linux/drivers/usb/gadget/function/f_fs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * f_fs.c -- user mode file system API for USB composite function controllers
   4 *
   5 * Copyright (C) 2010 Samsung Electronics
   6 * Author: Michal Nazarewicz <mina86@mina86.com>
   7 *
   8 * Based on inode.c (GadgetFS) which was:
   9 * Copyright (C) 2003-2004 David Brownell
  10 * Copyright (C) 2003 Agilent Technologies
  11 */
  12
  13
  14/* #define DEBUG */
  15/* #define VERBOSE_DEBUG */
  16
  17#include <linux/blkdev.h>
  18#include <linux/pagemap.h>
  19#include <linux/export.h>
  20#include <linux/fs_parser.h>
  21#include <linux/hid.h>
  22#include <linux/mm.h>
  23#include <linux/module.h>
  24#include <linux/scatterlist.h>
  25#include <linux/sched/signal.h>
  26#include <linux/uio.h>
  27#include <linux/vmalloc.h>
  28#include <asm/unaligned.h>
  29
  30#include <linux/usb/ccid.h>
  31#include <linux/usb/composite.h>
  32#include <linux/usb/functionfs.h>
  33
  34#include <linux/aio.h>
  35#include <linux/kthread.h>
  36#include <linux/poll.h>
  37#include <linux/eventfd.h>
  38
  39#include "u_fs.h"
  40#include "u_f.h"
  41#include "u_os_desc.h"
  42#include "configfs.h"
  43
  44#define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
  45
  46/* Reference counter handling */
  47static void ffs_data_get(struct ffs_data *ffs);
  48static void ffs_data_put(struct ffs_data *ffs);
  49/* Creates new ffs_data object. */
  50static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
  51        __attribute__((malloc));
  52
  53/* Opened counter handling. */
  54static void ffs_data_opened(struct ffs_data *ffs);
  55static void ffs_data_closed(struct ffs_data *ffs);
  56
  57/* Called with ffs->mutex held; take over ownership of data. */
  58static int __must_check
  59__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  60static int __must_check
  61__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  62
  63
  64/* The function structure ***************************************************/
  65
  66struct ffs_ep;
  67
  68struct ffs_function {
  69        struct usb_configuration        *conf;
  70        struct usb_gadget               *gadget;
  71        struct ffs_data                 *ffs;
  72
  73        struct ffs_ep                   *eps;
  74        u8                              eps_revmap[16];
  75        short                           *interfaces_nums;
  76
  77        struct usb_function             function;
  78};
  79
  80
  81static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  82{
  83        return container_of(f, struct ffs_function, function);
  84}
  85
  86
  87static inline enum ffs_setup_state
  88ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  89{
  90        return (enum ffs_setup_state)
  91                cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  92}
  93
  94
  95static void ffs_func_eps_disable(struct ffs_function *func);
  96static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  97
  98static int ffs_func_bind(struct usb_configuration *,
  99                         struct usb_function *);
 100static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
 101static void ffs_func_disable(struct usb_function *);
 102static int ffs_func_setup(struct usb_function *,
 103                          const struct usb_ctrlrequest *);
 104static bool ffs_func_req_match(struct usb_function *,
 105                               const struct usb_ctrlrequest *,
 106                               bool config0);
 107static void ffs_func_suspend(struct usb_function *);
 108static void ffs_func_resume(struct usb_function *);
 109
 110
 111static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 112static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 113
 114
 115/* The endpoints structures *************************************************/
 116
 117struct ffs_ep {
 118        struct usb_ep                   *ep;    /* P: ffs->eps_lock */
 119        struct usb_request              *req;   /* P: epfile->mutex */
 120
 121        /* [0]: full speed, [1]: high speed, [2]: super speed */
 122        struct usb_endpoint_descriptor  *descs[3];
 123
 124        u8                              num;
 125
 126        int                             status; /* P: epfile->mutex */
 127};
 128
 129struct ffs_epfile {
 130        /* Protects ep->ep and ep->req. */
 131        struct mutex                    mutex;
 132
 133        struct ffs_data                 *ffs;
 134        struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
 135
 136        struct dentry                   *dentry;
 137
 138        /*
 139         * Buffer for holding data from partial reads which may happen since
 140         * we’re rounding user read requests to a multiple of a max packet size.
 141         *
 142         * The pointer is initialised with NULL value and may be set by
 143         * __ffs_epfile_read_data function to point to a temporary buffer.
 144         *
 145         * In normal operation, calls to __ffs_epfile_read_buffered will consume
 146         * data from said buffer and eventually free it.  Importantly, while the
 147         * function is using the buffer, it sets the pointer to NULL.  This is
 148         * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 149         * can never run concurrently (they are synchronised by epfile->mutex)
 150         * so the latter will not assign a new value to the pointer.
 151         *
 152         * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 153         * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 154         * value is crux of the synchronisation between ffs_func_eps_disable and
 155         * __ffs_epfile_read_data.
 156         *
 157         * Once __ffs_epfile_read_data is about to finish it will try to set the
 158         * pointer back to its old value (as described above), but seeing as the
 159         * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 160         * the buffer.
 161         *
 162         * == State transitions ==
 163         *
 164         * • ptr == NULL:  (initial state)
 165         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 166         *   ◦ __ffs_epfile_read_buffered:    nop
 167         *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 168         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 169         * • ptr == DROP:
 170         *   ◦ __ffs_epfile_read_buffer_free: nop
 171         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
 172         *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 173         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 174         * • ptr == buf:
 175         *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 176         *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 177         *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 178         *                                    is always called first
 179         *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 180         * • ptr == NULL and reading:
 181         *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 182         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 183         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 184         *   ◦ reading finishes and …
 185         *     … all data read:               free buf, go to ptr == NULL
 186         *     … otherwise:                   go to ptr == buf and reading
 187         * • ptr == DROP and reading:
 188         *   ◦ __ffs_epfile_read_buffer_free: nop
 189         *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
 190         *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
 191         *   ◦ reading finishes:              free buf, go to ptr == DROP
 192         */
 193        struct ffs_buffer               *read_buffer;
 194#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 195
 196        char                            name[5];
 197
 198        unsigned char                   in;     /* P: ffs->eps_lock */
 199        unsigned char                   isoc;   /* P: ffs->eps_lock */
 200
 201        unsigned char                   _pad;
 202};
 203
 204struct ffs_buffer {
 205        size_t length;
 206        char *data;
 207        char storage[];
 208};
 209
 210/*  ffs_io_data structure ***************************************************/
 211
 212struct ffs_io_data {
 213        bool aio;
 214        bool read;
 215
 216        struct kiocb *kiocb;
 217        struct iov_iter data;
 218        const void *to_free;
 219        char *buf;
 220
 221        struct mm_struct *mm;
 222        struct work_struct work;
 223
 224        struct usb_ep *ep;
 225        struct usb_request *req;
 226        struct sg_table sgt;
 227        bool use_sg;
 228
 229        struct ffs_data *ffs;
 230};
 231
 232struct ffs_desc_helper {
 233        struct ffs_data *ffs;
 234        unsigned interfaces_count;
 235        unsigned eps_count;
 236};
 237
 238static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 239static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 240
 241static struct dentry *
 242ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 243                   const struct file_operations *fops);
 244
 245/* Devices management *******************************************************/
 246
 247DEFINE_MUTEX(ffs_lock);
 248EXPORT_SYMBOL_GPL(ffs_lock);
 249
 250static struct ffs_dev *_ffs_find_dev(const char *name);
 251static struct ffs_dev *_ffs_alloc_dev(void);
 252static void _ffs_free_dev(struct ffs_dev *dev);
 253static void *ffs_acquire_dev(const char *dev_name);
 254static void ffs_release_dev(struct ffs_data *ffs_data);
 255static int ffs_ready(struct ffs_data *ffs);
 256static void ffs_closed(struct ffs_data *ffs);
 257
 258/* Misc helper functions ****************************************************/
 259
 260static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 261        __attribute__((warn_unused_result, nonnull));
 262static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 263        __attribute__((warn_unused_result, nonnull));
 264
 265
 266/* Control file aka ep0 *****************************************************/
 267
 268static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 269{
 270        struct ffs_data *ffs = req->context;
 271
 272        complete(&ffs->ep0req_completion);
 273}
 274
 275static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 276        __releases(&ffs->ev.waitq.lock)
 277{
 278        struct usb_request *req = ffs->ep0req;
 279        int ret;
 280
 281        req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 282
 283        spin_unlock_irq(&ffs->ev.waitq.lock);
 284
 285        req->buf      = data;
 286        req->length   = len;
 287
 288        /*
 289         * UDC layer requires to provide a buffer even for ZLP, but should
 290         * not use it at all. Let's provide some poisoned pointer to catch
 291         * possible bug in the driver.
 292         */
 293        if (req->buf == NULL)
 294                req->buf = (void *)0xDEADBABE;
 295
 296        reinit_completion(&ffs->ep0req_completion);
 297
 298        ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 299        if (unlikely(ret < 0))
 300                return ret;
 301
 302        ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 303        if (unlikely(ret)) {
 304                usb_ep_dequeue(ffs->gadget->ep0, req);
 305                return -EINTR;
 306        }
 307
 308        ffs->setup_state = FFS_NO_SETUP;
 309        return req->status ? req->status : req->actual;
 310}
 311
 312static int __ffs_ep0_stall(struct ffs_data *ffs)
 313{
 314        if (ffs->ev.can_stall) {
 315                pr_vdebug("ep0 stall\n");
 316                usb_ep_set_halt(ffs->gadget->ep0);
 317                ffs->setup_state = FFS_NO_SETUP;
 318                return -EL2HLT;
 319        } else {
 320                pr_debug("bogus ep0 stall!\n");
 321                return -ESRCH;
 322        }
 323}
 324
 325static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 326                             size_t len, loff_t *ptr)
 327{
 328        struct ffs_data *ffs = file->private_data;
 329        ssize_t ret;
 330        char *data;
 331
 332        ENTER();
 333
 334        /* Fast check if setup was canceled */
 335        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 336                return -EIDRM;
 337
 338        /* Acquire mutex */
 339        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 340        if (unlikely(ret < 0))
 341                return ret;
 342
 343        /* Check state */
 344        switch (ffs->state) {
 345        case FFS_READ_DESCRIPTORS:
 346        case FFS_READ_STRINGS:
 347                /* Copy data */
 348                if (unlikely(len < 16)) {
 349                        ret = -EINVAL;
 350                        break;
 351                }
 352
 353                data = ffs_prepare_buffer(buf, len);
 354                if (IS_ERR(data)) {
 355                        ret = PTR_ERR(data);
 356                        break;
 357                }
 358
 359                /* Handle data */
 360                if (ffs->state == FFS_READ_DESCRIPTORS) {
 361                        pr_info("read descriptors\n");
 362                        ret = __ffs_data_got_descs(ffs, data, len);
 363                        if (unlikely(ret < 0))
 364                                break;
 365
 366                        ffs->state = FFS_READ_STRINGS;
 367                        ret = len;
 368                } else {
 369                        pr_info("read strings\n");
 370                        ret = __ffs_data_got_strings(ffs, data, len);
 371                        if (unlikely(ret < 0))
 372                                break;
 373
 374                        ret = ffs_epfiles_create(ffs);
 375                        if (unlikely(ret)) {
 376                                ffs->state = FFS_CLOSING;
 377                                break;
 378                        }
 379
 380                        ffs->state = FFS_ACTIVE;
 381                        mutex_unlock(&ffs->mutex);
 382
 383                        ret = ffs_ready(ffs);
 384                        if (unlikely(ret < 0)) {
 385                                ffs->state = FFS_CLOSING;
 386                                return ret;
 387                        }
 388
 389                        return len;
 390                }
 391                break;
 392
 393        case FFS_ACTIVE:
 394                data = NULL;
 395                /*
 396                 * We're called from user space, we can use _irq
 397                 * rather then _irqsave
 398                 */
 399                spin_lock_irq(&ffs->ev.waitq.lock);
 400                switch (ffs_setup_state_clear_cancelled(ffs)) {
 401                case FFS_SETUP_CANCELLED:
 402                        ret = -EIDRM;
 403                        goto done_spin;
 404
 405                case FFS_NO_SETUP:
 406                        ret = -ESRCH;
 407                        goto done_spin;
 408
 409                case FFS_SETUP_PENDING:
 410                        break;
 411                }
 412
 413                /* FFS_SETUP_PENDING */
 414                if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 415                        spin_unlock_irq(&ffs->ev.waitq.lock);
 416                        ret = __ffs_ep0_stall(ffs);
 417                        break;
 418                }
 419
 420                /* FFS_SETUP_PENDING and not stall */
 421                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 422
 423                spin_unlock_irq(&ffs->ev.waitq.lock);
 424
 425                data = ffs_prepare_buffer(buf, len);
 426                if (IS_ERR(data)) {
 427                        ret = PTR_ERR(data);
 428                        break;
 429                }
 430
 431                spin_lock_irq(&ffs->ev.waitq.lock);
 432
 433                /*
 434                 * We are guaranteed to be still in FFS_ACTIVE state
 435                 * but the state of setup could have changed from
 436                 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 437                 * to check for that.  If that happened we copied data
 438                 * from user space in vain but it's unlikely.
 439                 *
 440                 * For sure we are not in FFS_NO_SETUP since this is
 441                 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 442                 * transition can be performed and it's protected by
 443                 * mutex.
 444                 */
 445                if (ffs_setup_state_clear_cancelled(ffs) ==
 446                    FFS_SETUP_CANCELLED) {
 447                        ret = -EIDRM;
 448done_spin:
 449                        spin_unlock_irq(&ffs->ev.waitq.lock);
 450                } else {
 451                        /* unlocks spinlock */
 452                        ret = __ffs_ep0_queue_wait(ffs, data, len);
 453                }
 454                kfree(data);
 455                break;
 456
 457        default:
 458                ret = -EBADFD;
 459                break;
 460        }
 461
 462        mutex_unlock(&ffs->mutex);
 463        return ret;
 464}
 465
 466/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 467static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 468                                     size_t n)
 469        __releases(&ffs->ev.waitq.lock)
 470{
 471        /*
 472         * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 473         * size of ffs->ev.types array (which is four) so that's how much space
 474         * we reserve.
 475         */
 476        struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 477        const size_t size = n * sizeof *events;
 478        unsigned i = 0;
 479
 480        memset(events, 0, size);
 481
 482        do {
 483                events[i].type = ffs->ev.types[i];
 484                if (events[i].type == FUNCTIONFS_SETUP) {
 485                        events[i].u.setup = ffs->ev.setup;
 486                        ffs->setup_state = FFS_SETUP_PENDING;
 487                }
 488        } while (++i < n);
 489
 490        ffs->ev.count -= n;
 491        if (ffs->ev.count)
 492                memmove(ffs->ev.types, ffs->ev.types + n,
 493                        ffs->ev.count * sizeof *ffs->ev.types);
 494
 495        spin_unlock_irq(&ffs->ev.waitq.lock);
 496        mutex_unlock(&ffs->mutex);
 497
 498        return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
 499}
 500
 501static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 502                            size_t len, loff_t *ptr)
 503{
 504        struct ffs_data *ffs = file->private_data;
 505        char *data = NULL;
 506        size_t n;
 507        int ret;
 508
 509        ENTER();
 510
 511        /* Fast check if setup was canceled */
 512        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 513                return -EIDRM;
 514
 515        /* Acquire mutex */
 516        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 517        if (unlikely(ret < 0))
 518                return ret;
 519
 520        /* Check state */
 521        if (ffs->state != FFS_ACTIVE) {
 522                ret = -EBADFD;
 523                goto done_mutex;
 524        }
 525
 526        /*
 527         * We're called from user space, we can use _irq rather then
 528         * _irqsave
 529         */
 530        spin_lock_irq(&ffs->ev.waitq.lock);
 531
 532        switch (ffs_setup_state_clear_cancelled(ffs)) {
 533        case FFS_SETUP_CANCELLED:
 534                ret = -EIDRM;
 535                break;
 536
 537        case FFS_NO_SETUP:
 538                n = len / sizeof(struct usb_functionfs_event);
 539                if (unlikely(!n)) {
 540                        ret = -EINVAL;
 541                        break;
 542                }
 543
 544                if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 545                        ret = -EAGAIN;
 546                        break;
 547                }
 548
 549                if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 550                                                        ffs->ev.count)) {
 551                        ret = -EINTR;
 552                        break;
 553                }
 554
 555                /* unlocks spinlock */
 556                return __ffs_ep0_read_events(ffs, buf,
 557                                             min(n, (size_t)ffs->ev.count));
 558
 559        case FFS_SETUP_PENDING:
 560                if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 561                        spin_unlock_irq(&ffs->ev.waitq.lock);
 562                        ret = __ffs_ep0_stall(ffs);
 563                        goto done_mutex;
 564                }
 565
 566                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 567
 568                spin_unlock_irq(&ffs->ev.waitq.lock);
 569
 570                if (likely(len)) {
 571                        data = kmalloc(len, GFP_KERNEL);
 572                        if (unlikely(!data)) {
 573                                ret = -ENOMEM;
 574                                goto done_mutex;
 575                        }
 576                }
 577
 578                spin_lock_irq(&ffs->ev.waitq.lock);
 579
 580                /* See ffs_ep0_write() */
 581                if (ffs_setup_state_clear_cancelled(ffs) ==
 582                    FFS_SETUP_CANCELLED) {
 583                        ret = -EIDRM;
 584                        break;
 585                }
 586
 587                /* unlocks spinlock */
 588                ret = __ffs_ep0_queue_wait(ffs, data, len);
 589                if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
 590                        ret = -EFAULT;
 591                goto done_mutex;
 592
 593        default:
 594                ret = -EBADFD;
 595                break;
 596        }
 597
 598        spin_unlock_irq(&ffs->ev.waitq.lock);
 599done_mutex:
 600        mutex_unlock(&ffs->mutex);
 601        kfree(data);
 602        return ret;
 603}
 604
 605static int ffs_ep0_open(struct inode *inode, struct file *file)
 606{
 607        struct ffs_data *ffs = inode->i_private;
 608
 609        ENTER();
 610
 611        if (unlikely(ffs->state == FFS_CLOSING))
 612                return -EBUSY;
 613
 614        file->private_data = ffs;
 615        ffs_data_opened(ffs);
 616
 617        return 0;
 618}
 619
 620static int ffs_ep0_release(struct inode *inode, struct file *file)
 621{
 622        struct ffs_data *ffs = file->private_data;
 623
 624        ENTER();
 625
 626        ffs_data_closed(ffs);
 627
 628        return 0;
 629}
 630
 631static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 632{
 633        struct ffs_data *ffs = file->private_data;
 634        struct usb_gadget *gadget = ffs->gadget;
 635        long ret;
 636
 637        ENTER();
 638
 639        if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 640                struct ffs_function *func = ffs->func;
 641                ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 642        } else if (gadget && gadget->ops->ioctl) {
 643                ret = gadget->ops->ioctl(gadget, code, value);
 644        } else {
 645                ret = -ENOTTY;
 646        }
 647
 648        return ret;
 649}
 650
 651static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
 652{
 653        struct ffs_data *ffs = file->private_data;
 654        __poll_t mask = EPOLLWRNORM;
 655        int ret;
 656
 657        poll_wait(file, &ffs->ev.waitq, wait);
 658
 659        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 660        if (unlikely(ret < 0))
 661                return mask;
 662
 663        switch (ffs->state) {
 664        case FFS_READ_DESCRIPTORS:
 665        case FFS_READ_STRINGS:
 666                mask |= EPOLLOUT;
 667                break;
 668
 669        case FFS_ACTIVE:
 670                switch (ffs->setup_state) {
 671                case FFS_NO_SETUP:
 672                        if (ffs->ev.count)
 673                                mask |= EPOLLIN;
 674                        break;
 675
 676                case FFS_SETUP_PENDING:
 677                case FFS_SETUP_CANCELLED:
 678                        mask |= (EPOLLIN | EPOLLOUT);
 679                        break;
 680                }
 681        case FFS_CLOSING:
 682                break;
 683        case FFS_DEACTIVATED:
 684                break;
 685        }
 686
 687        mutex_unlock(&ffs->mutex);
 688
 689        return mask;
 690}
 691
 692static const struct file_operations ffs_ep0_operations = {
 693        .llseek =       no_llseek,
 694
 695        .open =         ffs_ep0_open,
 696        .write =        ffs_ep0_write,
 697        .read =         ffs_ep0_read,
 698        .release =      ffs_ep0_release,
 699        .unlocked_ioctl =       ffs_ep0_ioctl,
 700        .poll =         ffs_ep0_poll,
 701};
 702
 703
 704/* "Normal" endpoints operations ********************************************/
 705
 706static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 707{
 708        ENTER();
 709        if (likely(req->context)) {
 710                struct ffs_ep *ep = _ep->driver_data;
 711                ep->status = req->status ? req->status : req->actual;
 712                complete(req->context);
 713        }
 714}
 715
 716static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 717{
 718        ssize_t ret = copy_to_iter(data, data_len, iter);
 719        if (likely(ret == data_len))
 720                return ret;
 721
 722        if (unlikely(iov_iter_count(iter)))
 723                return -EFAULT;
 724
 725        /*
 726         * Dear user space developer!
 727         *
 728         * TL;DR: To stop getting below error message in your kernel log, change
 729         * user space code using functionfs to align read buffers to a max
 730         * packet size.
 731         *
 732         * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 733         * packet size.  When unaligned buffer is passed to functionfs, it
 734         * internally uses a larger, aligned buffer so that such UDCs are happy.
 735         *
 736         * Unfortunately, this means that host may send more data than was
 737         * requested in read(2) system call.  f_fs doesn’t know what to do with
 738         * that excess data so it simply drops it.
 739         *
 740         * Was the buffer aligned in the first place, no such problem would
 741         * happen.
 742         *
 743         * Data may be dropped only in AIO reads.  Synchronous reads are handled
 744         * by splitting a request into multiple parts.  This splitting may still
 745         * be a problem though so it’s likely best to align the buffer
 746         * regardless of it being AIO or not..
 747         *
 748         * This only affects OUT endpoints, i.e. reading data with a read(2),
 749         * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 750         * affected.
 751         */
 752        pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 753               "Align read buffer size to max packet size to avoid the problem.\n",
 754               data_len, ret);
 755
 756        return ret;
 757}
 758
 759/*
 760 * allocate a virtually contiguous buffer and create a scatterlist describing it
 761 * @sg_table    - pointer to a place to be filled with sg_table contents
 762 * @size        - required buffer size
 763 */
 764static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
 765{
 766        struct page **pages;
 767        void *vaddr, *ptr;
 768        unsigned int n_pages;
 769        int i;
 770
 771        vaddr = vmalloc(sz);
 772        if (!vaddr)
 773                return NULL;
 774
 775        n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
 776        pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
 777        if (!pages) {
 778                vfree(vaddr);
 779
 780                return NULL;
 781        }
 782        for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
 783                pages[i] = vmalloc_to_page(ptr);
 784
 785        if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
 786                kvfree(pages);
 787                vfree(vaddr);
 788
 789                return NULL;
 790        }
 791        kvfree(pages);
 792
 793        return vaddr;
 794}
 795
 796static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
 797        size_t data_len)
 798{
 799        if (io_data->use_sg)
 800                return ffs_build_sg_list(&io_data->sgt, data_len);
 801
 802        return kmalloc(data_len, GFP_KERNEL);
 803}
 804
 805static inline void ffs_free_buffer(struct ffs_io_data *io_data)
 806{
 807        if (!io_data->buf)
 808                return;
 809
 810        if (io_data->use_sg) {
 811                sg_free_table(&io_data->sgt);
 812                vfree(io_data->buf);
 813        } else {
 814                kfree(io_data->buf);
 815        }
 816}
 817
 818static void ffs_user_copy_worker(struct work_struct *work)
 819{
 820        struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 821                                                   work);
 822        int ret = io_data->req->status ? io_data->req->status :
 823                                         io_data->req->actual;
 824        bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 825
 826        if (io_data->read && ret > 0) {
 827                kthread_use_mm(io_data->mm);
 828                ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 829                kthread_unuse_mm(io_data->mm);
 830        }
 831
 832        io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
 833
 834        if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 835                eventfd_signal(io_data->ffs->ffs_eventfd, 1);
 836
 837        usb_ep_free_request(io_data->ep, io_data->req);
 838
 839        if (io_data->read)
 840                kfree(io_data->to_free);
 841        ffs_free_buffer(io_data);
 842        kfree(io_data);
 843}
 844
 845static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 846                                         struct usb_request *req)
 847{
 848        struct ffs_io_data *io_data = req->context;
 849        struct ffs_data *ffs = io_data->ffs;
 850
 851        ENTER();
 852
 853        INIT_WORK(&io_data->work, ffs_user_copy_worker);
 854        queue_work(ffs->io_completion_wq, &io_data->work);
 855}
 856
 857static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 858{
 859        /*
 860         * See comment in struct ffs_epfile for full read_buffer pointer
 861         * synchronisation story.
 862         */
 863        struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 864        if (buf && buf != READ_BUFFER_DROP)
 865                kfree(buf);
 866}
 867
 868/* Assumes epfile->mutex is held. */
 869static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 870                                          struct iov_iter *iter)
 871{
 872        /*
 873         * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 874         * the buffer while we are using it.  See comment in struct ffs_epfile
 875         * for full read_buffer pointer synchronisation story.
 876         */
 877        struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 878        ssize_t ret;
 879        if (!buf || buf == READ_BUFFER_DROP)
 880                return 0;
 881
 882        ret = copy_to_iter(buf->data, buf->length, iter);
 883        if (buf->length == ret) {
 884                kfree(buf);
 885                return ret;
 886        }
 887
 888        if (unlikely(iov_iter_count(iter))) {
 889                ret = -EFAULT;
 890        } else {
 891                buf->length -= ret;
 892                buf->data += ret;
 893        }
 894
 895        if (cmpxchg(&epfile->read_buffer, NULL, buf))
 896                kfree(buf);
 897
 898        return ret;
 899}
 900
 901/* Assumes epfile->mutex is held. */
 902static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 903                                      void *data, int data_len,
 904                                      struct iov_iter *iter)
 905{
 906        struct ffs_buffer *buf;
 907
 908        ssize_t ret = copy_to_iter(data, data_len, iter);
 909        if (likely(data_len == ret))
 910                return ret;
 911
 912        if (unlikely(iov_iter_count(iter)))
 913                return -EFAULT;
 914
 915        /* See ffs_copy_to_iter for more context. */
 916        pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 917                data_len, ret);
 918
 919        data_len -= ret;
 920        buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
 921        if (!buf)
 922                return -ENOMEM;
 923        buf->length = data_len;
 924        buf->data = buf->storage;
 925        memcpy(buf->storage, data + ret, data_len);
 926
 927        /*
 928         * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 929         * ffs_func_eps_disable has been called in the meanwhile).  See comment
 930         * in struct ffs_epfile for full read_buffer pointer synchronisation
 931         * story.
 932         */
 933        if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
 934                kfree(buf);
 935
 936        return ret;
 937}
 938
 939static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 940{
 941        struct ffs_epfile *epfile = file->private_data;
 942        struct usb_request *req;
 943        struct ffs_ep *ep;
 944        char *data = NULL;
 945        ssize_t ret, data_len = -EINVAL;
 946        int halt;
 947
 948        /* Are we still active? */
 949        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 950                return -ENODEV;
 951
 952        /* Wait for endpoint to be enabled */
 953        ep = epfile->ep;
 954        if (!ep) {
 955                if (file->f_flags & O_NONBLOCK)
 956                        return -EAGAIN;
 957
 958                ret = wait_event_interruptible(
 959                                epfile->ffs->wait, (ep = epfile->ep));
 960                if (ret)
 961                        return -EINTR;
 962        }
 963
 964        /* Do we halt? */
 965        halt = (!io_data->read == !epfile->in);
 966        if (halt && epfile->isoc)
 967                return -EINVAL;
 968
 969        /* We will be using request and read_buffer */
 970        ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 971        if (unlikely(ret))
 972                goto error;
 973
 974        /* Allocate & copy */
 975        if (!halt) {
 976                struct usb_gadget *gadget;
 977
 978                /*
 979                 * Do we have buffered data from previous partial read?  Check
 980                 * that for synchronous case only because we do not have
 981                 * facility to ‘wake up’ a pending asynchronous read and push
 982                 * buffered data to it which we would need to make things behave
 983                 * consistently.
 984                 */
 985                if (!io_data->aio && io_data->read) {
 986                        ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
 987                        if (ret)
 988                                goto error_mutex;
 989                }
 990
 991                /*
 992                 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 993                 * before the waiting completes, so do not assign to 'gadget'
 994                 * earlier
 995                 */
 996                gadget = epfile->ffs->gadget;
 997
 998                spin_lock_irq(&epfile->ffs->eps_lock);
 999                /* In the meantime, endpoint got disabled or changed. */
1000                if (epfile->ep != ep) {
1001                        ret = -ESHUTDOWN;
1002                        goto error_lock;
1003                }
1004                data_len = iov_iter_count(&io_data->data);
1005                /*
1006                 * Controller may require buffer size to be aligned to
1007                 * maxpacketsize of an out endpoint.
1008                 */
1009                if (io_data->read)
1010                        data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1011
1012                io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1013                spin_unlock_irq(&epfile->ffs->eps_lock);
1014
1015                data = ffs_alloc_buffer(io_data, data_len);
1016                if (unlikely(!data)) {
1017                        ret = -ENOMEM;
1018                        goto error_mutex;
1019                }
1020                if (!io_data->read &&
1021                    !copy_from_iter_full(data, data_len, &io_data->data)) {
1022                        ret = -EFAULT;
1023                        goto error_mutex;
1024                }
1025        }
1026
1027        spin_lock_irq(&epfile->ffs->eps_lock);
1028
1029        if (epfile->ep != ep) {
1030                /* In the meantime, endpoint got disabled or changed. */
1031                ret = -ESHUTDOWN;
1032        } else if (halt) {
1033                ret = usb_ep_set_halt(ep->ep);
1034                if (!ret)
1035                        ret = -EBADMSG;
1036        } else if (unlikely(data_len == -EINVAL)) {
1037                /*
1038                 * Sanity Check: even though data_len can't be used
1039                 * uninitialized at the time I write this comment, some
1040                 * compilers complain about this situation.
1041                 * In order to keep the code clean from warnings, data_len is
1042                 * being initialized to -EINVAL during its declaration, which
1043                 * means we can't rely on compiler anymore to warn no future
1044                 * changes won't result in data_len being used uninitialized.
1045                 * For such reason, we're adding this redundant sanity check
1046                 * here.
1047                 */
1048                WARN(1, "%s: data_len == -EINVAL\n", __func__);
1049                ret = -EINVAL;
1050        } else if (!io_data->aio) {
1051                DECLARE_COMPLETION_ONSTACK(done);
1052                bool interrupted = false;
1053
1054                req = ep->req;
1055                if (io_data->use_sg) {
1056                        req->buf = NULL;
1057                        req->sg = io_data->sgt.sgl;
1058                        req->num_sgs = io_data->sgt.nents;
1059                } else {
1060                        req->buf = data;
1061                        req->num_sgs = 0;
1062                }
1063                req->length = data_len;
1064
1065                io_data->buf = data;
1066
1067                req->context  = &done;
1068                req->complete = ffs_epfile_io_complete;
1069
1070                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1071                if (unlikely(ret < 0))
1072                        goto error_lock;
1073
1074                spin_unlock_irq(&epfile->ffs->eps_lock);
1075
1076                if (unlikely(wait_for_completion_interruptible(&done))) {
1077                        /*
1078                         * To avoid race condition with ffs_epfile_io_complete,
1079                         * dequeue the request first then check
1080                         * status. usb_ep_dequeue API should guarantee no race
1081                         * condition with req->complete callback.
1082                         */
1083                        usb_ep_dequeue(ep->ep, req);
1084                        wait_for_completion(&done);
1085                        interrupted = ep->status < 0;
1086                }
1087
1088                if (interrupted)
1089                        ret = -EINTR;
1090                else if (io_data->read && ep->status > 0)
1091                        ret = __ffs_epfile_read_data(epfile, data, ep->status,
1092                                                     &io_data->data);
1093                else
1094                        ret = ep->status;
1095                goto error_mutex;
1096        } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1097                ret = -ENOMEM;
1098        } else {
1099                if (io_data->use_sg) {
1100                        req->buf = NULL;
1101                        req->sg = io_data->sgt.sgl;
1102                        req->num_sgs = io_data->sgt.nents;
1103                } else {
1104                        req->buf = data;
1105                        req->num_sgs = 0;
1106                }
1107                req->length = data_len;
1108
1109                io_data->buf = data;
1110                io_data->ep = ep->ep;
1111                io_data->req = req;
1112                io_data->ffs = epfile->ffs;
1113
1114                req->context  = io_data;
1115                req->complete = ffs_epfile_async_io_complete;
1116
1117                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1118                if (unlikely(ret)) {
1119                        io_data->req = NULL;
1120                        usb_ep_free_request(ep->ep, req);
1121                        goto error_lock;
1122                }
1123
1124                ret = -EIOCBQUEUED;
1125                /*
1126                 * Do not kfree the buffer in this function.  It will be freed
1127                 * by ffs_user_copy_worker.
1128                 */
1129                data = NULL;
1130        }
1131
1132error_lock:
1133        spin_unlock_irq(&epfile->ffs->eps_lock);
1134error_mutex:
1135        mutex_unlock(&epfile->mutex);
1136error:
1137        if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1138                ffs_free_buffer(io_data);
1139        return ret;
1140}
1141
1142static int
1143ffs_epfile_open(struct inode *inode, struct file *file)
1144{
1145        struct ffs_epfile *epfile = inode->i_private;
1146
1147        ENTER();
1148
1149        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1150                return -ENODEV;
1151
1152        file->private_data = epfile;
1153        ffs_data_opened(epfile->ffs);
1154
1155        return 0;
1156}
1157
1158static int ffs_aio_cancel(struct kiocb *kiocb)
1159{
1160        struct ffs_io_data *io_data = kiocb->private;
1161        struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1162        unsigned long flags;
1163        int value;
1164
1165        ENTER();
1166
1167        spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1168
1169        if (likely(io_data && io_data->ep && io_data->req))
1170                value = usb_ep_dequeue(io_data->ep, io_data->req);
1171        else
1172                value = -EINVAL;
1173
1174        spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1175
1176        return value;
1177}
1178
1179static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1180{
1181        struct ffs_io_data io_data, *p = &io_data;
1182        ssize_t res;
1183
1184        ENTER();
1185
1186        if (!is_sync_kiocb(kiocb)) {
1187                p = kzalloc(sizeof(io_data), GFP_KERNEL);
1188                if (unlikely(!p))
1189                        return -ENOMEM;
1190                p->aio = true;
1191        } else {
1192                memset(p, 0, sizeof(*p));
1193                p->aio = false;
1194        }
1195
1196        p->read = false;
1197        p->kiocb = kiocb;
1198        p->data = *from;
1199        p->mm = current->mm;
1200
1201        kiocb->private = p;
1202
1203        if (p->aio)
1204                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1205
1206        res = ffs_epfile_io(kiocb->ki_filp, p);
1207        if (res == -EIOCBQUEUED)
1208                return res;
1209        if (p->aio)
1210                kfree(p);
1211        else
1212                *from = p->data;
1213        return res;
1214}
1215
1216static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1217{
1218        struct ffs_io_data io_data, *p = &io_data;
1219        ssize_t res;
1220
1221        ENTER();
1222
1223        if (!is_sync_kiocb(kiocb)) {
1224                p = kzalloc(sizeof(io_data), GFP_KERNEL);
1225                if (unlikely(!p))
1226                        return -ENOMEM;
1227                p->aio = true;
1228        } else {
1229                memset(p, 0, sizeof(*p));
1230                p->aio = false;
1231        }
1232
1233        p->read = true;
1234        p->kiocb = kiocb;
1235        if (p->aio) {
1236                p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1237                if (!p->to_free) {
1238                        kfree(p);
1239                        return -ENOMEM;
1240                }
1241        } else {
1242                p->data = *to;
1243                p->to_free = NULL;
1244        }
1245        p->mm = current->mm;
1246
1247        kiocb->private = p;
1248
1249        if (p->aio)
1250                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1251
1252        res = ffs_epfile_io(kiocb->ki_filp, p);
1253        if (res == -EIOCBQUEUED)
1254                return res;
1255
1256        if (p->aio) {
1257                kfree(p->to_free);
1258                kfree(p);
1259        } else {
1260                *to = p->data;
1261        }
1262        return res;
1263}
1264
1265static int
1266ffs_epfile_release(struct inode *inode, struct file *file)
1267{
1268        struct ffs_epfile *epfile = inode->i_private;
1269
1270        ENTER();
1271
1272        __ffs_epfile_read_buffer_free(epfile);
1273        ffs_data_closed(epfile->ffs);
1274
1275        return 0;
1276}
1277
1278static long ffs_epfile_ioctl(struct file *file, unsigned code,
1279                             unsigned long value)
1280{
1281        struct ffs_epfile *epfile = file->private_data;
1282        struct ffs_ep *ep;
1283        int ret;
1284
1285        ENTER();
1286
1287        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1288                return -ENODEV;
1289
1290        /* Wait for endpoint to be enabled */
1291        ep = epfile->ep;
1292        if (!ep) {
1293                if (file->f_flags & O_NONBLOCK)
1294                        return -EAGAIN;
1295
1296                ret = wait_event_interruptible(
1297                                epfile->ffs->wait, (ep = epfile->ep));
1298                if (ret)
1299                        return -EINTR;
1300        }
1301
1302        spin_lock_irq(&epfile->ffs->eps_lock);
1303
1304        /* In the meantime, endpoint got disabled or changed. */
1305        if (epfile->ep != ep) {
1306                spin_unlock_irq(&epfile->ffs->eps_lock);
1307                return -ESHUTDOWN;
1308        }
1309
1310        switch (code) {
1311        case FUNCTIONFS_FIFO_STATUS:
1312                ret = usb_ep_fifo_status(epfile->ep->ep);
1313                break;
1314        case FUNCTIONFS_FIFO_FLUSH:
1315                usb_ep_fifo_flush(epfile->ep->ep);
1316                ret = 0;
1317                break;
1318        case FUNCTIONFS_CLEAR_HALT:
1319                ret = usb_ep_clear_halt(epfile->ep->ep);
1320                break;
1321        case FUNCTIONFS_ENDPOINT_REVMAP:
1322                ret = epfile->ep->num;
1323                break;
1324        case FUNCTIONFS_ENDPOINT_DESC:
1325        {
1326                int desc_idx;
1327                struct usb_endpoint_descriptor *desc;
1328
1329                switch (epfile->ffs->gadget->speed) {
1330                case USB_SPEED_SUPER:
1331                        desc_idx = 2;
1332                        break;
1333                case USB_SPEED_HIGH:
1334                        desc_idx = 1;
1335                        break;
1336                default:
1337                        desc_idx = 0;
1338                }
1339                desc = epfile->ep->descs[desc_idx];
1340
1341                spin_unlock_irq(&epfile->ffs->eps_lock);
1342                ret = copy_to_user((void __user *)value, desc, desc->bLength);
1343                if (ret)
1344                        ret = -EFAULT;
1345                return ret;
1346        }
1347        default:
1348                ret = -ENOTTY;
1349        }
1350        spin_unlock_irq(&epfile->ffs->eps_lock);
1351
1352        return ret;
1353}
1354
1355static const struct file_operations ffs_epfile_operations = {
1356        .llseek =       no_llseek,
1357
1358        .open =         ffs_epfile_open,
1359        .write_iter =   ffs_epfile_write_iter,
1360        .read_iter =    ffs_epfile_read_iter,
1361        .release =      ffs_epfile_release,
1362        .unlocked_ioctl =       ffs_epfile_ioctl,
1363        .compat_ioctl = compat_ptr_ioctl,
1364};
1365
1366
1367/* File system and super block operations ***********************************/
1368
1369/*
1370 * Mounting the file system creates a controller file, used first for
1371 * function configuration then later for event monitoring.
1372 */
1373
1374static struct inode *__must_check
1375ffs_sb_make_inode(struct super_block *sb, void *data,
1376                  const struct file_operations *fops,
1377                  const struct inode_operations *iops,
1378                  struct ffs_file_perms *perms)
1379{
1380        struct inode *inode;
1381
1382        ENTER();
1383
1384        inode = new_inode(sb);
1385
1386        if (likely(inode)) {
1387                struct timespec64 ts = current_time(inode);
1388
1389                inode->i_ino     = get_next_ino();
1390                inode->i_mode    = perms->mode;
1391                inode->i_uid     = perms->uid;
1392                inode->i_gid     = perms->gid;
1393                inode->i_atime   = ts;
1394                inode->i_mtime   = ts;
1395                inode->i_ctime   = ts;
1396                inode->i_private = data;
1397                if (fops)
1398                        inode->i_fop = fops;
1399                if (iops)
1400                        inode->i_op  = iops;
1401        }
1402
1403        return inode;
1404}
1405
1406/* Create "regular" file */
1407static struct dentry *ffs_sb_create_file(struct super_block *sb,
1408                                        const char *name, void *data,
1409                                        const struct file_operations *fops)
1410{
1411        struct ffs_data *ffs = sb->s_fs_info;
1412        struct dentry   *dentry;
1413        struct inode    *inode;
1414
1415        ENTER();
1416
1417        dentry = d_alloc_name(sb->s_root, name);
1418        if (unlikely(!dentry))
1419                return NULL;
1420
1421        inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1422        if (unlikely(!inode)) {
1423                dput(dentry);
1424                return NULL;
1425        }
1426
1427        d_add(dentry, inode);
1428        return dentry;
1429}
1430
1431/* Super block */
1432static const struct super_operations ffs_sb_operations = {
1433        .statfs =       simple_statfs,
1434        .drop_inode =   generic_delete_inode,
1435};
1436
1437struct ffs_sb_fill_data {
1438        struct ffs_file_perms perms;
1439        umode_t root_mode;
1440        const char *dev_name;
1441        bool no_disconnect;
1442        struct ffs_data *ffs_data;
1443};
1444
1445static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1446{
1447        struct ffs_sb_fill_data *data = fc->fs_private;
1448        struct inode    *inode;
1449        struct ffs_data *ffs = data->ffs_data;
1450
1451        ENTER();
1452
1453        ffs->sb              = sb;
1454        data->ffs_data       = NULL;
1455        sb->s_fs_info        = ffs;
1456        sb->s_blocksize      = PAGE_SIZE;
1457        sb->s_blocksize_bits = PAGE_SHIFT;
1458        sb->s_magic          = FUNCTIONFS_MAGIC;
1459        sb->s_op             = &ffs_sb_operations;
1460        sb->s_time_gran      = 1;
1461
1462        /* Root inode */
1463        data->perms.mode = data->root_mode;
1464        inode = ffs_sb_make_inode(sb, NULL,
1465                                  &simple_dir_operations,
1466                                  &simple_dir_inode_operations,
1467                                  &data->perms);
1468        sb->s_root = d_make_root(inode);
1469        if (unlikely(!sb->s_root))
1470                return -ENOMEM;
1471
1472        /* EP0 file */
1473        if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1474                                         &ffs_ep0_operations)))
1475                return -ENOMEM;
1476
1477        return 0;
1478}
1479
1480enum {
1481        Opt_no_disconnect,
1482        Opt_rmode,
1483        Opt_fmode,
1484        Opt_mode,
1485        Opt_uid,
1486        Opt_gid,
1487};
1488
1489static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1490        fsparam_bool    ("no_disconnect",       Opt_no_disconnect),
1491        fsparam_u32     ("rmode",               Opt_rmode),
1492        fsparam_u32     ("fmode",               Opt_fmode),
1493        fsparam_u32     ("mode",                Opt_mode),
1494        fsparam_u32     ("uid",                 Opt_uid),
1495        fsparam_u32     ("gid",                 Opt_gid),
1496        {}
1497};
1498
1499static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1500{
1501        struct ffs_sb_fill_data *data = fc->fs_private;
1502        struct fs_parse_result result;
1503        int opt;
1504
1505        ENTER();
1506
1507        opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1508        if (opt < 0)
1509                return opt;
1510
1511        switch (opt) {
1512        case Opt_no_disconnect:
1513                data->no_disconnect = result.boolean;
1514                break;
1515        case Opt_rmode:
1516                data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1517                break;
1518        case Opt_fmode:
1519                data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1520                break;
1521        case Opt_mode:
1522                data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1523                data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1524                break;
1525
1526        case Opt_uid:
1527                data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1528                if (!uid_valid(data->perms.uid))
1529                        goto unmapped_value;
1530                break;
1531        case Opt_gid:
1532                data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1533                if (!gid_valid(data->perms.gid))
1534                        goto unmapped_value;
1535                break;
1536
1537        default:
1538                return -ENOPARAM;
1539        }
1540
1541        return 0;
1542
1543unmapped_value:
1544        return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1545}
1546
1547/*
1548 * Set up the superblock for a mount.
1549 */
1550static int ffs_fs_get_tree(struct fs_context *fc)
1551{
1552        struct ffs_sb_fill_data *ctx = fc->fs_private;
1553        void *ffs_dev;
1554        struct ffs_data *ffs;
1555
1556        ENTER();
1557
1558        if (!fc->source)
1559                return invalf(fc, "No source specified");
1560
1561        ffs = ffs_data_new(fc->source);
1562        if (unlikely(!ffs))
1563                return -ENOMEM;
1564        ffs->file_perms = ctx->perms;
1565        ffs->no_disconnect = ctx->no_disconnect;
1566
1567        ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1568        if (unlikely(!ffs->dev_name)) {
1569                ffs_data_put(ffs);
1570                return -ENOMEM;
1571        }
1572
1573        ffs_dev = ffs_acquire_dev(ffs->dev_name);
1574        if (IS_ERR(ffs_dev)) {
1575                ffs_data_put(ffs);
1576                return PTR_ERR(ffs_dev);
1577        }
1578
1579        ffs->private_data = ffs_dev;
1580        ctx->ffs_data = ffs;
1581        return get_tree_nodev(fc, ffs_sb_fill);
1582}
1583
1584static void ffs_fs_free_fc(struct fs_context *fc)
1585{
1586        struct ffs_sb_fill_data *ctx = fc->fs_private;
1587
1588        if (ctx) {
1589                if (ctx->ffs_data) {
1590                        ffs_release_dev(ctx->ffs_data);
1591                        ffs_data_put(ctx->ffs_data);
1592                }
1593
1594                kfree(ctx);
1595        }
1596}
1597
1598static const struct fs_context_operations ffs_fs_context_ops = {
1599        .free           = ffs_fs_free_fc,
1600        .parse_param    = ffs_fs_parse_param,
1601        .get_tree       = ffs_fs_get_tree,
1602};
1603
1604static int ffs_fs_init_fs_context(struct fs_context *fc)
1605{
1606        struct ffs_sb_fill_data *ctx;
1607
1608        ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1609        if (!ctx)
1610                return -ENOMEM;
1611
1612        ctx->perms.mode = S_IFREG | 0600;
1613        ctx->perms.uid = GLOBAL_ROOT_UID;
1614        ctx->perms.gid = GLOBAL_ROOT_GID;
1615        ctx->root_mode = S_IFDIR | 0500;
1616        ctx->no_disconnect = false;
1617
1618        fc->fs_private = ctx;
1619        fc->ops = &ffs_fs_context_ops;
1620        return 0;
1621}
1622
1623static void
1624ffs_fs_kill_sb(struct super_block *sb)
1625{
1626        ENTER();
1627
1628        kill_litter_super(sb);
1629        if (sb->s_fs_info) {
1630                ffs_release_dev(sb->s_fs_info);
1631                ffs_data_closed(sb->s_fs_info);
1632        }
1633}
1634
1635static struct file_system_type ffs_fs_type = {
1636        .owner          = THIS_MODULE,
1637        .name           = "functionfs",
1638        .init_fs_context = ffs_fs_init_fs_context,
1639        .parameters     = ffs_fs_fs_parameters,
1640        .kill_sb        = ffs_fs_kill_sb,
1641};
1642MODULE_ALIAS_FS("functionfs");
1643
1644
1645/* Driver's main init/cleanup functions *************************************/
1646
1647static int functionfs_init(void)
1648{
1649        int ret;
1650
1651        ENTER();
1652
1653        ret = register_filesystem(&ffs_fs_type);
1654        if (likely(!ret))
1655                pr_info("file system registered\n");
1656        else
1657                pr_err("failed registering file system (%d)\n", ret);
1658
1659        return ret;
1660}
1661
1662static void functionfs_cleanup(void)
1663{
1664        ENTER();
1665
1666        pr_info("unloading\n");
1667        unregister_filesystem(&ffs_fs_type);
1668}
1669
1670
1671/* ffs_data and ffs_function construction and destruction code **************/
1672
1673static void ffs_data_clear(struct ffs_data *ffs);
1674static void ffs_data_reset(struct ffs_data *ffs);
1675
1676static void ffs_data_get(struct ffs_data *ffs)
1677{
1678        ENTER();
1679
1680        refcount_inc(&ffs->ref);
1681}
1682
1683static void ffs_data_opened(struct ffs_data *ffs)
1684{
1685        ENTER();
1686
1687        refcount_inc(&ffs->ref);
1688        if (atomic_add_return(1, &ffs->opened) == 1 &&
1689                        ffs->state == FFS_DEACTIVATED) {
1690                ffs->state = FFS_CLOSING;
1691                ffs_data_reset(ffs);
1692        }
1693}
1694
1695static void ffs_data_put(struct ffs_data *ffs)
1696{
1697        ENTER();
1698
1699        if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1700                pr_info("%s(): freeing\n", __func__);
1701                ffs_data_clear(ffs);
1702                BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1703                       swait_active(&ffs->ep0req_completion.wait) ||
1704                       waitqueue_active(&ffs->wait));
1705                destroy_workqueue(ffs->io_completion_wq);
1706                kfree(ffs->dev_name);
1707                kfree(ffs);
1708        }
1709}
1710
1711static void ffs_data_closed(struct ffs_data *ffs)
1712{
1713        ENTER();
1714
1715        if (atomic_dec_and_test(&ffs->opened)) {
1716                if (ffs->no_disconnect) {
1717                        ffs->state = FFS_DEACTIVATED;
1718                        if (ffs->epfiles) {
1719                                ffs_epfiles_destroy(ffs->epfiles,
1720                                                   ffs->eps_count);
1721                                ffs->epfiles = NULL;
1722                        }
1723                        if (ffs->setup_state == FFS_SETUP_PENDING)
1724                                __ffs_ep0_stall(ffs);
1725                } else {
1726                        ffs->state = FFS_CLOSING;
1727                        ffs_data_reset(ffs);
1728                }
1729        }
1730        if (atomic_read(&ffs->opened) < 0) {
1731                ffs->state = FFS_CLOSING;
1732                ffs_data_reset(ffs);
1733        }
1734
1735        ffs_data_put(ffs);
1736}
1737
1738static struct ffs_data *ffs_data_new(const char *dev_name)
1739{
1740        struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1741        if (unlikely(!ffs))
1742                return NULL;
1743
1744        ENTER();
1745
1746        ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1747        if (!ffs->io_completion_wq) {
1748                kfree(ffs);
1749                return NULL;
1750        }
1751
1752        refcount_set(&ffs->ref, 1);
1753        atomic_set(&ffs->opened, 0);
1754        ffs->state = FFS_READ_DESCRIPTORS;
1755        mutex_init(&ffs->mutex);
1756        spin_lock_init(&ffs->eps_lock);
1757        init_waitqueue_head(&ffs->ev.waitq);
1758        init_waitqueue_head(&ffs->wait);
1759        init_completion(&ffs->ep0req_completion);
1760
1761        /* XXX REVISIT need to update it in some places, or do we? */
1762        ffs->ev.can_stall = 1;
1763
1764        return ffs;
1765}
1766
1767static void ffs_data_clear(struct ffs_data *ffs)
1768{
1769        ENTER();
1770
1771        ffs_closed(ffs);
1772
1773        BUG_ON(ffs->gadget);
1774
1775        if (ffs->epfiles)
1776                ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1777
1778        if (ffs->ffs_eventfd)
1779                eventfd_ctx_put(ffs->ffs_eventfd);
1780
1781        kfree(ffs->raw_descs_data);
1782        kfree(ffs->raw_strings);
1783        kfree(ffs->stringtabs);
1784}
1785
1786static void ffs_data_reset(struct ffs_data *ffs)
1787{
1788        ENTER();
1789
1790        ffs_data_clear(ffs);
1791
1792        ffs->epfiles = NULL;
1793        ffs->raw_descs_data = NULL;
1794        ffs->raw_descs = NULL;
1795        ffs->raw_strings = NULL;
1796        ffs->stringtabs = NULL;
1797
1798        ffs->raw_descs_length = 0;
1799        ffs->fs_descs_count = 0;
1800        ffs->hs_descs_count = 0;
1801        ffs->ss_descs_count = 0;
1802
1803        ffs->strings_count = 0;
1804        ffs->interfaces_count = 0;
1805        ffs->eps_count = 0;
1806
1807        ffs->ev.count = 0;
1808
1809        ffs->state = FFS_READ_DESCRIPTORS;
1810        ffs->setup_state = FFS_NO_SETUP;
1811        ffs->flags = 0;
1812
1813        ffs->ms_os_descs_ext_prop_count = 0;
1814        ffs->ms_os_descs_ext_prop_name_len = 0;
1815        ffs->ms_os_descs_ext_prop_data_len = 0;
1816}
1817
1818
1819static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1820{
1821        struct usb_gadget_strings **lang;
1822        int first_id;
1823
1824        ENTER();
1825
1826        if (WARN_ON(ffs->state != FFS_ACTIVE
1827                 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1828                return -EBADFD;
1829
1830        first_id = usb_string_ids_n(cdev, ffs->strings_count);
1831        if (unlikely(first_id < 0))
1832                return first_id;
1833
1834        ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1835        if (unlikely(!ffs->ep0req))
1836                return -ENOMEM;
1837        ffs->ep0req->complete = ffs_ep0_complete;
1838        ffs->ep0req->context = ffs;
1839
1840        lang = ffs->stringtabs;
1841        if (lang) {
1842                for (; *lang; ++lang) {
1843                        struct usb_string *str = (*lang)->strings;
1844                        int id = first_id;
1845                        for (; str->s; ++id, ++str)
1846                                str->id = id;
1847                }
1848        }
1849
1850        ffs->gadget = cdev->gadget;
1851        ffs_data_get(ffs);
1852        return 0;
1853}
1854
1855static void functionfs_unbind(struct ffs_data *ffs)
1856{
1857        ENTER();
1858
1859        if (!WARN_ON(!ffs->gadget)) {
1860                usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1861                ffs->ep0req = NULL;
1862                ffs->gadget = NULL;
1863                clear_bit(FFS_FL_BOUND, &ffs->flags);
1864                ffs_data_put(ffs);
1865        }
1866}
1867
1868static int ffs_epfiles_create(struct ffs_data *ffs)
1869{
1870        struct ffs_epfile *epfile, *epfiles;
1871        unsigned i, count;
1872
1873        ENTER();
1874
1875        count = ffs->eps_count;
1876        epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1877        if (!epfiles)
1878                return -ENOMEM;
1879
1880        epfile = epfiles;
1881        for (i = 1; i <= count; ++i, ++epfile) {
1882                epfile->ffs = ffs;
1883                mutex_init(&epfile->mutex);
1884                if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1885                        sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1886                else
1887                        sprintf(epfile->name, "ep%u", i);
1888                epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1889                                                 epfile,
1890                                                 &ffs_epfile_operations);
1891                if (unlikely(!epfile->dentry)) {
1892                        ffs_epfiles_destroy(epfiles, i - 1);
1893                        return -ENOMEM;
1894                }
1895        }
1896
1897        ffs->epfiles = epfiles;
1898        return 0;
1899}
1900
1901static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1902{
1903        struct ffs_epfile *epfile = epfiles;
1904
1905        ENTER();
1906
1907        for (; count; --count, ++epfile) {
1908                BUG_ON(mutex_is_locked(&epfile->mutex));
1909                if (epfile->dentry) {
1910                        d_delete(epfile->dentry);
1911                        dput(epfile->dentry);
1912                        epfile->dentry = NULL;
1913                }
1914        }
1915
1916        kfree(epfiles);
1917}
1918
1919static void ffs_func_eps_disable(struct ffs_function *func)
1920{
1921        struct ffs_ep *ep         = func->eps;
1922        struct ffs_epfile *epfile = func->ffs->epfiles;
1923        unsigned count            = func->ffs->eps_count;
1924        unsigned long flags;
1925
1926        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1927        while (count--) {
1928                /* pending requests get nuked */
1929                if (likely(ep->ep))
1930                        usb_ep_disable(ep->ep);
1931                ++ep;
1932
1933                if (epfile) {
1934                        epfile->ep = NULL;
1935                        __ffs_epfile_read_buffer_free(epfile);
1936                        ++epfile;
1937                }
1938        }
1939        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1940}
1941
1942static int ffs_func_eps_enable(struct ffs_function *func)
1943{
1944        struct ffs_data *ffs      = func->ffs;
1945        struct ffs_ep *ep         = func->eps;
1946        struct ffs_epfile *epfile = ffs->epfiles;
1947        unsigned count            = ffs->eps_count;
1948        unsigned long flags;
1949        int ret = 0;
1950
1951        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1952        while(count--) {
1953                ep->ep->driver_data = ep;
1954
1955                ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1956                if (ret) {
1957                        pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1958                                        __func__, ep->ep->name, ret);
1959                        break;
1960                }
1961
1962                ret = usb_ep_enable(ep->ep);
1963                if (likely(!ret)) {
1964                        epfile->ep = ep;
1965                        epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1966                        epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1967                } else {
1968                        break;
1969                }
1970
1971                ++ep;
1972                ++epfile;
1973        }
1974
1975        wake_up_interruptible(&ffs->wait);
1976        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1977
1978        return ret;
1979}
1980
1981
1982/* Parsing and building descriptors and strings *****************************/
1983
1984/*
1985 * This validates if data pointed by data is a valid USB descriptor as
1986 * well as record how many interfaces, endpoints and strings are
1987 * required by given configuration.  Returns address after the
1988 * descriptor or NULL if data is invalid.
1989 */
1990
1991enum ffs_entity_type {
1992        FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1993};
1994
1995enum ffs_os_desc_type {
1996        FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1997};
1998
1999typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2000                                   u8 *valuep,
2001                                   struct usb_descriptor_header *desc,
2002                                   void *priv);
2003
2004typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2005                                    struct usb_os_desc_header *h, void *data,
2006                                    unsigned len, void *priv);
2007
2008static int __must_check ffs_do_single_desc(char *data, unsigned len,
2009                                           ffs_entity_callback entity,
2010                                           void *priv, int *current_class)
2011{
2012        struct usb_descriptor_header *_ds = (void *)data;
2013        u8 length;
2014        int ret;
2015
2016        ENTER();
2017
2018        /* At least two bytes are required: length and type */
2019        if (len < 2) {
2020                pr_vdebug("descriptor too short\n");
2021                return -EINVAL;
2022        }
2023
2024        /* If we have at least as many bytes as the descriptor takes? */
2025        length = _ds->bLength;
2026        if (len < length) {
2027                pr_vdebug("descriptor longer then available data\n");
2028                return -EINVAL;
2029        }
2030
2031#define __entity_check_INTERFACE(val)  1
2032#define __entity_check_STRING(val)     (val)
2033#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2034#define __entity(type, val) do {                                        \
2035                pr_vdebug("entity " #type "(%02x)\n", (val));           \
2036                if (unlikely(!__entity_check_ ##type(val))) {           \
2037                        pr_vdebug("invalid entity's value\n");          \
2038                        return -EINVAL;                                 \
2039                }                                                       \
2040                ret = entity(FFS_ ##type, &val, _ds, priv);             \
2041                if (unlikely(ret < 0)) {                                \
2042                        pr_debug("entity " #type "(%02x); ret = %d\n",  \
2043                                 (val), ret);                           \
2044                        return ret;                                     \
2045                }                                                       \
2046        } while (0)
2047
2048        /* Parse descriptor depending on type. */
2049        switch (_ds->bDescriptorType) {
2050        case USB_DT_DEVICE:
2051        case USB_DT_CONFIG:
2052        case USB_DT_STRING:
2053        case USB_DT_DEVICE_QUALIFIER:
2054                /* function can't have any of those */
2055                pr_vdebug("descriptor reserved for gadget: %d\n",
2056                      _ds->bDescriptorType);
2057                return -EINVAL;
2058
2059        case USB_DT_INTERFACE: {
2060                struct usb_interface_descriptor *ds = (void *)_ds;
2061                pr_vdebug("interface descriptor\n");
2062                if (length != sizeof *ds)
2063                        goto inv_length;
2064
2065                __entity(INTERFACE, ds->bInterfaceNumber);
2066                if (ds->iInterface)
2067                        __entity(STRING, ds->iInterface);
2068                *current_class = ds->bInterfaceClass;
2069        }
2070                break;
2071
2072        case USB_DT_ENDPOINT: {
2073                struct usb_endpoint_descriptor *ds = (void *)_ds;
2074                pr_vdebug("endpoint descriptor\n");
2075                if (length != USB_DT_ENDPOINT_SIZE &&
2076                    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2077                        goto inv_length;
2078                __entity(ENDPOINT, ds->bEndpointAddress);
2079        }
2080                break;
2081
2082        case USB_TYPE_CLASS | 0x01:
2083                if (*current_class == USB_INTERFACE_CLASS_HID) {
2084                        pr_vdebug("hid descriptor\n");
2085                        if (length != sizeof(struct hid_descriptor))
2086                                goto inv_length;
2087                        break;
2088                } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2089                        pr_vdebug("ccid descriptor\n");
2090                        if (length != sizeof(struct ccid_descriptor))
2091                                goto inv_length;
2092                        break;
2093                } else {
2094                        pr_vdebug("unknown descriptor: %d for class %d\n",
2095                              _ds->bDescriptorType, *current_class);
2096                        return -EINVAL;
2097                }
2098
2099        case USB_DT_OTG:
2100                if (length != sizeof(struct usb_otg_descriptor))
2101                        goto inv_length;
2102                break;
2103
2104        case USB_DT_INTERFACE_ASSOCIATION: {
2105                struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2106                pr_vdebug("interface association descriptor\n");
2107                if (length != sizeof *ds)
2108                        goto inv_length;
2109                if (ds->iFunction)
2110                        __entity(STRING, ds->iFunction);
2111        }
2112                break;
2113
2114        case USB_DT_SS_ENDPOINT_COMP:
2115                pr_vdebug("EP SS companion descriptor\n");
2116                if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2117                        goto inv_length;
2118                break;
2119
2120        case USB_DT_OTHER_SPEED_CONFIG:
2121        case USB_DT_INTERFACE_POWER:
2122        case USB_DT_DEBUG:
2123        case USB_DT_SECURITY:
2124        case USB_DT_CS_RADIO_CONTROL:
2125                /* TODO */
2126                pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2127                return -EINVAL;
2128
2129        default:
2130                /* We should never be here */
2131                pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2132                return -EINVAL;
2133
2134inv_length:
2135                pr_vdebug("invalid length: %d (descriptor %d)\n",
2136                          _ds->bLength, _ds->bDescriptorType);
2137                return -EINVAL;
2138        }
2139
2140#undef __entity
2141#undef __entity_check_DESCRIPTOR
2142#undef __entity_check_INTERFACE
2143#undef __entity_check_STRING
2144#undef __entity_check_ENDPOINT
2145
2146        return length;
2147}
2148
2149static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2150                                     ffs_entity_callback entity, void *priv)
2151{
2152        const unsigned _len = len;
2153        unsigned long num = 0;
2154        int current_class = -1;
2155
2156        ENTER();
2157
2158        for (;;) {
2159                int ret;
2160
2161                if (num == count)
2162                        data = NULL;
2163
2164                /* Record "descriptor" entity */
2165                ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2166                if (unlikely(ret < 0)) {
2167                        pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2168                                 num, ret);
2169                        return ret;
2170                }
2171
2172                if (!data)
2173                        return _len - len;
2174
2175                ret = ffs_do_single_desc(data, len, entity, priv,
2176                        &current_class);
2177                if (unlikely(ret < 0)) {
2178                        pr_debug("%s returns %d\n", __func__, ret);
2179                        return ret;
2180                }
2181
2182                len -= ret;
2183                data += ret;
2184                ++num;
2185        }
2186}
2187
2188static int __ffs_data_do_entity(enum ffs_entity_type type,
2189                                u8 *valuep, struct usb_descriptor_header *desc,
2190                                void *priv)
2191{
2192        struct ffs_desc_helper *helper = priv;
2193        struct usb_endpoint_descriptor *d;
2194
2195        ENTER();
2196
2197        switch (type) {
2198        case FFS_DESCRIPTOR:
2199                break;
2200
2201        case FFS_INTERFACE:
2202                /*
2203                 * Interfaces are indexed from zero so if we
2204                 * encountered interface "n" then there are at least
2205                 * "n+1" interfaces.
2206                 */
2207                if (*valuep >= helper->interfaces_count)
2208                        helper->interfaces_count = *valuep + 1;
2209                break;
2210
2211        case FFS_STRING:
2212                /*
2213                 * Strings are indexed from 1 (0 is reserved
2214                 * for languages list)
2215                 */
2216                if (*valuep > helper->ffs->strings_count)
2217                        helper->ffs->strings_count = *valuep;
2218                break;
2219
2220        case FFS_ENDPOINT:
2221                d = (void *)desc;
2222                helper->eps_count++;
2223                if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2224                        return -EINVAL;
2225                /* Check if descriptors for any speed were already parsed */
2226                if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2227                        helper->ffs->eps_addrmap[helper->eps_count] =
2228                                d->bEndpointAddress;
2229                else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2230                                d->bEndpointAddress)
2231                        return -EINVAL;
2232                break;
2233        }
2234
2235        return 0;
2236}
2237
2238static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2239                                   struct usb_os_desc_header *desc)
2240{
2241        u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2242        u16 w_index = le16_to_cpu(desc->wIndex);
2243
2244        if (bcd_version != 1) {
2245                pr_vdebug("unsupported os descriptors version: %d",
2246                          bcd_version);
2247                return -EINVAL;
2248        }
2249        switch (w_index) {
2250        case 0x4:
2251                *next_type = FFS_OS_DESC_EXT_COMPAT;
2252                break;
2253        case 0x5:
2254                *next_type = FFS_OS_DESC_EXT_PROP;
2255                break;
2256        default:
2257                pr_vdebug("unsupported os descriptor type: %d", w_index);
2258                return -EINVAL;
2259        }
2260
2261        return sizeof(*desc);
2262}
2263
2264/*
2265 * Process all extended compatibility/extended property descriptors
2266 * of a feature descriptor
2267 */
2268static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2269                                              enum ffs_os_desc_type type,
2270                                              u16 feature_count,
2271                                              ffs_os_desc_callback entity,
2272                                              void *priv,
2273                                              struct usb_os_desc_header *h)
2274{
2275        int ret;
2276        const unsigned _len = len;
2277
2278        ENTER();
2279
2280        /* loop over all ext compat/ext prop descriptors */
2281        while (feature_count--) {
2282                ret = entity(type, h, data, len, priv);
2283                if (unlikely(ret < 0)) {
2284                        pr_debug("bad OS descriptor, type: %d\n", type);
2285                        return ret;
2286                }
2287                data += ret;
2288                len -= ret;
2289        }
2290        return _len - len;
2291}
2292
2293/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2294static int __must_check ffs_do_os_descs(unsigned count,
2295                                        char *data, unsigned len,
2296                                        ffs_os_desc_callback entity, void *priv)
2297{
2298        const unsigned _len = len;
2299        unsigned long num = 0;
2300
2301        ENTER();
2302
2303        for (num = 0; num < count; ++num) {
2304                int ret;
2305                enum ffs_os_desc_type type;
2306                u16 feature_count;
2307                struct usb_os_desc_header *desc = (void *)data;
2308
2309                if (len < sizeof(*desc))
2310                        return -EINVAL;
2311
2312                /*
2313                 * Record "descriptor" entity.
2314                 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2315                 * Move the data pointer to the beginning of extended
2316                 * compatibilities proper or extended properties proper
2317                 * portions of the data
2318                 */
2319                if (le32_to_cpu(desc->dwLength) > len)
2320                        return -EINVAL;
2321
2322                ret = __ffs_do_os_desc_header(&type, desc);
2323                if (unlikely(ret < 0)) {
2324                        pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2325                                 num, ret);
2326                        return ret;
2327                }
2328                /*
2329                 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2330                 */
2331                feature_count = le16_to_cpu(desc->wCount);
2332                if (type == FFS_OS_DESC_EXT_COMPAT &&
2333                    (feature_count > 255 || desc->Reserved))
2334                                return -EINVAL;
2335                len -= ret;
2336                data += ret;
2337
2338                /*
2339                 * Process all function/property descriptors
2340                 * of this Feature Descriptor
2341                 */
2342                ret = ffs_do_single_os_desc(data, len, type,
2343                                            feature_count, entity, priv, desc);
2344                if (unlikely(ret < 0)) {
2345                        pr_debug("%s returns %d\n", __func__, ret);
2346                        return ret;
2347                }
2348
2349                len -= ret;
2350                data += ret;
2351        }
2352        return _len - len;
2353}
2354
2355/**
2356 * Validate contents of the buffer from userspace related to OS descriptors.
2357 */
2358static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2359                                 struct usb_os_desc_header *h, void *data,
2360                                 unsigned len, void *priv)
2361{
2362        struct ffs_data *ffs = priv;
2363        u8 length;
2364
2365        ENTER();
2366
2367        switch (type) {
2368        case FFS_OS_DESC_EXT_COMPAT: {
2369                struct usb_ext_compat_desc *d = data;
2370                int i;
2371
2372                if (len < sizeof(*d) ||
2373                    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2374                        return -EINVAL;
2375                if (d->Reserved1 != 1) {
2376                        /*
2377                         * According to the spec, Reserved1 must be set to 1
2378                         * but older kernels incorrectly rejected non-zero
2379                         * values.  We fix it here to avoid returning EINVAL
2380                         * in response to values we used to accept.
2381                         */
2382                        pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2383                        d->Reserved1 = 1;
2384                }
2385                for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2386                        if (d->Reserved2[i])
2387                                return -EINVAL;
2388
2389                length = sizeof(struct usb_ext_compat_desc);
2390        }
2391                break;
2392        case FFS_OS_DESC_EXT_PROP: {
2393                struct usb_ext_prop_desc *d = data;
2394                u32 type, pdl;
2395                u16 pnl;
2396
2397                if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2398                        return -EINVAL;
2399                length = le32_to_cpu(d->dwSize);
2400                if (len < length)
2401                        return -EINVAL;
2402                type = le32_to_cpu(d->dwPropertyDataType);
2403                if (type < USB_EXT_PROP_UNICODE ||
2404                    type > USB_EXT_PROP_UNICODE_MULTI) {
2405                        pr_vdebug("unsupported os descriptor property type: %d",
2406                                  type);
2407                        return -EINVAL;
2408                }
2409                pnl = le16_to_cpu(d->wPropertyNameLength);
2410                if (length < 14 + pnl) {
2411                        pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2412                                  length, pnl, type);
2413                        return -EINVAL;
2414                }
2415                pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2416                if (length != 14 + pnl + pdl) {
2417                        pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2418                                  length, pnl, pdl, type);
2419                        return -EINVAL;
2420                }
2421                ++ffs->ms_os_descs_ext_prop_count;
2422                /* property name reported to the host as "WCHAR"s */
2423                ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2424                ffs->ms_os_descs_ext_prop_data_len += pdl;
2425        }
2426                break;
2427        default:
2428                pr_vdebug("unknown descriptor: %d\n", type);
2429                return -EINVAL;
2430        }
2431        return length;
2432}
2433
2434static int __ffs_data_got_descs(struct ffs_data *ffs,
2435                                char *const _data, size_t len)
2436{
2437        char *data = _data, *raw_descs;
2438        unsigned os_descs_count = 0, counts[3], flags;
2439        int ret = -EINVAL, i;
2440        struct ffs_desc_helper helper;
2441
2442        ENTER();
2443
2444        if (get_unaligned_le32(data + 4) != len)
2445                goto error;
2446
2447        switch (get_unaligned_le32(data)) {
2448        case FUNCTIONFS_DESCRIPTORS_MAGIC:
2449                flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2450                data += 8;
2451                len  -= 8;
2452                break;
2453        case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2454                flags = get_unaligned_le32(data + 8);
2455                ffs->user_flags = flags;
2456                if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2457                              FUNCTIONFS_HAS_HS_DESC |
2458                              FUNCTIONFS_HAS_SS_DESC |
2459                              FUNCTIONFS_HAS_MS_OS_DESC |
2460                              FUNCTIONFS_VIRTUAL_ADDR |
2461                              FUNCTIONFS_EVENTFD |
2462                              FUNCTIONFS_ALL_CTRL_RECIP |
2463                              FUNCTIONFS_CONFIG0_SETUP)) {
2464                        ret = -ENOSYS;
2465                        goto error;
2466                }
2467                data += 12;
2468                len  -= 12;
2469                break;
2470        default:
2471                goto error;
2472        }
2473
2474        if (flags & FUNCTIONFS_EVENTFD) {
2475                if (len < 4)
2476                        goto error;
2477                ffs->ffs_eventfd =
2478                        eventfd_ctx_fdget((int)get_unaligned_le32(data));
2479                if (IS_ERR(ffs->ffs_eventfd)) {
2480                        ret = PTR_ERR(ffs->ffs_eventfd);
2481                        ffs->ffs_eventfd = NULL;
2482                        goto error;
2483                }
2484                data += 4;
2485                len  -= 4;
2486        }
2487
2488        /* Read fs_count, hs_count and ss_count (if present) */
2489        for (i = 0; i < 3; ++i) {
2490                if (!(flags & (1 << i))) {
2491                        counts[i] = 0;
2492                } else if (len < 4) {
2493                        goto error;
2494                } else {
2495                        counts[i] = get_unaligned_le32(data);
2496                        data += 4;
2497                        len  -= 4;
2498                }
2499        }
2500        if (flags & (1 << i)) {
2501                if (len < 4) {
2502                        goto error;
2503                }
2504                os_descs_count = get_unaligned_le32(data);
2505                data += 4;
2506                len -= 4;
2507        }
2508
2509        /* Read descriptors */
2510        raw_descs = data;
2511        helper.ffs = ffs;
2512        for (i = 0; i < 3; ++i) {
2513                if (!counts[i])
2514                        continue;
2515                helper.interfaces_count = 0;
2516                helper.eps_count = 0;
2517                ret = ffs_do_descs(counts[i], data, len,
2518                                   __ffs_data_do_entity, &helper);
2519                if (ret < 0)
2520                        goto error;
2521                if (!ffs->eps_count && !ffs->interfaces_count) {
2522                        ffs->eps_count = helper.eps_count;
2523                        ffs->interfaces_count = helper.interfaces_count;
2524                } else {
2525                        if (ffs->eps_count != helper.eps_count) {
2526                                ret = -EINVAL;
2527                                goto error;
2528                        }
2529                        if (ffs->interfaces_count != helper.interfaces_count) {
2530                                ret = -EINVAL;
2531                                goto error;
2532                        }
2533                }
2534                data += ret;
2535                len  -= ret;
2536        }
2537        if (os_descs_count) {
2538                ret = ffs_do_os_descs(os_descs_count, data, len,
2539                                      __ffs_data_do_os_desc, ffs);
2540                if (ret < 0)
2541                        goto error;
2542                data += ret;
2543                len -= ret;
2544        }
2545
2546        if (raw_descs == data || len) {
2547                ret = -EINVAL;
2548                goto error;
2549        }
2550
2551        ffs->raw_descs_data     = _data;
2552        ffs->raw_descs          = raw_descs;
2553        ffs->raw_descs_length   = data - raw_descs;
2554        ffs->fs_descs_count     = counts[0];
2555        ffs->hs_descs_count     = counts[1];
2556        ffs->ss_descs_count     = counts[2];
2557        ffs->ms_os_descs_count  = os_descs_count;
2558
2559        return 0;
2560
2561error:
2562        kfree(_data);
2563        return ret;
2564}
2565
2566static int __ffs_data_got_strings(struct ffs_data *ffs,
2567                                  char *const _data, size_t len)
2568{
2569        u32 str_count, needed_count, lang_count;
2570        struct usb_gadget_strings **stringtabs, *t;
2571        const char *data = _data;
2572        struct usb_string *s;
2573
2574        ENTER();
2575
2576        if (unlikely(len < 16 ||
2577                     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2578                     get_unaligned_le32(data + 4) != len))
2579                goto error;
2580        str_count  = get_unaligned_le32(data + 8);
2581        lang_count = get_unaligned_le32(data + 12);
2582
2583        /* if one is zero the other must be zero */
2584        if (unlikely(!str_count != !lang_count))
2585                goto error;
2586
2587        /* Do we have at least as many strings as descriptors need? */
2588        needed_count = ffs->strings_count;
2589        if (unlikely(str_count < needed_count))
2590                goto error;
2591
2592        /*
2593         * If we don't need any strings just return and free all
2594         * memory.
2595         */
2596        if (!needed_count) {
2597                kfree(_data);
2598                return 0;
2599        }
2600
2601        /* Allocate everything in one chunk so there's less maintenance. */
2602        {
2603                unsigned i = 0;
2604                vla_group(d);
2605                vla_item(d, struct usb_gadget_strings *, stringtabs,
2606                        lang_count + 1);
2607                vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2608                vla_item(d, struct usb_string, strings,
2609                        lang_count*(needed_count+1));
2610
2611                char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2612
2613                if (unlikely(!vlabuf)) {
2614                        kfree(_data);
2615                        return -ENOMEM;
2616                }
2617
2618                /* Initialize the VLA pointers */
2619                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2620                t = vla_ptr(vlabuf, d, stringtab);
2621                i = lang_count;
2622                do {
2623                        *stringtabs++ = t++;
2624                } while (--i);
2625                *stringtabs = NULL;
2626
2627                /* stringtabs = vlabuf = d_stringtabs for later kfree */
2628                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2629                t = vla_ptr(vlabuf, d, stringtab);
2630                s = vla_ptr(vlabuf, d, strings);
2631        }
2632
2633        /* For each language */
2634        data += 16;
2635        len -= 16;
2636
2637        do { /* lang_count > 0 so we can use do-while */
2638                unsigned needed = needed_count;
2639
2640                if (unlikely(len < 3))
2641                        goto error_free;
2642                t->language = get_unaligned_le16(data);
2643                t->strings  = s;
2644                ++t;
2645
2646                data += 2;
2647                len -= 2;
2648
2649                /* For each string */
2650                do { /* str_count > 0 so we can use do-while */
2651                        size_t length = strnlen(data, len);
2652
2653                        if (unlikely(length == len))
2654                                goto error_free;
2655
2656                        /*
2657                         * User may provide more strings then we need,
2658                         * if that's the case we simply ignore the
2659                         * rest
2660                         */
2661                        if (likely(needed)) {
2662                                /*
2663                                 * s->id will be set while adding
2664                                 * function to configuration so for
2665                                 * now just leave garbage here.
2666                                 */
2667                                s->s = data;
2668                                --needed;
2669                                ++s;
2670                        }
2671
2672                        data += length + 1;
2673                        len -= length + 1;
2674                } while (--str_count);
2675
2676                s->id = 0;   /* terminator */
2677                s->s = NULL;
2678                ++s;
2679
2680        } while (--lang_count);
2681
2682        /* Some garbage left? */
2683        if (unlikely(len))
2684                goto error_free;
2685
2686        /* Done! */
2687        ffs->stringtabs = stringtabs;
2688        ffs->raw_strings = _data;
2689
2690        return 0;
2691
2692error_free:
2693        kfree(stringtabs);
2694error:
2695        kfree(_data);
2696        return -EINVAL;
2697}
2698
2699
2700/* Events handling and management *******************************************/
2701
2702static void __ffs_event_add(struct ffs_data *ffs,
2703                            enum usb_functionfs_event_type type)
2704{
2705        enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2706        int neg = 0;
2707
2708        /*
2709         * Abort any unhandled setup
2710         *
2711         * We do not need to worry about some cmpxchg() changing value
2712         * of ffs->setup_state without holding the lock because when
2713         * state is FFS_SETUP_PENDING cmpxchg() in several places in
2714         * the source does nothing.
2715         */
2716        if (ffs->setup_state == FFS_SETUP_PENDING)
2717                ffs->setup_state = FFS_SETUP_CANCELLED;
2718
2719        /*
2720         * Logic of this function guarantees that there are at most four pending
2721         * evens on ffs->ev.types queue.  This is important because the queue
2722         * has space for four elements only and __ffs_ep0_read_events function
2723         * depends on that limit as well.  If more event types are added, those
2724         * limits have to be revisited or guaranteed to still hold.
2725         */
2726        switch (type) {
2727        case FUNCTIONFS_RESUME:
2728                rem_type2 = FUNCTIONFS_SUSPEND;
2729                /* FALL THROUGH */
2730        case FUNCTIONFS_SUSPEND:
2731        case FUNCTIONFS_SETUP:
2732                rem_type1 = type;
2733                /* Discard all similar events */
2734                break;
2735
2736        case FUNCTIONFS_BIND:
2737        case FUNCTIONFS_UNBIND:
2738        case FUNCTIONFS_DISABLE:
2739        case FUNCTIONFS_ENABLE:
2740                /* Discard everything other then power management. */
2741                rem_type1 = FUNCTIONFS_SUSPEND;
2742                rem_type2 = FUNCTIONFS_RESUME;
2743                neg = 1;
2744                break;
2745
2746        default:
2747                WARN(1, "%d: unknown event, this should not happen\n", type);
2748                return;
2749        }
2750
2751        {
2752                u8 *ev  = ffs->ev.types, *out = ev;
2753                unsigned n = ffs->ev.count;
2754                for (; n; --n, ++ev)
2755                        if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2756                                *out++ = *ev;
2757                        else
2758                                pr_vdebug("purging event %d\n", *ev);
2759                ffs->ev.count = out - ffs->ev.types;
2760        }
2761
2762        pr_vdebug("adding event %d\n", type);
2763        ffs->ev.types[ffs->ev.count++] = type;
2764        wake_up_locked(&ffs->ev.waitq);
2765        if (ffs->ffs_eventfd)
2766                eventfd_signal(ffs->ffs_eventfd, 1);
2767}
2768
2769static void ffs_event_add(struct ffs_data *ffs,
2770                          enum usb_functionfs_event_type type)
2771{
2772        unsigned long flags;
2773        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2774        __ffs_event_add(ffs, type);
2775        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2776}
2777
2778/* Bind/unbind USB function hooks *******************************************/
2779
2780static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2781{
2782        int i;
2783
2784        for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2785                if (ffs->eps_addrmap[i] == endpoint_address)
2786                        return i;
2787        return -ENOENT;
2788}
2789
2790static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2791                                    struct usb_descriptor_header *desc,
2792                                    void *priv)
2793{
2794        struct usb_endpoint_descriptor *ds = (void *)desc;
2795        struct ffs_function *func = priv;
2796        struct ffs_ep *ffs_ep;
2797        unsigned ep_desc_id;
2798        int idx;
2799        static const char *speed_names[] = { "full", "high", "super" };
2800
2801        if (type != FFS_DESCRIPTOR)
2802                return 0;
2803
2804        /*
2805         * If ss_descriptors is not NULL, we are reading super speed
2806         * descriptors; if hs_descriptors is not NULL, we are reading high
2807         * speed descriptors; otherwise, we are reading full speed
2808         * descriptors.
2809         */
2810        if (func->function.ss_descriptors) {
2811                ep_desc_id = 2;
2812                func->function.ss_descriptors[(long)valuep] = desc;
2813        } else if (func->function.hs_descriptors) {
2814                ep_desc_id = 1;
2815                func->function.hs_descriptors[(long)valuep] = desc;
2816        } else {
2817                ep_desc_id = 0;
2818                func->function.fs_descriptors[(long)valuep]    = desc;
2819        }
2820
2821        if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2822                return 0;
2823
2824        idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2825        if (idx < 0)
2826                return idx;
2827
2828        ffs_ep = func->eps + idx;
2829
2830        if (unlikely(ffs_ep->descs[ep_desc_id])) {
2831                pr_err("two %sspeed descriptors for EP %d\n",
2832                          speed_names[ep_desc_id],
2833                          ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2834                return -EINVAL;
2835        }
2836        ffs_ep->descs[ep_desc_id] = ds;
2837
2838        ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2839        if (ffs_ep->ep) {
2840                ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2841                if (!ds->wMaxPacketSize)
2842                        ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2843        } else {
2844                struct usb_request *req;
2845                struct usb_ep *ep;
2846                u8 bEndpointAddress;
2847                u16 wMaxPacketSize;
2848
2849                /*
2850                 * We back up bEndpointAddress because autoconfig overwrites
2851                 * it with physical endpoint address.
2852                 */
2853                bEndpointAddress = ds->bEndpointAddress;
2854                /*
2855                 * We back up wMaxPacketSize because autoconfig treats
2856                 * endpoint descriptors as if they were full speed.
2857                 */
2858                wMaxPacketSize = ds->wMaxPacketSize;
2859                pr_vdebug("autoconfig\n");
2860                ep = usb_ep_autoconfig(func->gadget, ds);
2861                if (unlikely(!ep))
2862                        return -ENOTSUPP;
2863                ep->driver_data = func->eps + idx;
2864
2865                req = usb_ep_alloc_request(ep, GFP_KERNEL);
2866                if (unlikely(!req))
2867                        return -ENOMEM;
2868
2869                ffs_ep->ep  = ep;
2870                ffs_ep->req = req;
2871                func->eps_revmap[ds->bEndpointAddress &
2872                                 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2873                /*
2874                 * If we use virtual address mapping, we restore
2875                 * original bEndpointAddress value.
2876                 */
2877                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2878                        ds->bEndpointAddress = bEndpointAddress;
2879                /*
2880                 * Restore wMaxPacketSize which was potentially
2881                 * overwritten by autoconfig.
2882                 */
2883                ds->wMaxPacketSize = wMaxPacketSize;
2884        }
2885        ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2886
2887        return 0;
2888}
2889
2890static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2891                                   struct usb_descriptor_header *desc,
2892                                   void *priv)
2893{
2894        struct ffs_function *func = priv;
2895        unsigned idx;
2896        u8 newValue;
2897
2898        switch (type) {
2899        default:
2900        case FFS_DESCRIPTOR:
2901                /* Handled in previous pass by __ffs_func_bind_do_descs() */
2902                return 0;
2903
2904        case FFS_INTERFACE:
2905                idx = *valuep;
2906                if (func->interfaces_nums[idx] < 0) {
2907                        int id = usb_interface_id(func->conf, &func->function);
2908                        if (unlikely(id < 0))
2909                                return id;
2910                        func->interfaces_nums[idx] = id;
2911                }
2912                newValue = func->interfaces_nums[idx];
2913                break;
2914
2915        case FFS_STRING:
2916                /* String' IDs are allocated when fsf_data is bound to cdev */
2917                newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2918                break;
2919
2920        case FFS_ENDPOINT:
2921                /*
2922                 * USB_DT_ENDPOINT are handled in
2923                 * __ffs_func_bind_do_descs().
2924                 */
2925                if (desc->bDescriptorType == USB_DT_ENDPOINT)
2926                        return 0;
2927
2928                idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2929                if (unlikely(!func->eps[idx].ep))
2930                        return -EINVAL;
2931
2932                {
2933                        struct usb_endpoint_descriptor **descs;
2934                        descs = func->eps[idx].descs;
2935                        newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2936                }
2937                break;
2938        }
2939
2940        pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2941        *valuep = newValue;
2942        return 0;
2943}
2944
2945static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2946                                      struct usb_os_desc_header *h, void *data,
2947                                      unsigned len, void *priv)
2948{
2949        struct ffs_function *func = priv;
2950        u8 length = 0;
2951
2952        switch (type) {
2953        case FFS_OS_DESC_EXT_COMPAT: {
2954                struct usb_ext_compat_desc *desc = data;
2955                struct usb_os_desc_table *t;
2956
2957                t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2958                t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2959                memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2960                       ARRAY_SIZE(desc->CompatibleID) +
2961                       ARRAY_SIZE(desc->SubCompatibleID));
2962                length = sizeof(*desc);
2963        }
2964                break;
2965        case FFS_OS_DESC_EXT_PROP: {
2966                struct usb_ext_prop_desc *desc = data;
2967                struct usb_os_desc_table *t;
2968                struct usb_os_desc_ext_prop *ext_prop;
2969                char *ext_prop_name;
2970                char *ext_prop_data;
2971
2972                t = &func->function.os_desc_table[h->interface];
2973                t->if_id = func->interfaces_nums[h->interface];
2974
2975                ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2976                func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2977
2978                ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2979                ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2980                ext_prop->data_len = le32_to_cpu(*(__le32 *)
2981                        usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2982                length = ext_prop->name_len + ext_prop->data_len + 14;
2983
2984                ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2985                func->ffs->ms_os_descs_ext_prop_name_avail +=
2986                        ext_prop->name_len;
2987
2988                ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2989                func->ffs->ms_os_descs_ext_prop_data_avail +=
2990                        ext_prop->data_len;
2991                memcpy(ext_prop_data,
2992                       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2993                       ext_prop->data_len);
2994                /* unicode data reported to the host as "WCHAR"s */
2995                switch (ext_prop->type) {
2996                case USB_EXT_PROP_UNICODE:
2997                case USB_EXT_PROP_UNICODE_ENV:
2998                case USB_EXT_PROP_UNICODE_LINK:
2999                case USB_EXT_PROP_UNICODE_MULTI:
3000                        ext_prop->data_len *= 2;
3001                        break;
3002                }
3003                ext_prop->data = ext_prop_data;
3004
3005                memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3006                       ext_prop->name_len);
3007                /* property name reported to the host as "WCHAR"s */
3008                ext_prop->name_len *= 2;
3009                ext_prop->name = ext_prop_name;
3010
3011                t->os_desc->ext_prop_len +=
3012                        ext_prop->name_len + ext_prop->data_len + 14;
3013                ++t->os_desc->ext_prop_count;
3014                list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3015        }
3016                break;
3017        default:
3018                pr_vdebug("unknown descriptor: %d\n", type);
3019        }
3020
3021        return length;
3022}
3023
3024static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3025                                                struct usb_configuration *c)
3026{
3027        struct ffs_function *func = ffs_func_from_usb(f);
3028        struct f_fs_opts *ffs_opts =
3029                container_of(f->fi, struct f_fs_opts, func_inst);
3030        int ret;
3031
3032        ENTER();
3033
3034        /*
3035         * Legacy gadget triggers binding in functionfs_ready_callback,
3036         * which already uses locking; taking the same lock here would
3037         * cause a deadlock.
3038         *
3039         * Configfs-enabled gadgets however do need ffs_dev_lock.
3040         */
3041        if (!ffs_opts->no_configfs)
3042                ffs_dev_lock();
3043        ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3044        func->ffs = ffs_opts->dev->ffs_data;
3045        if (!ffs_opts->no_configfs)
3046                ffs_dev_unlock();
3047        if (ret)
3048                return ERR_PTR(ret);
3049
3050        func->conf = c;
3051        func->gadget = c->cdev->gadget;
3052
3053        /*
3054         * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3055         * configurations are bound in sequence with list_for_each_entry,
3056         * in each configuration its functions are bound in sequence
3057         * with list_for_each_entry, so we assume no race condition
3058         * with regard to ffs_opts->bound access
3059         */
3060        if (!ffs_opts->refcnt) {
3061                ret = functionfs_bind(func->ffs, c->cdev);
3062                if (ret)
3063                        return ERR_PTR(ret);
3064        }
3065        ffs_opts->refcnt++;
3066        func->function.strings = func->ffs->stringtabs;
3067
3068        return ffs_opts;
3069}
3070
3071static int _ffs_func_bind(struct usb_configuration *c,
3072                          struct usb_function *f)
3073{
3074        struct ffs_function *func = ffs_func_from_usb(f);
3075        struct ffs_data *ffs = func->ffs;
3076
3077        const int full = !!func->ffs->fs_descs_count;
3078        const int high = !!func->ffs->hs_descs_count;
3079        const int super = !!func->ffs->ss_descs_count;
3080
3081        int fs_len, hs_len, ss_len, ret, i;
3082        struct ffs_ep *eps_ptr;
3083
3084        /* Make it a single chunk, less management later on */
3085        vla_group(d);
3086        vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3087        vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3088                full ? ffs->fs_descs_count + 1 : 0);
3089        vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3090                high ? ffs->hs_descs_count + 1 : 0);
3091        vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3092                super ? ffs->ss_descs_count + 1 : 0);
3093        vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3094        vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3095                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
3096        vla_item_with_sz(d, char[16], ext_compat,
3097                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
3098        vla_item_with_sz(d, struct usb_os_desc, os_desc,
3099                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
3100        vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3101                         ffs->ms_os_descs_ext_prop_count);
3102        vla_item_with_sz(d, char, ext_prop_name,
3103                         ffs->ms_os_descs_ext_prop_name_len);
3104        vla_item_with_sz(d, char, ext_prop_data,
3105                         ffs->ms_os_descs_ext_prop_data_len);
3106        vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3107        char *vlabuf;
3108
3109        ENTER();
3110
3111        /* Has descriptors only for speeds gadget does not support */
3112        if (unlikely(!(full | high | super)))
3113                return -ENOTSUPP;
3114
3115        /* Allocate a single chunk, less management later on */
3116        vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3117        if (unlikely(!vlabuf))
3118                return -ENOMEM;
3119
3120        ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3121        ffs->ms_os_descs_ext_prop_name_avail =
3122                vla_ptr(vlabuf, d, ext_prop_name);
3123        ffs->ms_os_descs_ext_prop_data_avail =
3124                vla_ptr(vlabuf, d, ext_prop_data);
3125
3126        /* Copy descriptors  */
3127        memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3128               ffs->raw_descs_length);
3129
3130        memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3131        eps_ptr = vla_ptr(vlabuf, d, eps);
3132        for (i = 0; i < ffs->eps_count; i++)
3133                eps_ptr[i].num = -1;
3134
3135        /* Save pointers
3136         * d_eps == vlabuf, func->eps used to kfree vlabuf later
3137        */
3138        func->eps             = vla_ptr(vlabuf, d, eps);
3139        func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3140
3141        /*
3142         * Go through all the endpoint descriptors and allocate
3143         * endpoints first, so that later we can rewrite the endpoint
3144         * numbers without worrying that it may be described later on.
3145         */
3146        if (likely(full)) {
3147                func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3148                fs_len = ffs_do_descs(ffs->fs_descs_count,
3149                                      vla_ptr(vlabuf, d, raw_descs),
3150                                      d_raw_descs__sz,
3151                                      __ffs_func_bind_do_descs, func);
3152                if (unlikely(fs_len < 0)) {
3153                        ret = fs_len;
3154                        goto error;
3155                }
3156        } else {
3157                fs_len = 0;
3158        }
3159
3160        if (likely(high)) {
3161                func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3162                hs_len = ffs_do_descs(ffs->hs_descs_count,
3163                                      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3164                                      d_raw_descs__sz - fs_len,
3165                                      __ffs_func_bind_do_descs, func);
3166                if (unlikely(hs_len < 0)) {
3167                        ret = hs_len;
3168                        goto error;
3169                }
3170        } else {
3171                hs_len = 0;
3172        }
3173
3174        if (likely(super)) {
3175                func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3176                ss_len = ffs_do_descs(ffs->ss_descs_count,
3177                                vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3178                                d_raw_descs__sz - fs_len - hs_len,
3179                                __ffs_func_bind_do_descs, func);
3180                if (unlikely(ss_len < 0)) {
3181                        ret = ss_len;
3182                        goto error;
3183                }
3184        } else {
3185                ss_len = 0;
3186        }
3187
3188        /*
3189         * Now handle interface numbers allocation and interface and
3190         * endpoint numbers rewriting.  We can do that in one go
3191         * now.
3192         */
3193        ret = ffs_do_descs(ffs->fs_descs_count +
3194                           (high ? ffs->hs_descs_count : 0) +
3195                           (super ? ffs->ss_descs_count : 0),
3196                           vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3197                           __ffs_func_bind_do_nums, func);
3198        if (unlikely(ret < 0))
3199                goto error;
3200
3201        func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3202        if (c->cdev->use_os_string) {
3203                for (i = 0; i < ffs->interfaces_count; ++i) {
3204                        struct usb_os_desc *desc;
3205
3206                        desc = func->function.os_desc_table[i].os_desc =
3207                                vla_ptr(vlabuf, d, os_desc) +
3208                                i * sizeof(struct usb_os_desc);
3209                        desc->ext_compat_id =
3210                                vla_ptr(vlabuf, d, ext_compat) + i * 16;
3211                        INIT_LIST_HEAD(&desc->ext_prop);
3212                }
3213                ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3214                                      vla_ptr(vlabuf, d, raw_descs) +
3215                                      fs_len + hs_len + ss_len,
3216                                      d_raw_descs__sz - fs_len - hs_len -
3217                                      ss_len,
3218                                      __ffs_func_bind_do_os_desc, func);
3219                if (unlikely(ret < 0))
3220                        goto error;
3221        }
3222        func->function.os_desc_n =
3223                c->cdev->use_os_string ? ffs->interfaces_count : 0;
3224
3225        /* And we're done */
3226        ffs_event_add(ffs, FUNCTIONFS_BIND);
3227        return 0;
3228
3229error:
3230        /* XXX Do we need to release all claimed endpoints here? */
3231        return ret;
3232}
3233
3234static int ffs_func_bind(struct usb_configuration *c,
3235                         struct usb_function *f)
3236{
3237        struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3238        struct ffs_function *func = ffs_func_from_usb(f);
3239        int ret;
3240
3241        if (IS_ERR(ffs_opts))
3242                return PTR_ERR(ffs_opts);
3243
3244        ret = _ffs_func_bind(c, f);
3245        if (ret && !--ffs_opts->refcnt)
3246                functionfs_unbind(func->ffs);
3247
3248        return ret;
3249}
3250
3251
3252/* Other USB function hooks *************************************************/
3253
3254static void ffs_reset_work(struct work_struct *work)
3255{
3256        struct ffs_data *ffs = container_of(work,
3257                struct ffs_data, reset_work);
3258        ffs_data_reset(ffs);
3259}
3260
3261static int ffs_func_set_alt(struct usb_function *f,
3262                            unsigned interface, unsigned alt)
3263{
3264        struct ffs_function *func = ffs_func_from_usb(f);
3265        struct ffs_data *ffs = func->ffs;
3266        int ret = 0, intf;
3267
3268        if (alt != (unsigned)-1) {
3269                intf = ffs_func_revmap_intf(func, interface);
3270                if (unlikely(intf < 0))
3271                        return intf;
3272        }
3273
3274        if (ffs->func)
3275                ffs_func_eps_disable(ffs->func);
3276
3277        if (ffs->state == FFS_DEACTIVATED) {
3278                ffs->state = FFS_CLOSING;
3279                INIT_WORK(&ffs->reset_work, ffs_reset_work);
3280                schedule_work(&ffs->reset_work);
3281                return -ENODEV;
3282        }
3283
3284        if (ffs->state != FFS_ACTIVE)
3285                return -ENODEV;
3286
3287        if (alt == (unsigned)-1) {
3288                ffs->func = NULL;
3289                ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3290                return 0;
3291        }
3292
3293        ffs->func = func;
3294        ret = ffs_func_eps_enable(func);
3295        if (likely(ret >= 0))
3296                ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3297        return ret;
3298}
3299
3300static void ffs_func_disable(struct usb_function *f)
3301{
3302        ffs_func_set_alt(f, 0, (unsigned)-1);
3303}
3304
3305static int ffs_func_setup(struct usb_function *f,
3306                          const struct usb_ctrlrequest *creq)
3307{
3308        struct ffs_function *func = ffs_func_from_usb(f);
3309        struct ffs_data *ffs = func->ffs;
3310        unsigned long flags;
3311        int ret;
3312
3313        ENTER();
3314
3315        pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3316        pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3317        pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3318        pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3319        pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3320
3321        /*
3322         * Most requests directed to interface go through here
3323         * (notable exceptions are set/get interface) so we need to
3324         * handle them.  All other either handled by composite or
3325         * passed to usb_configuration->setup() (if one is set).  No
3326         * matter, we will handle requests directed to endpoint here
3327         * as well (as it's straightforward).  Other request recipient
3328         * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3329         * is being used.
3330         */
3331        if (ffs->state != FFS_ACTIVE)
3332                return -ENODEV;
3333
3334        switch (creq->bRequestType & USB_RECIP_MASK) {
3335        case USB_RECIP_INTERFACE:
3336                ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3337                if (unlikely(ret < 0))
3338                        return ret;
3339                break;
3340
3341        case USB_RECIP_ENDPOINT:
3342                ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3343                if (unlikely(ret < 0))
3344                        return ret;
3345                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3346                        ret = func->ffs->eps_addrmap[ret];
3347                break;
3348
3349        default:
3350                if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3351                        ret = le16_to_cpu(creq->wIndex);
3352                else
3353                        return -EOPNOTSUPP;
3354        }
3355
3356        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3357        ffs->ev.setup = *creq;
3358        ffs->ev.setup.wIndex = cpu_to_le16(ret);
3359        __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3360        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3361
3362        return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3363}
3364
3365static bool ffs_func_req_match(struct usb_function *f,
3366                               const struct usb_ctrlrequest *creq,
3367                               bool config0)
3368{
3369        struct ffs_function *func = ffs_func_from_usb(f);
3370
3371        if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3372                return false;
3373
3374        switch (creq->bRequestType & USB_RECIP_MASK) {
3375        case USB_RECIP_INTERFACE:
3376                return (ffs_func_revmap_intf(func,
3377                                             le16_to_cpu(creq->wIndex)) >= 0);
3378        case USB_RECIP_ENDPOINT:
3379                return (ffs_func_revmap_ep(func,
3380                                           le16_to_cpu(creq->wIndex)) >= 0);
3381        default:
3382                return (bool) (func->ffs->user_flags &
3383                               FUNCTIONFS_ALL_CTRL_RECIP);
3384        }
3385}
3386
3387static void ffs_func_suspend(struct usb_function *f)
3388{
3389        ENTER();
3390        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3391}
3392
3393static void ffs_func_resume(struct usb_function *f)
3394{
3395        ENTER();
3396        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3397}
3398
3399
3400/* Endpoint and interface numbers reverse mapping ***************************/
3401
3402static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3403{
3404        num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3405        return num ? num : -EDOM;
3406}
3407
3408static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3409{
3410        short *nums = func->interfaces_nums;
3411        unsigned count = func->ffs->interfaces_count;
3412
3413        for (; count; --count, ++nums) {
3414                if (*nums >= 0 && *nums == intf)
3415                        return nums - func->interfaces_nums;
3416        }
3417
3418        return -EDOM;
3419}
3420
3421
3422/* Devices management *******************************************************/
3423
3424static LIST_HEAD(ffs_devices);
3425
3426static struct ffs_dev *_ffs_do_find_dev(const char *name)
3427{
3428        struct ffs_dev *dev;
3429
3430        if (!name)
3431                return NULL;
3432
3433        list_for_each_entry(dev, &ffs_devices, entry) {
3434                if (strcmp(dev->name, name) == 0)
3435                        return dev;
3436        }
3437
3438        return NULL;
3439}
3440
3441/*
3442 * ffs_lock must be taken by the caller of this function
3443 */
3444static struct ffs_dev *_ffs_get_single_dev(void)
3445{
3446        struct ffs_dev *dev;
3447
3448        if (list_is_singular(&ffs_devices)) {
3449                dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3450                if (dev->single)
3451                        return dev;
3452        }
3453
3454        return NULL;
3455}
3456
3457/*
3458 * ffs_lock must be taken by the caller of this function
3459 */
3460static struct ffs_dev *_ffs_find_dev(const char *name)
3461{
3462        struct ffs_dev *dev;
3463
3464        dev = _ffs_get_single_dev();
3465        if (dev)
3466                return dev;
3467
3468        return _ffs_do_find_dev(name);
3469}
3470
3471/* Configfs support *********************************************************/
3472
3473static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3474{
3475        return container_of(to_config_group(item), struct f_fs_opts,
3476                            func_inst.group);
3477}
3478
3479static void ffs_attr_release(struct config_item *item)
3480{
3481        struct f_fs_opts *opts = to_ffs_opts(item);
3482
3483        usb_put_function_instance(&opts->func_inst);
3484}
3485
3486static struct configfs_item_operations ffs_item_ops = {
3487        .release        = ffs_attr_release,
3488};
3489
3490static const struct config_item_type ffs_func_type = {
3491        .ct_item_ops    = &ffs_item_ops,
3492        .ct_owner       = THIS_MODULE,
3493};
3494
3495
3496/* Function registration interface ******************************************/
3497
3498static void ffs_free_inst(struct usb_function_instance *f)
3499{
3500        struct f_fs_opts *opts;
3501
3502        opts = to_f_fs_opts(f);
3503        ffs_dev_lock();
3504        _ffs_free_dev(opts->dev);
3505        ffs_dev_unlock();
3506        kfree(opts);
3507}
3508
3509static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3510{
3511        if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3512                return -ENAMETOOLONG;
3513        return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3514}
3515
3516static struct usb_function_instance *ffs_alloc_inst(void)
3517{
3518        struct f_fs_opts *opts;
3519        struct ffs_dev *dev;
3520
3521        opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3522        if (!opts)
3523                return ERR_PTR(-ENOMEM);
3524
3525        opts->func_inst.set_inst_name = ffs_set_inst_name;
3526        opts->func_inst.free_func_inst = ffs_free_inst;
3527        ffs_dev_lock();
3528        dev = _ffs_alloc_dev();
3529        ffs_dev_unlock();
3530        if (IS_ERR(dev)) {
3531                kfree(opts);
3532                return ERR_CAST(dev);
3533        }
3534        opts->dev = dev;
3535        dev->opts = opts;
3536
3537        config_group_init_type_name(&opts->func_inst.group, "",
3538                                    &ffs_func_type);
3539        return &opts->func_inst;
3540}
3541
3542static void ffs_free(struct usb_function *f)
3543{
3544        kfree(ffs_func_from_usb(f));
3545}
3546
3547static void ffs_func_unbind(struct usb_configuration *c,
3548                            struct usb_function *f)
3549{
3550        struct ffs_function *func = ffs_func_from_usb(f);
3551        struct ffs_data *ffs = func->ffs;
3552        struct f_fs_opts *opts =
3553                container_of(f->fi, struct f_fs_opts, func_inst);
3554        struct ffs_ep *ep = func->eps;
3555        unsigned count = ffs->eps_count;
3556        unsigned long flags;
3557
3558        ENTER();
3559        if (ffs->func == func) {
3560                ffs_func_eps_disable(func);
3561                ffs->func = NULL;
3562        }
3563
3564        if (!--opts->refcnt)
3565                functionfs_unbind(ffs);
3566
3567        /* cleanup after autoconfig */
3568        spin_lock_irqsave(&func->ffs->eps_lock, flags);
3569        while (count--) {
3570                if (ep->ep && ep->req)
3571                        usb_ep_free_request(ep->ep, ep->req);
3572                ep->req = NULL;
3573                ++ep;
3574        }
3575        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3576        kfree(func->eps);
3577        func->eps = NULL;
3578        /*
3579         * eps, descriptors and interfaces_nums are allocated in the
3580         * same chunk so only one free is required.
3581         */
3582        func->function.fs_descriptors = NULL;
3583        func->function.hs_descriptors = NULL;
3584        func->function.ss_descriptors = NULL;
3585        func->interfaces_nums = NULL;
3586
3587        ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3588}
3589
3590static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3591{
3592        struct ffs_function *func;
3593
3594        ENTER();
3595
3596        func = kzalloc(sizeof(*func), GFP_KERNEL);
3597        if (unlikely(!func))
3598                return ERR_PTR(-ENOMEM);
3599
3600        func->function.name    = "Function FS Gadget";
3601
3602        func->function.bind    = ffs_func_bind;
3603        func->function.unbind  = ffs_func_unbind;
3604        func->function.set_alt = ffs_func_set_alt;
3605        func->function.disable = ffs_func_disable;
3606        func->function.setup   = ffs_func_setup;
3607        func->function.req_match = ffs_func_req_match;
3608        func->function.suspend = ffs_func_suspend;
3609        func->function.resume  = ffs_func_resume;
3610        func->function.free_func = ffs_free;
3611
3612        return &func->function;
3613}
3614
3615/*
3616 * ffs_lock must be taken by the caller of this function
3617 */
3618static struct ffs_dev *_ffs_alloc_dev(void)
3619{
3620        struct ffs_dev *dev;
3621        int ret;
3622
3623        if (_ffs_get_single_dev())
3624                        return ERR_PTR(-EBUSY);
3625
3626        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3627        if (!dev)
3628                return ERR_PTR(-ENOMEM);
3629
3630        if (list_empty(&ffs_devices)) {
3631                ret = functionfs_init();
3632                if (ret) {
3633                        kfree(dev);
3634                        return ERR_PTR(ret);
3635                }
3636        }
3637
3638        list_add(&dev->entry, &ffs_devices);
3639
3640        return dev;
3641}
3642
3643int ffs_name_dev(struct ffs_dev *dev, const char *name)
3644{
3645        struct ffs_dev *existing;
3646        int ret = 0;
3647
3648        ffs_dev_lock();
3649
3650        existing = _ffs_do_find_dev(name);
3651        if (!existing)
3652                strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3653        else if (existing != dev)
3654                ret = -EBUSY;
3655
3656        ffs_dev_unlock();
3657
3658        return ret;
3659}
3660EXPORT_SYMBOL_GPL(ffs_name_dev);
3661
3662int ffs_single_dev(struct ffs_dev *dev)
3663{
3664        int ret;
3665
3666        ret = 0;
3667        ffs_dev_lock();
3668
3669        if (!list_is_singular(&ffs_devices))
3670                ret = -EBUSY;
3671        else
3672                dev->single = true;
3673
3674        ffs_dev_unlock();
3675        return ret;
3676}
3677EXPORT_SYMBOL_GPL(ffs_single_dev);
3678
3679/*
3680 * ffs_lock must be taken by the caller of this function
3681 */
3682static void _ffs_free_dev(struct ffs_dev *dev)
3683{
3684        list_del(&dev->entry);
3685
3686        /* Clear the private_data pointer to stop incorrect dev access */
3687        if (dev->ffs_data)
3688                dev->ffs_data->private_data = NULL;
3689
3690        kfree(dev);
3691        if (list_empty(&ffs_devices))
3692                functionfs_cleanup();
3693}
3694
3695static void *ffs_acquire_dev(const char *dev_name)
3696{
3697        struct ffs_dev *ffs_dev;
3698
3699        ENTER();
3700        ffs_dev_lock();
3701
3702        ffs_dev = _ffs_find_dev(dev_name);
3703        if (!ffs_dev)
3704                ffs_dev = ERR_PTR(-ENOENT);
3705        else if (ffs_dev->mounted)
3706                ffs_dev = ERR_PTR(-EBUSY);
3707        else if (ffs_dev->ffs_acquire_dev_callback &&
3708            ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3709                ffs_dev = ERR_PTR(-ENOENT);
3710        else
3711                ffs_dev->mounted = true;
3712
3713        ffs_dev_unlock();
3714        return ffs_dev;
3715}
3716
3717static void ffs_release_dev(struct ffs_data *ffs_data)
3718{
3719        struct ffs_dev *ffs_dev;
3720
3721        ENTER();
3722        ffs_dev_lock();
3723
3724        ffs_dev = ffs_data->private_data;
3725        if (ffs_dev) {
3726                ffs_dev->mounted = false;
3727
3728                if (ffs_dev->ffs_release_dev_callback)
3729                        ffs_dev->ffs_release_dev_callback(ffs_dev);
3730        }
3731
3732        ffs_dev_unlock();
3733}
3734
3735static int ffs_ready(struct ffs_data *ffs)
3736{
3737        struct ffs_dev *ffs_obj;
3738        int ret = 0;
3739
3740        ENTER();
3741        ffs_dev_lock();
3742
3743        ffs_obj = ffs->private_data;
3744        if (!ffs_obj) {
3745                ret = -EINVAL;
3746                goto done;
3747        }
3748        if (WARN_ON(ffs_obj->desc_ready)) {
3749                ret = -EBUSY;
3750                goto done;
3751        }
3752
3753        ffs_obj->desc_ready = true;
3754        ffs_obj->ffs_data = ffs;
3755
3756        if (ffs_obj->ffs_ready_callback) {
3757                ret = ffs_obj->ffs_ready_callback(ffs);
3758                if (ret)
3759                        goto done;
3760        }
3761
3762        set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3763done:
3764        ffs_dev_unlock();
3765        return ret;
3766}
3767
3768static void ffs_closed(struct ffs_data *ffs)
3769{
3770        struct ffs_dev *ffs_obj;
3771        struct f_fs_opts *opts;
3772        struct config_item *ci;
3773
3774        ENTER();
3775        ffs_dev_lock();
3776
3777        ffs_obj = ffs->private_data;
3778        if (!ffs_obj)
3779                goto done;
3780
3781        ffs_obj->desc_ready = false;
3782        ffs_obj->ffs_data = NULL;
3783
3784        if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3785            ffs_obj->ffs_closed_callback)
3786                ffs_obj->ffs_closed_callback(ffs);
3787
3788        if (ffs_obj->opts)
3789                opts = ffs_obj->opts;
3790        else
3791                goto done;
3792
3793        if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3794            || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3795                goto done;
3796
3797        ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3798        ffs_dev_unlock();
3799
3800        if (test_bit(FFS_FL_BOUND, &ffs->flags))
3801                unregister_gadget_item(ci);
3802        return;
3803done:
3804        ffs_dev_unlock();
3805}
3806
3807/* Misc helper functions ****************************************************/
3808
3809static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3810{
3811        return nonblock
3812                ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3813                : mutex_lock_interruptible(mutex);
3814}
3815
3816static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3817{
3818        char *data;
3819
3820        if (unlikely(!len))
3821                return NULL;
3822
3823        data = kmalloc(len, GFP_KERNEL);
3824        if (unlikely(!data))
3825                return ERR_PTR(-ENOMEM);
3826
3827        if (unlikely(copy_from_user(data, buf, len))) {
3828                kfree(data);
3829                return ERR_PTR(-EFAULT);
3830        }
3831
3832        pr_vdebug("Buffer from user space:\n");
3833        ffs_dump_mem("", data, len);
3834
3835        return data;
3836}
3837
3838DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3839MODULE_LICENSE("GPL");
3840MODULE_AUTHOR("Michal Nazarewicz");
3841