linux/fs/btrfs/delayed-inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include <linux/sched/mm.h>
  10#include "misc.h"
  11#include "delayed-inode.h"
  12#include "disk-io.h"
  13#include "transaction.h"
  14#include "ctree.h"
  15#include "qgroup.h"
  16#include "locking.h"
  17
  18#define BTRFS_DELAYED_WRITEBACK         512
  19#define BTRFS_DELAYED_BACKGROUND        128
  20#define BTRFS_DELAYED_BATCH             16
  21
  22static struct kmem_cache *delayed_node_cache;
  23
  24int __init btrfs_delayed_inode_init(void)
  25{
  26        delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  27                                        sizeof(struct btrfs_delayed_node),
  28                                        0,
  29                                        SLAB_MEM_SPREAD,
  30                                        NULL);
  31        if (!delayed_node_cache)
  32                return -ENOMEM;
  33        return 0;
  34}
  35
  36void __cold btrfs_delayed_inode_exit(void)
  37{
  38        kmem_cache_destroy(delayed_node_cache);
  39}
  40
  41static inline void btrfs_init_delayed_node(
  42                                struct btrfs_delayed_node *delayed_node,
  43                                struct btrfs_root *root, u64 inode_id)
  44{
  45        delayed_node->root = root;
  46        delayed_node->inode_id = inode_id;
  47        refcount_set(&delayed_node->refs, 0);
  48        delayed_node->ins_root = RB_ROOT_CACHED;
  49        delayed_node->del_root = RB_ROOT_CACHED;
  50        mutex_init(&delayed_node->mutex);
  51        INIT_LIST_HEAD(&delayed_node->n_list);
  52        INIT_LIST_HEAD(&delayed_node->p_list);
  53}
  54
  55static inline int btrfs_is_continuous_delayed_item(
  56                                        struct btrfs_delayed_item *item1,
  57                                        struct btrfs_delayed_item *item2)
  58{
  59        if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  60            item1->key.objectid == item2->key.objectid &&
  61            item1->key.type == item2->key.type &&
  62            item1->key.offset + 1 == item2->key.offset)
  63                return 1;
  64        return 0;
  65}
  66
  67static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68                struct btrfs_inode *btrfs_inode)
  69{
  70        struct btrfs_root *root = btrfs_inode->root;
  71        u64 ino = btrfs_ino(btrfs_inode);
  72        struct btrfs_delayed_node *node;
  73
  74        node = READ_ONCE(btrfs_inode->delayed_node);
  75        if (node) {
  76                refcount_inc(&node->refs);
  77                return node;
  78        }
  79
  80        spin_lock(&root->inode_lock);
  81        node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  82
  83        if (node) {
  84                if (btrfs_inode->delayed_node) {
  85                        refcount_inc(&node->refs);      /* can be accessed */
  86                        BUG_ON(btrfs_inode->delayed_node != node);
  87                        spin_unlock(&root->inode_lock);
  88                        return node;
  89                }
  90
  91                /*
  92                 * It's possible that we're racing into the middle of removing
  93                 * this node from the radix tree.  In this case, the refcount
  94                 * was zero and it should never go back to one.  Just return
  95                 * NULL like it was never in the radix at all; our release
  96                 * function is in the process of removing it.
  97                 *
  98                 * Some implementations of refcount_inc refuse to bump the
  99                 * refcount once it has hit zero.  If we don't do this dance
 100                 * here, refcount_inc() may decide to just WARN_ONCE() instead
 101                 * of actually bumping the refcount.
 102                 *
 103                 * If this node is properly in the radix, we want to bump the
 104                 * refcount twice, once for the inode and once for this get
 105                 * operation.
 106                 */
 107                if (refcount_inc_not_zero(&node->refs)) {
 108                        refcount_inc(&node->refs);
 109                        btrfs_inode->delayed_node = node;
 110                } else {
 111                        node = NULL;
 112                }
 113
 114                spin_unlock(&root->inode_lock);
 115                return node;
 116        }
 117        spin_unlock(&root->inode_lock);
 118
 119        return NULL;
 120}
 121
 122/* Will return either the node or PTR_ERR(-ENOMEM) */
 123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 124                struct btrfs_inode *btrfs_inode)
 125{
 126        struct btrfs_delayed_node *node;
 127        struct btrfs_root *root = btrfs_inode->root;
 128        u64 ino = btrfs_ino(btrfs_inode);
 129        int ret;
 130
 131again:
 132        node = btrfs_get_delayed_node(btrfs_inode);
 133        if (node)
 134                return node;
 135
 136        node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 137        if (!node)
 138                return ERR_PTR(-ENOMEM);
 139        btrfs_init_delayed_node(node, root, ino);
 140
 141        /* cached in the btrfs inode and can be accessed */
 142        refcount_set(&node->refs, 2);
 143
 144        ret = radix_tree_preload(GFP_NOFS);
 145        if (ret) {
 146                kmem_cache_free(delayed_node_cache, node);
 147                return ERR_PTR(ret);
 148        }
 149
 150        spin_lock(&root->inode_lock);
 151        ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 152        if (ret == -EEXIST) {
 153                spin_unlock(&root->inode_lock);
 154                kmem_cache_free(delayed_node_cache, node);
 155                radix_tree_preload_end();
 156                goto again;
 157        }
 158        btrfs_inode->delayed_node = node;
 159        spin_unlock(&root->inode_lock);
 160        radix_tree_preload_end();
 161
 162        return node;
 163}
 164
 165/*
 166 * Call it when holding delayed_node->mutex
 167 *
 168 * If mod = 1, add this node into the prepared list.
 169 */
 170static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 171                                     struct btrfs_delayed_node *node,
 172                                     int mod)
 173{
 174        spin_lock(&root->lock);
 175        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 176                if (!list_empty(&node->p_list))
 177                        list_move_tail(&node->p_list, &root->prepare_list);
 178                else if (mod)
 179                        list_add_tail(&node->p_list, &root->prepare_list);
 180        } else {
 181                list_add_tail(&node->n_list, &root->node_list);
 182                list_add_tail(&node->p_list, &root->prepare_list);
 183                refcount_inc(&node->refs);      /* inserted into list */
 184                root->nodes++;
 185                set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 186        }
 187        spin_unlock(&root->lock);
 188}
 189
 190/* Call it when holding delayed_node->mutex */
 191static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 192                                       struct btrfs_delayed_node *node)
 193{
 194        spin_lock(&root->lock);
 195        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 196                root->nodes--;
 197                refcount_dec(&node->refs);      /* not in the list */
 198                list_del_init(&node->n_list);
 199                if (!list_empty(&node->p_list))
 200                        list_del_init(&node->p_list);
 201                clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 202        }
 203        spin_unlock(&root->lock);
 204}
 205
 206static struct btrfs_delayed_node *btrfs_first_delayed_node(
 207                        struct btrfs_delayed_root *delayed_root)
 208{
 209        struct list_head *p;
 210        struct btrfs_delayed_node *node = NULL;
 211
 212        spin_lock(&delayed_root->lock);
 213        if (list_empty(&delayed_root->node_list))
 214                goto out;
 215
 216        p = delayed_root->node_list.next;
 217        node = list_entry(p, struct btrfs_delayed_node, n_list);
 218        refcount_inc(&node->refs);
 219out:
 220        spin_unlock(&delayed_root->lock);
 221
 222        return node;
 223}
 224
 225static struct btrfs_delayed_node *btrfs_next_delayed_node(
 226                                                struct btrfs_delayed_node *node)
 227{
 228        struct btrfs_delayed_root *delayed_root;
 229        struct list_head *p;
 230        struct btrfs_delayed_node *next = NULL;
 231
 232        delayed_root = node->root->fs_info->delayed_root;
 233        spin_lock(&delayed_root->lock);
 234        if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 235                /* not in the list */
 236                if (list_empty(&delayed_root->node_list))
 237                        goto out;
 238                p = delayed_root->node_list.next;
 239        } else if (list_is_last(&node->n_list, &delayed_root->node_list))
 240                goto out;
 241        else
 242                p = node->n_list.next;
 243
 244        next = list_entry(p, struct btrfs_delayed_node, n_list);
 245        refcount_inc(&next->refs);
 246out:
 247        spin_unlock(&delayed_root->lock);
 248
 249        return next;
 250}
 251
 252static void __btrfs_release_delayed_node(
 253                                struct btrfs_delayed_node *delayed_node,
 254                                int mod)
 255{
 256        struct btrfs_delayed_root *delayed_root;
 257
 258        if (!delayed_node)
 259                return;
 260
 261        delayed_root = delayed_node->root->fs_info->delayed_root;
 262
 263        mutex_lock(&delayed_node->mutex);
 264        if (delayed_node->count)
 265                btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 266        else
 267                btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 268        mutex_unlock(&delayed_node->mutex);
 269
 270        if (refcount_dec_and_test(&delayed_node->refs)) {
 271                struct btrfs_root *root = delayed_node->root;
 272
 273                spin_lock(&root->inode_lock);
 274                /*
 275                 * Once our refcount goes to zero, nobody is allowed to bump it
 276                 * back up.  We can delete it now.
 277                 */
 278                ASSERT(refcount_read(&delayed_node->refs) == 0);
 279                radix_tree_delete(&root->delayed_nodes_tree,
 280                                  delayed_node->inode_id);
 281                spin_unlock(&root->inode_lock);
 282                kmem_cache_free(delayed_node_cache, delayed_node);
 283        }
 284}
 285
 286static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 287{
 288        __btrfs_release_delayed_node(node, 0);
 289}
 290
 291static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 292                                        struct btrfs_delayed_root *delayed_root)
 293{
 294        struct list_head *p;
 295        struct btrfs_delayed_node *node = NULL;
 296
 297        spin_lock(&delayed_root->lock);
 298        if (list_empty(&delayed_root->prepare_list))
 299                goto out;
 300
 301        p = delayed_root->prepare_list.next;
 302        list_del_init(p);
 303        node = list_entry(p, struct btrfs_delayed_node, p_list);
 304        refcount_inc(&node->refs);
 305out:
 306        spin_unlock(&delayed_root->lock);
 307
 308        return node;
 309}
 310
 311static inline void btrfs_release_prepared_delayed_node(
 312                                        struct btrfs_delayed_node *node)
 313{
 314        __btrfs_release_delayed_node(node, 1);
 315}
 316
 317static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 318{
 319        struct btrfs_delayed_item *item;
 320        item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 321        if (item) {
 322                item->data_len = data_len;
 323                item->ins_or_del = 0;
 324                item->bytes_reserved = 0;
 325                item->delayed_node = NULL;
 326                refcount_set(&item->refs, 1);
 327        }
 328        return item;
 329}
 330
 331/*
 332 * __btrfs_lookup_delayed_item - look up the delayed item by key
 333 * @delayed_node: pointer to the delayed node
 334 * @key:          the key to look up
 335 * @prev:         used to store the prev item if the right item isn't found
 336 * @next:         used to store the next item if the right item isn't found
 337 *
 338 * Note: if we don't find the right item, we will return the prev item and
 339 * the next item.
 340 */
 341static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 342                                struct rb_root *root,
 343                                struct btrfs_key *key,
 344                                struct btrfs_delayed_item **prev,
 345                                struct btrfs_delayed_item **next)
 346{
 347        struct rb_node *node, *prev_node = NULL;
 348        struct btrfs_delayed_item *delayed_item = NULL;
 349        int ret = 0;
 350
 351        node = root->rb_node;
 352
 353        while (node) {
 354                delayed_item = rb_entry(node, struct btrfs_delayed_item,
 355                                        rb_node);
 356                prev_node = node;
 357                ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 358                if (ret < 0)
 359                        node = node->rb_right;
 360                else if (ret > 0)
 361                        node = node->rb_left;
 362                else
 363                        return delayed_item;
 364        }
 365
 366        if (prev) {
 367                if (!prev_node)
 368                        *prev = NULL;
 369                else if (ret < 0)
 370                        *prev = delayed_item;
 371                else if ((node = rb_prev(prev_node)) != NULL) {
 372                        *prev = rb_entry(node, struct btrfs_delayed_item,
 373                                         rb_node);
 374                } else
 375                        *prev = NULL;
 376        }
 377
 378        if (next) {
 379                if (!prev_node)
 380                        *next = NULL;
 381                else if (ret > 0)
 382                        *next = delayed_item;
 383                else if ((node = rb_next(prev_node)) != NULL) {
 384                        *next = rb_entry(node, struct btrfs_delayed_item,
 385                                         rb_node);
 386                } else
 387                        *next = NULL;
 388        }
 389        return NULL;
 390}
 391
 392static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 393                                        struct btrfs_delayed_node *delayed_node,
 394                                        struct btrfs_key *key)
 395{
 396        return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
 397                                           NULL, NULL);
 398}
 399
 400static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 401                                    struct btrfs_delayed_item *ins,
 402                                    int action)
 403{
 404        struct rb_node **p, *node;
 405        struct rb_node *parent_node = NULL;
 406        struct rb_root_cached *root;
 407        struct btrfs_delayed_item *item;
 408        int cmp;
 409        bool leftmost = true;
 410
 411        if (action == BTRFS_DELAYED_INSERTION_ITEM)
 412                root = &delayed_node->ins_root;
 413        else if (action == BTRFS_DELAYED_DELETION_ITEM)
 414                root = &delayed_node->del_root;
 415        else
 416                BUG();
 417        p = &root->rb_root.rb_node;
 418        node = &ins->rb_node;
 419
 420        while (*p) {
 421                parent_node = *p;
 422                item = rb_entry(parent_node, struct btrfs_delayed_item,
 423                                 rb_node);
 424
 425                cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 426                if (cmp < 0) {
 427                        p = &(*p)->rb_right;
 428                        leftmost = false;
 429                } else if (cmp > 0) {
 430                        p = &(*p)->rb_left;
 431                } else {
 432                        return -EEXIST;
 433                }
 434        }
 435
 436        rb_link_node(node, parent_node, p);
 437        rb_insert_color_cached(node, root, leftmost);
 438        ins->delayed_node = delayed_node;
 439        ins->ins_or_del = action;
 440
 441        if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 442            action == BTRFS_DELAYED_INSERTION_ITEM &&
 443            ins->key.offset >= delayed_node->index_cnt)
 444                        delayed_node->index_cnt = ins->key.offset + 1;
 445
 446        delayed_node->count++;
 447        atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 448        return 0;
 449}
 450
 451static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 452                                              struct btrfs_delayed_item *item)
 453{
 454        return __btrfs_add_delayed_item(node, item,
 455                                        BTRFS_DELAYED_INSERTION_ITEM);
 456}
 457
 458static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 459                                             struct btrfs_delayed_item *item)
 460{
 461        return __btrfs_add_delayed_item(node, item,
 462                                        BTRFS_DELAYED_DELETION_ITEM);
 463}
 464
 465static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 466{
 467        int seq = atomic_inc_return(&delayed_root->items_seq);
 468
 469        /* atomic_dec_return implies a barrier */
 470        if ((atomic_dec_return(&delayed_root->items) <
 471            BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 472                cond_wake_up_nomb(&delayed_root->wait);
 473}
 474
 475static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 476{
 477        struct rb_root_cached *root;
 478        struct btrfs_delayed_root *delayed_root;
 479
 480        /* Not associated with any delayed_node */
 481        if (!delayed_item->delayed_node)
 482                return;
 483        delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 484
 485        BUG_ON(!delayed_root);
 486        BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 487               delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 488
 489        if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 490                root = &delayed_item->delayed_node->ins_root;
 491        else
 492                root = &delayed_item->delayed_node->del_root;
 493
 494        rb_erase_cached(&delayed_item->rb_node, root);
 495        delayed_item->delayed_node->count--;
 496
 497        finish_one_item(delayed_root);
 498}
 499
 500static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 501{
 502        if (item) {
 503                __btrfs_remove_delayed_item(item);
 504                if (refcount_dec_and_test(&item->refs))
 505                        kfree(item);
 506        }
 507}
 508
 509static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 510                                        struct btrfs_delayed_node *delayed_node)
 511{
 512        struct rb_node *p;
 513        struct btrfs_delayed_item *item = NULL;
 514
 515        p = rb_first_cached(&delayed_node->ins_root);
 516        if (p)
 517                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 518
 519        return item;
 520}
 521
 522static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 523                                        struct btrfs_delayed_node *delayed_node)
 524{
 525        struct rb_node *p;
 526        struct btrfs_delayed_item *item = NULL;
 527
 528        p = rb_first_cached(&delayed_node->del_root);
 529        if (p)
 530                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 531
 532        return item;
 533}
 534
 535static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 536                                                struct btrfs_delayed_item *item)
 537{
 538        struct rb_node *p;
 539        struct btrfs_delayed_item *next = NULL;
 540
 541        p = rb_next(&item->rb_node);
 542        if (p)
 543                next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 544
 545        return next;
 546}
 547
 548static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 549                                               struct btrfs_root *root,
 550                                               struct btrfs_delayed_item *item)
 551{
 552        struct btrfs_block_rsv *src_rsv;
 553        struct btrfs_block_rsv *dst_rsv;
 554        struct btrfs_fs_info *fs_info = root->fs_info;
 555        u64 num_bytes;
 556        int ret;
 557
 558        if (!trans->bytes_reserved)
 559                return 0;
 560
 561        src_rsv = trans->block_rsv;
 562        dst_rsv = &fs_info->delayed_block_rsv;
 563
 564        num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 565
 566        /*
 567         * Here we migrate space rsv from transaction rsv, since have already
 568         * reserved space when starting a transaction.  So no need to reserve
 569         * qgroup space here.
 570         */
 571        ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 572        if (!ret) {
 573                trace_btrfs_space_reservation(fs_info, "delayed_item",
 574                                              item->key.objectid,
 575                                              num_bytes, 1);
 576                item->bytes_reserved = num_bytes;
 577        }
 578
 579        return ret;
 580}
 581
 582static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 583                                                struct btrfs_delayed_item *item)
 584{
 585        struct btrfs_block_rsv *rsv;
 586        struct btrfs_fs_info *fs_info = root->fs_info;
 587
 588        if (!item->bytes_reserved)
 589                return;
 590
 591        rsv = &fs_info->delayed_block_rsv;
 592        /*
 593         * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 594         * to release/reserve qgroup space.
 595         */
 596        trace_btrfs_space_reservation(fs_info, "delayed_item",
 597                                      item->key.objectid, item->bytes_reserved,
 598                                      0);
 599        btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
 600}
 601
 602static int btrfs_delayed_inode_reserve_metadata(
 603                                        struct btrfs_trans_handle *trans,
 604                                        struct btrfs_root *root,
 605                                        struct btrfs_inode *inode,
 606                                        struct btrfs_delayed_node *node)
 607{
 608        struct btrfs_fs_info *fs_info = root->fs_info;
 609        struct btrfs_block_rsv *src_rsv;
 610        struct btrfs_block_rsv *dst_rsv;
 611        u64 num_bytes;
 612        int ret;
 613
 614        src_rsv = trans->block_rsv;
 615        dst_rsv = &fs_info->delayed_block_rsv;
 616
 617        num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 618
 619        /*
 620         * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 621         * which doesn't reserve space for speed.  This is a problem since we
 622         * still need to reserve space for this update, so try to reserve the
 623         * space.
 624         *
 625         * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 626         * we always reserve enough to update the inode item.
 627         */
 628        if (!src_rsv || (!trans->bytes_reserved &&
 629                         src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 630                ret = btrfs_qgroup_reserve_meta_prealloc(root,
 631                                fs_info->nodesize, true);
 632                if (ret < 0)
 633                        return ret;
 634                ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 635                                          BTRFS_RESERVE_NO_FLUSH);
 636                /*
 637                 * Since we're under a transaction reserve_metadata_bytes could
 638                 * try to commit the transaction which will make it return
 639                 * EAGAIN to make us stop the transaction we have, so return
 640                 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 641                 */
 642                if (ret == -EAGAIN) {
 643                        ret = -ENOSPC;
 644                        btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 645                }
 646                if (!ret) {
 647                        node->bytes_reserved = num_bytes;
 648                        trace_btrfs_space_reservation(fs_info,
 649                                                      "delayed_inode",
 650                                                      btrfs_ino(inode),
 651                                                      num_bytes, 1);
 652                } else {
 653                        btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
 654                }
 655                return ret;
 656        }
 657
 658        ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 659        if (!ret) {
 660                trace_btrfs_space_reservation(fs_info, "delayed_inode",
 661                                              btrfs_ino(inode), num_bytes, 1);
 662                node->bytes_reserved = num_bytes;
 663        }
 664
 665        return ret;
 666}
 667
 668static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 669                                                struct btrfs_delayed_node *node,
 670                                                bool qgroup_free)
 671{
 672        struct btrfs_block_rsv *rsv;
 673
 674        if (!node->bytes_reserved)
 675                return;
 676
 677        rsv = &fs_info->delayed_block_rsv;
 678        trace_btrfs_space_reservation(fs_info, "delayed_inode",
 679                                      node->inode_id, node->bytes_reserved, 0);
 680        btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
 681        if (qgroup_free)
 682                btrfs_qgroup_free_meta_prealloc(node->root,
 683                                node->bytes_reserved);
 684        else
 685                btrfs_qgroup_convert_reserved_meta(node->root,
 686                                node->bytes_reserved);
 687        node->bytes_reserved = 0;
 688}
 689
 690/*
 691 * This helper will insert some continuous items into the same leaf according
 692 * to the free space of the leaf.
 693 */
 694static int btrfs_batch_insert_items(struct btrfs_root *root,
 695                                    struct btrfs_path *path,
 696                                    struct btrfs_delayed_item *item)
 697{
 698        struct btrfs_delayed_item *curr, *next;
 699        int free_space;
 700        int total_data_size = 0, total_size = 0;
 701        struct extent_buffer *leaf;
 702        char *data_ptr;
 703        struct btrfs_key *keys;
 704        u32 *data_size;
 705        struct list_head head;
 706        int slot;
 707        int nitems;
 708        int i;
 709        int ret = 0;
 710
 711        BUG_ON(!path->nodes[0]);
 712
 713        leaf = path->nodes[0];
 714        free_space = btrfs_leaf_free_space(leaf);
 715        INIT_LIST_HEAD(&head);
 716
 717        next = item;
 718        nitems = 0;
 719
 720        /*
 721         * count the number of the continuous items that we can insert in batch
 722         */
 723        while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 724               free_space) {
 725                total_data_size += next->data_len;
 726                total_size += next->data_len + sizeof(struct btrfs_item);
 727                list_add_tail(&next->tree_list, &head);
 728                nitems++;
 729
 730                curr = next;
 731                next = __btrfs_next_delayed_item(curr);
 732                if (!next)
 733                        break;
 734
 735                if (!btrfs_is_continuous_delayed_item(curr, next))
 736                        break;
 737        }
 738
 739        if (!nitems) {
 740                ret = 0;
 741                goto out;
 742        }
 743
 744        /*
 745         * we need allocate some memory space, but it might cause the task
 746         * to sleep, so we set all locked nodes in the path to blocking locks
 747         * first.
 748         */
 749        btrfs_set_path_blocking(path);
 750
 751        keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 752        if (!keys) {
 753                ret = -ENOMEM;
 754                goto out;
 755        }
 756
 757        data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 758        if (!data_size) {
 759                ret = -ENOMEM;
 760                goto error;
 761        }
 762
 763        /* get keys of all the delayed items */
 764        i = 0;
 765        list_for_each_entry(next, &head, tree_list) {
 766                keys[i] = next->key;
 767                data_size[i] = next->data_len;
 768                i++;
 769        }
 770
 771        /* insert the keys of the items */
 772        setup_items_for_insert(root, path, keys, data_size,
 773                               total_data_size, total_size, nitems);
 774
 775        /* insert the dir index items */
 776        slot = path->slots[0];
 777        list_for_each_entry_safe(curr, next, &head, tree_list) {
 778                data_ptr = btrfs_item_ptr(leaf, slot, char);
 779                write_extent_buffer(leaf, &curr->data,
 780                                    (unsigned long)data_ptr,
 781                                    curr->data_len);
 782                slot++;
 783
 784                btrfs_delayed_item_release_metadata(root, curr);
 785
 786                list_del(&curr->tree_list);
 787                btrfs_release_delayed_item(curr);
 788        }
 789
 790error:
 791        kfree(data_size);
 792        kfree(keys);
 793out:
 794        return ret;
 795}
 796
 797/*
 798 * This helper can just do simple insertion that needn't extend item for new
 799 * data, such as directory name index insertion, inode insertion.
 800 */
 801static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 802                                     struct btrfs_root *root,
 803                                     struct btrfs_path *path,
 804                                     struct btrfs_delayed_item *delayed_item)
 805{
 806        struct extent_buffer *leaf;
 807        unsigned int nofs_flag;
 808        char *ptr;
 809        int ret;
 810
 811        nofs_flag = memalloc_nofs_save();
 812        ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 813                                      delayed_item->data_len);
 814        memalloc_nofs_restore(nofs_flag);
 815        if (ret < 0 && ret != -EEXIST)
 816                return ret;
 817
 818        leaf = path->nodes[0];
 819
 820        ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 821
 822        write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 823                            delayed_item->data_len);
 824        btrfs_mark_buffer_dirty(leaf);
 825
 826        btrfs_delayed_item_release_metadata(root, delayed_item);
 827        return 0;
 828}
 829
 830/*
 831 * we insert an item first, then if there are some continuous items, we try
 832 * to insert those items into the same leaf.
 833 */
 834static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 835                                      struct btrfs_path *path,
 836                                      struct btrfs_root *root,
 837                                      struct btrfs_delayed_node *node)
 838{
 839        struct btrfs_delayed_item *curr, *prev;
 840        int ret = 0;
 841
 842do_again:
 843        mutex_lock(&node->mutex);
 844        curr = __btrfs_first_delayed_insertion_item(node);
 845        if (!curr)
 846                goto insert_end;
 847
 848        ret = btrfs_insert_delayed_item(trans, root, path, curr);
 849        if (ret < 0) {
 850                btrfs_release_path(path);
 851                goto insert_end;
 852        }
 853
 854        prev = curr;
 855        curr = __btrfs_next_delayed_item(prev);
 856        if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 857                /* insert the continuous items into the same leaf */
 858                path->slots[0]++;
 859                btrfs_batch_insert_items(root, path, curr);
 860        }
 861        btrfs_release_delayed_item(prev);
 862        btrfs_mark_buffer_dirty(path->nodes[0]);
 863
 864        btrfs_release_path(path);
 865        mutex_unlock(&node->mutex);
 866        goto do_again;
 867
 868insert_end:
 869        mutex_unlock(&node->mutex);
 870        return ret;
 871}
 872
 873static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 874                                    struct btrfs_root *root,
 875                                    struct btrfs_path *path,
 876                                    struct btrfs_delayed_item *item)
 877{
 878        struct btrfs_delayed_item *curr, *next;
 879        struct extent_buffer *leaf;
 880        struct btrfs_key key;
 881        struct list_head head;
 882        int nitems, i, last_item;
 883        int ret = 0;
 884
 885        BUG_ON(!path->nodes[0]);
 886
 887        leaf = path->nodes[0];
 888
 889        i = path->slots[0];
 890        last_item = btrfs_header_nritems(leaf) - 1;
 891        if (i > last_item)
 892                return -ENOENT; /* FIXME: Is errno suitable? */
 893
 894        next = item;
 895        INIT_LIST_HEAD(&head);
 896        btrfs_item_key_to_cpu(leaf, &key, i);
 897        nitems = 0;
 898        /*
 899         * count the number of the dir index items that we can delete in batch
 900         */
 901        while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 902                list_add_tail(&next->tree_list, &head);
 903                nitems++;
 904
 905                curr = next;
 906                next = __btrfs_next_delayed_item(curr);
 907                if (!next)
 908                        break;
 909
 910                if (!btrfs_is_continuous_delayed_item(curr, next))
 911                        break;
 912
 913                i++;
 914                if (i > last_item)
 915                        break;
 916                btrfs_item_key_to_cpu(leaf, &key, i);
 917        }
 918
 919        if (!nitems)
 920                return 0;
 921
 922        ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 923        if (ret)
 924                goto out;
 925
 926        list_for_each_entry_safe(curr, next, &head, tree_list) {
 927                btrfs_delayed_item_release_metadata(root, curr);
 928                list_del(&curr->tree_list);
 929                btrfs_release_delayed_item(curr);
 930        }
 931
 932out:
 933        return ret;
 934}
 935
 936static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 937                                      struct btrfs_path *path,
 938                                      struct btrfs_root *root,
 939                                      struct btrfs_delayed_node *node)
 940{
 941        struct btrfs_delayed_item *curr, *prev;
 942        unsigned int nofs_flag;
 943        int ret = 0;
 944
 945do_again:
 946        mutex_lock(&node->mutex);
 947        curr = __btrfs_first_delayed_deletion_item(node);
 948        if (!curr)
 949                goto delete_fail;
 950
 951        nofs_flag = memalloc_nofs_save();
 952        ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 953        memalloc_nofs_restore(nofs_flag);
 954        if (ret < 0)
 955                goto delete_fail;
 956        else if (ret > 0) {
 957                /*
 958                 * can't find the item which the node points to, so this node
 959                 * is invalid, just drop it.
 960                 */
 961                prev = curr;
 962                curr = __btrfs_next_delayed_item(prev);
 963                btrfs_release_delayed_item(prev);
 964                ret = 0;
 965                btrfs_release_path(path);
 966                if (curr) {
 967                        mutex_unlock(&node->mutex);
 968                        goto do_again;
 969                } else
 970                        goto delete_fail;
 971        }
 972
 973        btrfs_batch_delete_items(trans, root, path, curr);
 974        btrfs_release_path(path);
 975        mutex_unlock(&node->mutex);
 976        goto do_again;
 977
 978delete_fail:
 979        btrfs_release_path(path);
 980        mutex_unlock(&node->mutex);
 981        return ret;
 982}
 983
 984static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 985{
 986        struct btrfs_delayed_root *delayed_root;
 987
 988        if (delayed_node &&
 989            test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 990                BUG_ON(!delayed_node->root);
 991                clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 992                delayed_node->count--;
 993
 994                delayed_root = delayed_node->root->fs_info->delayed_root;
 995                finish_one_item(delayed_root);
 996        }
 997}
 998
 999static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1000{
1001        struct btrfs_delayed_root *delayed_root;
1002
1003        ASSERT(delayed_node->root);
1004        clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1005        delayed_node->count--;
1006
1007        delayed_root = delayed_node->root->fs_info->delayed_root;
1008        finish_one_item(delayed_root);
1009}
1010
1011static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1012                                        struct btrfs_root *root,
1013                                        struct btrfs_path *path,
1014                                        struct btrfs_delayed_node *node)
1015{
1016        struct btrfs_fs_info *fs_info = root->fs_info;
1017        struct btrfs_key key;
1018        struct btrfs_inode_item *inode_item;
1019        struct extent_buffer *leaf;
1020        unsigned int nofs_flag;
1021        int mod;
1022        int ret;
1023
1024        key.objectid = node->inode_id;
1025        key.type = BTRFS_INODE_ITEM_KEY;
1026        key.offset = 0;
1027
1028        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1029                mod = -1;
1030        else
1031                mod = 1;
1032
1033        nofs_flag = memalloc_nofs_save();
1034        ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035        memalloc_nofs_restore(nofs_flag);
1036        if (ret > 0) {
1037                btrfs_release_path(path);
1038                return -ENOENT;
1039        } else if (ret < 0) {
1040                return ret;
1041        }
1042
1043        leaf = path->nodes[0];
1044        inode_item = btrfs_item_ptr(leaf, path->slots[0],
1045                                    struct btrfs_inode_item);
1046        write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1047                            sizeof(struct btrfs_inode_item));
1048        btrfs_mark_buffer_dirty(leaf);
1049
1050        if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1051                goto no_iref;
1052
1053        path->slots[0]++;
1054        if (path->slots[0] >= btrfs_header_nritems(leaf))
1055                goto search;
1056again:
1057        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1058        if (key.objectid != node->inode_id)
1059                goto out;
1060
1061        if (key.type != BTRFS_INODE_REF_KEY &&
1062            key.type != BTRFS_INODE_EXTREF_KEY)
1063                goto out;
1064
1065        /*
1066         * Delayed iref deletion is for the inode who has only one link,
1067         * so there is only one iref. The case that several irefs are
1068         * in the same item doesn't exist.
1069         */
1070        btrfs_del_item(trans, root, path);
1071out:
1072        btrfs_release_delayed_iref(node);
1073no_iref:
1074        btrfs_release_path(path);
1075err_out:
1076        btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1077        btrfs_release_delayed_inode(node);
1078
1079        return ret;
1080
1081search:
1082        btrfs_release_path(path);
1083
1084        key.type = BTRFS_INODE_EXTREF_KEY;
1085        key.offset = -1;
1086
1087        nofs_flag = memalloc_nofs_save();
1088        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1089        memalloc_nofs_restore(nofs_flag);
1090        if (ret < 0)
1091                goto err_out;
1092        ASSERT(ret);
1093
1094        ret = 0;
1095        leaf = path->nodes[0];
1096        path->slots[0]--;
1097        goto again;
1098}
1099
1100static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1101                                             struct btrfs_root *root,
1102                                             struct btrfs_path *path,
1103                                             struct btrfs_delayed_node *node)
1104{
1105        int ret;
1106
1107        mutex_lock(&node->mutex);
1108        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1109                mutex_unlock(&node->mutex);
1110                return 0;
1111        }
1112
1113        ret = __btrfs_update_delayed_inode(trans, root, path, node);
1114        mutex_unlock(&node->mutex);
1115        return ret;
1116}
1117
1118static inline int
1119__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1120                                   struct btrfs_path *path,
1121                                   struct btrfs_delayed_node *node)
1122{
1123        int ret;
1124
1125        ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1126        if (ret)
1127                return ret;
1128
1129        ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1130        if (ret)
1131                return ret;
1132
1133        ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1134        return ret;
1135}
1136
1137/*
1138 * Called when committing the transaction.
1139 * Returns 0 on success.
1140 * Returns < 0 on error and returns with an aborted transaction with any
1141 * outstanding delayed items cleaned up.
1142 */
1143static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1144{
1145        struct btrfs_fs_info *fs_info = trans->fs_info;
1146        struct btrfs_delayed_root *delayed_root;
1147        struct btrfs_delayed_node *curr_node, *prev_node;
1148        struct btrfs_path *path;
1149        struct btrfs_block_rsv *block_rsv;
1150        int ret = 0;
1151        bool count = (nr > 0);
1152
1153        if (TRANS_ABORTED(trans))
1154                return -EIO;
1155
1156        path = btrfs_alloc_path();
1157        if (!path)
1158                return -ENOMEM;
1159        path->leave_spinning = 1;
1160
1161        block_rsv = trans->block_rsv;
1162        trans->block_rsv = &fs_info->delayed_block_rsv;
1163
1164        delayed_root = fs_info->delayed_root;
1165
1166        curr_node = btrfs_first_delayed_node(delayed_root);
1167        while (curr_node && (!count || (count && nr--))) {
1168                ret = __btrfs_commit_inode_delayed_items(trans, path,
1169                                                         curr_node);
1170                if (ret) {
1171                        btrfs_release_delayed_node(curr_node);
1172                        curr_node = NULL;
1173                        btrfs_abort_transaction(trans, ret);
1174                        break;
1175                }
1176
1177                prev_node = curr_node;
1178                curr_node = btrfs_next_delayed_node(curr_node);
1179                btrfs_release_delayed_node(prev_node);
1180        }
1181
1182        if (curr_node)
1183                btrfs_release_delayed_node(curr_node);
1184        btrfs_free_path(path);
1185        trans->block_rsv = block_rsv;
1186
1187        return ret;
1188}
1189
1190int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1191{
1192        return __btrfs_run_delayed_items(trans, -1);
1193}
1194
1195int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1196{
1197        return __btrfs_run_delayed_items(trans, nr);
1198}
1199
1200int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1201                                     struct btrfs_inode *inode)
1202{
1203        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1204        struct btrfs_path *path;
1205        struct btrfs_block_rsv *block_rsv;
1206        int ret;
1207
1208        if (!delayed_node)
1209                return 0;
1210
1211        mutex_lock(&delayed_node->mutex);
1212        if (!delayed_node->count) {
1213                mutex_unlock(&delayed_node->mutex);
1214                btrfs_release_delayed_node(delayed_node);
1215                return 0;
1216        }
1217        mutex_unlock(&delayed_node->mutex);
1218
1219        path = btrfs_alloc_path();
1220        if (!path) {
1221                btrfs_release_delayed_node(delayed_node);
1222                return -ENOMEM;
1223        }
1224        path->leave_spinning = 1;
1225
1226        block_rsv = trans->block_rsv;
1227        trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1228
1229        ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1230
1231        btrfs_release_delayed_node(delayed_node);
1232        btrfs_free_path(path);
1233        trans->block_rsv = block_rsv;
1234
1235        return ret;
1236}
1237
1238int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1239{
1240        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1241        struct btrfs_trans_handle *trans;
1242        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1243        struct btrfs_path *path;
1244        struct btrfs_block_rsv *block_rsv;
1245        int ret;
1246
1247        if (!delayed_node)
1248                return 0;
1249
1250        mutex_lock(&delayed_node->mutex);
1251        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1252                mutex_unlock(&delayed_node->mutex);
1253                btrfs_release_delayed_node(delayed_node);
1254                return 0;
1255        }
1256        mutex_unlock(&delayed_node->mutex);
1257
1258        trans = btrfs_join_transaction(delayed_node->root);
1259        if (IS_ERR(trans)) {
1260                ret = PTR_ERR(trans);
1261                goto out;
1262        }
1263
1264        path = btrfs_alloc_path();
1265        if (!path) {
1266                ret = -ENOMEM;
1267                goto trans_out;
1268        }
1269        path->leave_spinning = 1;
1270
1271        block_rsv = trans->block_rsv;
1272        trans->block_rsv = &fs_info->delayed_block_rsv;
1273
1274        mutex_lock(&delayed_node->mutex);
1275        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1276                ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1277                                                   path, delayed_node);
1278        else
1279                ret = 0;
1280        mutex_unlock(&delayed_node->mutex);
1281
1282        btrfs_free_path(path);
1283        trans->block_rsv = block_rsv;
1284trans_out:
1285        btrfs_end_transaction(trans);
1286        btrfs_btree_balance_dirty(fs_info);
1287out:
1288        btrfs_release_delayed_node(delayed_node);
1289
1290        return ret;
1291}
1292
1293void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1294{
1295        struct btrfs_delayed_node *delayed_node;
1296
1297        delayed_node = READ_ONCE(inode->delayed_node);
1298        if (!delayed_node)
1299                return;
1300
1301        inode->delayed_node = NULL;
1302        btrfs_release_delayed_node(delayed_node);
1303}
1304
1305struct btrfs_async_delayed_work {
1306        struct btrfs_delayed_root *delayed_root;
1307        int nr;
1308        struct btrfs_work work;
1309};
1310
1311static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1312{
1313        struct btrfs_async_delayed_work *async_work;
1314        struct btrfs_delayed_root *delayed_root;
1315        struct btrfs_trans_handle *trans;
1316        struct btrfs_path *path;
1317        struct btrfs_delayed_node *delayed_node = NULL;
1318        struct btrfs_root *root;
1319        struct btrfs_block_rsv *block_rsv;
1320        int total_done = 0;
1321
1322        async_work = container_of(work, struct btrfs_async_delayed_work, work);
1323        delayed_root = async_work->delayed_root;
1324
1325        path = btrfs_alloc_path();
1326        if (!path)
1327                goto out;
1328
1329        do {
1330                if (atomic_read(&delayed_root->items) <
1331                    BTRFS_DELAYED_BACKGROUND / 2)
1332                        break;
1333
1334                delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1335                if (!delayed_node)
1336                        break;
1337
1338                path->leave_spinning = 1;
1339                root = delayed_node->root;
1340
1341                trans = btrfs_join_transaction(root);
1342                if (IS_ERR(trans)) {
1343                        btrfs_release_path(path);
1344                        btrfs_release_prepared_delayed_node(delayed_node);
1345                        total_done++;
1346                        continue;
1347                }
1348
1349                block_rsv = trans->block_rsv;
1350                trans->block_rsv = &root->fs_info->delayed_block_rsv;
1351
1352                __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1353
1354                trans->block_rsv = block_rsv;
1355                btrfs_end_transaction(trans);
1356                btrfs_btree_balance_dirty_nodelay(root->fs_info);
1357
1358                btrfs_release_path(path);
1359                btrfs_release_prepared_delayed_node(delayed_node);
1360                total_done++;
1361
1362        } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1363                 || total_done < async_work->nr);
1364
1365        btrfs_free_path(path);
1366out:
1367        wake_up(&delayed_root->wait);
1368        kfree(async_work);
1369}
1370
1371
1372static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1373                                     struct btrfs_fs_info *fs_info, int nr)
1374{
1375        struct btrfs_async_delayed_work *async_work;
1376
1377        async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378        if (!async_work)
1379                return -ENOMEM;
1380
1381        async_work->delayed_root = delayed_root;
1382        btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1383                        NULL);
1384        async_work->nr = nr;
1385
1386        btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387        return 0;
1388}
1389
1390void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391{
1392        WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1393}
1394
1395static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396{
1397        int val = atomic_read(&delayed_root->items_seq);
1398
1399        if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400                return 1;
1401
1402        if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403                return 1;
1404
1405        return 0;
1406}
1407
1408void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409{
1410        struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411
1412        if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1413                btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1414                return;
1415
1416        if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1417                int seq;
1418                int ret;
1419
1420                seq = atomic_read(&delayed_root->items_seq);
1421
1422                ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1423                if (ret)
1424                        return;
1425
1426                wait_event_interruptible(delayed_root->wait,
1427                                         could_end_wait(delayed_root, seq));
1428                return;
1429        }
1430
1431        btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1432}
1433
1434/* Will return 0 or -ENOMEM */
1435int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1436                                   const char *name, int name_len,
1437                                   struct btrfs_inode *dir,
1438                                   struct btrfs_disk_key *disk_key, u8 type,
1439                                   u64 index)
1440{
1441        struct btrfs_delayed_node *delayed_node;
1442        struct btrfs_delayed_item *delayed_item;
1443        struct btrfs_dir_item *dir_item;
1444        int ret;
1445
1446        delayed_node = btrfs_get_or_create_delayed_node(dir);
1447        if (IS_ERR(delayed_node))
1448                return PTR_ERR(delayed_node);
1449
1450        delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1451        if (!delayed_item) {
1452                ret = -ENOMEM;
1453                goto release_node;
1454        }
1455
1456        delayed_item->key.objectid = btrfs_ino(dir);
1457        delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1458        delayed_item->key.offset = index;
1459
1460        dir_item = (struct btrfs_dir_item *)delayed_item->data;
1461        dir_item->location = *disk_key;
1462        btrfs_set_stack_dir_transid(dir_item, trans->transid);
1463        btrfs_set_stack_dir_data_len(dir_item, 0);
1464        btrfs_set_stack_dir_name_len(dir_item, name_len);
1465        btrfs_set_stack_dir_type(dir_item, type);
1466        memcpy((char *)(dir_item + 1), name, name_len);
1467
1468        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1469        /*
1470         * we have reserved enough space when we start a new transaction,
1471         * so reserving metadata failure is impossible
1472         */
1473        BUG_ON(ret);
1474
1475        mutex_lock(&delayed_node->mutex);
1476        ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1477        if (unlikely(ret)) {
1478                btrfs_err(trans->fs_info,
1479                          "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1480                          name_len, name, delayed_node->root->root_key.objectid,
1481                          delayed_node->inode_id, ret);
1482                BUG();
1483        }
1484        mutex_unlock(&delayed_node->mutex);
1485
1486release_node:
1487        btrfs_release_delayed_node(delayed_node);
1488        return ret;
1489}
1490
1491static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1492                                               struct btrfs_delayed_node *node,
1493                                               struct btrfs_key *key)
1494{
1495        struct btrfs_delayed_item *item;
1496
1497        mutex_lock(&node->mutex);
1498        item = __btrfs_lookup_delayed_insertion_item(node, key);
1499        if (!item) {
1500                mutex_unlock(&node->mutex);
1501                return 1;
1502        }
1503
1504        btrfs_delayed_item_release_metadata(node->root, item);
1505        btrfs_release_delayed_item(item);
1506        mutex_unlock(&node->mutex);
1507        return 0;
1508}
1509
1510int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1511                                   struct btrfs_inode *dir, u64 index)
1512{
1513        struct btrfs_delayed_node *node;
1514        struct btrfs_delayed_item *item;
1515        struct btrfs_key item_key;
1516        int ret;
1517
1518        node = btrfs_get_or_create_delayed_node(dir);
1519        if (IS_ERR(node))
1520                return PTR_ERR(node);
1521
1522        item_key.objectid = btrfs_ino(dir);
1523        item_key.type = BTRFS_DIR_INDEX_KEY;
1524        item_key.offset = index;
1525
1526        ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1527                                                  &item_key);
1528        if (!ret)
1529                goto end;
1530
1531        item = btrfs_alloc_delayed_item(0);
1532        if (!item) {
1533                ret = -ENOMEM;
1534                goto end;
1535        }
1536
1537        item->key = item_key;
1538
1539        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1540        /*
1541         * we have reserved enough space when we start a new transaction,
1542         * so reserving metadata failure is impossible.
1543         */
1544        if (ret < 0) {
1545                btrfs_err(trans->fs_info,
1546"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1547                btrfs_release_delayed_item(item);
1548                goto end;
1549        }
1550
1551        mutex_lock(&node->mutex);
1552        ret = __btrfs_add_delayed_deletion_item(node, item);
1553        if (unlikely(ret)) {
1554                btrfs_err(trans->fs_info,
1555                          "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1556                          index, node->root->root_key.objectid,
1557                          node->inode_id, ret);
1558                btrfs_delayed_item_release_metadata(dir->root, item);
1559                btrfs_release_delayed_item(item);
1560        }
1561        mutex_unlock(&node->mutex);
1562end:
1563        btrfs_release_delayed_node(node);
1564        return ret;
1565}
1566
1567int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1568{
1569        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1570
1571        if (!delayed_node)
1572                return -ENOENT;
1573
1574        /*
1575         * Since we have held i_mutex of this directory, it is impossible that
1576         * a new directory index is added into the delayed node and index_cnt
1577         * is updated now. So we needn't lock the delayed node.
1578         */
1579        if (!delayed_node->index_cnt) {
1580                btrfs_release_delayed_node(delayed_node);
1581                return -EINVAL;
1582        }
1583
1584        inode->index_cnt = delayed_node->index_cnt;
1585        btrfs_release_delayed_node(delayed_node);
1586        return 0;
1587}
1588
1589bool btrfs_readdir_get_delayed_items(struct inode *inode,
1590                                     struct list_head *ins_list,
1591                                     struct list_head *del_list)
1592{
1593        struct btrfs_delayed_node *delayed_node;
1594        struct btrfs_delayed_item *item;
1595
1596        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1597        if (!delayed_node)
1598                return false;
1599
1600        /*
1601         * We can only do one readdir with delayed items at a time because of
1602         * item->readdir_list.
1603         */
1604        inode_unlock_shared(inode);
1605        inode_lock(inode);
1606
1607        mutex_lock(&delayed_node->mutex);
1608        item = __btrfs_first_delayed_insertion_item(delayed_node);
1609        while (item) {
1610                refcount_inc(&item->refs);
1611                list_add_tail(&item->readdir_list, ins_list);
1612                item = __btrfs_next_delayed_item(item);
1613        }
1614
1615        item = __btrfs_first_delayed_deletion_item(delayed_node);
1616        while (item) {
1617                refcount_inc(&item->refs);
1618                list_add_tail(&item->readdir_list, del_list);
1619                item = __btrfs_next_delayed_item(item);
1620        }
1621        mutex_unlock(&delayed_node->mutex);
1622        /*
1623         * This delayed node is still cached in the btrfs inode, so refs
1624         * must be > 1 now, and we needn't check it is going to be freed
1625         * or not.
1626         *
1627         * Besides that, this function is used to read dir, we do not
1628         * insert/delete delayed items in this period. So we also needn't
1629         * requeue or dequeue this delayed node.
1630         */
1631        refcount_dec(&delayed_node->refs);
1632
1633        return true;
1634}
1635
1636void btrfs_readdir_put_delayed_items(struct inode *inode,
1637                                     struct list_head *ins_list,
1638                                     struct list_head *del_list)
1639{
1640        struct btrfs_delayed_item *curr, *next;
1641
1642        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1643                list_del(&curr->readdir_list);
1644                if (refcount_dec_and_test(&curr->refs))
1645                        kfree(curr);
1646        }
1647
1648        list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1649                list_del(&curr->readdir_list);
1650                if (refcount_dec_and_test(&curr->refs))
1651                        kfree(curr);
1652        }
1653
1654        /*
1655         * The VFS is going to do up_read(), so we need to downgrade back to a
1656         * read lock.
1657         */
1658        downgrade_write(&inode->i_rwsem);
1659}
1660
1661int btrfs_should_delete_dir_index(struct list_head *del_list,
1662                                  u64 index)
1663{
1664        struct btrfs_delayed_item *curr;
1665        int ret = 0;
1666
1667        list_for_each_entry(curr, del_list, readdir_list) {
1668                if (curr->key.offset > index)
1669                        break;
1670                if (curr->key.offset == index) {
1671                        ret = 1;
1672                        break;
1673                }
1674        }
1675        return ret;
1676}
1677
1678/*
1679 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1680 *
1681 */
1682int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1683                                    struct list_head *ins_list)
1684{
1685        struct btrfs_dir_item *di;
1686        struct btrfs_delayed_item *curr, *next;
1687        struct btrfs_key location;
1688        char *name;
1689        int name_len;
1690        int over = 0;
1691        unsigned char d_type;
1692
1693        if (list_empty(ins_list))
1694                return 0;
1695
1696        /*
1697         * Changing the data of the delayed item is impossible. So
1698         * we needn't lock them. And we have held i_mutex of the
1699         * directory, nobody can delete any directory indexes now.
1700         */
1701        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1702                list_del(&curr->readdir_list);
1703
1704                if (curr->key.offset < ctx->pos) {
1705                        if (refcount_dec_and_test(&curr->refs))
1706                                kfree(curr);
1707                        continue;
1708                }
1709
1710                ctx->pos = curr->key.offset;
1711
1712                di = (struct btrfs_dir_item *)curr->data;
1713                name = (char *)(di + 1);
1714                name_len = btrfs_stack_dir_name_len(di);
1715
1716                d_type = fs_ftype_to_dtype(di->type);
1717                btrfs_disk_key_to_cpu(&location, &di->location);
1718
1719                over = !dir_emit(ctx, name, name_len,
1720                               location.objectid, d_type);
1721
1722                if (refcount_dec_and_test(&curr->refs))
1723                        kfree(curr);
1724
1725                if (over)
1726                        return 1;
1727                ctx->pos++;
1728        }
1729        return 0;
1730}
1731
1732static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1733                                  struct btrfs_inode_item *inode_item,
1734                                  struct inode *inode)
1735{
1736        btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1737        btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1738        btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1739        btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1740        btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1741        btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1742        btrfs_set_stack_inode_generation(inode_item,
1743                                         BTRFS_I(inode)->generation);
1744        btrfs_set_stack_inode_sequence(inode_item,
1745                                       inode_peek_iversion(inode));
1746        btrfs_set_stack_inode_transid(inode_item, trans->transid);
1747        btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1748        btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1749        btrfs_set_stack_inode_block_group(inode_item, 0);
1750
1751        btrfs_set_stack_timespec_sec(&inode_item->atime,
1752                                     inode->i_atime.tv_sec);
1753        btrfs_set_stack_timespec_nsec(&inode_item->atime,
1754                                      inode->i_atime.tv_nsec);
1755
1756        btrfs_set_stack_timespec_sec(&inode_item->mtime,
1757                                     inode->i_mtime.tv_sec);
1758        btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1759                                      inode->i_mtime.tv_nsec);
1760
1761        btrfs_set_stack_timespec_sec(&inode_item->ctime,
1762                                     inode->i_ctime.tv_sec);
1763        btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1764                                      inode->i_ctime.tv_nsec);
1765
1766        btrfs_set_stack_timespec_sec(&inode_item->otime,
1767                                     BTRFS_I(inode)->i_otime.tv_sec);
1768        btrfs_set_stack_timespec_nsec(&inode_item->otime,
1769                                     BTRFS_I(inode)->i_otime.tv_nsec);
1770}
1771
1772int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1773{
1774        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1775        struct btrfs_delayed_node *delayed_node;
1776        struct btrfs_inode_item *inode_item;
1777
1778        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1779        if (!delayed_node)
1780                return -ENOENT;
1781
1782        mutex_lock(&delayed_node->mutex);
1783        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1784                mutex_unlock(&delayed_node->mutex);
1785                btrfs_release_delayed_node(delayed_node);
1786                return -ENOENT;
1787        }
1788
1789        inode_item = &delayed_node->inode_item;
1790
1791        i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1792        i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1793        btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1794        btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1795                        round_up(i_size_read(inode), fs_info->sectorsize));
1796        inode->i_mode = btrfs_stack_inode_mode(inode_item);
1797        set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1798        inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1799        BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1800        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1801
1802        inode_set_iversion_queried(inode,
1803                                   btrfs_stack_inode_sequence(inode_item));
1804        inode->i_rdev = 0;
1805        *rdev = btrfs_stack_inode_rdev(inode_item);
1806        BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1807
1808        inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1809        inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1810
1811        inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1812        inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1813
1814        inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1815        inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1816
1817        BTRFS_I(inode)->i_otime.tv_sec =
1818                btrfs_stack_timespec_sec(&inode_item->otime);
1819        BTRFS_I(inode)->i_otime.tv_nsec =
1820                btrfs_stack_timespec_nsec(&inode_item->otime);
1821
1822        inode->i_generation = BTRFS_I(inode)->generation;
1823        BTRFS_I(inode)->index_cnt = (u64)-1;
1824
1825        mutex_unlock(&delayed_node->mutex);
1826        btrfs_release_delayed_node(delayed_node);
1827        return 0;
1828}
1829
1830int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1831                               struct btrfs_root *root, struct inode *inode)
1832{
1833        struct btrfs_delayed_node *delayed_node;
1834        int ret = 0;
1835
1836        delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1837        if (IS_ERR(delayed_node))
1838                return PTR_ERR(delayed_node);
1839
1840        mutex_lock(&delayed_node->mutex);
1841        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1842                fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1843                goto release_node;
1844        }
1845
1846        ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1847                                                   delayed_node);
1848        if (ret)
1849                goto release_node;
1850
1851        fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1852        set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1853        delayed_node->count++;
1854        atomic_inc(&root->fs_info->delayed_root->items);
1855release_node:
1856        mutex_unlock(&delayed_node->mutex);
1857        btrfs_release_delayed_node(delayed_node);
1858        return ret;
1859}
1860
1861int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1862{
1863        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1864        struct btrfs_delayed_node *delayed_node;
1865
1866        /*
1867         * we don't do delayed inode updates during log recovery because it
1868         * leads to enospc problems.  This means we also can't do
1869         * delayed inode refs
1870         */
1871        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1872                return -EAGAIN;
1873
1874        delayed_node = btrfs_get_or_create_delayed_node(inode);
1875        if (IS_ERR(delayed_node))
1876                return PTR_ERR(delayed_node);
1877
1878        /*
1879         * We don't reserve space for inode ref deletion is because:
1880         * - We ONLY do async inode ref deletion for the inode who has only
1881         *   one link(i_nlink == 1), it means there is only one inode ref.
1882         *   And in most case, the inode ref and the inode item are in the
1883         *   same leaf, and we will deal with them at the same time.
1884         *   Since we are sure we will reserve the space for the inode item,
1885         *   it is unnecessary to reserve space for inode ref deletion.
1886         * - If the inode ref and the inode item are not in the same leaf,
1887         *   We also needn't worry about enospc problem, because we reserve
1888         *   much more space for the inode update than it needs.
1889         * - At the worst, we can steal some space from the global reservation.
1890         *   It is very rare.
1891         */
1892        mutex_lock(&delayed_node->mutex);
1893        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1894                goto release_node;
1895
1896        set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1897        delayed_node->count++;
1898        atomic_inc(&fs_info->delayed_root->items);
1899release_node:
1900        mutex_unlock(&delayed_node->mutex);
1901        btrfs_release_delayed_node(delayed_node);
1902        return 0;
1903}
1904
1905static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1906{
1907        struct btrfs_root *root = delayed_node->root;
1908        struct btrfs_fs_info *fs_info = root->fs_info;
1909        struct btrfs_delayed_item *curr_item, *prev_item;
1910
1911        mutex_lock(&delayed_node->mutex);
1912        curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1913        while (curr_item) {
1914                btrfs_delayed_item_release_metadata(root, curr_item);
1915                prev_item = curr_item;
1916                curr_item = __btrfs_next_delayed_item(prev_item);
1917                btrfs_release_delayed_item(prev_item);
1918        }
1919
1920        curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1921        while (curr_item) {
1922                btrfs_delayed_item_release_metadata(root, curr_item);
1923                prev_item = curr_item;
1924                curr_item = __btrfs_next_delayed_item(prev_item);
1925                btrfs_release_delayed_item(prev_item);
1926        }
1927
1928        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1929                btrfs_release_delayed_iref(delayed_node);
1930
1931        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1932                btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1933                btrfs_release_delayed_inode(delayed_node);
1934        }
1935        mutex_unlock(&delayed_node->mutex);
1936}
1937
1938void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1939{
1940        struct btrfs_delayed_node *delayed_node;
1941
1942        delayed_node = btrfs_get_delayed_node(inode);
1943        if (!delayed_node)
1944                return;
1945
1946        __btrfs_kill_delayed_node(delayed_node);
1947        btrfs_release_delayed_node(delayed_node);
1948}
1949
1950void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1951{
1952        u64 inode_id = 0;
1953        struct btrfs_delayed_node *delayed_nodes[8];
1954        int i, n;
1955
1956        while (1) {
1957                spin_lock(&root->inode_lock);
1958                n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1959                                           (void **)delayed_nodes, inode_id,
1960                                           ARRAY_SIZE(delayed_nodes));
1961                if (!n) {
1962                        spin_unlock(&root->inode_lock);
1963                        break;
1964                }
1965
1966                inode_id = delayed_nodes[n - 1]->inode_id + 1;
1967                for (i = 0; i < n; i++) {
1968                        /*
1969                         * Don't increase refs in case the node is dead and
1970                         * about to be removed from the tree in the loop below
1971                         */
1972                        if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1973                                delayed_nodes[i] = NULL;
1974                }
1975                spin_unlock(&root->inode_lock);
1976
1977                for (i = 0; i < n; i++) {
1978                        if (!delayed_nodes[i])
1979                                continue;
1980                        __btrfs_kill_delayed_node(delayed_nodes[i]);
1981                        btrfs_release_delayed_node(delayed_nodes[i]);
1982                }
1983        }
1984}
1985
1986void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1987{
1988        struct btrfs_delayed_node *curr_node, *prev_node;
1989
1990        curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1991        while (curr_node) {
1992                __btrfs_kill_delayed_node(curr_node);
1993
1994                prev_node = curr_node;
1995                curr_node = btrfs_next_delayed_node(curr_node);
1996                btrfs_release_delayed_node(prev_node);
1997        }
1998}
1999
2000