx) {
 536                        ret = -EAGAIN;
 537                        goto no_dma_rx;
 538                }
 539
 540                desc_rx->callback = rspi_dma_complete;
 541                desc_rx->callback_param = rspi;
 542                cookie = dmaengine_submit(desc_rx);
 543                if (dma_submit_error(cookie)) {
 544                        ret = cookie;
 545                        goto no_dma_rx;
 546                }
 547
 548                irq_mask |= SPCR_SPRIE;
 549        }
 550
 551        if (tx) {
 552                desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
 553                                        tx->nents, DMA_MEM_TO_DEV,
 554                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 555                if (!desc_tx) {
 556                        ret = -EAGAIN;
 557                        goto no_dma_tx;
 558                }
 559
 560                if (rx) {
 561                        /* No callback */
 562                        desc_tx->callback = NULL;
 563                } else {
 564                        desc_tx->callback = rspi_dma_complete;
 565                        desc_tx->callback_param = rspi;
 566                }
 567                cookie = dmaengine_submit(desc_tx);
 568                if (dma_submit_error(cookie)) {
 569                        ret = cookie;
 570                        goto no_dma_tx;
 571                }
 572
 573                irq_mask |= SPCR_SPTIE;
 574        }
 575
 576        /*
 577         * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
 578         * called. So, this driver disables the IRQ while DMA transfer.
 579         */
 580        if (tx)
 581                disable_irq(other_irq = rspi->tx_irq);
 582        if (rx && rspi->rx_irq != other_irq)
 583                disable_irq(rspi->rx_irq);
 584
 585        rspi_enable_irq(rspi, irq_mask);
 586        rspi->dma_callbacked = 0;
 587
 588        /* Now start DMA */
 589        if (rx)
 590                dma_async_issue_pending(rspi->ctlr->dma_rx);
 591        if (tx)
 592                dma_async_issue_pending(rspi->ctlr->dma_tx);
 593
 594        ret = wait_event_interruptible_timeout(rspi->wait,
 595                                               rspi->dma_callbacked, HZ);
 596        if (ret > 0 && rspi->dma_callbacked) {
 597                ret = 0;
 598        } else {
 599                if (!ret) {
 600                        dev_err(&rspi->ctlr->dev, "DMA timeout\n");
 601                        ret = -ETIMEDOUT;
 602                }
 603                if (tx)
 604                        dmaengine_terminate_all(rspi->ctlr->dma_tx);
 605                if (rx)
 606                        dmaengine_terminate_all(rspi->ctlr->dma_rx);
 607        }
 608
 609        rspi_disable_irq(rspi, irq_mask);
 610
 611        if (tx)
 612                enable_irq(rspi->tx_irq);
 613        if (rx && rspi->rx_irq != other_irq)
 614                enable_irq(rspi->rx_irq);
 615
 616        return ret;
 617
 618no_dma_tx:
 619        if (rx)
 620                dmaengine_terminate_all(rspi->ctlr->dma_rx);
 621no_dma_rx:
 622        if (ret == -EAGAIN) {
 623                dev_warn_once(&rspi->ctlr->dev,
 624                              "DMA not available, falling back to PIO\n");
 625        }
 626        return ret;
 627}
 628
 629static void rspi_receive_init(const struct rspi_data *rspi)
 630{
 631        u8 spsr;
 632
 633        spsr = rspi_read8(rspi, RSPI_SPSR);
 634        if (spsr & SPSR_SPRF)
 635                rspi_read_data(rspi);   /* dummy read */
 636        if (spsr & SPSR_OVRF)
 637                rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
 638                            RSPI_SPSR);
 639}
 640
 641static void rspi_rz_receive_init(const struct rspi_data *rspi)
 642{
 643        rspi_receive_init(rspi);
 644        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
 645        rspi_write8(rspi, 0, RSPI_SPBFCR);
 646}
 647
 648static void qspi_receive_init(const struct rspi_data *rspi)
 649{
 650        u8 spsr;
 651
 652        spsr = rspi_read8(rspi, RSPI_SPSR);
 653        if (spsr & SPSR_SPRF)
 654                rspi_read_data(rspi);   /* dummy read */
 655        rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 656        rspi_write8(rspi, 0, QSPI_SPBFCR);
 657}
 658
 659static bool __rspi_can_dma(const struct rspi_data *rspi,
 660                           const struct spi_transfer *xfer)
 661{
 662        return xfer->len > rspi->ops->fifo_size;
 663}
 664
 665static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
 666                         struct spi_transfer *xfer)
 667{
 668        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 669
 670        return __rspi_can_dma(rspi, xfer);
 671}
 672
 673static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
 674                                         struct spi_transfer *xfer)
 675{
 676        if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
 677                return -EAGAIN;
 678
 679        /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
 680        return rspi_dma_transfer(rspi, &xfer->tx_sg,
 681                                xfer->rx_buf ? &xfer->rx_sg : NULL);
 682}
 683
 684static int rspi_common_transfer(struct rspi_data *rspi,
 685                                struct spi_transfer *xfer)
 686{
 687        int ret;
 688
 689        ret = rspi_dma_check_then_transfer(rspi, xfer);
 690        if (ret != -EAGAIN)
 691                return ret;
 692
 693        ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
 694        if (ret < 0)
 695                return ret;
 696
 697        /* Wait for the last transmission */
 698        rspi_wait_for_tx_empty(rspi);
 699
 700        return 0;
 701}
 702
 703static int rspi_transfer_one(struct spi_controller *ctlr,
 704                             struct spi_device *spi, struct spi_transfer *xfer)
 705{
 706        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 707        u8 spcr;
 708
 709        spcr = rspi_read8(rspi, RSPI_SPCR);
 710        if (xfer->rx_buf) {
 711                rspi_receive_init(rspi);
 712                spcr &= ~SPCR_TXMD;
 713        } else {
 714                spcr |= SPCR_TXMD;
 715        }
 716        rspi_write8(rspi, spcr, RSPI_SPCR);
 717
 718        return rspi_common_transfer(rspi, xfer);
 719}
 720
 721static int rspi_rz_transfer_one(struct spi_controller *ctlr,
 722                                struct spi_device *spi,
 723                                struct spi_transfer *xfer)
 724{
 725        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 726
 727        rspi_rz_receive_init(rspi);
 728
 729        return rspi_common_transfer(rspi, xfer);
 730}
 731
 732static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
 733                                        u8 *rx, unsigned int len)
 734{
 735        unsigned int i, n;
 736        int ret;
 737
 738        while (len > 0) {
 739                n = qspi_set_send_trigger(rspi, len);
 740                qspi_set_receive_trigger(rspi, len);
 741                ret = rspi_wait_for_tx_empty(rspi);
 742                if (ret < 0) {
 743                        dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 744                        return ret;
 745                }
 746                for (i = 0; i < n; i++)
 747                        rspi_write_data(rspi, *tx++);
 748
 749                ret = rspi_wait_for_rx_full(rspi);
 750                if (ret < 0) {
 751                        dev_err(&rspi->ctlr->dev, "receive timeout\n");
 752                        return ret;
 753                }
 754                for (i = 0; i < n; i++)
 755                        *rx++ = rspi_read_data(rspi);
 756
 757                len -= n;
 758        }
 759
 760        return 0;
 761}
 762
 763static int qspi_transfer_out_in(struct rspi_data *rspi,
 764                                struct spi_transfer *xfer)
 765{
 766        int ret;
 767
 768        qspi_receive_init(rspi);
 769
 770        ret = rspi_dma_check_then_transfer(rspi, xfer);
 771        if (ret != -EAGAIN)
 772                return ret;
 773
 774        return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
 775                                            xfer->rx_buf, xfer->len);
 776}
 777
 778static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
 779{
 780        const u8 *tx = xfer->tx_buf;
 781        unsigned int n = xfer->len;
 782        unsigned int i, len;
 783        int ret;
 784
 785        if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 786                ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
 787                if (ret != -EAGAIN)
 788                        return ret;
 789        }
 790
 791        while (n > 0) {
 792                len = qspi_set_send_trigger(rspi, n);
 793                ret = rspi_wait_for_tx_empty(rspi);
 794                if (ret < 0) {
 795                        dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 796                        return ret;
 797                }
 798                for (i = 0; i < len; i++)
 799                        rspi_write_data(rspi, *tx++);
 800
 801                n -= len;
 802        }
 803
 804        /* Wait for the last transmission */
 805        rspi_wait_for_tx_empty(rspi);
 806
 807        return 0;
 808}
 809
 810static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
 811{
 812        u8 *rx = xfer->rx_buf;
 813        unsigned int n = xfer->len;
 814        unsigned int i, len;
 815        int ret;
 816
 817        if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 818                int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
 819                if (ret != -EAGAIN)
 820                        return ret;
 821        }
 822
 823        while (n > 0) {
 824                len = qspi_set_receive_trigger(rspi, n);
 825                ret = rspi_wait_for_rx_full(rspi);
 826                if (ret < 0) {
 827                        dev_err(&rspi->ctlr->dev, "receive timeout\n");
 828                        return ret;
 829                }
 830                for (i = 0; i < len; i++)
 831                        *rx++ = rspi_read_data(rspi);
 832
 833                n -= len;
 834        }
 835
 836        return 0;
 837}
 838
 839static int qspi_transfer_one(struct spi_controller *ctlr,
 840                             struct spi_device *spi, struct spi_transfer *xfer)
 841{
 842        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 843
 844        if (spi->mode & SPI_LOOP) {
 845                return qspi_transfer_out_in(rspi, xfer);
 846        } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
 847                /* Quad or Dual SPI Write */
 848                return qspi_transfer_out(rspi, xfer);
 849        } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
 850                /* Quad or Dual SPI Read */
 851                return qspi_transfer_in(rspi, xfer);
 852        } else {
 853                /* Single SPI Transfer */
 854                return qspi_transfer_out_in(rspi, xfer);
 855        }
 856}
 857
 858static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
 859{
 860        if (xfer->tx_buf)
 861                switch (xfer->tx_nbits) {
 862                case SPI_NBITS_QUAD:
 863                        return SPCMD_SPIMOD_QUAD;
 864                case SPI_NBITS_DUAL:
 865                        return SPCMD_SPIMOD_DUAL;
 866                default:
 867                        return 0;
 868                }
 869        if (xfer->rx_buf)
 870                switch (xfer->rx_nbits) {
 871                case SPI_NBITS_QUAD:
 872                        return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
 873                case SPI_NBITS_DUAL:
 874                        return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
 875                default:
 876                        return 0;
 877                }
 878
 879        return 0;
 880}
 881
 882static int qspi_setup_sequencer(struct rspi_data *rspi,
 883                                const struct spi_message *msg)
 884{
 885        const struct spi_transfer *xfer;
 886        unsigned int i = 0, len = 0;
 887        u16 current_mode = 0xffff, mode;
 888
 889        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 890                mode = qspi_transfer_mode(xfer);
 891                if (mode == current_mode) {
 892                        len += xfer->len;
 893                        continue;
 894                }
 895
 896                /* Transfer mode change */
 897                if (i) {
 898                        /* Set transfer data length of previous transfer */
 899                        rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 900                }
 901
 902                if (i >= QSPI_NUM_SPCMD) {
 903                        dev_err(&msg->spi->dev,
 904                                "Too many different transfer modes");
 905                        return -EINVAL;
 906                }
 907
 908                /* Program transfer mode for this transfer */
 909                rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
 910                current_mode = mode;
 911                len = xfer->len;
 912                i++;
 913        }
 914        if (i) {
 915                /* Set final transfer data length and sequence length */
 916                rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 917                rspi_write8(rspi, i - 1, RSPI_SPSCR);
 918        }
 919
 920        return 0;
 921}
 922
 923static int rspi_setup(struct spi_device *spi)
 924{
 925        struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
 926        u8 sslp;
 927
 928        if (spi->cs_gpiod)
 929                return 0;
 930
 931        pm_runtime_get_sync(&rspi->pdev->dev);
 932        spin_lock_irq(&rspi->lock);
 933
 934        sslp = rspi_read8(rspi, RSPI_SSLP);
 935        if (spi->mode & SPI_CS_HIGH)
 936                sslp |= SSLP_SSLP(spi->chip_select);
 937        else
 938                sslp &= ~SSLP_SSLP(spi->chip_select);
 939        rspi_write8(rspi, sslp, RSPI_SSLP);
 940
 941        spin_unlock_irq(&rspi->lock);
 942        pm_runtime_put(&rspi->pdev->dev);
 943        return 0;
 944}
 945
 946static int rspi_prepare_message(struct spi_controller *ctlr,
 947                                struct spi_message *msg)
 948{
 949        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 950        struct spi_device *spi = msg->spi;
 951        const struct spi_transfer *xfer;
 952        int ret;
 953
 954        /*
 955         * As the Bit Rate Register must not be changed while the device is
 956         * active, all transfers in a message must use the same bit rate.
 957         * In theory, the sequencer could be enabled, and each Command Register
 958         * could divide the base bit rate by a different value.
 959         * However, most RSPI variants do not have Transfer Data Length
 960         * Multiplier Setting Registers, so each sequence step would be limited
 961         * to a single word, making this feature unsuitable for large
 962         * transfers, which would gain most from it.
 963         */
 964        rspi->speed_hz = spi->max_speed_hz;
 965        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 966                if (xfer->speed_hz < rspi->speed_hz)
 967                        rspi->speed_hz = xfer->speed_hz;
 968        }
 969
 970        rspi->spcmd = SPCMD_SSLKP;
 971        if (spi->mode & SPI_CPOL)
 972                rspi->spcmd |= SPCMD_CPOL;
 973        if (spi->mode & SPI_CPHA)
 974                rspi->spcmd |= SPCMD_CPHA;
 975        if (spi->mode & SPI_LSB_FIRST)
 976                rspi->spcmd |= SPCMD_LSBF;
 977
 978        /* Configure slave signal to assert */
 979        rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
 980                                                : spi->chip_select);
 981
 982        /* CMOS output mode and MOSI signal from previous transfer */
 983        rspi->sppcr = 0;
 984        if (spi->mode & SPI_LOOP)
 985                rspi->sppcr |= SPPCR_SPLP;
 986
 987        rspi->ops->set_config_register(rspi, 8);
 988
 989        if (msg->spi->mode &
 990            (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
 991                /* Setup sequencer for messages with multiple transfer modes */
 992                ret = qspi_setup_sequencer(rspi, msg);
 993                if (ret < 0)
 994                        return ret;
 995        }
 996
 997        /* Enable SPI function in master mode */
 998        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
 999        return 0;
1000}
1001
1002static int rspi_unprepare_message(struct spi_controller *ctlr,
1003                                  struct spi_message *msg)
1004{
1005        struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1006
1007        /* Disable SPI function */
1008        rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1009
1010        /* Reset sequencer for Single SPI Transfers */
1011        rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1012        rspi_write8(rspi, 0, RSPI_SPSCR);
1013        return 0;
1014}
1015
1016static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1017{
1018        struct rspi_data *rspi = _sr;
1019        u8 spsr;
1020        irqreturn_t ret = IRQ_NONE;
1021        u8 disable_irq = 0;
1022
1023        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1024        if (spsr & SPSR_SPRF)
1025                disable_irq |= SPCR_SPRIE;
1026        if (spsr & SPSR_SPTEF)
1027                disable_irq |= SPCR_SPTIE;
1028
1029        if (disable_irq) {
1030                ret = IRQ_HANDLED;
1031                rspi_disable_irq(rspi, disable_irq);
1032                wake_up(&rspi->wait);
1033        }
1034
1035        return ret;
1036}
1037
1038static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1039{
1040        struct rspi_data *rspi = _sr;
1041        u8 spsr;
1042
1043        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1044        if (spsr & SPSR_SPRF) {
1045                rspi_disable_irq(rspi, SPCR_SPRIE);
1046                wake_up(&rspi->wait);
1047                return IRQ_HANDLED;
1048        }
1049
1050        return 0;
1051}
1052
1053static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1054{
1055        struct rspi_data *rspi = _sr;
1056        u8 spsr;
1057
1058        rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1059        if (spsr & SPSR_SPTEF) {
1060                rspi_disable_irq(rspi, SPCR_SPTIE);
1061                wake_up(&rspi->wait);
1062                return IRQ_HANDLED;
1063        }
1064
1065        return 0;
1066}
1067
1068static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1069                                              enum dma_transfer_direction dir,
1070                                              unsigned int id,
1071                                              dma_addr_t port_addr)
1072{
1073        dma_cap_mask_t mask;
1074        struct dma_chan *chan;
1075        struct dma_slave_config cfg;
1076        int ret;
1077
1078        dma_cap_zero(mask);
1079        dma_cap_set(DMA_SLAVE, mask);
1080
1081        chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1082                                (void *)(unsigned long)id, dev,
1083                                dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1084        if (!chan) {
1085                dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1086                return NULL;
1087        }
1088
1089        memset(&cfg, 0, sizeof(cfg));
1090        cfg.direction = dir;
1091        if (dir == DMA_MEM_TO_DEV) {
1092                cfg.dst_addr = port_addr;
1093                cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1094        } else {
1095                cfg.src_addr = port_addr;
1096                cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1097        }
1098
1099        ret = dmaengine_slave_config(chan, &cfg);
1100        if (ret) {
1101                dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1102                dma_release_channel(chan);
1103                return NULL;
1104        }
1105
1106        return chan;
1107}
1108
1109static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1110                            const struct resource *res)
1111{
1112        const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1113        unsigned int dma_tx_id, dma_rx_id;
1114
1115        if (dev->of_node) {
1116                /* In the OF case we will get the slave IDs from the DT */
1117                dma_tx_id = 0;
1118                dma_rx_id = 0;
1119        } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1120                dma_tx_id = rspi_pd->dma_tx_id;
1121                dma_rx_id = rspi_pd->dma_rx_id;
1122        } else {
1123                /* The driver assumes no error. */
1124                return 0;
1125        }
1126
1127        ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1128                                             res->start + RSPI_SPDR);
1129        if (!ctlr->dma_tx)
1130                return -ENODEV;
1131
1132        ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1133                                             res->start + RSPI_SPDR);
1134        if (!ctlr->dma_rx) {
1135                dma_release_channel(ctlr->dma_tx);
1136                ctlr->dma_tx = NULL;
1137                return -ENODEV;
1138        }
1139
1140        ctlr->can_dma = rspi_can_dma;
1141        dev_info(dev, "DMA available");
1142        return 0;
1143}
1144
1145static void rspi_release_dma(struct spi_controller *ctlr)
1146{
1147        if (ctlr->dma_tx)
1148                dma_release_channel(ctlr->dma_tx);
1149        if (ctlr->dma_rx)
1150                dma_release_channel(ctlr->dma_rx);
1151}
1152
1153static int rspi_remove(struct platform_device *pdev)
1154{
1155        struct rspi_data *rspi = platform_get_drvdata(pdev);
1156
1157        rspi_release_dma(rspi->ctlr);
1158        pm_runtime_disable(&pdev->dev);
1159
1160        return 0;
1161}
1162
1163static const struct spi_ops rspi_ops = {
1164        .set_config_register =  rspi_set_config_register,
1165        .transfer_one =         rspi_transfer_one,
1166        .flags =                SPI_CONTROLLER_MUST_TX,
1167        .fifo_size =            8,
1168        .num_hw_ss =            2,
1169};
1170
1171static const struct spi_ops rspi_rz_ops = {
1172        .set_config_register =  rspi_rz_set_config_register,
1173        .transfer_one =         rspi_rz_transfer_one,
1174        .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1175        .fifo_size =            8,      /* 8 for TX, 32 for RX */
1176        .num_hw_ss =            1,
1177};
1178
1179static const struct spi_ops qspi_ops = {
1180        .set_config_register =  qspi_set_config_register,
1181        .transfer_one =         qspi_transfer_one,
1182        .extra_mode_bits =      SPI_TX_DUAL | SPI_TX_QUAD |
1183                                SPI_RX_DUAL | SPI_RX_QUAD,
1184        .flags =                SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1185        .fifo_size =            32,
1186        .num_hw_ss =            1,
1187};
1188
1189#ifdef CONFIG_OF
1190static const struct of_device_id rspi_of_match[] = {
1191        /* RSPI on legacy SH */
1192        { .compatible = "renesas,rspi", .data = &rspi_ops },
1193        /* RSPI on RZ/A1H */
1194        { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1195        /* QSPI on R-Car Gen2 */
1196        { .compatible = "renesas,qspi", .data = &qspi_ops },
1197        { /* sentinel */ }
1198};
1199
1200MODULE_DEVICE_TABLE(of, rspi_of_match);
1201
1202static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1203{
1204        u32 num_cs;
1205        int error;
1206
1207        /* Parse DT properties */
1208        error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1209        if (error) {
1210                dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1211                return error;
1212        }
1213
1214        ctlr->num_chipselect = num_cs;
1215        return 0;
1216}
1217#else
1218#define rspi_of_match   NULL
1219static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1220{
1221        return -EINVAL;
1222}
1223#endif /* CONFIG_OF */
1224
1225static int rspi_request_irq(struct device *dev, unsigned int irq,
1226                            irq_handler_t handler, const char *suffix,
1227                            void *dev_id)
1228{
1229        const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1230                                          dev_name(dev), suffix);
1231        if (!name)
1232                return -ENOMEM;
1233
1234        return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1235}
1236
1237static int rspi_probe(struct platform_device *pdev)
1238{
1239        struct resource *res;
1240        struct spi_controller *ctlr;
1241        struct rspi_data *rspi;
1242        int ret;
1243        const struct rspi_plat_data *rspi_pd;
1244        const struct spi_ops *ops;
1245
1246        ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1247        if (ctlr == NULL)
1248                return -ENOMEM;
1249
1250        ops = of_device_get_match_data(&pdev->dev);
1251        if (ops) {
1252                ret = rspi_parse_dt(&pdev->dev, ctlr);
1253                if (ret)
1254                        goto error1;
1255        } else {
1256                ops = (struct spi_ops *)pdev->id_entry->driver_data;
1257                rspi_pd = dev_get_platdata(&pdev->dev);
1258                if (rspi_pd && rspi_pd->num_chipselect)
1259                        ctlr->num_chipselect = rspi_pd->num_chipselect;
1260                else
1261                        ctlr->num_chipselect = 2; /* default */
1262        }
1263
1264        /* ops parameter check */
1265        if (!ops->set_config_register) {
1266                dev_err(&pdev->dev, "there is no set_config_register\n");
1267                ret = -ENODEV;
1268                goto error1;
1269        }
1270
1271        rspi = spi_controller_get_devdata(ctlr);
1272        platform_set_drvdata(pdev, rspi);
1273        rspi->ops = ops;
1274        rspi->ctlr = ctlr;
1275
1276        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1277        rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1278        if (IS_ERR(rspi->addr)) {
1279                ret = PTR_ERR(rspi->addr);
1280                goto error1;
1281        }
1282
1283        rspi->clk = devm_clk_get(&pdev->dev, NULL);
1284        if (IS_ERR(rspi->clk)) {
1285                dev_err(&pdev->dev, "cannot get clock\n");
1286                ret = PTR_ERR(rspi->clk);
1287                goto error1;
1288        }
1289
1290        rspi->pdev = pdev;
1291        pm_runtime_enable(&pdev->dev);
1292
1293        init_waitqueue_head(&rspi->wait);
1294        spin_lock_init(&rspi->lock);
1295
1296        ctlr->bus_num = pdev->id;
1297        ctlr->setup = rspi_setup;
1298        ctlr->auto_runtime_pm = true;
1299        ctlr->transfer_one = ops->transfer_one;
1300        ctlr->prepare_message = rspi_prepare_message;
1301        ctlr->unprepare_message = rspi_unprepare_message;
1302        ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1303                          SPI_LOOP | ops->extra_mode_bits;
1304        ctlr->flags = ops->flags;
1305        ctlr->dev.of_node = pdev->dev.of_node;
1306        ctlr->use_gpio_descriptors = true;
1307        ctlr->max_native_cs = rspi->ops->num_hw_ss;
1308
1309        ret = platform_get_irq_byname_optional(pdev, "rx");
1310        if (ret < 0) {
1311                ret = platform_get_irq_byname_optional(pdev, "mux");
1312                if (ret < 0)
1313                        ret = platform_get_irq(pdev, 0);
1314                if (ret >= 0)
1315                        rspi->rx_irq = rspi->tx_irq = ret;
1316        } else {
1317                rspi->rx_irq = ret;
1318                ret = platform_get_irq_byname(pdev, "tx");
1319                if (ret >= 0)
1320                        rspi->tx_irq = ret;
1321        }
1322
1323        if (rspi->rx_irq == rspi->tx_irq) {
1324                /* Single multiplexed interrupt */
1325                ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1326                                       "mux", rspi);
1327        } else {
1328                /* Multi-interrupt mode, only SPRI and SPTI are used */
1329                ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1330                                       "rx", rspi);
1331                if (!ret)
1332                        ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1333                                               rspi_irq_tx, "tx", rspi);
1334        }
1335        if (ret < 0) {
1336                dev_err(&pdev->dev, "request_irq error\n");
1337                goto error2;
1338        }
1339
1340        ret = rspi_request_dma(&pdev->dev, ctlr, res);
1341        if (ret < 0)
1342                dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1343
1344        ret = devm_spi_register_controller(&pdev->dev, ctlr);
1345        if (ret < 0) {
1346                dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1347                goto error3;
1348        }
1349
1350        dev_info(&pdev->dev, "probed\n");
1351
1352        return 0;
1353
1354error3:
1355        rspi_release_dma(ctlr);
1356error2:
1357        pm_runtime_disable(&pdev->dev);
1358error1:
1359        spi_controller_put(ctlr);
1360
1361        return ret;
1362}
1363
1364static const struct platform_device_id spi_driver_ids[] = {
1365        { "rspi",       (kernel_ulong_t)&rspi_ops },
1366        {},
1367};
1368
1369MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1370
1371#ifdef CONFIG_PM_SLEEP
1372static int rspi_suspend(struct device *dev)
1373{
1374        struct rspi_data *rspi = dev_get_drvdata(dev);
1375
1376        return spi_controller_suspend(rspi->ctlr);
1377}
1378
1379static int rspi_resume(struct device *dev)
1380{
1381        struct rspi_data *rspi = dev_get_drvdata(dev);
1382
1383        return spi_controller_resume(rspi->ctlr);
1384}
1385
1386static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1387#define DEV_PM_OPS      &rspi_pm_ops
1388#else
1389#define DEV_PM_OPS      NULL
1390#endif /* CONFIG_PM_SLEEP */
1391
1392static struct platform_driver rspi_driver = {
1393        .probe =        rspi_probe,
1394        .remove =       rspi_remove,
1395        .id_table =     spi_driver_ids,
1396        .driver         = {
1397                .name = "renesas_spi",
1398                .pm = DEV_PM_OPS,
1399                .of_match_table = of_match_ptr(rspi_of_match),
1400        },
1401};
1402module_platform_driver(rspi_driver);
1403
1404MODULE_DESCRIPTION("Renesas RSPI bus driver");
1405MODULE_LICENSE("GPL v2");
1406MODULE_AUTHOR("Yoshihiro Shimoda");
1407MODULE_ALIAS("platform:rspi");
1408