linux/drivers/usb/core/message.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * message.c - synchronous message handling
   4 *
   5 * Released under the GPLv2 only.
   6 */
   7
   8#include <linux/acpi.h>
   9#include <linux/pci.h>  /* for scatterlist macros */
  10#include <linux/usb.h>
  11#include <linux/module.h>
  12#include <linux/slab.h>
  13#include <linux/mm.h>
  14#include <linux/timer.h>
  15#include <linux/ctype.h>
  16#include <linux/nls.h>
  17#include <linux/device.h>
  18#include <linux/scatterlist.h>
  19#include <linux/usb/cdc.h>
  20#include <linux/usb/quirks.h>
  21#include <linux/usb/hcd.h>      /* for usbcore internals */
  22#include <linux/usb/of.h>
  23#include <asm/byteorder.h>
  24
  25#include "usb.h"
  26
  27static void cancel_async_set_config(struct usb_device *udev);
  28
  29struct api_context {
  30        struct completion       done;
  31        int                     status;
  32};
  33
  34static void usb_api_blocking_completion(struct urb *urb)
  35{
  36        struct api_context *ctx = urb->context;
  37
  38        ctx->status = urb->status;
  39        complete(&ctx->done);
  40}
  41
  42
  43/*
  44 * Starts urb and waits for completion or timeout. Note that this call
  45 * is NOT interruptible. Many device driver i/o requests should be
  46 * interruptible and therefore these drivers should implement their
  47 * own interruptible routines.
  48 */
  49static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
  50{
  51        struct api_context ctx;
  52        unsigned long expire;
  53        int retval;
  54
  55        init_completion(&ctx.done);
  56        urb->context = &ctx;
  57        urb->actual_length = 0;
  58        retval = usb_submit_urb(urb, GFP_NOIO);
  59        if (unlikely(retval))
  60                goto out;
  61
  62        expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
  63        if (!wait_for_completion_timeout(&ctx.done, expire)) {
  64                usb_kill_urb(urb);
  65                retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
  66
  67                dev_dbg(&urb->dev->dev,
  68                        "%s timed out on ep%d%s len=%u/%u\n",
  69                        current->comm,
  70                        usb_endpoint_num(&urb->ep->desc),
  71                        usb_urb_dir_in(urb) ? "in" : "out",
  72                        urb->actual_length,
  73                        urb->transfer_buffer_length);
  74        } else
  75                retval = ctx.status;
  76out:
  77        if (actual_length)
  78                *actual_length = urb->actual_length;
  79
  80        usb_free_urb(urb);
  81        return retval;
  82}
  83
  84/*-------------------------------------------------------------------*/
  85/* returns status (negative) or length (positive) */
  86static int usb_internal_control_msg(struct usb_device *usb_dev,
  87                                    unsigned int pipe,
  88                                    struct usb_ctrlrequest *cmd,
  89                                    void *data, int len, int timeout)
  90{
  91        struct urb *urb;
  92        int retv;
  93        int length;
  94
  95        urb = usb_alloc_urb(0, GFP_NOIO);
  96        if (!urb)
  97                return -ENOMEM;
  98
  99        usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
 100                             len, usb_api_blocking_completion, NULL);
 101
 102        retv = usb_start_wait_urb(urb, timeout, &length);
 103        if (retv < 0)
 104                return retv;
 105        else
 106                return length;
 107}
 108
 109/**
 110 * usb_control_msg - Builds a control urb, sends it off and waits for completion
 111 * @dev: pointer to the usb device to send the message to
 112 * @pipe: endpoint "pipe" to send the message to
 113 * @request: USB message request value
 114 * @requesttype: USB message request type value
 115 * @value: USB message value
 116 * @index: USB message index value
 117 * @data: pointer to the data to send
 118 * @size: length in bytes of the data to send
 119 * @timeout: time in msecs to wait for the message to complete before timing
 120 *      out (if 0 the wait is forever)
 121 *
 122 * Context: !in_interrupt ()
 123 *
 124 * This function sends a simple control message to a specified endpoint and
 125 * waits for the message to complete, or timeout.
 126 *
 127 * Don't use this function from within an interrupt context. If you need
 128 * an asynchronous message, or need to send a message from within interrupt
 129 * context, use usb_submit_urb(). If a thread in your driver uses this call,
 130 * make sure your disconnect() method can wait for it to complete. Since you
 131 * don't have a handle on the URB used, you can't cancel the request.
 132 *
 133 * Return: If successful, the number of bytes transferred. Otherwise, a negative
 134 * error number.
 135 */
 136int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
 137                    __u8 requesttype, __u16 value, __u16 index, void *data,
 138                    __u16 size, int timeout)
 139{
 140        struct usb_ctrlrequest *dr;
 141        int ret;
 142
 143        dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
 144        if (!dr)
 145                return -ENOMEM;
 146
 147        dr->bRequestType = requesttype;
 148        dr->bRequest = request;
 149        dr->wValue = cpu_to_le16(value);
 150        dr->wIndex = cpu_to_le16(index);
 151        dr->wLength = cpu_to_le16(size);
 152
 153        ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
 154
 155        /* Linger a bit, prior to the next control message. */
 156        if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
 157                msleep(200);
 158
 159        kfree(dr);
 160
 161        return ret;
 162}
 163EXPORT_SYMBOL_GPL(usb_control_msg);
 164
 165/**
 166 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
 167 * @usb_dev: pointer to the usb device to send the message to
 168 * @pipe: endpoint "pipe" to send the message to
 169 * @data: pointer to the data to send
 170 * @len: length in bytes of the data to send
 171 * @actual_length: pointer to a location to put the actual length transferred
 172 *      in bytes
 173 * @timeout: time in msecs to wait for the message to complete before
 174 *      timing out (if 0 the wait is forever)
 175 *
 176 * Context: !in_interrupt ()
 177 *
 178 * This function sends a simple interrupt message to a specified endpoint and
 179 * waits for the message to complete, or timeout.
 180 *
 181 * Don't use this function from within an interrupt context. If you need
 182 * an asynchronous message, or need to send a message from within interrupt
 183 * context, use usb_submit_urb() If a thread in your driver uses this call,
 184 * make sure your disconnect() method can wait for it to complete. Since you
 185 * don't have a handle on the URB used, you can't cancel the request.
 186 *
 187 * Return:
 188 * If successful, 0. Otherwise a negative error number. The number of actual
 189 * bytes transferred will be stored in the @actual_length parameter.
 190 */
 191int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
 192                      void *data, int len, int *actual_length, int timeout)
 193{
 194        return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
 195}
 196EXPORT_SYMBOL_GPL(usb_interrupt_msg);
 197
 198/**
 199 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
 200 * @usb_dev: pointer to the usb device to send the message to
 201 * @pipe: endpoint "pipe" to send the message to
 202 * @data: pointer to the data to send
 203 * @len: length in bytes of the data to send
 204 * @actual_length: pointer to a location to put the actual length transferred
 205 *      in bytes
 206 * @timeout: time in msecs to wait for the message to complete before
 207 *      timing out (if 0 the wait is forever)
 208 *
 209 * Context: !in_interrupt ()
 210 *
 211 * This function sends a simple bulk message to a specified endpoint
 212 * and waits for the message to complete, or timeout.
 213 *
 214 * Don't use this function from within an interrupt context. If you need
 215 * an asynchronous message, or need to send a message from within interrupt
 216 * context, use usb_submit_urb() If a thread in your driver uses this call,
 217 * make sure your disconnect() method can wait for it to complete. Since you
 218 * don't have a handle on the URB used, you can't cancel the request.
 219 *
 220 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
 221 * users are forced to abuse this routine by using it to submit URBs for
 222 * interrupt endpoints.  We will take the liberty of creating an interrupt URB
 223 * (with the default interval) if the target is an interrupt endpoint.
 224 *
 225 * Return:
 226 * If successful, 0. Otherwise a negative error number. The number of actual
 227 * bytes transferred will be stored in the @actual_length parameter.
 228 *
 229 */
 230int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
 231                 void *data, int len, int *actual_length, int timeout)
 232{
 233        struct urb *urb;
 234        struct usb_host_endpoint *ep;
 235
 236        ep = usb_pipe_endpoint(usb_dev, pipe);
 237        if (!ep || len < 0)
 238                return -EINVAL;
 239
 240        urb = usb_alloc_urb(0, GFP_KERNEL);
 241        if (!urb)
 242                return -ENOMEM;
 243
 244        if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
 245                        USB_ENDPOINT_XFER_INT) {
 246                pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
 247                usb_fill_int_urb(urb, usb_dev, pipe, data, len,
 248                                usb_api_blocking_completion, NULL,
 249                                ep->desc.bInterval);
 250        } else
 251                usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
 252                                usb_api_blocking_completion, NULL);
 253
 254        return usb_start_wait_urb(urb, timeout, actual_length);
 255}
 256EXPORT_SYMBOL_GPL(usb_bulk_msg);
 257
 258/*-------------------------------------------------------------------*/
 259
 260static void sg_clean(struct usb_sg_request *io)
 261{
 262        if (io->urbs) {
 263                while (io->entries--)
 264                        usb_free_urb(io->urbs[io->entries]);
 265                kfree(io->urbs);
 266                io->urbs = NULL;
 267        }
 268        io->dev = NULL;
 269}
 270
 271static void sg_complete(struct urb *urb)
 272{
 273        unsigned long flags;
 274        struct usb_sg_request *io = urb->context;
 275        int status = urb->status;
 276
 277        spin_lock_irqsave(&io->lock, flags);
 278
 279        /* In 2.5 we require hcds' endpoint queues not to progress after fault
 280         * reports, until the completion callback (this!) returns.  That lets
 281         * device driver code (like this routine) unlink queued urbs first,
 282         * if it needs to, since the HC won't work on them at all.  So it's
 283         * not possible for page N+1 to overwrite page N, and so on.
 284         *
 285         * That's only for "hard" faults; "soft" faults (unlinks) sometimes
 286         * complete before the HCD can get requests away from hardware,
 287         * though never during cleanup after a hard fault.
 288         */
 289        if (io->status
 290                        && (io->status != -ECONNRESET
 291                                || status != -ECONNRESET)
 292                        && urb->actual_length) {
 293                dev_err(io->dev->bus->controller,
 294                        "dev %s ep%d%s scatterlist error %d/%d\n",
 295                        io->dev->devpath,
 296                        usb_endpoint_num(&urb->ep->desc),
 297                        usb_urb_dir_in(urb) ? "in" : "out",
 298                        status, io->status);
 299                /* BUG (); */
 300        }
 301
 302        if (io->status == 0 && status && status != -ECONNRESET) {
 303                int i, found, retval;
 304
 305                io->status = status;
 306
 307                /* the previous urbs, and this one, completed already.
 308                 * unlink pending urbs so they won't rx/tx bad data.
 309                 * careful: unlink can sometimes be synchronous...
 310                 */
 311                spin_unlock_irqrestore(&io->lock, flags);
 312                for (i = 0, found = 0; i < io->entries; i++) {
 313                        if (!io->urbs[i])
 314                                continue;
 315                        if (found) {
 316                                usb_block_urb(io->urbs[i]);
 317                                retval = usb_unlink_urb(io->urbs[i]);
 318                                if (retval != -EINPROGRESS &&
 319                                    retval != -ENODEV &&
 320                                    retval != -EBUSY &&
 321                                    retval != -EIDRM)
 322                                        dev_err(&io->dev->dev,
 323                                                "%s, unlink --> %d\n",
 324                                                __func__, retval);
 325                        } else if (urb == io->urbs[i])
 326                                found = 1;
 327                }
 328                spin_lock_irqsave(&io->lock, flags);
 329        }
 330
 331        /* on the last completion, signal usb_sg_wait() */
 332        io->bytes += urb->actual_length;
 333        io->count--;
 334        if (!io->count)
 335                complete(&io->complete);
 336
 337        spin_unlock_irqrestore(&io->lock, flags);
 338}
 339
 340
 341/**
 342 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
 343 * @io: request block being initialized.  until usb_sg_wait() returns,
 344 *      treat this as a pointer to an opaque block of memory,
 345 * @dev: the usb device that will send or receive the data
 346 * @pipe: endpoint "pipe" used to transfer the data
 347 * @period: polling rate for interrupt endpoints, in frames or
 348 *      (for high speed endpoints) microframes; ignored for bulk
 349 * @sg: scatterlist entries
 350 * @nents: how many entries in the scatterlist
 351 * @length: how many bytes to send from the scatterlist, or zero to
 352 *      send every byte identified in the list.
 353 * @mem_flags: SLAB_* flags affecting memory allocations in this call
 354 *
 355 * This initializes a scatter/gather request, allocating resources such as
 356 * I/O mappings and urb memory (except maybe memory used by USB controller
 357 * drivers).
 358 *
 359 * The request must be issued using usb_sg_wait(), which waits for the I/O to
 360 * complete (or to be canceled) and then cleans up all resources allocated by
 361 * usb_sg_init().
 362 *
 363 * The request may be canceled with usb_sg_cancel(), either before or after
 364 * usb_sg_wait() is called.
 365 *
 366 * Return: Zero for success, else a negative errno value.
 367 */
 368int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
 369                unsigned pipe, unsigned period, struct scatterlist *sg,
 370                int nents, size_t length, gfp_t mem_flags)
 371{
 372        int i;
 373        int urb_flags;
 374        int use_sg;
 375
 376        if (!io || !dev || !sg
 377                        || usb_pipecontrol(pipe)
 378                        || usb_pipeisoc(pipe)
 379                        || nents <= 0)
 380                return -EINVAL;
 381
 382        spin_lock_init(&io->lock);
 383        io->dev = dev;
 384        io->pipe = pipe;
 385
 386        if (dev->bus->sg_tablesize > 0) {
 387                use_sg = true;
 388                io->entries = 1;
 389        } else {
 390                use_sg = false;
 391                io->entries = nents;
 392        }
 393
 394        /* initialize all the urbs we'll use */
 395        io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
 396        if (!io->urbs)
 397                goto nomem;
 398
 399        urb_flags = URB_NO_INTERRUPT;
 400        if (usb_pipein(pipe))
 401                urb_flags |= URB_SHORT_NOT_OK;
 402
 403        for_each_sg(sg, sg, io->entries, i) {
 404                struct urb *urb;
 405                unsigned len;
 406
 407                urb = usb_alloc_urb(0, mem_flags);
 408                if (!urb) {
 409                        io->entries = i;
 410                        goto nomem;
 411                }
 412                io->urbs[i] = urb;
 413
 414                urb->dev = NULL;
 415                urb->pipe = pipe;
 416                urb->interval = period;
 417                urb->transfer_flags = urb_flags;
 418                urb->complete = sg_complete;
 419                urb->context = io;
 420                urb->sg = sg;
 421
 422                if (use_sg) {
 423                        /* There is no single transfer buffer */
 424                        urb->transfer_buffer = NULL;
 425                        urb->num_sgs = nents;
 426
 427                        /* A length of zero means transfer the whole sg list */
 428                        len = length;
 429                        if (len == 0) {
 430                                struct scatterlist      *sg2;
 431                                int                     j;
 432
 433                                for_each_sg(sg, sg2, nents, j)
 434                                        len += sg2->length;
 435                        }
 436                } else {
 437                        /*
 438                         * Some systems can't use DMA; they use PIO instead.
 439                         * For their sakes, transfer_buffer is set whenever
 440                         * possible.
 441                         */
 442                        if (!PageHighMem(sg_page(sg)))
 443                                urb->transfer_buffer = sg_virt(sg);
 444                        else
 445                                urb->transfer_buffer = NULL;
 446
 447                        len = sg->length;
 448                        if (length) {
 449                                len = min_t(size_t, len, length);
 450                                length -= len;
 451                                if (length == 0)
 452                                        io->entries = i + 1;
 453                        }
 454                }
 455                urb->transfer_buffer_length = len;
 456        }
 457        io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
 458
 459        /* transaction state */
 460        io->count = io->entries;
 461        io->status = 0;
 462        io->bytes = 0;
 463        init_completion(&io->complete);
 464        return 0;
 465
 466nomem:
 467        sg_clean(io);
 468        return -ENOMEM;
 469}
 470EXPORT_SYMBOL_GPL(usb_sg_init);
 471
 472/**
 473 * usb_sg_wait - synchronously execute scatter/gather request
 474 * @io: request block handle, as initialized with usb_sg_init().
 475 *      some fields become accessible when this call returns.
 476 * Context: !in_interrupt ()
 477 *
 478 * This function blocks until the specified I/O operation completes.  It
 479 * leverages the grouping of the related I/O requests to get good transfer
 480 * rates, by queueing the requests.  At higher speeds, such queuing can
 481 * significantly improve USB throughput.
 482 *
 483 * There are three kinds of completion for this function.
 484 *
 485 * (1) success, where io->status is zero.  The number of io->bytes
 486 *     transferred is as requested.
 487 * (2) error, where io->status is a negative errno value.  The number
 488 *     of io->bytes transferred before the error is usually less
 489 *     than requested, and can be nonzero.
 490 * (3) cancellation, a type of error with status -ECONNRESET that
 491 *     is initiated by usb_sg_cancel().
 492 *
 493 * When this function returns, all memory allocated through usb_sg_init() or
 494 * this call will have been freed.  The request block parameter may still be
 495 * passed to usb_sg_cancel(), or it may be freed.  It could also be
 496 * reinitialized and then reused.
 497 *
 498 * Data Transfer Rates:
 499 *
 500 * Bulk transfers are valid for full or high speed endpoints.
 501 * The best full speed data rate is 19 packets of 64 bytes each
 502 * per frame, or 1216 bytes per millisecond.
 503 * The best high speed data rate is 13 packets of 512 bytes each
 504 * per microframe, or 52 KBytes per millisecond.
 505 *
 506 * The reason to use interrupt transfers through this API would most likely
 507 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
 508 * could be transferred.  That capability is less useful for low or full
 509 * speed interrupt endpoints, which allow at most one packet per millisecond,
 510 * of at most 8 or 64 bytes (respectively).
 511 *
 512 * It is not necessary to call this function to reserve bandwidth for devices
 513 * under an xHCI host controller, as the bandwidth is reserved when the
 514 * configuration or interface alt setting is selected.
 515 */
 516void usb_sg_wait(struct usb_sg_request *io)
 517{
 518        int i;
 519        int entries = io->entries;
 520
 521        /* queue the urbs.  */
 522        spin_lock_irq(&io->lock);
 523        i = 0;
 524        while (i < entries && !io->status) {
 525                int retval;
 526
 527                io->urbs[i]->dev = io->dev;
 528                spin_unlock_irq(&io->lock);
 529
 530                retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
 531
 532                switch (retval) {
 533                        /* maybe we retrying will recover */
 534                case -ENXIO:    /* hc didn't queue this one */
 535                case -EAGAIN:
 536                case -ENOMEM:
 537                        retval = 0;
 538                        yield();
 539                        break;
 540
 541                        /* no error? continue immediately.
 542                         *
 543                         * NOTE: to work better with UHCI (4K I/O buffer may
 544                         * need 3K of TDs) it may be good to limit how many
 545                         * URBs are queued at once; N milliseconds?
 546                         */
 547                case 0:
 548                        ++i;
 549                        cpu_relax();
 550                        break;
 551
 552                        /* fail any uncompleted urbs */
 553                default:
 554                        io->urbs[i]->status = retval;
 555                        dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
 556                                __func__, retval);
 557                        usb_sg_cancel(io);
 558                }
 559                spin_lock_irq(&io->lock);
 560                if (retval && (io->status == 0 || io->status == -ECONNRESET))
 561                        io->status = retval;
 562        }
 563        io->count -= entries - i;
 564        if (io->count == 0)
 565                complete(&io->complete);
 566        spin_unlock_irq(&io->lock);
 567
 568        /* OK, yes, this could be packaged as non-blocking.
 569         * So could the submit loop above ... but it's easier to
 570         * solve neither problem than to solve both!
 571         */
 572        wait_for_completion(&io->complete);
 573
 574        sg_clean(io);
 575}
 576EXPORT_SYMBOL_GPL(usb_sg_wait);
 577
 578/**
 579 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
 580 * @io: request block, initialized with usb_sg_init()
 581 *
 582 * This stops a request after it has been started by usb_sg_wait().
 583 * It can also prevents one initialized by usb_sg_init() from starting,
 584 * so that call just frees resources allocated to the request.
 585 */
 586void usb_sg_cancel(struct usb_sg_request *io)
 587{
 588        unsigned long flags;
 589        int i, retval;
 590
 591        spin_lock_irqsave(&io->lock, flags);
 592        if (io->status || io->count == 0) {
 593                spin_unlock_irqrestore(&io->lock, flags);
 594                return;
 595        }
 596        /* shut everything down */
 597        io->status = -ECONNRESET;
 598        io->count++;            /* Keep the request alive until we're done */
 599        spin_unlock_irqrestore(&io->lock, flags);
 600
 601        for (i = io->entries - 1; i >= 0; --i) {
 602                usb_block_urb(io->urbs[i]);
 603
 604                retval = usb_unlink_urb(io->urbs[i]);
 605                if (retval != -EINPROGRESS
 606                    && retval != -ENODEV
 607                    && retval != -EBUSY
 608                    && retval != -EIDRM)
 609                        dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
 610                                 __func__, retval);
 611        }
 612
 613        spin_lock_irqsave(&io->lock, flags);
 614        io->count--;
 615        if (!io->count)
 616                complete(&io->complete);
 617        spin_unlock_irqrestore(&io->lock, flags);
 618}
 619EXPORT_SYMBOL_GPL(usb_sg_cancel);
 620
 621/*-------------------------------------------------------------------*/
 622
 623/**
 624 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
 625 * @dev: the device whose descriptor is being retrieved
 626 * @type: the descriptor type (USB_DT_*)
 627 * @index: the number of the descriptor
 628 * @buf: where to put the descriptor
 629 * @size: how big is "buf"?
 630 * Context: !in_interrupt ()
 631 *
 632 * Gets a USB descriptor.  Convenience functions exist to simplify
 633 * getting some types of descriptors.  Use
 634 * usb_get_string() or usb_string() for USB_DT_STRING.
 635 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
 636 * are part of the device structure.
 637 * In addition to a number of USB-standard descriptors, some
 638 * devices also use class-specific or vendor-specific descriptors.
 639 *
 640 * This call is synchronous, and may not be used in an interrupt context.
 641 *
 642 * Return: The number of bytes received on success, or else the status code
 643 * returned by the underlying usb_control_msg() call.
 644 */
 645int usb_get_descriptor(struct usb_device *dev, unsigned char type,
 646                       unsigned char index, void *buf, int size)
 647{
 648        int i;
 649        int result;
 650
 651        memset(buf, 0, size);   /* Make sure we parse really received data */
 652
 653        for (i = 0; i < 3; ++i) {
 654                /* retry on length 0 or error; some devices are flakey */
 655                result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 656                                USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 657                                (type << 8) + index, 0, buf, size,
 658                                USB_CTRL_GET_TIMEOUT);
 659                if (result <= 0 && result != -ETIMEDOUT)
 660                        continue;
 661                if (result > 1 && ((u8 *)buf)[1] != type) {
 662                        result = -ENODATA;
 663                        continue;
 664                }
 665                break;
 666        }
 667        return result;
 668}
 669EXPORT_SYMBOL_GPL(usb_get_descriptor);
 670
 671/**
 672 * usb_get_string - gets a string descriptor
 673 * @dev: the device whose string descriptor is being retrieved
 674 * @langid: code for language chosen (from string descriptor zero)
 675 * @index: the number of the descriptor
 676 * @buf: where to put the string
 677 * @size: how big is "buf"?
 678 * Context: !in_interrupt ()
 679 *
 680 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
 681 * in little-endian byte order).
 682 * The usb_string() function will often be a convenient way to turn
 683 * these strings into kernel-printable form.
 684 *
 685 * Strings may be referenced in device, configuration, interface, or other
 686 * descriptors, and could also be used in vendor-specific ways.
 687 *
 688 * This call is synchronous, and may not be used in an interrupt context.
 689 *
 690 * Return: The number of bytes received on success, or else the status code
 691 * returned by the underlying usb_control_msg() call.
 692 */
 693static int usb_get_string(struct usb_device *dev, unsigned short langid,
 694                          unsigned char index, void *buf, int size)
 695{
 696        int i;
 697        int result;
 698
 699        for (i = 0; i < 3; ++i) {
 700                /* retry on length 0 or stall; some devices are flakey */
 701                result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 702                        USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 703                        (USB_DT_STRING << 8) + index, langid, buf, size,
 704                        USB_CTRL_GET_TIMEOUT);
 705                if (result == 0 || result == -EPIPE)
 706                        continue;
 707                if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
 708                        result = -ENODATA;
 709                        continue;
 710                }
 711                break;
 712        }
 713        return result;
 714}
 715
 716static void usb_try_string_workarounds(unsigned char *buf, int *length)
 717{
 718        int newlength, oldlength = *length;
 719
 720        for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
 721                if (!isprint(buf[newlength]) || buf[newlength + 1])
 722                        break;
 723
 724        if (newlength > 2) {
 725                buf[0] = newlength;
 726                *length = newlength;
 727        }
 728}
 729
 730static int usb_string_sub(struct usb_device *dev, unsigned int langid,
 731                          unsigned int index, unsigned char *buf)
 732{
 733        int rc;
 734
 735        /* Try to read the string descriptor by asking for the maximum
 736         * possible number of bytes */
 737        if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
 738                rc = -EIO;
 739        else
 740                rc = usb_get_string(dev, langid, index, buf, 255);
 741
 742        /* If that failed try to read the descriptor length, then
 743         * ask for just that many bytes */
 744        if (rc < 2) {
 745                rc = usb_get_string(dev, langid, index, buf, 2);
 746                if (rc == 2)
 747                        rc = usb_get_string(dev, langid, index, buf, buf[0]);
 748        }
 749
 750        if (rc >= 2) {
 751                if (!buf[0] && !buf[1])
 752                        usb_try_string_workarounds(buf, &rc);
 753
 754                /* There might be extra junk at the end of the descriptor */
 755                if (buf[0] < rc)
 756                        rc = buf[0];
 757
 758                rc = rc - (rc & 1); /* force a multiple of two */
 759        }
 760
 761        if (rc < 2)
 762                rc = (rc < 0 ? rc : -EINVAL);
 763
 764        return rc;
 765}
 766
 767static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
 768{
 769        int err;
 770
 771        if (dev->have_langid)
 772                return 0;
 773
 774        if (dev->string_langid < 0)
 775                return -EPIPE;
 776
 777        err = usb_string_sub(dev, 0, 0, tbuf);
 778
 779        /* If the string was reported but is malformed, default to english
 780         * (0x0409) */
 781        if (err == -ENODATA || (err > 0 && err < 4)) {
 782                dev->string_langid = 0x0409;
 783                dev->have_langid = 1;
 784                dev_err(&dev->dev,
 785                        "language id specifier not provided by device, defaulting to English\n");
 786                return 0;
 787        }
 788
 789        /* In case of all other errors, we assume the device is not able to
 790         * deal with strings at all. Set string_langid to -1 in order to
 791         * prevent any string to be retrieved from the device */
 792        if (err < 0) {
 793                dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
 794                                        err);
 795                dev->string_langid = -1;
 796                return -EPIPE;
 797        }
 798
 799        /* always use the first langid listed */
 800        dev->string_langid = tbuf[2] | (tbuf[3] << 8);
 801        dev->have_langid = 1;
 802        dev_dbg(&dev->dev, "default language 0x%04x\n",
 803                                dev->string_langid);
 804        return 0;
 805}
 806
 807/**
 808 * usb_string - returns UTF-8 version of a string descriptor
 809 * @dev: the device whose string descriptor is being retrieved
 810 * @index: the number of the descriptor
 811 * @buf: where to put the string
 812 * @size: how big is "buf"?
 813 * Context: !in_interrupt ()
 814 *
 815 * This converts the UTF-16LE encoded strings returned by devices, from
 816 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
 817 * that are more usable in most kernel contexts.  Note that this function
 818 * chooses strings in the first language supported by the device.
 819 *
 820 * This call is synchronous, and may not be used in an interrupt context.
 821 *
 822 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
 823 */
 824int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
 825{
 826        unsigned char *tbuf;
 827        int err;
 828
 829        if (dev->state == USB_STATE_SUSPENDED)
 830                return -EHOSTUNREACH;
 831        if (size <= 0 || !buf)
 832                return -EINVAL;
 833        buf[0] = 0;
 834        if (index <= 0 || index >= 256)
 835                return -EINVAL;
 836        tbuf = kmalloc(256, GFP_NOIO);
 837        if (!tbuf)
 838                return -ENOMEM;
 839
 840        err = usb_get_langid(dev, tbuf);
 841        if (err < 0)
 842                goto errout;
 843
 844        err = usb_string_sub(dev, dev->string_langid, index, tbuf);
 845        if (err < 0)
 846                goto errout;
 847
 848        size--;         /* leave room for trailing NULL char in output buffer */
 849        err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
 850                        UTF16_LITTLE_ENDIAN, buf, size);
 851        buf[err] = 0;
 852
 853        if (tbuf[1] != USB_DT_STRING)
 854                dev_dbg(&dev->dev,
 855                        "wrong descriptor type %02x for string %d (\"%s\")\n",
 856                        tbuf[1], index, buf);
 857
 858 errout:
 859        kfree(tbuf);
 860        return err;
 861}
 862EXPORT_SYMBOL_GPL(usb_string);
 863
 864/* one UTF-8-encoded 16-bit character has at most three bytes */
 865#define MAX_USB_STRING_SIZE (127 * 3 + 1)
 866
 867/**
 868 * usb_cache_string - read a string descriptor and cache it for later use
 869 * @udev: the device whose string descriptor is being read
 870 * @index: the descriptor index
 871 *
 872 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
 873 * or %NULL if the index is 0 or the string could not be read.
 874 */
 875char *usb_cache_string(struct usb_device *udev, int index)
 876{
 877        char *buf;
 878        char *smallbuf = NULL;
 879        int len;
 880
 881        if (index <= 0)
 882                return NULL;
 883
 884        buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
 885        if (buf) {
 886                len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
 887                if (len > 0) {
 888                        smallbuf = kmalloc(++len, GFP_NOIO);
 889                        if (!smallbuf)
 890                                return buf;
 891                        memcpy(smallbuf, buf, len);
 892                }
 893                kfree(buf);
 894        }
 895        return smallbuf;
 896}
 897
 898/*
 899 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
 900 * @dev: the device whose device descriptor is being updated
 901 * @size: how much of the descriptor to read
 902 * Context: !in_interrupt ()
 903 *
 904 * Updates the copy of the device descriptor stored in the device structure,
 905 * which dedicates space for this purpose.
 906 *
 907 * Not exported, only for use by the core.  If drivers really want to read
 908 * the device descriptor directly, they can call usb_get_descriptor() with
 909 * type = USB_DT_DEVICE and index = 0.
 910 *
 911 * This call is synchronous, and may not be used in an interrupt context.
 912 *
 913 * Return: The number of bytes received on success, or else the status code
 914 * returned by the underlying usb_control_msg() call.
 915 */
 916int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
 917{
 918        struct usb_device_descriptor *desc;
 919        int ret;
 920
 921        if (size > sizeof(*desc))
 922                return -EINVAL;
 923        desc = kmalloc(sizeof(*desc), GFP_NOIO);
 924        if (!desc)
 925                return -ENOMEM;
 926
 927        ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
 928        if (ret >= 0)
 929                memcpy(&dev->descriptor, desc, size);
 930        kfree(desc);
 931        return ret;
 932}
 933
 934/*
 935 * usb_set_isoch_delay - informs the device of the packet transmit delay
 936 * @dev: the device whose delay is to be informed
 937 * Context: !in_interrupt()
 938 *
 939 * Since this is an optional request, we don't bother if it fails.
 940 */
 941int usb_set_isoch_delay(struct usb_device *dev)
 942{
 943        /* skip hub devices */
 944        if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
 945                return 0;
 946
 947        /* skip non-SS/non-SSP devices */
 948        if (dev->speed < USB_SPEED_SUPER)
 949                return 0;
 950
 951        return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
 952                        USB_REQ_SET_ISOCH_DELAY,
 953                        USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
 954                        dev->hub_delay, 0, NULL, 0,
 955                        USB_CTRL_SET_TIMEOUT);
 956}
 957
 958/**
 959 * usb_get_status - issues a GET_STATUS call
 960 * @dev: the device whose status is being checked
 961 * @recip: USB_RECIP_*; for device, interface, or endpoint
 962 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
 963 * @target: zero (for device), else interface or endpoint number
 964 * @data: pointer to two bytes of bitmap data
 965 * Context: !in_interrupt ()
 966 *
 967 * Returns device, interface, or endpoint status.  Normally only of
 968 * interest to see if the device is self powered, or has enabled the
 969 * remote wakeup facility; or whether a bulk or interrupt endpoint
 970 * is halted ("stalled").
 971 *
 972 * Bits in these status bitmaps are set using the SET_FEATURE request,
 973 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
 974 * function should be used to clear halt ("stall") status.
 975 *
 976 * This call is synchronous, and may not be used in an interrupt context.
 977 *
 978 * Returns 0 and the status value in *@data (in host byte order) on success,
 979 * or else the status code from the underlying usb_control_msg() call.
 980 */
 981int usb_get_status(struct usb_device *dev, int recip, int type, int target,
 982                void *data)
 983{
 984        int ret;
 985        void *status;
 986        int length;
 987
 988        switch (type) {
 989        case USB_STATUS_TYPE_STANDARD:
 990                length = 2;
 991                break;
 992        case USB_STATUS_TYPE_PTM:
 993                if (recip != USB_RECIP_DEVICE)
 994                        return -EINVAL;
 995
 996                length = 4;
 997                break;
 998        default:
 999                return -EINVAL;
1000        }
1001
1002        status =  kmalloc(length, GFP_KERNEL);
1003        if (!status)
1004                return -ENOMEM;
1005
1006        ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1007                USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1008                target, status, length, USB_CTRL_GET_TIMEOUT);
1009
1010        switch (ret) {
1011        case 4:
1012                if (type != USB_STATUS_TYPE_PTM) {
1013                        ret = -EIO;
1014                        break;
1015                }
1016
1017                *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1018                ret = 0;
1019                break;
1020        case 2:
1021                if (type != USB_STATUS_TYPE_STANDARD) {
1022                        ret = -EIO;
1023                        break;
1024                }
1025
1026                *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1027                ret = 0;
1028                break;
1029        default:
1030                ret = -EIO;
1031        }
1032
1033        kfree(status);
1034        return ret;
1035}
1036EXPORT_SYMBOL_GPL(usb_get_status);
1037
1038/**
1039 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1040 * @dev: device whose endpoint is halted
1041 * @pipe: endpoint "pipe" being cleared
1042 * Context: !in_interrupt ()
1043 *
1044 * This is used to clear halt conditions for bulk and interrupt endpoints,
1045 * as reported by URB completion status.  Endpoints that are halted are
1046 * sometimes referred to as being "stalled".  Such endpoints are unable
1047 * to transmit or receive data until the halt status is cleared.  Any URBs
1048 * queued for such an endpoint should normally be unlinked by the driver
1049 * before clearing the halt condition, as described in sections 5.7.5
1050 * and 5.8.5 of the USB 2.0 spec.
1051 *
1052 * Note that control and isochronous endpoints don't halt, although control
1053 * endpoints report "protocol stall" (for unsupported requests) using the
1054 * same status code used to report a true stall.
1055 *
1056 * This call is synchronous, and may not be used in an interrupt context.
1057 *
1058 * Return: Zero on success, or else the status code returned by the
1059 * underlying usb_control_msg() call.
1060 */
1061int usb_clear_halt(struct usb_device *dev, int pipe)
1062{
1063        int result;
1064        int endp = usb_pipeendpoint(pipe);
1065
1066        if (usb_pipein(pipe))
1067                endp |= USB_DIR_IN;
1068
1069        /* we don't care if it wasn't halted first. in fact some devices
1070         * (like some ibmcam model 1 units) seem to expect hosts to make
1071         * this request for iso endpoints, which can't halt!
1072         */
1073        result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1074                USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1075                USB_ENDPOINT_HALT, endp, NULL, 0,
1076                USB_CTRL_SET_TIMEOUT);
1077
1078        /* don't un-halt or force to DATA0 except on success */
1079        if (result < 0)
1080                return result;
1081
1082        /* NOTE:  seems like Microsoft and Apple don't bother verifying
1083         * the clear "took", so some devices could lock up if you check...
1084         * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1085         *
1086         * NOTE:  make sure the logic here doesn't diverge much from
1087         * the copy in usb-storage, for as long as we need two copies.
1088         */
1089
1090        usb_reset_endpoint(dev, endp);
1091
1092        return 0;
1093}
1094EXPORT_SYMBOL_GPL(usb_clear_halt);
1095
1096static int create_intf_ep_devs(struct usb_interface *intf)
1097{
1098        struct usb_device *udev = interface_to_usbdev(intf);
1099        struct usb_host_interface *alt = intf->cur_altsetting;
1100        int i;
1101
1102        if (intf->ep_devs_created || intf->unregistering)
1103                return 0;
1104
1105        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1106                (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1107        intf->ep_devs_created = 1;
1108        return 0;
1109}
1110
1111static void remove_intf_ep_devs(struct usb_interface *intf)
1112{
1113        struct usb_host_interface *alt = intf->cur_altsetting;
1114        int i;
1115
1116        if (!intf->ep_devs_created)
1117                return;
1118
1119        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1120                usb_remove_ep_devs(&alt->endpoint[i]);
1121        intf->ep_devs_created = 0;
1122}
1123
1124/**
1125 * usb_disable_endpoint -- Disable an endpoint by address
1126 * @dev: the device whose endpoint is being disabled
1127 * @epaddr: the endpoint's address.  Endpoint number for output,
1128 *      endpoint number + USB_DIR_IN for input
1129 * @reset_hardware: flag to erase any endpoint state stored in the
1130 *      controller hardware
1131 *
1132 * Disables the endpoint for URB submission and nukes all pending URBs.
1133 * If @reset_hardware is set then also deallocates hcd/hardware state
1134 * for the endpoint.
1135 */
1136void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1137                bool reset_hardware)
1138{
1139        unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1140        struct usb_host_endpoint *ep;
1141
1142        if (!dev)
1143                return;
1144
1145        if (usb_endpoint_out(epaddr)) {
1146                ep = dev->ep_out[epnum];
1147                if (reset_hardware && epnum != 0)
1148                        dev->ep_out[epnum] = NULL;
1149        } else {
1150                ep = dev->ep_in[epnum];
1151                if (reset_hardware && epnum != 0)
1152                        dev->ep_in[epnum] = NULL;
1153        }
1154        if (ep) {
1155                ep->enabled = 0;
1156                usb_hcd_flush_endpoint(dev, ep);
1157                if (reset_hardware)
1158                        usb_hcd_disable_endpoint(dev, ep);
1159        }
1160}
1161
1162/**
1163 * usb_reset_endpoint - Reset an endpoint's state.
1164 * @dev: the device whose endpoint is to be reset
1165 * @epaddr: the endpoint's address.  Endpoint number for output,
1166 *      endpoint number + USB_DIR_IN for input
1167 *
1168 * Resets any host-side endpoint state such as the toggle bit,
1169 * sequence number or current window.
1170 */
1171void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1172{
1173        unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1174        struct usb_host_endpoint *ep;
1175
1176        if (usb_endpoint_out(epaddr))
1177                ep = dev->ep_out[epnum];
1178        else
1179                ep = dev->ep_in[epnum];
1180        if (ep)
1181                usb_hcd_reset_endpoint(dev, ep);
1182}
1183EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1184
1185
1186/**
1187 * usb_disable_interface -- Disable all endpoints for an interface
1188 * @dev: the device whose interface is being disabled
1189 * @intf: pointer to the interface descriptor
1190 * @reset_hardware: flag to erase any endpoint state stored in the
1191 *      controller hardware
1192 *
1193 * Disables all the endpoints for the interface's current altsetting.
1194 */
1195void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1196                bool reset_hardware)
1197{
1198        struct usb_host_interface *alt = intf->cur_altsetting;
1199        int i;
1200
1201        for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1202                usb_disable_endpoint(dev,
1203                                alt->endpoint[i].desc.bEndpointAddress,
1204                                reset_hardware);
1205        }
1206}
1207
1208/**
1209 * usb_disable_device - Disable all the endpoints for a USB device
1210 * @dev: the device whose endpoints are being disabled
1211 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1212 *
1213 * Disables all the device's endpoints, potentially including endpoint 0.
1214 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1215 * pending urbs) and usbcore state for the interfaces, so that usbcore
1216 * must usb_set_configuration() before any interfaces could be used.
1217 */
1218void usb_disable_device(struct usb_device *dev, int skip_ep0)
1219{
1220        int i;
1221        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1222
1223        /* getting rid of interfaces will disconnect
1224         * any drivers bound to them (a key side effect)
1225         */
1226        if (dev->actconfig) {
1227                /*
1228                 * FIXME: In order to avoid self-deadlock involving the
1229                 * bandwidth_mutex, we have to mark all the interfaces
1230                 * before unregistering any of them.
1231                 */
1232                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1233                        dev->actconfig->interface[i]->unregistering = 1;
1234
1235                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1236                        struct usb_interface    *interface;
1237
1238                        /* remove this interface if it has been registered */
1239                        interface = dev->actconfig->interface[i];
1240                        if (!device_is_registered(&interface->dev))
1241                                continue;
1242                        dev_dbg(&dev->dev, "unregistering interface %s\n",
1243                                dev_name(&interface->dev));
1244                        remove_intf_ep_devs(interface);
1245                        device_del(&interface->dev);
1246                }
1247
1248                /* Now that the interfaces are unbound, nobody should
1249                 * try to access them.
1250                 */
1251                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1252                        put_device(&dev->actconfig->interface[i]->dev);
1253                        dev->actconfig->interface[i] = NULL;
1254                }
1255
1256                usb_disable_usb2_hardware_lpm(dev);
1257                usb_unlocked_disable_lpm(dev);
1258                usb_disable_ltm(dev);
1259
1260                dev->actconfig = NULL;
1261                if (dev->state == USB_STATE_CONFIGURED)
1262                        usb_set_device_state(dev, USB_STATE_ADDRESS);
1263        }
1264
1265        dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1266                skip_ep0 ? "non-ep0" : "all");
1267        if (hcd->driver->check_bandwidth) {
1268                /* First pass: Cancel URBs, leave endpoint pointers intact. */
1269                for (i = skip_ep0; i < 16; ++i) {
1270                        usb_disable_endpoint(dev, i, false);
1271                        usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1272                }
1273                /* Remove endpoints from the host controller internal state */
1274                mutex_lock(hcd->bandwidth_mutex);
1275                usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1276                mutex_unlock(hcd->bandwidth_mutex);
1277                /* Second pass: remove endpoint pointers */
1278        }
1279        for (i = skip_ep0; i < 16; ++i) {
1280                usb_disable_endpoint(dev, i, true);
1281                usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1282        }
1283}
1284
1285/**
1286 * usb_enable_endpoint - Enable an endpoint for USB communications
1287 * @dev: the device whose interface is being enabled
1288 * @ep: the endpoint
1289 * @reset_ep: flag to reset the endpoint state
1290 *
1291 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1292 * For control endpoints, both the input and output sides are handled.
1293 */
1294void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1295                bool reset_ep)
1296{
1297        int epnum = usb_endpoint_num(&ep->desc);
1298        int is_out = usb_endpoint_dir_out(&ep->desc);
1299        int is_control = usb_endpoint_xfer_control(&ep->desc);
1300
1301        if (reset_ep)
1302                usb_hcd_reset_endpoint(dev, ep);
1303        if (is_out || is_control)
1304                dev->ep_out[epnum] = ep;
1305        if (!is_out || is_control)
1306                dev->ep_in[epnum] = ep;
1307        ep->enabled = 1;
1308}
1309
1310/**
1311 * usb_enable_interface - Enable all the endpoints for an interface
1312 * @dev: the device whose interface is being enabled
1313 * @intf: pointer to the interface descriptor
1314 * @reset_eps: flag to reset the endpoints' state
1315 *
1316 * Enables all the endpoints for the interface's current altsetting.
1317 */
1318void usb_enable_interface(struct usb_device *dev,
1319                struct usb_interface *intf, bool reset_eps)
1320{
1321        struct usb_host_interface *alt = intf->cur_altsetting;
1322        int i;
1323
1324        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1325                usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1326}
1327
1328/**
1329 * usb_set_interface - Makes a particular alternate setting be current
1330 * @dev: the device whose interface is being updated
1331 * @interface: the interface being updated
1332 * @alternate: the setting being chosen.
1333 * Context: !in_interrupt ()
1334 *
1335 * This is used to enable data transfers on interfaces that may not
1336 * be enabled by default.  Not all devices support such configurability.
1337 * Only the driver bound to an interface may change its setting.
1338 *
1339 * Within any given configuration, each interface may have several
1340 * alternative settings.  These are often used to control levels of
1341 * bandwidth consumption.  For example, the default setting for a high
1342 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1343 * while interrupt transfers of up to 3KBytes per microframe are legal.
1344 * Also, isochronous endpoints may never be part of an
1345 * interface's default setting.  To access such bandwidth, alternate
1346 * interface settings must be made current.
1347 *
1348 * Note that in the Linux USB subsystem, bandwidth associated with
1349 * an endpoint in a given alternate setting is not reserved until an URB
1350 * is submitted that needs that bandwidth.  Some other operating systems
1351 * allocate bandwidth early, when a configuration is chosen.
1352 *
1353 * xHCI reserves bandwidth and configures the alternate setting in
1354 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1355 * may be disabled. Drivers cannot rely on any particular alternate
1356 * setting being in effect after a failure.
1357 *
1358 * This call is synchronous, and may not be used in an interrupt context.
1359 * Also, drivers must not change altsettings while urbs are scheduled for
1360 * endpoints in that interface; all such urbs must first be completed
1361 * (perhaps forced by unlinking).
1362 *
1363 * Return: Zero on success, or else the status code returned by the
1364 * underlying usb_control_msg() call.
1365 */
1366int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1367{
1368        struct usb_interface *iface;
1369        struct usb_host_interface *alt;
1370        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1371        int i, ret, manual = 0;
1372        unsigned int epaddr;
1373        unsigned int pipe;
1374
1375        if (dev->state == USB_STATE_SUSPENDED)
1376                return -EHOSTUNREACH;
1377
1378        iface = usb_ifnum_to_if(dev, interface);
1379        if (!iface) {
1380                dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1381                        interface);
1382                return -EINVAL;
1383        }
1384        if (iface->unregistering)
1385                return -ENODEV;
1386
1387        alt = usb_altnum_to_altsetting(iface, alternate);
1388        if (!alt) {
1389                dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1390                         alternate);
1391                return -EINVAL;
1392        }
1393        /*
1394         * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1395         * including freeing dropped endpoint ring buffers.
1396         * Make sure the interface endpoints are flushed before that
1397         */
1398        usb_disable_interface(dev, iface, false);
1399
1400        /* Make sure we have enough bandwidth for this alternate interface.
1401         * Remove the current alt setting and add the new alt setting.
1402         */
1403        mutex_lock(hcd->bandwidth_mutex);
1404        /* Disable LPM, and re-enable it once the new alt setting is installed,
1405         * so that the xHCI driver can recalculate the U1/U2 timeouts.
1406         */
1407        if (usb_disable_lpm(dev)) {
1408                dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1409                mutex_unlock(hcd->bandwidth_mutex);
1410                return -ENOMEM;
1411        }
1412        /* Changing alt-setting also frees any allocated streams */
1413        for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1414                iface->cur_altsetting->endpoint[i].streams = 0;
1415
1416        ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1417        if (ret < 0) {
1418                dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1419                                alternate);
1420                usb_enable_lpm(dev);
1421                mutex_unlock(hcd->bandwidth_mutex);
1422                return ret;
1423        }
1424
1425        if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1426                ret = -EPIPE;
1427        else
1428                ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1429                                   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1430                                   alternate, interface, NULL, 0, 5000);
1431
1432        /* 9.4.10 says devices don't need this and are free to STALL the
1433         * request if the interface only has one alternate setting.
1434         */
1435        if (ret == -EPIPE && iface->num_altsetting == 1) {
1436                dev_dbg(&dev->dev,
1437                        "manual set_interface for iface %d, alt %d\n",
1438                        interface, alternate);
1439                manual = 1;
1440        } else if (ret < 0) {
1441                /* Re-instate the old alt setting */
1442                usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1443                usb_enable_lpm(dev);
1444                mutex_unlock(hcd->bandwidth_mutex);
1445                return ret;
1446        }
1447        mutex_unlock(hcd->bandwidth_mutex);
1448
1449        /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1450         * when they implement async or easily-killable versions of this or
1451         * other "should-be-internal" functions (like clear_halt).
1452         * should hcd+usbcore postprocess control requests?
1453         */
1454
1455        /* prevent submissions using previous endpoint settings */
1456        if (iface->cur_altsetting != alt) {
1457                remove_intf_ep_devs(iface);
1458                usb_remove_sysfs_intf_files(iface);
1459        }
1460        usb_disable_interface(dev, iface, true);
1461
1462        iface->cur_altsetting = alt;
1463
1464        /* Now that the interface is installed, re-enable LPM. */
1465        usb_unlocked_enable_lpm(dev);
1466
1467        /* If the interface only has one altsetting and the device didn't
1468         * accept the request, we attempt to carry out the equivalent action
1469         * by manually clearing the HALT feature for each endpoint in the
1470         * new altsetting.
1471         */
1472        if (manual) {
1473                for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1474                        epaddr = alt->endpoint[i].desc.bEndpointAddress;
1475                        pipe = __create_pipe(dev,
1476                                        USB_ENDPOINT_NUMBER_MASK & epaddr) |
1477                                        (usb_endpoint_out(epaddr) ?
1478                                        USB_DIR_OUT : USB_DIR_IN);
1479
1480                        usb_clear_halt(dev, pipe);
1481                }
1482        }
1483
1484        /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1485         *
1486         * Note:
1487         * Despite EP0 is always present in all interfaces/AS, the list of
1488         * endpoints from the descriptor does not contain EP0. Due to its
1489         * omnipresence one might expect EP0 being considered "affected" by
1490         * any SetInterface request and hence assume toggles need to be reset.
1491         * However, EP0 toggles are re-synced for every individual transfer
1492         * during the SETUP stage - hence EP0 toggles are "don't care" here.
1493         * (Likewise, EP0 never "halts" on well designed devices.)
1494         */
1495        usb_enable_interface(dev, iface, true);
1496        if (device_is_registered(&iface->dev)) {
1497                usb_create_sysfs_intf_files(iface);
1498                create_intf_ep_devs(iface);
1499        }
1500        return 0;
1501}
1502EXPORT_SYMBOL_GPL(usb_set_interface);
1503
1504/**
1505 * usb_reset_configuration - lightweight device reset
1506 * @dev: the device whose configuration is being reset
1507 *
1508 * This issues a standard SET_CONFIGURATION request to the device using
1509 * the current configuration.  The effect is to reset most USB-related
1510 * state in the device, including interface altsettings (reset to zero),
1511 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1512 * endpoints).  Other usbcore state is unchanged, including bindings of
1513 * usb device drivers to interfaces.
1514 *
1515 * Because this affects multiple interfaces, avoid using this with composite
1516 * (multi-interface) devices.  Instead, the driver for each interface may
1517 * use usb_set_interface() on the interfaces it claims.  Be careful though;
1518 * some devices don't support the SET_INTERFACE request, and others won't
1519 * reset all the interface state (notably endpoint state).  Resetting the whole
1520 * configuration would affect other drivers' interfaces.
1521 *
1522 * The caller must own the device lock.
1523 *
1524 * Return: Zero on success, else a negative error code.
1525 */
1526int usb_reset_configuration(struct usb_device *dev)
1527{
1528        int                     i, retval;
1529        struct usb_host_config  *config;
1530        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1531
1532        if (dev->state == USB_STATE_SUSPENDED)
1533                return -EHOSTUNREACH;
1534
1535        /* caller must have locked the device and must own
1536         * the usb bus readlock (so driver bindings are stable);
1537         * calls during probe() are fine
1538         */
1539
1540        for (i = 1; i < 16; ++i) {
1541                usb_disable_endpoint(dev, i, true);
1542                usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1543        }
1544
1545        config = dev->actconfig;
1546        retval = 0;
1547        mutex_lock(hcd->bandwidth_mutex);
1548        /* Disable LPM, and re-enable it once the configuration is reset, so
1549         * that the xHCI driver can recalculate the U1/U2 timeouts.
1550         */
1551        if (usb_disable_lpm(dev)) {
1552                dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1553                mutex_unlock(hcd->bandwidth_mutex);
1554                return -ENOMEM;
1555        }
1556        /* Make sure we have enough bandwidth for each alternate setting 0 */
1557        for (i = 0; i < config->desc.bNumInterfaces; i++) {
1558                struct usb_interface *intf = config->interface[i];
1559                struct usb_host_interface *alt;
1560
1561                alt = usb_altnum_to_altsetting(intf, 0);
1562                if (!alt)
1563                        alt = &intf->altsetting[0];
1564                if (alt != intf->cur_altsetting)
1565                        retval = usb_hcd_alloc_bandwidth(dev, NULL,
1566                                        intf->cur_altsetting, alt);
1567                if (retval < 0)
1568                        break;
1569        }
1570        /* If not, reinstate the old alternate settings */
1571        if (retval < 0) {
1572reset_old_alts:
1573                for (i--; i >= 0; i--) {
1574                        struct usb_interface *intf = config->interface[i];
1575                        struct usb_host_interface *alt;
1576
1577                        alt = usb_altnum_to_altsetting(intf, 0);
1578                        if (!alt)
1579                                alt = &intf->altsetting[0];
1580                        if (alt != intf->cur_altsetting)
1581                                usb_hcd_alloc_bandwidth(dev, NULL,
1582                                                alt, intf->cur_altsetting);
1583                }
1584                usb_enable_lpm(dev);
1585                mutex_unlock(hcd->bandwidth_mutex);
1586                return retval;
1587        }
1588        retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1589                        USB_REQ_SET_CONFIGURATION, 0,
1590                        config->desc.bConfigurationValue, 0,
1591                        NULL, 0, USB_CTRL_SET_TIMEOUT);
1592        if (retval < 0)
1593                goto reset_old_alts;
1594        mutex_unlock(hcd->bandwidth_mutex);
1595
1596        /* re-init hc/hcd interface/endpoint state */
1597        for (i = 0; i < config->desc.bNumInterfaces; i++) {
1598                struct usb_interface *intf = config->interface[i];
1599                struct usb_host_interface *alt;
1600
1601                alt = usb_altnum_to_altsetting(intf, 0);
1602
1603                /* No altsetting 0?  We'll assume the first altsetting.
1604                 * We could use a GetInterface call, but if a device is
1605                 * so non-compliant that it doesn't have altsetting 0
1606                 * then I wouldn't trust its reply anyway.
1607                 */
1608                if (!alt)
1609                        alt = &intf->altsetting[0];
1610
1611                if (alt != intf->cur_altsetting) {
1612                        remove_intf_ep_devs(intf);
1613                        usb_remove_sysfs_intf_files(intf);
1614                }
1615                intf->cur_altsetting = alt;
1616                usb_enable_interface(dev, intf, true);
1617                if (device_is_registered(&intf->dev)) {
1618                        usb_create_sysfs_intf_files(intf);
1619                        create_intf_ep_devs(intf);
1620                }
1621        }
1622        /* Now that the interfaces are installed, re-enable LPM. */
1623        usb_unlocked_enable_lpm(dev);
1624        return 0;
1625}
1626EXPORT_SYMBOL_GPL(usb_reset_configuration);
1627
1628static void usb_release_interface(struct device *dev)
1629{
1630        struct usb_interface *intf = to_usb_interface(dev);
1631        struct usb_interface_cache *intfc =
1632                        altsetting_to_usb_interface_cache(intf->altsetting);
1633
1634        kref_put(&intfc->ref, usb_release_interface_cache);
1635        usb_put_dev(interface_to_usbdev(intf));
1636        of_node_put(dev->of_node);
1637        kfree(intf);
1638}
1639
1640/*
1641 * usb_deauthorize_interface - deauthorize an USB interface
1642 *
1643 * @intf: USB interface structure
1644 */
1645void usb_deauthorize_interface(struct usb_interface *intf)
1646{
1647        struct device *dev = &intf->dev;
1648
1649        device_lock(dev->parent);
1650
1651        if (intf->authorized) {
1652                device_lock(dev);
1653                intf->authorized = 0;
1654                device_unlock(dev);
1655
1656                usb_forced_unbind_intf(intf);
1657        }
1658
1659        device_unlock(dev->parent);
1660}
1661
1662/*
1663 * usb_authorize_interface - authorize an USB interface
1664 *
1665 * @intf: USB interface structure
1666 */
1667void usb_authorize_interface(struct usb_interface *intf)
1668{
1669        struct device *dev = &intf->dev;
1670
1671        if (!intf->authorized) {
1672                device_lock(dev);
1673                intf->authorized = 1; /* authorize interface */
1674                device_unlock(dev);
1675        }
1676}
1677
1678static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1679{
1680        struct usb_device *usb_dev;
1681        struct usb_interface *intf;
1682        struct usb_host_interface *alt;
1683
1684        intf = to_usb_interface(dev);
1685        usb_dev = interface_to_usbdev(intf);
1686        alt = intf->cur_altsetting;
1687
1688        if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1689                   alt->desc.bInterfaceClass,
1690                   alt->desc.bInterfaceSubClass,
1691                   alt->desc.bInterfaceProtocol))
1692                return -ENOMEM;
1693
1694        if (add_uevent_var(env,
1695                   "MODALIAS=usb:"
1696                   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1697                   le16_to_cpu(usb_dev->descriptor.idVendor),
1698                   le16_to_cpu(usb_dev->descriptor.idProduct),
1699                   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1700                   usb_dev->descriptor.bDeviceClass,
1701                   usb_dev->descriptor.bDeviceSubClass,
1702                   usb_dev->descriptor.bDeviceProtocol,
1703                   alt->desc.bInterfaceClass,
1704                   alt->desc.bInterfaceSubClass,
1705                   alt->desc.bInterfaceProtocol,
1706                   alt->desc.bInterfaceNumber))
1707                return -ENOMEM;
1708
1709        return 0;
1710}
1711
1712struct device_type usb_if_device_type = {
1713        .name =         "usb_interface",
1714        .release =      usb_release_interface,
1715        .uevent =       usb_if_uevent,
1716};
1717
1718static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1719                                                struct usb_host_config *config,
1720                                                u8 inum)
1721{
1722        struct usb_interface_assoc_descriptor *retval = NULL;
1723        struct usb_interface_assoc_descriptor *intf_assoc;
1724        int first_intf;
1725        int last_intf;
1726        int i;
1727
1728        for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1729                intf_assoc = config->intf_assoc[i];
1730                if (intf_assoc->bInterfaceCount == 0)
1731                        continue;
1732
1733                first_intf = intf_assoc->bFirstInterface;
1734                last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1735                if (inum >= first_intf && inum <= last_intf) {
1736                        if (!retval)
1737                                retval = intf_assoc;
1738                        else
1739                                dev_err(&dev->dev, "Interface #%d referenced"
1740                                        " by multiple IADs\n", inum);
1741                }
1742        }
1743
1744        return retval;
1745}
1746
1747
1748/*
1749 * Internal function to queue a device reset
1750 * See usb_queue_reset_device() for more details
1751 */
1752static void __usb_queue_reset_device(struct work_struct *ws)
1753{
1754        int rc;
1755        struct usb_interface *iface =
1756                container_of(ws, struct usb_interface, reset_ws);
1757        struct usb_device *udev = interface_to_usbdev(iface);
1758
1759        rc = usb_lock_device_for_reset(udev, iface);
1760        if (rc >= 0) {
1761                usb_reset_device(udev);
1762                usb_unlock_device(udev);
1763        }
1764        usb_put_intf(iface);    /* Undo _get_ in usb_queue_reset_device() */
1765}
1766
1767
1768/*
1769 * usb_set_configuration - Makes a particular device setting be current
1770 * @dev: the device whose configuration is being updated
1771 * @configuration: the configuration being chosen.
1772 * Context: !in_interrupt(), caller owns the device lock
1773 *
1774 * This is used to enable non-default device modes.  Not all devices
1775 * use this kind of configurability; many devices only have one
1776 * configuration.
1777 *
1778 * @configuration is the value of the configuration to be installed.
1779 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1780 * must be non-zero; a value of zero indicates that the device in
1781 * unconfigured.  However some devices erroneously use 0 as one of their
1782 * configuration values.  To help manage such devices, this routine will
1783 * accept @configuration = -1 as indicating the device should be put in
1784 * an unconfigured state.
1785 *
1786 * USB device configurations may affect Linux interoperability,
1787 * power consumption and the functionality available.  For example,
1788 * the default configuration is limited to using 100mA of bus power,
1789 * so that when certain device functionality requires more power,
1790 * and the device is bus powered, that functionality should be in some
1791 * non-default device configuration.  Other device modes may also be
1792 * reflected as configuration options, such as whether two ISDN
1793 * channels are available independently; and choosing between open
1794 * standard device protocols (like CDC) or proprietary ones.
1795 *
1796 * Note that a non-authorized device (dev->authorized == 0) will only
1797 * be put in unconfigured mode.
1798 *
1799 * Note that USB has an additional level of device configurability,
1800 * associated with interfaces.  That configurability is accessed using
1801 * usb_set_interface().
1802 *
1803 * This call is synchronous. The calling context must be able to sleep,
1804 * must own the device lock, and must not hold the driver model's USB
1805 * bus mutex; usb interface driver probe() methods cannot use this routine.
1806 *
1807 * Returns zero on success, or else the status code returned by the
1808 * underlying call that failed.  On successful completion, each interface
1809 * in the original device configuration has been destroyed, and each one
1810 * in the new configuration has been probed by all relevant usb device
1811 * drivers currently known to the kernel.
1812 */
1813int usb_set_configuration(struct usb_device *dev, int configuration)
1814{
1815        int i, ret;
1816        struct usb_host_config *cp = NULL;
1817        struct usb_interface **new_interfaces = NULL;
1818        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1819        int n, nintf;
1820
1821        if (dev->authorized == 0 || configuration == -1)
1822                configuration = 0;
1823        else {
1824                for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1825                        if (dev->config[i].desc.bConfigurationValue ==
1826                                        configuration) {
1827                                cp = &dev->config[i];
1828                                break;
1829                        }
1830                }
1831        }
1832        if ((!cp && configuration != 0))
1833                return -EINVAL;
1834
1835        /* The USB spec says configuration 0 means unconfigured.
1836         * But if a device includes a configuration numbered 0,
1837         * we will accept it as a correctly configured state.
1838         * Use -1 if you really want to unconfigure the device.
1839         */
1840        if (cp && configuration == 0)
1841                dev_warn(&dev->dev, "config 0 descriptor??\n");
1842
1843        /* Allocate memory for new interfaces before doing anything else,
1844         * so that if we run out then nothing will have changed. */
1845        n = nintf = 0;
1846        if (cp) {
1847                nintf = cp->desc.bNumInterfaces;
1848                new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1849                                               GFP_NOIO);
1850                if (!new_interfaces)
1851                        return -ENOMEM;
1852
1853                for (; n < nintf; ++n) {
1854                        new_interfaces[n] = kzalloc(
1855                                        sizeof(struct usb_interface),
1856                                        GFP_NOIO);
1857                        if (!new_interfaces[n]) {
1858                                ret = -ENOMEM;
1859free_interfaces:
1860                                while (--n >= 0)
1861                                        kfree(new_interfaces[n]);
1862                                kfree(new_interfaces);
1863                                return ret;
1864                        }
1865                }
1866
1867                i = dev->bus_mA - usb_get_max_power(dev, cp);
1868                if (i < 0)
1869                        dev_warn(&dev->dev, "new config #%d exceeds power "
1870                                        "limit by %dmA\n",
1871                                        configuration, -i);
1872        }
1873
1874        /* Wake up the device so we can send it the Set-Config request */
1875        ret = usb_autoresume_device(dev);
1876        if (ret)
1877                goto free_interfaces;
1878
1879        /* if it's already configured, clear out old state first.
1880         * getting rid of old interfaces means unbinding their drivers.
1881         */
1882        if (dev->state != USB_STATE_ADDRESS)
1883                usb_disable_device(dev, 1);     /* Skip ep0 */
1884
1885        /* Get rid of pending async Set-Config requests for this device */
1886        cancel_async_set_config(dev);
1887
1888        /* Make sure we have bandwidth (and available HCD resources) for this
1889         * configuration.  Remove endpoints from the schedule if we're dropping
1890         * this configuration to set configuration 0.  After this point, the
1891         * host controller will not allow submissions to dropped endpoints.  If
1892         * this call fails, the device state is unchanged.
1893         */
1894        mutex_lock(hcd->bandwidth_mutex);
1895        /* Disable LPM, and re-enable it once the new configuration is
1896         * installed, so that the xHCI driver can recalculate the U1/U2
1897         * timeouts.
1898         */
1899        if (dev->actconfig && usb_disable_lpm(dev)) {
1900                dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1901                mutex_unlock(hcd->bandwidth_mutex);
1902                ret = -ENOMEM;
1903                goto free_interfaces;
1904        }
1905        ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1906        if (ret < 0) {
1907                if (dev->actconfig)
1908                        usb_enable_lpm(dev);
1909                mutex_unlock(hcd->bandwidth_mutex);
1910                usb_autosuspend_device(dev);
1911                goto free_interfaces;
1912        }
1913
1914        /*
1915         * Initialize the new interface structures and the
1916         * hc/hcd/usbcore interface/endpoint state.
1917         */
1918        for (i = 0; i < nintf; ++i) {
1919                struct usb_interface_cache *intfc;
1920                struct usb_interface *intf;
1921                struct usb_host_interface *alt;
1922                u8 ifnum;
1923
1924                cp->interface[i] = intf = new_interfaces[i];
1925                intfc = cp->intf_cache[i];
1926                intf->altsetting = intfc->altsetting;
1927                intf->num_altsetting = intfc->num_altsetting;
1928                intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1929                kref_get(&intfc->ref);
1930
1931                alt = usb_altnum_to_altsetting(intf, 0);
1932
1933                /* No altsetting 0?  We'll assume the first altsetting.
1934                 * We could use a GetInterface call, but if a device is
1935                 * so non-compliant that it doesn't have altsetting 0
1936                 * then I wouldn't trust its reply anyway.
1937                 */
1938                if (!alt)
1939                        alt = &intf->altsetting[0];
1940
1941                ifnum = alt->desc.bInterfaceNumber;
1942                intf->intf_assoc = find_iad(dev, cp, ifnum);
1943                intf->cur_altsetting = alt;
1944                usb_enable_interface(dev, intf, true);
1945                intf->dev.parent = &dev->dev;
1946                if (usb_of_has_combined_node(dev)) {
1947                        device_set_of_node_from_dev(&intf->dev, &dev->dev);
1948                } else {
1949                        intf->dev.of_node = usb_of_get_interface_node(dev,
1950                                        configuration, ifnum);
1951                }
1952                ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
1953                intf->dev.driver = NULL;
1954                intf->dev.bus = &usb_bus_type;
1955                intf->dev.type = &usb_if_device_type;
1956                intf->dev.groups = usb_interface_groups;
1957                /*
1958                 * Please refer to usb_alloc_dev() to see why we set
1959                 * dma_mask and dma_pfn_offset.
1960                 */
1961                intf->dev.dma_mask = dev->dev.dma_mask;
1962                intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1963                INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1964                intf->minor = -1;
1965                device_initialize(&intf->dev);
1966                pm_runtime_no_callbacks(&intf->dev);
1967                dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1968                                dev->devpath, configuration, ifnum);
1969                usb_get_dev(dev);
1970        }
1971        kfree(new_interfaces);
1972
1973        ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1974                              USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1975                              NULL, 0, USB_CTRL_SET_TIMEOUT);
1976        if (ret < 0 && cp) {
1977                /*
1978                 * All the old state is gone, so what else can we do?
1979                 * The device is probably useless now anyway.
1980                 */
1981                usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1982                for (i = 0; i < nintf; ++i) {
1983                        usb_disable_interface(dev, cp->interface[i], true);
1984                        put_device(&cp->interface[i]->dev);
1985                        cp->interface[i] = NULL;
1986                }
1987                cp = NULL;
1988        }
1989
1990        dev->actconfig = cp;
1991        mutex_unlock(hcd->bandwidth_mutex);
1992
1993        if (!cp) {
1994                usb_set_device_state(dev, USB_STATE_ADDRESS);
1995
1996                /* Leave LPM disabled while the device is unconfigured. */
1997                usb_autosuspend_device(dev);
1998                return ret;
1999        }
2000        usb_set_device_state(dev, USB_STATE_CONFIGURED);
2001
2002        if (cp->string == NULL &&
2003                        !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2004                cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2005
2006        /* Now that the interfaces are installed, re-enable LPM. */
2007        usb_unlocked_enable_lpm(dev);
2008        /* Enable LTM if it was turned off by usb_disable_device. */
2009        usb_enable_ltm(dev);
2010
2011        /* Now that all the interfaces are set up, register them
2012         * to trigger binding of drivers to interfaces.  probe()
2013         * routines may install different altsettings and may
2014         * claim() any interfaces not yet bound.  Many class drivers
2015         * need that: CDC, audio, video, etc.
2016         */
2017        for (i = 0; i < nintf; ++i) {
2018                struct usb_interface *intf = cp->interface[i];
2019
2020                if (intf->dev.of_node &&
2021                    !of_device_is_available(intf->dev.of_node)) {
2022                        dev_info(&dev->dev, "skipping disabled interface %d\n",
2023                                 intf->cur_altsetting->desc.bInterfaceNumber);
2024                        continue;
2025                }
2026
2027                dev_dbg(&dev->dev,
2028                        "adding %s (config #%d, interface %d)\n",
2029                        dev_name(&intf->dev), configuration,
2030                        intf->cur_altsetting->desc.bInterfaceNumber);
2031                device_enable_async_suspend(&intf->dev);
2032                ret = device_add(&intf->dev);
2033                if (ret != 0) {
2034                        dev_err(&dev->dev, "device_add(%s) --> %d\n",
2035                                dev_name(&intf->dev), ret);
2036                        continue;
2037                }
2038                create_intf_ep_devs(intf);
2039        }
2040
2041        usb_autosuspend_device(dev);
2042        return 0;
2043}
2044EXPORT_SYMBOL_GPL(usb_set_configuration);
2045
2046static LIST_HEAD(set_config_list);
2047static DEFINE_SPINLOCK(set_config_lock);
2048
2049struct set_config_request {
2050        struct usb_device       *udev;
2051        int                     config;
2052        struct work_struct      work;
2053        struct list_head        node;
2054};
2055
2056/* Worker routine for usb_driver_set_configuration() */
2057static void driver_set_config_work(struct work_struct *work)
2058{
2059        struct set_config_request *req =
2060                container_of(work, struct set_config_request, work);
2061        struct usb_device *udev = req->udev;
2062
2063        usb_lock_device(udev);
2064        spin_lock(&set_config_lock);
2065        list_del(&req->node);
2066        spin_unlock(&set_config_lock);
2067
2068        if (req->config >= -1)          /* Is req still valid? */
2069                usb_set_configuration(udev, req->config);
2070        usb_unlock_device(udev);
2071        usb_put_dev(udev);
2072        kfree(req);
2073}
2074
2075/* Cancel pending Set-Config requests for a device whose configuration
2076 * was just changed
2077 */
2078static void cancel_async_set_config(struct usb_device *udev)
2079{
2080        struct set_config_request *req;
2081
2082        spin_lock(&set_config_lock);
2083        list_for_each_entry(req, &set_config_list, node) {
2084                if (req->udev == udev)
2085                        req->config = -999;     /* Mark as cancelled */
2086        }
2087        spin_unlock(&set_config_lock);
2088}
2089
2090/**
2091 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2092 * @udev: the device whose configuration is being updated
2093 * @config: the configuration being chosen.
2094 * Context: In process context, must be able to sleep
2095 *
2096 * Device interface drivers are not allowed to change device configurations.
2097 * This is because changing configurations will destroy the interface the
2098 * driver is bound to and create new ones; it would be like a floppy-disk
2099 * driver telling the computer to replace the floppy-disk drive with a
2100 * tape drive!
2101 *
2102 * Still, in certain specialized circumstances the need may arise.  This
2103 * routine gets around the normal restrictions by using a work thread to
2104 * submit the change-config request.
2105 *
2106 * Return: 0 if the request was successfully queued, error code otherwise.
2107 * The caller has no way to know whether the queued request will eventually
2108 * succeed.
2109 */
2110int usb_driver_set_configuration(struct usb_device *udev, int config)
2111{
2112        struct set_config_request *req;
2113
2114        req = kmalloc(sizeof(*req), GFP_KERNEL);
2115        if (!req)
2116                return -ENOMEM;
2117        req->udev = udev;
2118        req->config = config;
2119        INIT_WORK(&req->work, driver_set_config_work);
2120
2121        spin_lock(&set_config_lock);
2122        list_add(&req->node, &set_config_list);
2123        spin_unlock(&set_config_lock);
2124
2125        usb_get_dev(udev);
2126        schedule_work(&req->work);
2127        return 0;
2128}
2129EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2130
2131/**
2132 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2133 * @hdr: the place to put the results of the parsing
2134 * @intf: the interface for which parsing is requested
2135 * @buffer: pointer to the extra headers to be parsed
2136 * @buflen: length of the extra headers
2137 *
2138 * This evaluates the extra headers present in CDC devices which
2139 * bind the interfaces for data and control and provide details
2140 * about the capabilities of the device.
2141 *
2142 * Return: number of descriptors parsed or -EINVAL
2143 * if the header is contradictory beyond salvage
2144 */
2145
2146int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2147                                struct usb_interface *intf,
2148                                u8 *buffer,
2149                                int buflen)
2150{
2151        /* duplicates are ignored */
2152        struct usb_cdc_union_desc *union_header = NULL;
2153
2154        /* duplicates are not tolerated */
2155        struct usb_cdc_header_desc *header = NULL;
2156        struct usb_cdc_ether_desc *ether = NULL;
2157        struct usb_cdc_mdlm_detail_desc *detail = NULL;
2158        struct usb_cdc_mdlm_desc *desc = NULL;
2159
2160        unsigned int elength;
2161        int cnt = 0;
2162
2163        memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2164        hdr->phonet_magic_present = false;
2165        while (buflen > 0) {
2166                elength = buffer[0];
2167                if (!elength) {
2168                        dev_err(&intf->dev, "skipping garbage byte\n");
2169                        elength = 1;
2170                        goto next_desc;
2171                }
2172                if ((buflen < elength) || (elength < 3)) {
2173                        dev_err(&intf->dev, "invalid descriptor buffer length\n");
2174                        break;
2175                }
2176                if (buffer[1] != USB_DT_CS_INTERFACE) {
2177                        dev_err(&intf->dev, "skipping garbage\n");
2178                        goto next_desc;
2179                }
2180
2181                switch (buffer[2]) {
2182                case USB_CDC_UNION_TYPE: /* we've found it */
2183                        if (elength < sizeof(struct usb_cdc_union_desc))
2184                                goto next_desc;
2185                        if (union_header) {
2186                                dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2187                                goto next_desc;
2188                        }
2189                        union_header = (struct usb_cdc_union_desc *)buffer;
2190                        break;
2191                case USB_CDC_COUNTRY_TYPE:
2192                        if (elength < sizeof(struct usb_cdc_country_functional_desc))
2193                                goto next_desc;
2194                        hdr->usb_cdc_country_functional_desc =
2195                                (struct usb_cdc_country_functional_desc *)buffer;
2196                        break;
2197                case USB_CDC_HEADER_TYPE:
2198                        if (elength != sizeof(struct usb_cdc_header_desc))
2199                                goto next_desc;
2200                        if (header)
2201                                return -EINVAL;
2202                        header = (struct usb_cdc_header_desc *)buffer;
2203                        break;
2204                case USB_CDC_ACM_TYPE:
2205                        if (elength < sizeof(struct usb_cdc_acm_descriptor))
2206                                goto next_desc;
2207                        hdr->usb_cdc_acm_descriptor =
2208                                (struct usb_cdc_acm_descriptor *)buffer;
2209                        break;
2210                case USB_CDC_ETHERNET_TYPE:
2211                        if (elength != sizeof(struct usb_cdc_ether_desc))
2212                                goto next_desc;
2213                        if (ether)
2214                                return -EINVAL;
2215                        ether = (struct usb_cdc_ether_desc *)buffer;
2216                        break;
2217                case USB_CDC_CALL_MANAGEMENT_TYPE:
2218                        if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2219                                goto next_desc;
2220                        hdr->usb_cdc_call_mgmt_descriptor =
2221                                (struct usb_cdc_call_mgmt_descriptor *)buffer;
2222                        break;
2223                case USB_CDC_DMM_TYPE:
2224                        if (elength < sizeof(struct usb_cdc_dmm_desc))
2225                                goto next_desc;
2226                        hdr->usb_cdc_dmm_desc =
2227                                (struct usb_cdc_dmm_desc *)buffer;
2228                        break;
2229                case USB_CDC_MDLM_TYPE:
2230                        if (elength < sizeof(struct usb_cdc_mdlm_desc))
2231                                goto next_desc;
2232                        if (desc)
2233                                return -EINVAL;
2234                        desc = (struct usb_cdc_mdlm_desc *)buffer;
2235                        break;
2236                case USB_CDC_MDLM_DETAIL_TYPE:
2237                        if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2238                                goto next_desc;
2239                        if (detail)
2240                                return -EINVAL;
2241                        detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2242                        break;
2243                case USB_CDC_NCM_TYPE:
2244                        if (elength < sizeof(struct usb_cdc_ncm_desc))
2245                                goto next_desc;
2246                        hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2247                        break;
2248                case USB_CDC_MBIM_TYPE:
2249                        if (elength < sizeof(struct usb_cdc_mbim_desc))
2250                                goto next_desc;
2251
2252                        hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2253                        break;
2254                case USB_CDC_MBIM_EXTENDED_TYPE:
2255                        if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2256                                break;
2257                        hdr->usb_cdc_mbim_extended_desc =
2258                                (struct usb_cdc_mbim_extended_desc *)buffer;
2259                        break;
2260                case CDC_PHONET_MAGIC_NUMBER:
2261                        hdr->phonet_magic_present = true;
2262                        break;
2263                default:
2264                        /*
2265                         * there are LOTS more CDC descriptors that
2266                         * could legitimately be found here.
2267                         */
2268                        dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2269                                        buffer[2], elength);
2270                        goto next_desc;
2271                }
2272                cnt++;
2273next_desc:
2274                buflen -= elength;
2275                buffer += elength;
2276        }
2277        hdr->usb_cdc_union_desc = union_header;
2278        hdr->usb_cdc_header_desc = header;
2279        hdr->usb_cdc_mdlm_detail_desc = detail;
2280        hdr->usb_cdc_mdlm_desc = desc;
2281        hdr->usb_cdc_ether_desc = ether;
2282        return cnt;
2283}
2284
2285EXPORT_SYMBOL(cdc_parse_cdc_header);
2286