linux/fs/btrfs/free-space-cache.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Red Hat.  All rights reserved.
   4 */
   5
   6#include <linux/pagemap.h>
   7#include <linux/sched.h>
   8#include <linux/sched/signal.h>
   9#include <linux/slab.h>
  10#include <linux/math64.h>
  11#include <linux/ratelimit.h>
  12#include <linux/error-injection.h>
  13#include <linux/sched/mm.h>
  14#include "ctree.h"
  15#include "free-space-cache.h"
  16#include "transaction.h"
  17#include "disk-io.h"
  18#include "extent_io.h"
  19#include "inode-map.h"
  20#include "volumes.h"
  21#include "space-info.h"
  22#include "delalloc-space.h"
  23#include "block-group.h"
  24#include "discard.h"
  25
  26#define BITS_PER_BITMAP         (PAGE_SIZE * 8UL)
  27#define MAX_CACHE_BYTES_PER_GIG SZ_64K
  28#define FORCE_EXTENT_THRESHOLD  SZ_1M
  29
  30struct btrfs_trim_range {
  31        u64 start;
  32        u64 bytes;
  33        struct list_head list;
  34};
  35
  36static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
  37                                struct btrfs_free_space *bitmap_info);
  38static int link_free_space(struct btrfs_free_space_ctl *ctl,
  39                           struct btrfs_free_space *info);
  40static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  41                              struct btrfs_free_space *info);
  42static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  43                             struct btrfs_trans_handle *trans,
  44                             struct btrfs_io_ctl *io_ctl,
  45                             struct btrfs_path *path);
  46
  47static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  48                                               struct btrfs_path *path,
  49                                               u64 offset)
  50{
  51        struct btrfs_fs_info *fs_info = root->fs_info;
  52        struct btrfs_key key;
  53        struct btrfs_key location;
  54        struct btrfs_disk_key disk_key;
  55        struct btrfs_free_space_header *header;
  56        struct extent_buffer *leaf;
  57        struct inode *inode = NULL;
  58        unsigned nofs_flag;
  59        int ret;
  60
  61        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  62        key.offset = offset;
  63        key.type = 0;
  64
  65        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  66        if (ret < 0)
  67                return ERR_PTR(ret);
  68        if (ret > 0) {
  69                btrfs_release_path(path);
  70                return ERR_PTR(-ENOENT);
  71        }
  72
  73        leaf = path->nodes[0];
  74        header = btrfs_item_ptr(leaf, path->slots[0],
  75                                struct btrfs_free_space_header);
  76        btrfs_free_space_key(leaf, header, &disk_key);
  77        btrfs_disk_key_to_cpu(&location, &disk_key);
  78        btrfs_release_path(path);
  79
  80        /*
  81         * We are often under a trans handle at this point, so we need to make
  82         * sure NOFS is set to keep us from deadlocking.
  83         */
  84        nofs_flag = memalloc_nofs_save();
  85        inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
  86        btrfs_release_path(path);
  87        memalloc_nofs_restore(nofs_flag);
  88        if (IS_ERR(inode))
  89                return inode;
  90
  91        mapping_set_gfp_mask(inode->i_mapping,
  92                        mapping_gfp_constraint(inode->i_mapping,
  93                        ~(__GFP_FS | __GFP_HIGHMEM)));
  94
  95        return inode;
  96}
  97
  98struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
  99                struct btrfs_path *path)
 100{
 101        struct btrfs_fs_info *fs_info = block_group->fs_info;
 102        struct inode *inode = NULL;
 103        u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 104
 105        spin_lock(&block_group->lock);
 106        if (block_group->inode)
 107                inode = igrab(block_group->inode);
 108        spin_unlock(&block_group->lock);
 109        if (inode)
 110                return inode;
 111
 112        inode = __lookup_free_space_inode(fs_info->tree_root, path,
 113                                          block_group->start);
 114        if (IS_ERR(inode))
 115                return inode;
 116
 117        spin_lock(&block_group->lock);
 118        if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 119                btrfs_info(fs_info, "Old style space inode found, converting.");
 120                BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 121                        BTRFS_INODE_NODATACOW;
 122                block_group->disk_cache_state = BTRFS_DC_CLEAR;
 123        }
 124
 125        if (!block_group->iref) {
 126                block_group->inode = igrab(inode);
 127                block_group->iref = 1;
 128        }
 129        spin_unlock(&block_group->lock);
 130
 131        return inode;
 132}
 133
 134static int __create_free_space_inode(struct btrfs_root *root,
 135                                     struct btrfs_trans_handle *trans,
 136                                     struct btrfs_path *path,
 137                                     u64 ino, u64 offset)
 138{
 139        struct btrfs_key key;
 140        struct btrfs_disk_key disk_key;
 141        struct btrfs_free_space_header *header;
 142        struct btrfs_inode_item *inode_item;
 143        struct extent_buffer *leaf;
 144        u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 145        int ret;
 146
 147        ret = btrfs_insert_empty_inode(trans, root, path, ino);
 148        if (ret)
 149                return ret;
 150
 151        /* We inline crc's for the free disk space cache */
 152        if (ino != BTRFS_FREE_INO_OBJECTID)
 153                flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 154
 155        leaf = path->nodes[0];
 156        inode_item = btrfs_item_ptr(leaf, path->slots[0],
 157                                    struct btrfs_inode_item);
 158        btrfs_item_key(leaf, &disk_key, path->slots[0]);
 159        memzero_extent_buffer(leaf, (unsigned long)inode_item,
 160                             sizeof(*inode_item));
 161        btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 162        btrfs_set_inode_size(leaf, inode_item, 0);
 163        btrfs_set_inode_nbytes(leaf, inode_item, 0);
 164        btrfs_set_inode_uid(leaf, inode_item, 0);
 165        btrfs_set_inode_gid(leaf, inode_item, 0);
 166        btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 167        btrfs_set_inode_flags(leaf, inode_item, flags);
 168        btrfs_set_inode_nlink(leaf, inode_item, 1);
 169        btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 170        btrfs_set_inode_block_group(leaf, inode_item, offset);
 171        btrfs_mark_buffer_dirty(leaf);
 172        btrfs_release_path(path);
 173
 174        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 175        key.offset = offset;
 176        key.type = 0;
 177        ret = btrfs_insert_empty_item(trans, root, path, &key,
 178                                      sizeof(struct btrfs_free_space_header));
 179        if (ret < 0) {
 180                btrfs_release_path(path);
 181                return ret;
 182        }
 183
 184        leaf = path->nodes[0];
 185        header = btrfs_item_ptr(leaf, path->slots[0],
 186                                struct btrfs_free_space_header);
 187        memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 188        btrfs_set_free_space_key(leaf, header, &disk_key);
 189        btrfs_mark_buffer_dirty(leaf);
 190        btrfs_release_path(path);
 191
 192        return 0;
 193}
 194
 195int create_free_space_inode(struct btrfs_trans_handle *trans,
 196                            struct btrfs_block_group *block_group,
 197                            struct btrfs_path *path)
 198{
 199        int ret;
 200        u64 ino;
 201
 202        ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
 203        if (ret < 0)
 204                return ret;
 205
 206        return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 207                                         ino, block_group->start);
 208}
 209
 210int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 211                                       struct btrfs_block_rsv *rsv)
 212{
 213        u64 needed_bytes;
 214        int ret;
 215
 216        /* 1 for slack space, 1 for updating the inode */
 217        needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
 218                btrfs_calc_metadata_size(fs_info, 1);
 219
 220        spin_lock(&rsv->lock);
 221        if (rsv->reserved < needed_bytes)
 222                ret = -ENOSPC;
 223        else
 224                ret = 0;
 225        spin_unlock(&rsv->lock);
 226        return ret;
 227}
 228
 229int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 230                                    struct btrfs_block_group *block_group,
 231                                    struct inode *inode)
 232{
 233        struct btrfs_root *root = BTRFS_I(inode)->root;
 234        int ret = 0;
 235        bool locked = false;
 236
 237        if (block_group) {
 238                struct btrfs_path *path = btrfs_alloc_path();
 239
 240                if (!path) {
 241                        ret = -ENOMEM;
 242                        goto fail;
 243                }
 244                locked = true;
 245                mutex_lock(&trans->transaction->cache_write_mutex);
 246                if (!list_empty(&block_group->io_list)) {
 247                        list_del_init(&block_group->io_list);
 248
 249                        btrfs_wait_cache_io(trans, block_group, path);
 250                        btrfs_put_block_group(block_group);
 251                }
 252
 253                /*
 254                 * now that we've truncated the cache away, its no longer
 255                 * setup or written
 256                 */
 257                spin_lock(&block_group->lock);
 258                block_group->disk_cache_state = BTRFS_DC_CLEAR;
 259                spin_unlock(&block_group->lock);
 260                btrfs_free_path(path);
 261        }
 262
 263        btrfs_i_size_write(BTRFS_I(inode), 0);
 264        truncate_pagecache(inode, 0);
 265
 266        /*
 267         * We skip the throttling logic for free space cache inodes, so we don't
 268         * need to check for -EAGAIN.
 269         */
 270        ret = btrfs_truncate_inode_items(trans, root, inode,
 271                                         0, BTRFS_EXTENT_DATA_KEY);
 272        if (ret)
 273                goto fail;
 274
 275        ret = btrfs_update_inode(trans, root, inode);
 276
 277fail:
 278        if (locked)
 279                mutex_unlock(&trans->transaction->cache_write_mutex);
 280        if (ret)
 281                btrfs_abort_transaction(trans, ret);
 282
 283        return ret;
 284}
 285
 286static void readahead_cache(struct inode *inode)
 287{
 288        struct file_ra_state *ra;
 289        unsigned long last_index;
 290
 291        ra = kzalloc(sizeof(*ra), GFP_NOFS);
 292        if (!ra)
 293                return;
 294
 295        file_ra_state_init(ra, inode->i_mapping);
 296        last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 297
 298        page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 299
 300        kfree(ra);
 301}
 302
 303static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 304                       int write)
 305{
 306        int num_pages;
 307        int check_crcs = 0;
 308
 309        num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 310
 311        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
 312                check_crcs = 1;
 313
 314        /* Make sure we can fit our crcs and generation into the first page */
 315        if (write && check_crcs &&
 316            (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 317                return -ENOSPC;
 318
 319        memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 320
 321        io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 322        if (!io_ctl->pages)
 323                return -ENOMEM;
 324
 325        io_ctl->num_pages = num_pages;
 326        io_ctl->fs_info = btrfs_sb(inode->i_sb);
 327        io_ctl->check_crcs = check_crcs;
 328        io_ctl->inode = inode;
 329
 330        return 0;
 331}
 332ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 333
 334static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 335{
 336        kfree(io_ctl->pages);
 337        io_ctl->pages = NULL;
 338}
 339
 340static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 341{
 342        if (io_ctl->cur) {
 343                io_ctl->cur = NULL;
 344                io_ctl->orig = NULL;
 345        }
 346}
 347
 348static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 349{
 350        ASSERT(io_ctl->index < io_ctl->num_pages);
 351        io_ctl->page = io_ctl->pages[io_ctl->index++];
 352        io_ctl->cur = page_address(io_ctl->page);
 353        io_ctl->orig = io_ctl->cur;
 354        io_ctl->size = PAGE_SIZE;
 355        if (clear)
 356                clear_page(io_ctl->cur);
 357}
 358
 359static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 360{
 361        int i;
 362
 363        io_ctl_unmap_page(io_ctl);
 364
 365        for (i = 0; i < io_ctl->num_pages; i++) {
 366                if (io_ctl->pages[i]) {
 367                        ClearPageChecked(io_ctl->pages[i]);
 368                        unlock_page(io_ctl->pages[i]);
 369                        put_page(io_ctl->pages[i]);
 370                }
 371        }
 372}
 373
 374static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
 375{
 376        struct page *page;
 377        struct inode *inode = io_ctl->inode;
 378        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 379        int i;
 380
 381        for (i = 0; i < io_ctl->num_pages; i++) {
 382                page = find_or_create_page(inode->i_mapping, i, mask);
 383                if (!page) {
 384                        io_ctl_drop_pages(io_ctl);
 385                        return -ENOMEM;
 386                }
 387                io_ctl->pages[i] = page;
 388                if (uptodate && !PageUptodate(page)) {
 389                        btrfs_readpage(NULL, page);
 390                        lock_page(page);
 391                        if (page->mapping != inode->i_mapping) {
 392                                btrfs_err(BTRFS_I(inode)->root->fs_info,
 393                                          "free space cache page truncated");
 394                                io_ctl_drop_pages(io_ctl);
 395                                return -EIO;
 396                        }
 397                        if (!PageUptodate(page)) {
 398                                btrfs_err(BTRFS_I(inode)->root->fs_info,
 399                                           "error reading free space cache");
 400                                io_ctl_drop_pages(io_ctl);
 401                                return -EIO;
 402                        }
 403                }
 404        }
 405
 406        for (i = 0; i < io_ctl->num_pages; i++) {
 407                clear_page_dirty_for_io(io_ctl->pages[i]);
 408                set_page_extent_mapped(io_ctl->pages[i]);
 409        }
 410
 411        return 0;
 412}
 413
 414static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 415{
 416        __le64 *val;
 417
 418        io_ctl_map_page(io_ctl, 1);
 419
 420        /*
 421         * Skip the csum areas.  If we don't check crcs then we just have a
 422         * 64bit chunk at the front of the first page.
 423         */
 424        if (io_ctl->check_crcs) {
 425                io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 426                io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 427        } else {
 428                io_ctl->cur += sizeof(u64);
 429                io_ctl->size -= sizeof(u64) * 2;
 430        }
 431
 432        val = io_ctl->cur;
 433        *val = cpu_to_le64(generation);
 434        io_ctl->cur += sizeof(u64);
 435}
 436
 437static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 438{
 439        __le64 *gen;
 440
 441        /*
 442         * Skip the crc area.  If we don't check crcs then we just have a 64bit
 443         * chunk at the front of the first page.
 444         */
 445        if (io_ctl->check_crcs) {
 446                io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 447                io_ctl->size -= sizeof(u64) +
 448                        (sizeof(u32) * io_ctl->num_pages);
 449        } else {
 450                io_ctl->cur += sizeof(u64);
 451                io_ctl->size -= sizeof(u64) * 2;
 452        }
 453
 454        gen = io_ctl->cur;
 455        if (le64_to_cpu(*gen) != generation) {
 456                btrfs_err_rl(io_ctl->fs_info,
 457                        "space cache generation (%llu) does not match inode (%llu)",
 458                                *gen, generation);
 459                io_ctl_unmap_page(io_ctl);
 460                return -EIO;
 461        }
 462        io_ctl->cur += sizeof(u64);
 463        return 0;
 464}
 465
 466static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 467{
 468        u32 *tmp;
 469        u32 crc = ~(u32)0;
 470        unsigned offset = 0;
 471
 472        if (!io_ctl->check_crcs) {
 473                io_ctl_unmap_page(io_ctl);
 474                return;
 475        }
 476
 477        if (index == 0)
 478                offset = sizeof(u32) * io_ctl->num_pages;
 479
 480        crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 481        btrfs_crc32c_final(crc, (u8 *)&crc);
 482        io_ctl_unmap_page(io_ctl);
 483        tmp = page_address(io_ctl->pages[0]);
 484        tmp += index;
 485        *tmp = crc;
 486}
 487
 488static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 489{
 490        u32 *tmp, val;
 491        u32 crc = ~(u32)0;
 492        unsigned offset = 0;
 493
 494        if (!io_ctl->check_crcs) {
 495                io_ctl_map_page(io_ctl, 0);
 496                return 0;
 497        }
 498
 499        if (index == 0)
 500                offset = sizeof(u32) * io_ctl->num_pages;
 501
 502        tmp = page_address(io_ctl->pages[0]);
 503        tmp += index;
 504        val = *tmp;
 505
 506        io_ctl_map_page(io_ctl, 0);
 507        crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 508        btrfs_crc32c_final(crc, (u8 *)&crc);
 509        if (val != crc) {
 510                btrfs_err_rl(io_ctl->fs_info,
 511                        "csum mismatch on free space cache");
 512                io_ctl_unmap_page(io_ctl);
 513                return -EIO;
 514        }
 515
 516        return 0;
 517}
 518
 519static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 520                            void *bitmap)
 521{
 522        struct btrfs_free_space_entry *entry;
 523
 524        if (!io_ctl->cur)
 525                return -ENOSPC;
 526
 527        entry = io_ctl->cur;
 528        entry->offset = cpu_to_le64(offset);
 529        entry->bytes = cpu_to_le64(bytes);
 530        entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 531                BTRFS_FREE_SPACE_EXTENT;
 532        io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 533        io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 534
 535        if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 536                return 0;
 537
 538        io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 539
 540        /* No more pages to map */
 541        if (io_ctl->index >= io_ctl->num_pages)
 542                return 0;
 543
 544        /* map the next page */
 545        io_ctl_map_page(io_ctl, 1);
 546        return 0;
 547}
 548
 549static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 550{
 551        if (!io_ctl->cur)
 552                return -ENOSPC;
 553
 554        /*
 555         * If we aren't at the start of the current page, unmap this one and
 556         * map the next one if there is any left.
 557         */
 558        if (io_ctl->cur != io_ctl->orig) {
 559                io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 560                if (io_ctl->index >= io_ctl->num_pages)
 561                        return -ENOSPC;
 562                io_ctl_map_page(io_ctl, 0);
 563        }
 564
 565        copy_page(io_ctl->cur, bitmap);
 566        io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 567        if (io_ctl->index < io_ctl->num_pages)
 568                io_ctl_map_page(io_ctl, 0);
 569        return 0;
 570}
 571
 572static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 573{
 574        /*
 575         * If we're not on the boundary we know we've modified the page and we
 576         * need to crc the page.
 577         */
 578        if (io_ctl->cur != io_ctl->orig)
 579                io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 580        else
 581                io_ctl_unmap_page(io_ctl);
 582
 583        while (io_ctl->index < io_ctl->num_pages) {
 584                io_ctl_map_page(io_ctl, 1);
 585                io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 586        }
 587}
 588
 589static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 590                            struct btrfs_free_space *entry, u8 *type)
 591{
 592        struct btrfs_free_space_entry *e;
 593        int ret;
 594
 595        if (!io_ctl->cur) {
 596                ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 597                if (ret)
 598                        return ret;
 599        }
 600
 601        e = io_ctl->cur;
 602        entry->offset = le64_to_cpu(e->offset);
 603        entry->bytes = le64_to_cpu(e->bytes);
 604        *type = e->type;
 605        io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 606        io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 607
 608        if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 609                return 0;
 610
 611        io_ctl_unmap_page(io_ctl);
 612
 613        return 0;
 614}
 615
 616static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 617                              struct btrfs_free_space *entry)
 618{
 619        int ret;
 620
 621        ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 622        if (ret)
 623                return ret;
 624
 625        copy_page(entry->bitmap, io_ctl->cur);
 626        io_ctl_unmap_page(io_ctl);
 627
 628        return 0;
 629}
 630
 631/*
 632 * Since we attach pinned extents after the fact we can have contiguous sections
 633 * of free space that are split up in entries.  This poses a problem with the
 634 * tree logging stuff since it could have allocated across what appears to be 2
 635 * entries since we would have merged the entries when adding the pinned extents
 636 * back to the free space cache.  So run through the space cache that we just
 637 * loaded and merge contiguous entries.  This will make the log replay stuff not
 638 * blow up and it will make for nicer allocator behavior.
 639 */
 640static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 641{
 642        struct btrfs_free_space *e, *prev = NULL;
 643        struct rb_node *n;
 644
 645again:
 646        spin_lock(&ctl->tree_lock);
 647        for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 648                e = rb_entry(n, struct btrfs_free_space, offset_index);
 649                if (!prev)
 650                        goto next;
 651                if (e->bitmap || prev->bitmap)
 652                        goto next;
 653                if (prev->offset + prev->bytes == e->offset) {
 654                        unlink_free_space(ctl, prev);
 655                        unlink_free_space(ctl, e);
 656                        prev->bytes += e->bytes;
 657                        kmem_cache_free(btrfs_free_space_cachep, e);
 658                        link_free_space(ctl, prev);
 659                        prev = NULL;
 660                        spin_unlock(&ctl->tree_lock);
 661                        goto again;
 662                }
 663next:
 664                prev = e;
 665        }
 666        spin_unlock(&ctl->tree_lock);
 667}
 668
 669static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 670                                   struct btrfs_free_space_ctl *ctl,
 671                                   struct btrfs_path *path, u64 offset)
 672{
 673        struct btrfs_fs_info *fs_info = root->fs_info;
 674        struct btrfs_free_space_header *header;
 675        struct extent_buffer *leaf;
 676        struct btrfs_io_ctl io_ctl;
 677        struct btrfs_key key;
 678        struct btrfs_free_space *e, *n;
 679        LIST_HEAD(bitmaps);
 680        u64 num_entries;
 681        u64 num_bitmaps;
 682        u64 generation;
 683        u8 type;
 684        int ret = 0;
 685
 686        /* Nothing in the space cache, goodbye */
 687        if (!i_size_read(inode))
 688                return 0;
 689
 690        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 691        key.offset = offset;
 692        key.type = 0;
 693
 694        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 695        if (ret < 0)
 696                return 0;
 697        else if (ret > 0) {
 698                btrfs_release_path(path);
 699                return 0;
 700        }
 701
 702        ret = -1;
 703
 704        leaf = path->nodes[0];
 705        header = btrfs_item_ptr(leaf, path->slots[0],
 706                                struct btrfs_free_space_header);
 707        num_entries = btrfs_free_space_entries(leaf, header);
 708        num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 709        generation = btrfs_free_space_generation(leaf, header);
 710        btrfs_release_path(path);
 711
 712        if (!BTRFS_I(inode)->generation) {
 713                btrfs_info(fs_info,
 714                           "the free space cache file (%llu) is invalid, skip it",
 715                           offset);
 716                return 0;
 717        }
 718
 719        if (BTRFS_I(inode)->generation != generation) {
 720                btrfs_err(fs_info,
 721                          "free space inode generation (%llu) did not match free space cache generation (%llu)",
 722                          BTRFS_I(inode)->generation, generation);
 723                return 0;
 724        }
 725
 726        if (!num_entries)
 727                return 0;
 728
 729        ret = io_ctl_init(&io_ctl, inode, 0);
 730        if (ret)
 731                return ret;
 732
 733        readahead_cache(inode);
 734
 735        ret = io_ctl_prepare_pages(&io_ctl, true);
 736        if (ret)
 737                goto out;
 738
 739        ret = io_ctl_check_crc(&io_ctl, 0);
 740        if (ret)
 741                goto free_cache;
 742
 743        ret = io_ctl_check_generation(&io_ctl, generation);
 744        if (ret)
 745                goto free_cache;
 746
 747        while (num_entries) {
 748                e = kmem_cache_zalloc(btrfs_free_space_cachep,
 749                                      GFP_NOFS);
 750                if (!e)
 751                        goto free_cache;
 752
 753                ret = io_ctl_read_entry(&io_ctl, e, &type);
 754                if (ret) {
 755                        kmem_cache_free(btrfs_free_space_cachep, e);
 756                        goto free_cache;
 757                }
 758
 759                /*
 760                 * Sync discard ensures that the free space cache is always
 761                 * trimmed.  So when reading this in, the state should reflect
 762                 * that.  We also do this for async as a stop gap for lack of
 763                 * persistence.
 764                 */
 765                if (btrfs_test_opt(fs_info, DISCARD_SYNC) ||
 766                    btrfs_test_opt(fs_info, DISCARD_ASYNC))
 767                        e->trim_state = BTRFS_TRIM_STATE_TRIMMED;
 768
 769                if (!e->bytes) {
 770                        kmem_cache_free(btrfs_free_space_cachep, e);
 771                        goto free_cache;
 772                }
 773
 774                if (type == BTRFS_FREE_SPACE_EXTENT) {
 775                        spin_lock(&ctl->tree_lock);
 776                        ret = link_free_space(ctl, e);
 777                        spin_unlock(&ctl->tree_lock);
 778                        if (ret) {
 779                                btrfs_err(fs_info,
 780                                        "Duplicate entries in free space cache, dumping");
 781                                kmem_cache_free(btrfs_free_space_cachep, e);
 782                                goto free_cache;
 783                        }
 784                } else {
 785                        ASSERT(num_bitmaps);
 786                        num_bitmaps--;
 787                        e->bitmap = kmem_cache_zalloc(
 788                                        btrfs_free_space_bitmap_cachep, GFP_NOFS);
 789                        if (!e->bitmap) {
 790                                kmem_cache_free(
 791                                        btrfs_free_space_cachep, e);
 792                                goto free_cache;
 793                        }
 794                        spin_lock(&ctl->tree_lock);
 795                        ret = link_free_space(ctl, e);
 796                        ctl->total_bitmaps++;
 797                        ctl->op->recalc_thresholds(ctl);
 798                        spin_unlock(&ctl->tree_lock);
 799                        if (ret) {
 800                                btrfs_err(fs_info,
 801                                        "Duplicate entries in free space cache, dumping");
 802                                kmem_cache_free(btrfs_free_space_cachep, e);
 803                                goto free_cache;
 804                        }
 805                        list_add_tail(&e->list, &bitmaps);
 806                }
 807
 808                num_entries--;
 809        }
 810
 811        io_ctl_unmap_page(&io_ctl);
 812
 813        /*
 814         * We add the bitmaps at the end of the entries in order that
 815         * the bitmap entries are added to the cache.
 816         */
 817        list_for_each_entry_safe(e, n, &bitmaps, list) {
 818                list_del_init(&e->list);
 819                ret = io_ctl_read_bitmap(&io_ctl, e);
 820                if (ret)
 821                        goto free_cache;
 822                e->bitmap_extents = count_bitmap_extents(ctl, e);
 823                if (!btrfs_free_space_trimmed(e)) {
 824                        ctl->discardable_extents[BTRFS_STAT_CURR] +=
 825                                e->bitmap_extents;
 826                        ctl->discardable_bytes[BTRFS_STAT_CURR] += e->bytes;
 827                }
 828        }
 829
 830        io_ctl_drop_pages(&io_ctl);
 831        merge_space_tree(ctl);
 832        ret = 1;
 833out:
 834        btrfs_discard_update_discardable(ctl->private, ctl);
 835        io_ctl_free(&io_ctl);
 836        return ret;
 837free_cache:
 838        io_ctl_drop_pages(&io_ctl);
 839        __btrfs_remove_free_space_cache(ctl);
 840        goto out;
 841}
 842
 843int load_free_space_cache(struct btrfs_block_group *block_group)
 844{
 845        struct btrfs_fs_info *fs_info = block_group->fs_info;
 846        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 847        struct inode *inode;
 848        struct btrfs_path *path;
 849        int ret = 0;
 850        bool matched;
 851        u64 used = block_group->used;
 852
 853        /*
 854         * If this block group has been marked to be cleared for one reason or
 855         * another then we can't trust the on disk cache, so just return.
 856         */
 857        spin_lock(&block_group->lock);
 858        if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 859                spin_unlock(&block_group->lock);
 860                return 0;
 861        }
 862        spin_unlock(&block_group->lock);
 863
 864        path = btrfs_alloc_path();
 865        if (!path)
 866                return 0;
 867        path->search_commit_root = 1;
 868        path->skip_locking = 1;
 869
 870        /*
 871         * We must pass a path with search_commit_root set to btrfs_iget in
 872         * order to avoid a deadlock when allocating extents for the tree root.
 873         *
 874         * When we are COWing an extent buffer from the tree root, when looking
 875         * for a free extent, at extent-tree.c:find_free_extent(), we can find
 876         * block group without its free space cache loaded. When we find one
 877         * we must load its space cache which requires reading its free space
 878         * cache's inode item from the root tree. If this inode item is located
 879         * in the same leaf that we started COWing before, then we end up in
 880         * deadlock on the extent buffer (trying to read lock it when we
 881         * previously write locked it).
 882         *
 883         * It's safe to read the inode item using the commit root because
 884         * block groups, once loaded, stay in memory forever (until they are
 885         * removed) as well as their space caches once loaded. New block groups
 886         * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 887         * we will never try to read their inode item while the fs is mounted.
 888         */
 889        inode = lookup_free_space_inode(block_group, path);
 890        if (IS_ERR(inode)) {
 891                btrfs_free_path(path);
 892                return 0;
 893        }
 894
 895        /* We may have converted the inode and made the cache invalid. */
 896        spin_lock(&block_group->lock);
 897        if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 898                spin_unlock(&block_group->lock);
 899                btrfs_free_path(path);
 900                goto out;
 901        }
 902        spin_unlock(&block_group->lock);
 903
 904        ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 905                                      path, block_group->start);
 906        btrfs_free_path(path);
 907        if (ret <= 0)
 908                goto out;
 909
 910        spin_lock(&ctl->tree_lock);
 911        matched = (ctl->free_space == (block_group->length - used -
 912                                       block_group->bytes_super));
 913        spin_unlock(&ctl->tree_lock);
 914
 915        if (!matched) {
 916                __btrfs_remove_free_space_cache(ctl);
 917                btrfs_warn(fs_info,
 918                           "block group %llu has wrong amount of free space",
 919                           block_group->start);
 920                ret = -1;
 921        }
 922out:
 923        if (ret < 0) {
 924                /* This cache is bogus, make sure it gets cleared */
 925                spin_lock(&block_group->lock);
 926                block_group->disk_cache_state = BTRFS_DC_CLEAR;
 927                spin_unlock(&block_group->lock);
 928                ret = 0;
 929
 930                btrfs_warn(fs_info,
 931                           "failed to load free space cache for block group %llu, rebuilding it now",
 932                           block_group->start);
 933        }
 934
 935        iput(inode);
 936        return ret;
 937}
 938
 939static noinline_for_stack
 940int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 941                              struct btrfs_free_space_ctl *ctl,
 942                              struct btrfs_block_group *block_group,
 943                              int *entries, int *bitmaps,
 944                              struct list_head *bitmap_list)
 945{
 946        int ret;
 947        struct btrfs_free_cluster *cluster = NULL;
 948        struct btrfs_free_cluster *cluster_locked = NULL;
 949        struct rb_node *node = rb_first(&ctl->free_space_offset);
 950        struct btrfs_trim_range *trim_entry;
 951
 952        /* Get the cluster for this block_group if it exists */
 953        if (block_group && !list_empty(&block_group->cluster_list)) {
 954                cluster = list_entry(block_group->cluster_list.next,
 955                                     struct btrfs_free_cluster,
 956                                     block_group_list);
 957        }
 958
 959        if (!node && cluster) {
 960                cluster_locked = cluster;
 961                spin_lock(&cluster_locked->lock);
 962                node = rb_first(&cluster->root);
 963                cluster = NULL;
 964        }
 965
 966        /* Write out the extent entries */
 967        while (node) {
 968                struct btrfs_free_space *e;
 969
 970                e = rb_entry(node, struct btrfs_free_space, offset_index);
 971                *entries += 1;
 972
 973                ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 974                                       e->bitmap);
 975                if (ret)
 976                        goto fail;
 977
 978                if (e->bitmap) {
 979                        list_add_tail(&e->list, bitmap_list);
 980                        *bitmaps += 1;
 981                }
 982                node = rb_next(node);
 983                if (!node && cluster) {
 984                        node = rb_first(&cluster->root);
 985                        cluster_locked = cluster;
 986                        spin_lock(&cluster_locked->lock);
 987                        cluster = NULL;
 988                }
 989        }
 990        if (cluster_locked) {
 991                spin_unlock(&cluster_locked->lock);
 992                cluster_locked = NULL;
 993        }
 994
 995        /*
 996         * Make sure we don't miss any range that was removed from our rbtree
 997         * because trimming is running. Otherwise after a umount+mount (or crash
 998         * after committing the transaction) we would leak free space and get
 999         * an inconsistent free space cache report from fsck.
1000         */
1001        list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1002                ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1003                                       trim_entry->bytes, NULL);
1004                if (ret)
1005                        goto fail;
1006                *entries += 1;
1007        }
1008
1009        return 0;
1010fail:
1011        if (cluster_locked)
1012                spin_unlock(&cluster_locked->lock);
1013        return -ENOSPC;
1014}
1015
1016static noinline_for_stack int
1017update_cache_item(struct btrfs_trans_handle *trans,
1018                  struct btrfs_root *root,
1019                  struct inode *inode,
1020                  struct btrfs_path *path, u64 offset,
1021                  int entries, int bitmaps)
1022{
1023        struct btrfs_key key;
1024        struct btrfs_free_space_header *header;
1025        struct extent_buffer *leaf;
1026        int ret;
1027
1028        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1029        key.offset = offset;
1030        key.type = 0;
1031
1032        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1033        if (ret < 0) {
1034                clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1035                                 EXTENT_DELALLOC, 0, 0, NULL);
1036                goto fail;
1037        }
1038        leaf = path->nodes[0];
1039        if (ret > 0) {
1040                struct btrfs_key found_key;
1041                ASSERT(path->slots[0]);
1042                path->slots[0]--;
1043                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1044                if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1045                    found_key.offset != offset) {
1046                        clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1047                                         inode->i_size - 1, EXTENT_DELALLOC, 0,
1048                                         0, NULL);
1049                        btrfs_release_path(path);
1050                        goto fail;
1051                }
1052        }
1053
1054        BTRFS_I(inode)->generation = trans->transid;
1055        header = btrfs_item_ptr(leaf, path->slots[0],
1056                                struct btrfs_free_space_header);
1057        btrfs_set_free_space_entries(leaf, header, entries);
1058        btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1059        btrfs_set_free_space_generation(leaf, header, trans->transid);
1060        btrfs_mark_buffer_dirty(leaf);
1061        btrfs_release_path(path);
1062
1063        return 0;
1064
1065fail:
1066        return -1;
1067}
1068
1069static noinline_for_stack int write_pinned_extent_entries(
1070                            struct btrfs_trans_handle *trans,
1071                            struct btrfs_block_group *block_group,
1072                            struct btrfs_io_ctl *io_ctl,
1073                            int *entries)
1074{
1075        u64 start, extent_start, extent_end, len;
1076        struct extent_io_tree *unpin = NULL;
1077        int ret;
1078
1079        if (!block_group)
1080                return 0;
1081
1082        /*
1083         * We want to add any pinned extents to our free space cache
1084         * so we don't leak the space
1085         *
1086         * We shouldn't have switched the pinned extents yet so this is the
1087         * right one
1088         */
1089        unpin = &trans->transaction->pinned_extents;
1090
1091        start = block_group->start;
1092
1093        while (start < block_group->start + block_group->length) {
1094                ret = find_first_extent_bit(unpin, start,
1095                                            &extent_start, &extent_end,
1096                                            EXTENT_DIRTY, NULL);
1097                if (ret)
1098                        return 0;
1099
1100                /* This pinned extent is out of our range */
1101                if (extent_start >= block_group->start + block_group->length)
1102                        return 0;
1103
1104                extent_start = max(extent_start, start);
1105                extent_end = min(block_group->start + block_group->length,
1106                                 extent_end + 1);
1107                len = extent_end - extent_start;
1108
1109                *entries += 1;
1110                ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1111                if (ret)
1112                        return -ENOSPC;
1113
1114                start = extent_end;
1115        }
1116
1117        return 0;
1118}
1119
1120static noinline_for_stack int
1121write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1122{
1123        struct btrfs_free_space *entry, *next;
1124        int ret;
1125
1126        /* Write out the bitmaps */
1127        list_for_each_entry_safe(entry, next, bitmap_list, list) {
1128                ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1129                if (ret)
1130                        return -ENOSPC;
1131                list_del_init(&entry->list);
1132        }
1133
1134        return 0;
1135}
1136
1137static int flush_dirty_cache(struct inode *inode)
1138{
1139        int ret;
1140
1141        ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1142        if (ret)
1143                clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1144                                 EXTENT_DELALLOC, 0, 0, NULL);
1145
1146        return ret;
1147}
1148
1149static void noinline_for_stack
1150cleanup_bitmap_list(struct list_head *bitmap_list)
1151{
1152        struct btrfs_free_space *entry, *next;
1153
1154        list_for_each_entry_safe(entry, next, bitmap_list, list)
1155                list_del_init(&entry->list);
1156}
1157
1158static void noinline_for_stack
1159cleanup_write_cache_enospc(struct inode *inode,
1160                           struct btrfs_io_ctl *io_ctl,
1161                           struct extent_state **cached_state)
1162{
1163        io_ctl_drop_pages(io_ctl);
1164        unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1165                             i_size_read(inode) - 1, cached_state);
1166}
1167
1168static int __btrfs_wait_cache_io(struct btrfs_root *root,
1169                                 struct btrfs_trans_handle *trans,
1170                                 struct btrfs_block_group *block_group,
1171                                 struct btrfs_io_ctl *io_ctl,
1172                                 struct btrfs_path *path, u64 offset)
1173{
1174        int ret;
1175        struct inode *inode = io_ctl->inode;
1176
1177        if (!inode)
1178                return 0;
1179
1180        /* Flush the dirty pages in the cache file. */
1181        ret = flush_dirty_cache(inode);
1182        if (ret)
1183                goto out;
1184
1185        /* Update the cache item to tell everyone this cache file is valid. */
1186        ret = update_cache_item(trans, root, inode, path, offset,
1187                                io_ctl->entries, io_ctl->bitmaps);
1188out:
1189        io_ctl_free(io_ctl);
1190        if (ret) {
1191                invalidate_inode_pages2(inode->i_mapping);
1192                BTRFS_I(inode)->generation = 0;
1193                if (block_group)
1194                        btrfs_debug(root->fs_info,
1195          "failed to write free space cache for block group %llu error %d",
1196                                  block_group->start, ret);
1197        }
1198        btrfs_update_inode(trans, root, inode);
1199
1200        if (block_group) {
1201                /* the dirty list is protected by the dirty_bgs_lock */
1202                spin_lock(&trans->transaction->dirty_bgs_lock);
1203
1204                /* the disk_cache_state is protected by the block group lock */
1205                spin_lock(&block_group->lock);
1206
1207                /*
1208                 * only mark this as written if we didn't get put back on
1209                 * the dirty list while waiting for IO.   Otherwise our
1210                 * cache state won't be right, and we won't get written again
1211                 */
1212                if (!ret && list_empty(&block_group->dirty_list))
1213                        block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1214                else if (ret)
1215                        block_group->disk_cache_state = BTRFS_DC_ERROR;
1216
1217                spin_unlock(&block_group->lock);
1218                spin_unlock(&trans->transaction->dirty_bgs_lock);
1219                io_ctl->inode = NULL;
1220                iput(inode);
1221        }
1222
1223        return ret;
1224
1225}
1226
1227static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1228                                    struct btrfs_trans_handle *trans,
1229                                    struct btrfs_io_ctl *io_ctl,
1230                                    struct btrfs_path *path)
1231{
1232        return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1233}
1234
1235int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1236                        struct btrfs_block_group *block_group,
1237                        struct btrfs_path *path)
1238{
1239        return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1240                                     block_group, &block_group->io_ctl,
1241                                     path, block_group->start);
1242}
1243
1244/**
1245 * __btrfs_write_out_cache - write out cached info to an inode
1246 * @root - the root the inode belongs to
1247 * @ctl - the free space cache we are going to write out
1248 * @block_group - the block_group for this cache if it belongs to a block_group
1249 * @trans - the trans handle
1250 *
1251 * This function writes out a free space cache struct to disk for quick recovery
1252 * on mount.  This will return 0 if it was successful in writing the cache out,
1253 * or an errno if it was not.
1254 */
1255static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1256                                   struct btrfs_free_space_ctl *ctl,
1257                                   struct btrfs_block_group *block_group,
1258                                   struct btrfs_io_ctl *io_ctl,
1259                                   struct btrfs_trans_handle *trans)
1260{
1261        struct extent_state *cached_state = NULL;
1262        LIST_HEAD(bitmap_list);
1263        int entries = 0;
1264        int bitmaps = 0;
1265        int ret;
1266        int must_iput = 0;
1267
1268        if (!i_size_read(inode))
1269                return -EIO;
1270
1271        WARN_ON(io_ctl->pages);
1272        ret = io_ctl_init(io_ctl, inode, 1);
1273        if (ret)
1274                return ret;
1275
1276        if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1277                down_write(&block_group->data_rwsem);
1278                spin_lock(&block_group->lock);
1279                if (block_group->delalloc_bytes) {
1280                        block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1281                        spin_unlock(&block_group->lock);
1282                        up_write(&block_group->data_rwsem);
1283                        BTRFS_I(inode)->generation = 0;
1284                        ret = 0;
1285                        must_iput = 1;
1286                        goto out;
1287                }
1288                spin_unlock(&block_group->lock);
1289        }
1290
1291        /* Lock all pages first so we can lock the extent safely. */
1292        ret = io_ctl_prepare_pages(io_ctl, false);
1293        if (ret)
1294                goto out_unlock;
1295
1296        lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1297                         &cached_state);
1298
1299        io_ctl_set_generation(io_ctl, trans->transid);
1300
1301        mutex_lock(&ctl->cache_writeout_mutex);
1302        /* Write out the extent entries in the free space cache */
1303        spin_lock(&ctl->tree_lock);
1304        ret = write_cache_extent_entries(io_ctl, ctl,
1305                                         block_group, &entries, &bitmaps,
1306                                         &bitmap_list);
1307        if (ret)
1308                goto out_nospc_locked;
1309
1310        /*
1311         * Some spaces that are freed in the current transaction are pinned,
1312         * they will be added into free space cache after the transaction is
1313         * committed, we shouldn't lose them.
1314         *
1315         * If this changes while we are working we'll get added back to
1316         * the dirty list and redo it.  No locking needed
1317         */
1318        ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1319        if (ret)
1320                goto out_nospc_locked;
1321
1322        /*
1323         * At last, we write out all the bitmaps and keep cache_writeout_mutex
1324         * locked while doing it because a concurrent trim can be manipulating
1325         * or freeing the bitmap.
1326         */
1327        ret = write_bitmap_entries(io_ctl, &bitmap_list);
1328        spin_unlock(&ctl->tree_lock);
1329        mutex_unlock(&ctl->cache_writeout_mutex);
1330        if (ret)
1331                goto out_nospc;
1332
1333        /* Zero out the rest of the pages just to make sure */
1334        io_ctl_zero_remaining_pages(io_ctl);
1335
1336        /* Everything is written out, now we dirty the pages in the file. */
1337        ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1338                                i_size_read(inode), &cached_state);
1339        if (ret)
1340                goto out_nospc;
1341
1342        if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1343                up_write(&block_group->data_rwsem);
1344        /*
1345         * Release the pages and unlock the extent, we will flush
1346         * them out later
1347         */
1348        io_ctl_drop_pages(io_ctl);
1349
1350        unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1351                             i_size_read(inode) - 1, &cached_state);
1352
1353        /*
1354         * at this point the pages are under IO and we're happy,
1355         * The caller is responsible for waiting on them and updating the
1356         * the cache and the inode
1357         */
1358        io_ctl->entries = entries;
1359        io_ctl->bitmaps = bitmaps;
1360
1361        ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1362        if (ret)
1363                goto out;
1364
1365        return 0;
1366
1367out_nospc_locked:
1368        cleanup_bitmap_list(&bitmap_list);
1369        spin_unlock(&ctl->tree_lock);
1370        mutex_unlock(&ctl->cache_writeout_mutex);
1371
1372out_nospc:
1373        cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1374
1375out_unlock:
1376        if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1377                up_write(&block_group->data_rwsem);
1378
1379out:
1380        io_ctl->inode = NULL;
1381        io_ctl_free(io_ctl);
1382        if (ret) {
1383                invalidate_inode_pages2(inode->i_mapping);
1384                BTRFS_I(inode)->generation = 0;
1385        }
1386        btrfs_update_inode(trans, root, inode);
1387        if (must_iput)
1388                iput(inode);
1389        return ret;
1390}
1391
1392int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1393                          struct btrfs_block_group *block_group,
1394                          struct btrfs_path *path)
1395{
1396        struct btrfs_fs_info *fs_info = trans->fs_info;
1397        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1398        struct inode *inode;
1399        int ret = 0;
1400
1401        spin_lock(&block_group->lock);
1402        if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1403                spin_unlock(&block_group->lock);
1404                return 0;
1405        }
1406        spin_unlock(&block_group->lock);
1407
1408        inode = lookup_free_space_inode(block_group, path);
1409        if (IS_ERR(inode))
1410                return 0;
1411
1412        ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1413                                block_group, &block_group->io_ctl, trans);
1414        if (ret) {
1415                btrfs_debug(fs_info,
1416          "failed to write free space cache for block group %llu error %d",
1417                          block_group->start, ret);
1418                spin_lock(&block_group->lock);
1419                block_group->disk_cache_state = BTRFS_DC_ERROR;
1420                spin_unlock(&block_group->lock);
1421
1422                block_group->io_ctl.inode = NULL;
1423                iput(inode);
1424        }
1425
1426        /*
1427         * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1428         * to wait for IO and put the inode
1429         */
1430
1431        return ret;
1432}
1433
1434static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1435                                          u64 offset)
1436{
1437        ASSERT(offset >= bitmap_start);
1438        offset -= bitmap_start;
1439        return (unsigned long)(div_u64(offset, unit));
1440}
1441
1442static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1443{
1444        return (unsigned long)(div_u64(bytes, unit));
1445}
1446
1447static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1448                                   u64 offset)
1449{
1450        u64 bitmap_start;
1451        u64 bytes_per_bitmap;
1452
1453        bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1454        bitmap_start = offset - ctl->start;
1455        bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1456        bitmap_start *= bytes_per_bitmap;
1457        bitmap_start += ctl->start;
1458
1459        return bitmap_start;
1460}
1461
1462static int tree_insert_offset(struct rb_root *root, u64 offset,
1463                              struct rb_node *node, int bitmap)
1464{
1465        struct rb_node **p = &root->rb_node;
1466        struct rb_node *parent = NULL;
1467        struct btrfs_free_space *info;
1468
1469        while (*p) {
1470                parent = *p;
1471                info = rb_entry(parent, struct btrfs_free_space, offset_index);
1472
1473                if (offset < info->offset) {
1474                        p = &(*p)->rb_left;
1475                } else if (offset > info->offset) {
1476                        p = &(*p)->rb_right;
1477                } else {
1478                        /*
1479                         * we could have a bitmap entry and an extent entry
1480                         * share the same offset.  If this is the case, we want
1481                         * the extent entry to always be found first if we do a
1482                         * linear search through the tree, since we want to have
1483                         * the quickest allocation time, and allocating from an
1484                         * extent is faster than allocating from a bitmap.  So
1485                         * if we're inserting a bitmap and we find an entry at
1486                         * this offset, we want to go right, or after this entry
1487                         * logically.  If we are inserting an extent and we've
1488                         * found a bitmap, we want to go left, or before
1489                         * logically.
1490                         */
1491                        if (bitmap) {
1492                                if (info->bitmap) {
1493                                        WARN_ON_ONCE(1);
1494                                        return -EEXIST;
1495                                }
1496                                p = &(*p)->rb_right;
1497                        } else {
1498                                if (!info->bitmap) {
1499                                        WARN_ON_ONCE(1);
1500                                        return -EEXIST;
1501                                }
1502                                p = &(*p)->rb_left;
1503                        }
1504                }
1505        }
1506
1507        rb_link_node(node, parent, p);
1508        rb_insert_color(node, root);
1509
1510        return 0;
1511}
1512
1513/*
1514 * searches the tree for the given offset.
1515 *
1516 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1517 * want a section that has at least bytes size and comes at or after the given
1518 * offset.
1519 */
1520static struct btrfs_free_space *
1521tree_search_offset(struct btrfs_free_space_ctl *ctl,
1522                   u64 offset, int bitmap_only, int fuzzy)
1523{
1524        struct rb_node *n = ctl->free_space_offset.rb_node;
1525        struct btrfs_free_space *entry, *prev = NULL;
1526
1527        /* find entry that is closest to the 'offset' */
1528        while (1) {
1529                if (!n) {
1530                        entry = NULL;
1531                        break;
1532                }
1533
1534                entry = rb_entry(n, struct btrfs_free_space, offset_index);
1535                prev = entry;
1536
1537                if (offset < entry->offset)
1538                        n = n->rb_left;
1539                else if (offset > entry->offset)
1540                        n = n->rb_right;
1541                else
1542                        break;
1543        }
1544
1545        if (bitmap_only) {
1546                if (!entry)
1547                        return NULL;
1548                if (entry->bitmap)
1549                        return entry;
1550
1551                /*
1552                 * bitmap entry and extent entry may share same offset,
1553                 * in that case, bitmap entry comes after extent entry.
1554                 */
1555                n = rb_next(n);
1556                if (!n)
1557                        return NULL;
1558                entry = rb_entry(n, struct btrfs_free_space, offset_index);
1559                if (entry->offset != offset)
1560                        return NULL;
1561
1562                WARN_ON(!entry->bitmap);
1563                return entry;
1564        } else if (entry) {
1565                if (entry->bitmap) {
1566                        /*
1567                         * if previous extent entry covers the offset,
1568                         * we should return it instead of the bitmap entry
1569                         */
1570                        n = rb_prev(&entry->offset_index);
1571                        if (n) {
1572                                prev = rb_entry(n, struct btrfs_free_space,
1573                                                offset_index);
1574                                if (!prev->bitmap &&
1575                                    prev->offset + prev->bytes > offset)
1576                                        entry = prev;
1577                        }
1578                }
1579                return entry;
1580        }
1581
1582        if (!prev)
1583                return NULL;
1584
1585        /* find last entry before the 'offset' */
1586        entry = prev;
1587        if (entry->offset > offset) {
1588                n = rb_prev(&entry->offset_index);
1589                if (n) {
1590                        entry = rb_entry(n, struct btrfs_free_space,
1591                                        offset_index);
1592                        ASSERT(entry->offset <= offset);
1593                } else {
1594                        if (fuzzy)
1595                                return entry;
1596                        else
1597                                return NULL;
1598                }
1599        }
1600
1601        if (entry->bitmap) {
1602                n = rb_prev(&entry->offset_index);
1603                if (n) {
1604                        prev = rb_entry(n, struct btrfs_free_space,
1605                                        offset_index);
1606                        if (!prev->bitmap &&
1607                            prev->offset + prev->bytes > offset)
1608                                return prev;
1609                }
1610                if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1611                        return entry;
1612        } else if (entry->offset + entry->bytes > offset)
1613                return entry;
1614
1615        if (!fuzzy)
1616                return NULL;
1617
1618        while (1) {
1619                if (entry->bitmap) {
1620                        if (entry->offset + BITS_PER_BITMAP *
1621                            ctl->unit > offset)
1622                                break;
1623                } else {
1624                        if (entry->offset + entry->bytes > offset)
1625                                break;
1626                }
1627
1628                n = rb_next(&entry->offset_index);
1629                if (!n)
1630                        return NULL;
1631                entry = rb_entry(n, struct btrfs_free_space, offset_index);
1632        }
1633        return entry;
1634}
1635
1636static inline void
1637__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1638                    struct btrfs_free_space *info)
1639{
1640        rb_erase(&info->offset_index, &ctl->free_space_offset);
1641        ctl->free_extents--;
1642
1643        if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1644                ctl->discardable_extents[BTRFS_STAT_CURR]--;
1645                ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1646        }
1647}
1648
1649static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1650                              struct btrfs_free_space *info)
1651{
1652        __unlink_free_space(ctl, info);
1653        ctl->free_space -= info->bytes;
1654}
1655
1656static int link_free_space(struct btrfs_free_space_ctl *ctl,
1657                           struct btrfs_free_space *info)
1658{
1659        int ret = 0;
1660
1661        ASSERT(info->bytes || info->bitmap);
1662        ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1663                                 &info->offset_index, (info->bitmap != NULL));
1664        if (ret)
1665                return ret;
1666
1667        if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1668                ctl->discardable_extents[BTRFS_STAT_CURR]++;
1669                ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1670        }
1671
1672        ctl->free_space += info->bytes;
1673        ctl->free_extents++;
1674        return ret;
1675}
1676
1677static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1678{
1679        struct btrfs_block_group *block_group = ctl->private;
1680        u64 max_bytes;
1681        u64 bitmap_bytes;
1682        u64 extent_bytes;
1683        u64 size = block_group->length;
1684        u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1685        u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1686
1687        max_bitmaps = max_t(u64, max_bitmaps, 1);
1688
1689        ASSERT(ctl->total_bitmaps <= max_bitmaps);
1690
1691        /*
1692         * We are trying to keep the total amount of memory used per 1GiB of
1693         * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
1694         * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
1695         * bitmaps, we may end up using more memory than this.
1696         */
1697        if (size < SZ_1G)
1698                max_bytes = MAX_CACHE_BYTES_PER_GIG;
1699        else
1700                max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1701
1702        bitmap_bytes = ctl->total_bitmaps * ctl->unit;
1703
1704        /*
1705         * we want the extent entry threshold to always be at most 1/2 the max
1706         * bytes we can have, or whatever is less than that.
1707         */
1708        extent_bytes = max_bytes - bitmap_bytes;
1709        extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1710
1711        ctl->extents_thresh =
1712                div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1713}
1714
1715static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1716                                       struct btrfs_free_space *info,
1717                                       u64 offset, u64 bytes)
1718{
1719        unsigned long start, count, end;
1720        int extent_delta = -1;
1721
1722        start = offset_to_bit(info->offset, ctl->unit, offset);
1723        count = bytes_to_bits(bytes, ctl->unit);
1724        end = start + count;
1725        ASSERT(end <= BITS_PER_BITMAP);
1726
1727        bitmap_clear(info->bitmap, start, count);
1728
1729        info->bytes -= bytes;
1730        if (info->max_extent_size > ctl->unit)
1731                info->max_extent_size = 0;
1732
1733        if (start && test_bit(start - 1, info->bitmap))
1734                extent_delta++;
1735
1736        if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1737                extent_delta++;
1738
1739        info->bitmap_extents += extent_delta;
1740        if (!btrfs_free_space_trimmed(info)) {
1741                ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1742                ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1743        }
1744}
1745
1746static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1747                              struct btrfs_free_space *info, u64 offset,
1748                              u64 bytes)
1749{
1750        __bitmap_clear_bits(ctl, info, offset, bytes);
1751        ctl->free_space -= bytes;
1752}
1753
1754static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1755                            struct btrfs_free_space *info, u64 offset,
1756                            u64 bytes)
1757{
1758        unsigned long start, count, end;
1759        int extent_delta = 1;
1760
1761        start = offset_to_bit(info->offset, ctl->unit, offset);
1762        count = bytes_to_bits(bytes, ctl->unit);
1763        end = start + count;
1764        ASSERT(end <= BITS_PER_BITMAP);
1765
1766        bitmap_set(info->bitmap, start, count);
1767
1768        info->bytes += bytes;
1769        ctl->free_space += bytes;
1770
1771        if (start && test_bit(start - 1, info->bitmap))
1772                extent_delta--;
1773
1774        if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1775                extent_delta--;
1776
1777        info->bitmap_extents += extent_delta;
1778        if (!btrfs_free_space_trimmed(info)) {
1779                ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1780                ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1781        }
1782}
1783
1784/*
1785 * If we can not find suitable extent, we will use bytes to record
1786 * the size of the max extent.
1787 */
1788static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1789                         struct btrfs_free_space *bitmap_info, u64 *offset,
1790                         u64 *bytes, bool for_alloc)
1791{
1792        unsigned long found_bits = 0;
1793        unsigned long max_bits = 0;
1794        unsigned long bits, i;
1795        unsigned long next_zero;
1796        unsigned long extent_bits;
1797
1798        /*
1799         * Skip searching the bitmap if we don't have a contiguous section that
1800         * is large enough for this allocation.
1801         */
1802        if (for_alloc &&
1803            bitmap_info->max_extent_size &&
1804            bitmap_info->max_extent_size < *bytes) {
1805                *bytes = bitmap_info->max_extent_size;
1806                return -1;
1807        }
1808
1809        i = offset_to_bit(bitmap_info->offset, ctl->unit,
1810                          max_t(u64, *offset, bitmap_info->offset));
1811        bits = bytes_to_bits(*bytes, ctl->unit);
1812
1813        for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1814                if (for_alloc && bits == 1) {
1815                        found_bits = 1;
1816                        break;
1817                }
1818                next_zero = find_next_zero_bit(bitmap_info->bitmap,
1819                                               BITS_PER_BITMAP, i);
1820                extent_bits = next_zero - i;
1821                if (extent_bits >= bits) {
1822                        found_bits = extent_bits;
1823                        break;
1824                } else if (extent_bits > max_bits) {
1825                        max_bits = extent_bits;
1826                }
1827                i = next_zero;
1828        }
1829
1830        if (found_bits) {
1831                *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1832                *bytes = (u64)(found_bits) * ctl->unit;
1833                return 0;
1834        }
1835
1836        *bytes = (u64)(max_bits) * ctl->unit;
1837        bitmap_info->max_extent_size = *bytes;
1838        return -1;
1839}
1840
1841static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1842{
1843        if (entry->bitmap)
1844                return entry->max_extent_size;
1845        return entry->bytes;
1846}
1847
1848/* Cache the size of the max extent in bytes */
1849static struct btrfs_free_space *
1850find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1851                unsigned long align, u64 *max_extent_size)
1852{
1853        struct btrfs_free_space *entry;
1854        struct rb_node *node;
1855        u64 tmp;
1856        u64 align_off;
1857        int ret;
1858
1859        if (!ctl->free_space_offset.rb_node)
1860                goto out;
1861
1862        entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1863        if (!entry)
1864                goto out;
1865
1866        for (node = &entry->offset_index; node; node = rb_next(node)) {
1867                entry = rb_entry(node, struct btrfs_free_space, offset_index);
1868                if (entry->bytes < *bytes) {
1869                        *max_extent_size = max(get_max_extent_size(entry),
1870                                               *max_extent_size);
1871                        continue;
1872                }
1873
1874                /* make sure the space returned is big enough
1875                 * to match our requested alignment
1876                 */
1877                if (*bytes >= align) {
1878                        tmp = entry->offset - ctl->start + align - 1;
1879                        tmp = div64_u64(tmp, align);
1880                        tmp = tmp * align + ctl->start;
1881                        align_off = tmp - entry->offset;
1882                } else {
1883                        align_off = 0;
1884                        tmp = entry->offset;
1885                }
1886
1887                if (entry->bytes < *bytes + align_off) {
1888                        *max_extent_size = max(get_max_extent_size(entry),
1889                                               *max_extent_size);
1890                        continue;
1891                }
1892
1893                if (entry->bitmap) {
1894                        u64 size = *bytes;
1895
1896                        ret = search_bitmap(ctl, entry, &tmp, &size, true);
1897                        if (!ret) {
1898                                *offset = tmp;
1899                                *bytes = size;
1900                                return entry;
1901                        } else {
1902                                *max_extent_size =
1903                                        max(get_max_extent_size(entry),
1904                                            *max_extent_size);
1905                        }
1906                        continue;
1907                }
1908
1909                *offset = tmp;
1910                *bytes = entry->bytes - align_off;
1911                return entry;
1912        }
1913out:
1914        return NULL;
1915}
1916
1917static int count_bitmap_extents(struct btrfs_free_space_ctl *ctl,
1918                                struct btrfs_free_space *bitmap_info)
1919{
1920        struct btrfs_block_group *block_group = ctl->private;
1921        u64 bytes = bitmap_info->bytes;
1922        unsigned int rs, re;
1923        int count = 0;
1924
1925        if (!block_group || !bytes)
1926                return count;
1927
1928        bitmap_for_each_set_region(bitmap_info->bitmap, rs, re, 0,
1929                                   BITS_PER_BITMAP) {
1930                bytes -= (rs - re) * ctl->unit;
1931                count++;
1932
1933                if (!bytes)
1934                        break;
1935        }
1936
1937        return count;
1938}
1939
1940static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1941                           struct btrfs_free_space *info, u64 offset)
1942{
1943        info->offset = offset_to_bitmap(ctl, offset);
1944        info->bytes = 0;
1945        info->bitmap_extents = 0;
1946        INIT_LIST_HEAD(&info->list);
1947        link_free_space(ctl, info);
1948        ctl->total_bitmaps++;
1949
1950        ctl->op->recalc_thresholds(ctl);
1951}
1952
1953static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1954                        struct btrfs_free_space *bitmap_info)
1955{
1956        /*
1957         * Normally when this is called, the bitmap is completely empty. However,
1958         * if we are blowing up the free space cache for one reason or another
1959         * via __btrfs_remove_free_space_cache(), then it may not be freed and
1960         * we may leave stats on the table.
1961         */
1962        if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1963                ctl->discardable_extents[BTRFS_STAT_CURR] -=
1964                        bitmap_info->bitmap_extents;
1965                ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1966
1967        }
1968        unlink_free_space(ctl, bitmap_info);
1969        kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1970        kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1971        ctl->total_bitmaps--;
1972        ctl->op->recalc_thresholds(ctl);
1973}
1974
1975static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1976                              struct btrfs_free_space *bitmap_info,
1977                              u64 *offset, u64 *bytes)
1978{
1979        u64 end;
1980        u64 search_start, search_bytes;
1981        int ret;
1982
1983again:
1984        end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1985
1986        /*
1987         * We need to search for bits in this bitmap.  We could only cover some
1988         * of the extent in this bitmap thanks to how we add space, so we need
1989         * to search for as much as it as we can and clear that amount, and then
1990         * go searching for the next bit.
1991         */
1992        search_start = *offset;
1993        search_bytes = ctl->unit;
1994        search_bytes = min(search_bytes, end - search_start + 1);
1995        ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1996                            false);
1997        if (ret < 0 || search_start != *offset)
1998                return -EINVAL;
1999
2000        /* We may have found more bits than what we need */
2001        search_bytes = min(search_bytes, *bytes);
2002
2003        /* Cannot clear past the end of the bitmap */
2004        search_bytes = min(search_bytes, end - search_start + 1);
2005
2006        bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2007        *offset += search_bytes;
2008        *bytes -= search_bytes;
2009
2010        if (*bytes) {
2011                struct rb_node *next = rb_next(&bitmap_info->offset_index);
2012                if (!bitmap_info->bytes)
2013                        free_bitmap(ctl, bitmap_info);
2014
2015                /*
2016                 * no entry after this bitmap, but we still have bytes to
2017                 * remove, so something has gone wrong.
2018                 */
2019                if (!next)
2020                        return -EINVAL;
2021
2022                bitmap_info = rb_entry(next, struct btrfs_free_space,
2023                                       offset_index);
2024
2025                /*
2026                 * if the next entry isn't a bitmap we need to return to let the
2027                 * extent stuff do its work.
2028                 */
2029                if (!bitmap_info->bitmap)
2030                        return -EAGAIN;
2031
2032                /*
2033                 * Ok the next item is a bitmap, but it may not actually hold
2034                 * the information for the rest of this free space stuff, so
2035                 * look for it, and if we don't find it return so we can try
2036                 * everything over again.
2037                 */
2038                search_start = *offset;
2039                search_bytes = ctl->unit;
2040                ret = search_bitmap(ctl, bitmap_info, &search_start,
2041                                    &search_bytes, false);
2042                if (ret < 0 || search_start != *offset)
2043                        return -EAGAIN;
2044
2045                goto again;
2046        } else if (!bitmap_info->bytes)
2047                free_bitmap(ctl, bitmap_info);
2048
2049        return 0;
2050}
2051
2052static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2053                               struct btrfs_free_space *info, u64 offset,
2054                               u64 bytes, enum btrfs_trim_state trim_state)
2055{
2056        u64 bytes_to_set = 0;
2057        u64 end;
2058
2059        /*
2060         * This is a tradeoff to make bitmap trim state minimal.  We mark the
2061         * whole bitmap untrimmed if at any point we add untrimmed regions.
2062         */
2063        if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2064                if (btrfs_free_space_trimmed(info)) {
2065                        ctl->discardable_extents[BTRFS_STAT_CURR] +=
2066                                info->bitmap_extents;
2067                        ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2068                }
2069                info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2070        }
2071
2072        end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2073
2074        bytes_to_set = min(end - offset, bytes);
2075
2076        bitmap_set_bits(ctl, info, offset, bytes_to_set);
2077
2078        /*
2079         * We set some bytes, we have no idea what the max extent size is
2080         * anymore.
2081         */
2082        info->max_extent_size = 0;
2083
2084        return bytes_to_set;
2085
2086}
2087
2088static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2089                      struct btrfs_free_space *info)
2090{
2091        struct btrfs_block_group *block_group = ctl->private;
2092        struct btrfs_fs_info *fs_info = block_group->fs_info;
2093        bool forced = false;
2094
2095#ifdef CONFIG_BTRFS_DEBUG
2096        if (btrfs_should_fragment_free_space(block_group))
2097                forced = true;
2098#endif
2099
2100        /* This is a way to reclaim large regions from the bitmaps. */
2101        if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2102                return false;
2103
2104        /*
2105         * If we are below the extents threshold then we can add this as an
2106         * extent, and don't have to deal with the bitmap
2107         */
2108        if (!forced && ctl->free_extents < ctl->extents_thresh) {
2109                /*
2110                 * If this block group has some small extents we don't want to
2111                 * use up all of our free slots in the cache with them, we want
2112                 * to reserve them to larger extents, however if we have plenty
2113                 * of cache left then go ahead an dadd them, no sense in adding
2114                 * the overhead of a bitmap if we don't have to.
2115                 */
2116                if (info->bytes <= fs_info->sectorsize * 8) {
2117                        if (ctl->free_extents * 3 <= ctl->extents_thresh)
2118                                return false;
2119                } else {
2120                        return false;
2121                }
2122        }
2123
2124        /*
2125         * The original block groups from mkfs can be really small, like 8
2126         * megabytes, so don't bother with a bitmap for those entries.  However
2127         * some block groups can be smaller than what a bitmap would cover but
2128         * are still large enough that they could overflow the 32k memory limit,
2129         * so allow those block groups to still be allowed to have a bitmap
2130         * entry.
2131         */
2132        if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2133                return false;
2134
2135        return true;
2136}
2137
2138static const struct btrfs_free_space_op free_space_op = {
2139        .recalc_thresholds      = recalculate_thresholds,
2140        .use_bitmap             = use_bitmap,
2141};
2142
2143static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2144                              struct btrfs_free_space *info)
2145{
2146        struct btrfs_free_space *bitmap_info;
2147        struct btrfs_block_group *block_group = NULL;
2148        int added = 0;
2149        u64 bytes, offset, bytes_added;
2150        enum btrfs_trim_state trim_state;
2151        int ret;
2152
2153        bytes = info->bytes;
2154        offset = info->offset;
2155        trim_state = info->trim_state;
2156
2157        if (!ctl->op->use_bitmap(ctl, info))
2158                return 0;
2159
2160        if (ctl->op == &free_space_op)
2161                block_group = ctl->private;
2162again:
2163        /*
2164         * Since we link bitmaps right into the cluster we need to see if we
2165         * have a cluster here, and if so and it has our bitmap we need to add
2166         * the free space to that bitmap.
2167         */
2168        if (block_group && !list_empty(&block_group->cluster_list)) {
2169                struct btrfs_free_cluster *cluster;
2170                struct rb_node *node;
2171                struct btrfs_free_space *entry;
2172
2173                cluster = list_entry(block_group->cluster_list.next,
2174                                     struct btrfs_free_cluster,
2175                                     block_group_list);
2176                spin_lock(&cluster->lock);
2177                node = rb_first(&cluster->root);
2178                if (!node) {
2179                        spin_unlock(&cluster->lock);
2180                        goto no_cluster_bitmap;
2181                }
2182
2183                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2184                if (!entry->bitmap) {
2185                        spin_unlock(&cluster->lock);
2186                        goto no_cluster_bitmap;
2187                }
2188
2189                if (entry->offset == offset_to_bitmap(ctl, offset)) {
2190                        bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2191                                                          bytes, trim_state);
2192                        bytes -= bytes_added;
2193                        offset += bytes_added;
2194                }
2195                spin_unlock(&cluster->lock);
2196                if (!bytes) {
2197                        ret = 1;
2198                        goto out;
2199                }
2200        }
2201
2202no_cluster_bitmap:
2203        bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2204                                         1, 0);
2205        if (!bitmap_info) {
2206                ASSERT(added == 0);
2207                goto new_bitmap;
2208        }
2209
2210        bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2211                                          trim_state);
2212        bytes -= bytes_added;
2213        offset += bytes_added;
2214        added = 0;
2215
2216        if (!bytes) {
2217                ret = 1;
2218                goto out;
2219        } else
2220                goto again;
2221
2222new_bitmap:
2223        if (info && info->bitmap) {
2224                add_new_bitmap(ctl, info, offset);
2225                added = 1;
2226                info = NULL;
2227                goto again;
2228        } else {
2229                spin_unlock(&ctl->tree_lock);
2230
2231                /* no pre-allocated info, allocate a new one */
2232                if (!info) {
2233                        info = kmem_cache_zalloc(btrfs_free_space_cachep,
2234                                                 GFP_NOFS);
2235                        if (!info) {
2236                                spin_lock(&ctl->tree_lock);
2237                                ret = -ENOMEM;
2238                                goto out;
2239                        }
2240                }
2241
2242                /* allocate the bitmap */
2243                info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2244                                                 GFP_NOFS);
2245                info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2246                spin_lock(&ctl->tree_lock);
2247                if (!info->bitmap) {
2248                        ret = -ENOMEM;
2249                        goto out;
2250                }
2251                goto again;
2252        }
2253
2254out:
2255        if (info) {
2256                if (info->bitmap)
2257                        kmem_cache_free(btrfs_free_space_bitmap_cachep,
2258                                        info->bitmap);
2259                kmem_cache_free(btrfs_free_space_cachep, info);
2260        }
2261
2262        return ret;
2263}
2264
2265/*
2266 * Free space merging rules:
2267 *  1) Merge trimmed areas together
2268 *  2) Let untrimmed areas coalesce with trimmed areas
2269 *  3) Always pull neighboring regions from bitmaps
2270 *
2271 * The above rules are for when we merge free space based on btrfs_trim_state.
2272 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2273 * same reason: to promote larger extent regions which makes life easier for
2274 * find_free_extent().  Rule 2 enables coalescing based on the common path
2275 * being returning free space from btrfs_finish_extent_commit().  So when free
2276 * space is trimmed, it will prevent aggregating trimmed new region and
2277 * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2278 * and provide find_free_extent() with the largest extents possible hoping for
2279 * the reuse path.
2280 */
2281static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2282                          struct btrfs_free_space *info, bool update_stat)
2283{
2284        struct btrfs_free_space *left_info;
2285        struct btrfs_free_space *right_info;
2286        bool merged = false;
2287        u64 offset = info->offset;
2288        u64 bytes = info->bytes;
2289        const bool is_trimmed = btrfs_free_space_trimmed(info);
2290
2291        /*
2292         * first we want to see if there is free space adjacent to the range we
2293         * are adding, if there is remove that struct and add a new one to
2294         * cover the entire range
2295         */
2296        right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2297        if (right_info && rb_prev(&right_info->offset_index))
2298                left_info = rb_entry(rb_prev(&right_info->offset_index),
2299                                     struct btrfs_free_space, offset_index);
2300        else
2301                left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2302
2303        /* See try_merge_free_space() comment. */
2304        if (right_info && !right_info->bitmap &&
2305            (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2306                if (update_stat)
2307                        unlink_free_space(ctl, right_info);
2308                else
2309                        __unlink_free_space(ctl, right_info);
2310                info->bytes += right_info->bytes;
2311                kmem_cache_free(btrfs_free_space_cachep, right_info);
2312                merged = true;
2313        }
2314
2315        /* See try_merge_free_space() comment. */
2316        if (left_info && !left_info->bitmap &&
2317            left_info->offset + left_info->bytes == offset &&
2318            (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2319                if (update_stat)
2320                        unlink_free_space(ctl, left_info);
2321                else
2322                        __unlink_free_space(ctl, left_info);
2323                info->offset = left_info->offset;
2324                info->bytes += left_info->bytes;
2325                kmem_cache_free(btrfs_free_space_cachep, left_info);
2326                merged = true;
2327        }
2328
2329        return merged;
2330}
2331
2332static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2333                                     struct btrfs_free_space *info,
2334                                     bool update_stat)
2335{
2336        struct btrfs_free_space *bitmap;
2337        unsigned long i;
2338        unsigned long j;
2339        const u64 end = info->offset + info->bytes;
2340        const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2341        u64 bytes;
2342
2343        bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2344        if (!bitmap)
2345                return false;
2346
2347        i = offset_to_bit(bitmap->offset, ctl->unit, end);
2348        j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2349        if (j == i)
2350                return false;
2351        bytes = (j - i) * ctl->unit;
2352        info->bytes += bytes;
2353
2354        /* See try_merge_free_space() comment. */
2355        if (!btrfs_free_space_trimmed(bitmap))
2356                info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2357
2358        if (update_stat)
2359                bitmap_clear_bits(ctl, bitmap, end, bytes);
2360        else
2361                __bitmap_clear_bits(ctl, bitmap, end, bytes);
2362
2363        if (!bitmap->bytes)
2364                free_bitmap(ctl, bitmap);
2365
2366        return true;
2367}
2368
2369static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2370                                       struct btrfs_free_space *info,
2371                                       bool update_stat)
2372{
2373        struct btrfs_free_space *bitmap;
2374        u64 bitmap_offset;
2375        unsigned long i;
2376        unsigned long j;
2377        unsigned long prev_j;
2378        u64 bytes;
2379
2380        bitmap_offset = offset_to_bitmap(ctl, info->offset);
2381        /* If we're on a boundary, try the previous logical bitmap. */
2382        if (bitmap_offset == info->offset) {
2383                if (info->offset == 0)
2384                        return false;
2385                bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2386        }
2387
2388        bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2389        if (!bitmap)
2390                return false;
2391
2392        i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2393        j = 0;
2394        prev_j = (unsigned long)-1;
2395        for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2396                if (j > i)
2397                        break;
2398                prev_j = j;
2399        }
2400        if (prev_j == i)
2401                return false;
2402
2403        if (prev_j == (unsigned long)-1)
2404                bytes = (i + 1) * ctl->unit;
2405        else
2406                bytes = (i - prev_j) * ctl->unit;
2407
2408        info->offset -= bytes;
2409        info->bytes += bytes;
2410
2411        /* See try_merge_free_space() comment. */
2412        if (!btrfs_free_space_trimmed(bitmap))
2413                info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2414
2415        if (update_stat)
2416                bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2417        else
2418                __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2419
2420        if (!bitmap->bytes)
2421                free_bitmap(ctl, bitmap);
2422
2423        return true;
2424}
2425
2426/*
2427 * We prefer always to allocate from extent entries, both for clustered and
2428 * non-clustered allocation requests. So when attempting to add a new extent
2429 * entry, try to see if there's adjacent free space in bitmap entries, and if
2430 * there is, migrate that space from the bitmaps to the extent.
2431 * Like this we get better chances of satisfying space allocation requests
2432 * because we attempt to satisfy them based on a single cache entry, and never
2433 * on 2 or more entries - even if the entries represent a contiguous free space
2434 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2435 * ends).
2436 */
2437static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2438                              struct btrfs_free_space *info,
2439                              bool update_stat)
2440{
2441        /*
2442         * Only work with disconnected entries, as we can change their offset,
2443         * and must be extent entries.
2444         */
2445        ASSERT(!info->bitmap);
2446        ASSERT(RB_EMPTY_NODE(&info->offset_index));
2447
2448        if (ctl->total_bitmaps > 0) {
2449                bool stole_end;
2450                bool stole_front = false;
2451
2452                stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2453                if (ctl->total_bitmaps > 0)
2454                        stole_front = steal_from_bitmap_to_front(ctl, info,
2455                                                                 update_stat);
2456
2457                if (stole_end || stole_front)
2458                        try_merge_free_space(ctl, info, update_stat);
2459        }
2460}
2461
2462int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2463                           struct btrfs_free_space_ctl *ctl,
2464                           u64 offset, u64 bytes,
2465                           enum btrfs_trim_state trim_state)
2466{
2467        struct btrfs_block_group *block_group = ctl->private;
2468        struct btrfs_free_space *info;
2469        int ret = 0;
2470        u64 filter_bytes = bytes;
2471
2472        info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2473        if (!info)
2474                return -ENOMEM;
2475
2476        info->offset = offset;
2477        info->bytes = bytes;
2478        info->trim_state = trim_state;
2479        RB_CLEAR_NODE(&info->offset_index);
2480
2481        spin_lock(&ctl->tree_lock);
2482
2483        if (try_merge_free_space(ctl, info, true))
2484                goto link;
2485
2486        /*
2487         * There was no extent directly to the left or right of this new
2488         * extent then we know we're going to have to allocate a new extent, so
2489         * before we do that see if we need to drop this into a bitmap
2490         */
2491        ret = insert_into_bitmap(ctl, info);
2492        if (ret < 0) {
2493                goto out;
2494        } else if (ret) {
2495                ret = 0;
2496                goto out;
2497        }
2498link:
2499        /*
2500         * Only steal free space from adjacent bitmaps if we're sure we're not
2501         * going to add the new free space to existing bitmap entries - because
2502         * that would mean unnecessary work that would be reverted. Therefore
2503         * attempt to steal space from bitmaps if we're adding an extent entry.
2504         */
2505        steal_from_bitmap(ctl, info, true);
2506
2507        filter_bytes = max(filter_bytes, info->bytes);
2508
2509        ret = link_free_space(ctl, info);
2510        if (ret)
2511                kmem_cache_free(btrfs_free_space_cachep, info);
2512out:
2513        btrfs_discard_update_discardable(block_group, ctl);
2514        spin_unlock(&ctl->tree_lock);
2515
2516        if (ret) {
2517                btrfs_crit(fs_info, "unable to add free space :%d", ret);
2518                ASSERT(ret != -EEXIST);
2519        }
2520
2521        if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2522                btrfs_discard_check_filter(block_group, filter_bytes);
2523                btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2524        }
2525
2526        return ret;
2527}
2528
2529int btrfs_add_free_space(struct btrfs_block_group *block_group,
2530                         u64 bytenr, u64 size)
2531{
2532        enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2533
2534        if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2535                trim_state = BTRFS_TRIM_STATE_TRIMMED;
2536
2537        return __btrfs_add_free_space(block_group->fs_info,
2538                                      block_group->free_space_ctl,
2539                                      bytenr, size, trim_state);
2540}
2541
2542/*
2543 * This is a subtle distinction because when adding free space back in general,
2544 * we want it to be added as untrimmed for async. But in the case where we add
2545 * it on loading of a block group, we want to consider it trimmed.
2546 */
2547int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2548                                       u64 bytenr, u64 size)
2549{
2550        enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2551
2552        if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2553            btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2554                trim_state = BTRFS_TRIM_STATE_TRIMMED;
2555
2556        return __btrfs_add_free_space(block_group->fs_info,
2557                                      block_group->free_space_ctl,
2558                                      bytenr, size, trim_state);
2559}
2560
2561int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2562                            u64 offset, u64 bytes)
2563{
2564        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2565        struct btrfs_free_space *info;
2566        int ret;
2567        bool re_search = false;
2568
2569        spin_lock(&ctl->tree_lock);
2570
2571again:
2572        ret = 0;
2573        if (!bytes)
2574                goto out_lock;
2575
2576        info = tree_search_offset(ctl, offset, 0, 0);
2577        if (!info) {
2578                /*
2579                 * oops didn't find an extent that matched the space we wanted
2580                 * to remove, look for a bitmap instead
2581                 */
2582                info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2583                                          1, 0);
2584                if (!info) {
2585                        /*
2586                         * If we found a partial bit of our free space in a
2587                         * bitmap but then couldn't find the other part this may
2588                         * be a problem, so WARN about it.
2589                         */
2590                        WARN_ON(re_search);
2591                        goto out_lock;
2592                }
2593        }
2594
2595        re_search = false;
2596        if (!info->bitmap) {
2597                unlink_free_space(ctl, info);
2598                if (offset == info->offset) {
2599                        u64 to_free = min(bytes, info->bytes);
2600
2601                        info->bytes -= to_free;
2602                        info->offset += to_free;
2603                        if (info->bytes) {
2604                                ret = link_free_space(ctl, info);
2605                                WARN_ON(ret);
2606                        } else {
2607                                kmem_cache_free(btrfs_free_space_cachep, info);
2608                        }
2609
2610                        offset += to_free;
2611                        bytes -= to_free;
2612                        goto again;
2613                } else {
2614                        u64 old_end = info->bytes + info->offset;
2615
2616                        info->bytes = offset - info->offset;
2617                        ret = link_free_space(ctl, info);
2618                        WARN_ON(ret);
2619                        if (ret)
2620                                goto out_lock;
2621
2622                        /* Not enough bytes in this entry to satisfy us */
2623                        if (old_end < offset + bytes) {
2624                                bytes -= old_end - offset;
2625                                offset = old_end;
2626                                goto again;
2627                        } else if (old_end == offset + bytes) {
2628                                /* all done */
2629                                goto out_lock;
2630                        }
2631                        spin_unlock(&ctl->tree_lock);
2632
2633                        ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2634                                                     offset + bytes,
2635                                                     old_end - (offset + bytes),
2636                                                     info->trim_state);
2637                        WARN_ON(ret);
2638                        goto out;
2639                }
2640        }
2641
2642        ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2643        if (ret == -EAGAIN) {
2644                re_search = true;
2645                goto again;
2646        }
2647out_lock:
2648        btrfs_discard_update_discardable(block_group, ctl);
2649        spin_unlock(&ctl->tree_lock);
2650out:
2651        return ret;
2652}
2653
2654void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2655                           u64 bytes)
2656{
2657        struct btrfs_fs_info *fs_info = block_group->fs_info;
2658        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2659        struct btrfs_free_space *info;
2660        struct rb_node *n;
2661        int count = 0;
2662
2663        spin_lock(&ctl->tree_lock);
2664        for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2665                info = rb_entry(n, struct btrfs_free_space, offset_index);
2666                if (info->bytes >= bytes && !block_group->ro)
2667                        count++;
2668                btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2669                           info->offset, info->bytes,
2670                       (info->bitmap) ? "yes" : "no");
2671        }
2672        spin_unlock(&ctl->tree_lock);
2673        btrfs_info(fs_info, "block group has cluster?: %s",
2674               list_empty(&block_group->cluster_list) ? "no" : "yes");
2675        btrfs_info(fs_info,
2676                   "%d blocks of free space at or bigger than bytes is", count);
2677}
2678
2679void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
2680{
2681        struct btrfs_fs_info *fs_info = block_group->fs_info;
2682        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2683
2684        spin_lock_init(&ctl->tree_lock);
2685        ctl->unit = fs_info->sectorsize;
2686        ctl->start = block_group->start;
2687        ctl->private = block_group;
2688        ctl->op = &free_space_op;
2689        INIT_LIST_HEAD(&ctl->trimming_ranges);
2690        mutex_init(&ctl->cache_writeout_mutex);
2691
2692        /*
2693         * we only want to have 32k of ram per block group for keeping
2694         * track of free space, and if we pass 1/2 of that we want to
2695         * start converting things over to using bitmaps
2696         */
2697        ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2698}
2699
2700/*
2701 * for a given cluster, put all of its extents back into the free
2702 * space cache.  If the block group passed doesn't match the block group
2703 * pointed to by the cluster, someone else raced in and freed the
2704 * cluster already.  In that case, we just return without changing anything
2705 */
2706static int
2707__btrfs_return_cluster_to_free_space(
2708                             struct btrfs_block_group *block_group,
2709                             struct btrfs_free_cluster *cluster)
2710{
2711        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2712        struct btrfs_free_space *entry;
2713        struct rb_node *node;
2714
2715        spin_lock(&cluster->lock);
2716        if (cluster->block_group != block_group)
2717                goto out;
2718
2719        cluster->block_group = NULL;
2720        cluster->window_start = 0;
2721        list_del_init(&cluster->block_group_list);
2722
2723        node = rb_first(&cluster->root);
2724        while (node) {
2725                bool bitmap;
2726
2727                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2728                node = rb_next(&entry->offset_index);
2729                rb_erase(&entry->offset_index, &cluster->root);
2730                RB_CLEAR_NODE(&entry->offset_index);
2731
2732                bitmap = (entry->bitmap != NULL);
2733                if (!bitmap) {
2734                        /* Merging treats extents as if they were new */
2735                        if (!btrfs_free_space_trimmed(entry)) {
2736                                ctl->discardable_extents[BTRFS_STAT_CURR]--;
2737                                ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2738                                        entry->bytes;
2739                        }
2740
2741                        try_merge_free_space(ctl, entry, false);
2742                        steal_from_bitmap(ctl, entry, false);
2743
2744                        /* As we insert directly, update these statistics */
2745                        if (!btrfs_free_space_trimmed(entry)) {
2746                                ctl->discardable_extents[BTRFS_STAT_CURR]++;
2747                                ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2748                                        entry->bytes;
2749                        }
2750                }
2751                tree_insert_offset(&ctl->free_space_offset,
2752                                   entry->offset, &entry->offset_index, bitmap);
2753        }
2754        cluster->root = RB_ROOT;
2755
2756out:
2757        spin_unlock(&cluster->lock);
2758        btrfs_put_block_group(block_group);
2759        return 0;
2760}
2761
2762static void __btrfs_remove_free_space_cache_locked(
2763                                struct btrfs_free_space_ctl *ctl)
2764{
2765        struct btrfs_free_space *info;
2766        struct rb_node *node;
2767
2768        while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2769                info = rb_entry(node, struct btrfs_free_space, offset_index);
2770                if (!info->bitmap) {
2771                        unlink_free_space(ctl, info);
2772                        kmem_cache_free(btrfs_free_space_cachep, info);
2773                } else {
2774                        free_bitmap(ctl, info);
2775                }
2776
2777                cond_resched_lock(&ctl->tree_lock);
2778        }
2779}
2780
2781void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2782{
2783        spin_lock(&ctl->tree_lock);
2784        __btrfs_remove_free_space_cache_locked(ctl);
2785        if (ctl->private)
2786                btrfs_discard_update_discardable(ctl->private, ctl);
2787        spin_unlock(&ctl->tree_lock);
2788}
2789
2790void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2791{
2792        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2793        struct btrfs_free_cluster *cluster;
2794        struct list_head *head;
2795
2796        spin_lock(&ctl->tree_lock);
2797        while ((head = block_group->cluster_list.next) !=
2798               &block_group->cluster_list) {
2799                cluster = list_entry(head, struct btrfs_free_cluster,
2800                                     block_group_list);
2801
2802                WARN_ON(cluster->block_group != block_group);
2803                __btrfs_return_cluster_to_free_space(block_group, cluster);
2804
2805                cond_resched_lock(&ctl->tree_lock);
2806        }
2807        __btrfs_remove_free_space_cache_locked(ctl);
2808        btrfs_discard_update_discardable(block_group, ctl);
2809        spin_unlock(&ctl->tree_lock);
2810
2811}
2812
2813/**
2814 * btrfs_is_free_space_trimmed - see if everything is trimmed
2815 * @block_group: block_group of interest
2816 *
2817 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2818 */
2819bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2820{
2821        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2822        struct btrfs_free_space *info;
2823        struct rb_node *node;
2824        bool ret = true;
2825
2826        spin_lock(&ctl->tree_lock);
2827        node = rb_first(&ctl->free_space_offset);
2828
2829        while (node) {
2830                info = rb_entry(node, struct btrfs_free_space, offset_index);
2831
2832                if (!btrfs_free_space_trimmed(info)) {
2833                        ret = false;
2834                        break;
2835                }
2836
2837                node = rb_next(node);
2838        }
2839
2840        spin_unlock(&ctl->tree_lock);
2841        return ret;
2842}
2843
2844u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2845                               u64 offset, u64 bytes, u64 empty_size,
2846                               u64 *max_extent_size)
2847{
2848        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2849        struct btrfs_discard_ctl *discard_ctl =
2850                                        &block_group->fs_info->discard_ctl;
2851        struct btrfs_free_space *entry = NULL;
2852        u64 bytes_search = bytes + empty_size;
2853        u64 ret = 0;
2854        u64 align_gap = 0;
2855        u64 align_gap_len = 0;
2856        enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2857
2858        spin_lock(&ctl->tree_lock);
2859        entry = find_free_space(ctl, &offset, &bytes_search,
2860                                block_group->full_stripe_len, max_extent_size);
2861        if (!entry)
2862                goto out;
2863
2864        ret = offset;
2865        if (entry->bitmap) {
2866                bitmap_clear_bits(ctl, entry, offset, bytes);
2867
2868                if (!btrfs_free_space_trimmed(entry))
2869                        atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2870
2871                if (!entry->bytes)
2872                        free_bitmap(ctl, entry);
2873        } else {
2874                unlink_free_space(ctl, entry);
2875                align_gap_len = offset - entry->offset;
2876                align_gap = entry->offset;
2877                align_gap_trim_state = entry->trim_state;
2878
2879                if (!btrfs_free_space_trimmed(entry))
2880                        atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2881
2882                entry->offset = offset + bytes;
2883                WARN_ON(entry->bytes < bytes + align_gap_len);
2884
2885                entry->bytes -= bytes + align_gap_len;
2886                if (!entry->bytes)
2887                        kmem_cache_free(btrfs_free_space_cachep, entry);
2888                else
2889                        link_free_space(ctl, entry);
2890        }
2891out:
2892        btrfs_discard_update_discardable(block_group, ctl);
2893        spin_unlock(&ctl->tree_lock);
2894
2895        if (align_gap_len)
2896                __btrfs_add_free_space(block_group->fs_info, ctl,
2897                                       align_gap, align_gap_len,
2898                                       align_gap_trim_state);
2899        return ret;
2900}
2901
2902/*
2903 * given a cluster, put all of its extents back into the free space
2904 * cache.  If a block group is passed, this function will only free
2905 * a cluster that belongs to the passed block group.
2906 *
2907 * Otherwise, it'll get a reference on the block group pointed to by the
2908 * cluster and remove the cluster from it.
2909 */
2910int btrfs_return_cluster_to_free_space(
2911                               struct btrfs_block_group *block_group,
2912                               struct btrfs_free_cluster *cluster)
2913{
2914        struct btrfs_free_space_ctl *ctl;
2915        int ret;
2916
2917        /* first, get a safe pointer to the block group */
2918        spin_lock(&cluster->lock);
2919        if (!block_group) {
2920                block_group = cluster->block_group;
2921                if (!block_group) {
2922                        spin_unlock(&cluster->lock);
2923                        return 0;
2924                }
2925        } else if (cluster->block_group != block_group) {
2926                /* someone else has already freed it don't redo their work */
2927                spin_unlock(&cluster->lock);
2928                return 0;
2929        }
2930        atomic_inc(&block_group->count);
2931        spin_unlock(&cluster->lock);
2932
2933        ctl = block_group->free_space_ctl;
2934
2935        /* now return any extents the cluster had on it */
2936        spin_lock(&ctl->tree_lock);
2937        ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2938        spin_unlock(&ctl->tree_lock);
2939
2940        btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
2941
2942        /* finally drop our ref */
2943        btrfs_put_block_group(block_group);
2944        return ret;
2945}
2946
2947static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
2948                                   struct btrfs_free_cluster *cluster,
2949                                   struct btrfs_free_space *entry,
2950                                   u64 bytes, u64 min_start,
2951                                   u64 *max_extent_size)
2952{
2953        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2954        int err;
2955        u64 search_start = cluster->window_start;
2956        u64 search_bytes = bytes;
2957        u64 ret = 0;
2958
2959        search_start = min_start;
2960        search_bytes = bytes;
2961
2962        err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2963        if (err) {
2964                *max_extent_size = max(get_max_extent_size(entry),
2965                                       *max_extent_size);
2966                return 0;
2967        }
2968
2969        ret = search_start;
2970        __bitmap_clear_bits(ctl, entry, ret, bytes);
2971
2972        return ret;
2973}
2974
2975/*
2976 * given a cluster, try to allocate 'bytes' from it, returns 0
2977 * if it couldn't find anything suitably large, or a logical disk offset
2978 * if things worked out
2979 */
2980u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
2981                             struct btrfs_free_cluster *cluster, u64 bytes,
2982                             u64 min_start, u64 *max_extent_size)
2983{
2984        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2985        struct btrfs_discard_ctl *discard_ctl =
2986                                        &block_group->fs_info->discard_ctl;
2987        struct btrfs_free_space *entry = NULL;
2988        struct rb_node *node;
2989        u64 ret = 0;
2990
2991        spin_lock(&cluster->lock);
2992        if (bytes > cluster->max_size)
2993                goto out;
2994
2995        if (cluster->block_group != block_group)
2996                goto out;
2997
2998        node = rb_first(&cluster->root);
2999        if (!node)
3000                goto out;
3001
3002        entry = rb_entry(node, struct btrfs_free_space, offset_index);
3003        while (1) {
3004                if (entry->bytes < bytes)
3005                        *max_extent_size = max(get_max_extent_size(entry),
3006                                               *max_extent_size);
3007
3008                if (entry->bytes < bytes ||
3009                    (!entry->bitmap && entry->offset < min_start)) {
3010                        node = rb_next(&entry->offset_index);
3011                        if (!node)
3012                                break;
3013                        entry = rb_entry(node, struct btrfs_free_space,
3014                                         offset_index);
3015                        continue;
3016                }
3017
3018                if (entry->bitmap) {
3019                        ret = btrfs_alloc_from_bitmap(block_group,
3020                                                      cluster, entry, bytes,
3021                                                      cluster->window_start,
3022                                                      max_extent_size);
3023                        if (ret == 0) {
3024                                node = rb_next(&entry->offset_index);
3025                                if (!node)
3026                                        break;
3027                                entry = rb_entry(node, struct btrfs_free_space,
3028                                                 offset_index);
3029                                continue;
3030                        }
3031                        cluster->window_start += bytes;
3032                } else {
3033                        ret = entry->offset;
3034
3035                        entry->offset += bytes;
3036                        entry->bytes -= bytes;
3037                }
3038
3039                if (entry->bytes == 0)
3040                        rb_erase(&entry->offset_index, &cluster->root);
3041                break;
3042        }
3043out:
3044        spin_unlock(&cluster->lock);
3045
3046        if (!ret)
3047                return 0;
3048
3049        spin_lock(&ctl->tree_lock);
3050
3051        if (!btrfs_free_space_trimmed(entry))
3052                atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3053
3054        ctl->free_space -= bytes;
3055        if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3056                ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3057        if (entry->bytes == 0) {
3058                ctl->free_extents--;
3059                if (entry->bitmap) {
3060                        kmem_cache_free(btrfs_free_space_bitmap_cachep,
3061                                        entry->bitmap);
3062                        ctl->total_bitmaps--;
3063                        ctl->op->recalc_thresholds(ctl);
3064                } else if (!btrfs_free_space_trimmed(entry)) {
3065                        ctl->discardable_extents[BTRFS_STAT_CURR]--;
3066                }
3067                kmem_cache_free(btrfs_free_space_cachep, entry);
3068        }
3069
3070        spin_unlock(&ctl->tree_lock);
3071
3072        return ret;
3073}
3074
3075static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3076                                struct btrfs_free_space *entry,
3077                                struct btrfs_free_cluster *cluster,
3078                                u64 offset, u64 bytes,
3079                                u64 cont1_bytes, u64 min_bytes)
3080{
3081        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3082        unsigned long next_zero;
3083        unsigned long i;
3084        unsigned long want_bits;
3085        unsigned long min_bits;
3086        unsigned long found_bits;
3087        unsigned long max_bits = 0;
3088        unsigned long start = 0;
3089        unsigned long total_found = 0;
3090        int ret;
3091
3092        i = offset_to_bit(entry->offset, ctl->unit,
3093                          max_t(u64, offset, entry->offset));
3094        want_bits = bytes_to_bits(bytes, ctl->unit);
3095        min_bits = bytes_to_bits(min_bytes, ctl->unit);
3096
3097        /*
3098         * Don't bother looking for a cluster in this bitmap if it's heavily
3099         * fragmented.
3100         */
3101        if (entry->max_extent_size &&
3102            entry->max_extent_size < cont1_bytes)
3103                return -ENOSPC;
3104again:
3105        found_bits = 0;
3106        for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3107                next_zero = find_next_zero_bit(entry->bitmap,
3108                                               BITS_PER_BITMAP, i);
3109                if (next_zero - i >= min_bits) {
3110                        found_bits = next_zero - i;
3111                        if (found_bits > max_bits)
3112                                max_bits = found_bits;
3113                        break;
3114                }
3115                if (next_zero - i > max_bits)
3116                        max_bits = next_zero - i;
3117                i = next_zero;
3118        }
3119
3120        if (!found_bits) {
3121                entry->max_extent_size = (u64)max_bits * ctl->unit;
3122                return -ENOSPC;
3123        }
3124
3125        if (!total_found) {
3126                start = i;
3127                cluster->max_size = 0;
3128        }
3129
3130        total_found += found_bits;
3131
3132        if (cluster->max_size < found_bits * ctl->unit)
3133                cluster->max_size = found_bits * ctl->unit;
3134
3135        if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3136                i = next_zero + 1;
3137                goto again;
3138        }
3139
3140        cluster->window_start = start * ctl->unit + entry->offset;
3141        rb_erase(&entry->offset_index, &ctl->free_space_offset);
3142        ret = tree_insert_offset(&cluster->root, entry->offset,
3143                                 &entry->offset_index, 1);
3144        ASSERT(!ret); /* -EEXIST; Logic error */
3145
3146        trace_btrfs_setup_cluster(block_group, cluster,
3147                                  total_found * ctl->unit, 1);
3148        return 0;
3149}
3150
3151/*
3152 * This searches the block group for just extents to fill the cluster with.
3153 * Try to find a cluster with at least bytes total bytes, at least one
3154 * extent of cont1_bytes, and other clusters of at least min_bytes.
3155 */
3156static noinline int
3157setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3158                        struct btrfs_free_cluster *cluster,
3159                        struct list_head *bitmaps, u64 offset, u64 bytes,
3160                        u64 cont1_bytes, u64 min_bytes)
3161{
3162        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3163        struct btrfs_free_space *first = NULL;
3164        struct btrfs_free_space *entry = NULL;
3165        struct btrfs_free_space *last;
3166        struct rb_node *node;
3167        u64 window_free;
3168        u64 max_extent;
3169        u64 total_size = 0;
3170
3171        entry = tree_search_offset(ctl, offset, 0, 1);
3172        if (!entry)
3173                return -ENOSPC;
3174
3175        /*
3176         * We don't want bitmaps, so just move along until we find a normal
3177         * extent entry.
3178         */
3179        while (entry->bitmap || entry->bytes < min_bytes) {
3180                if (entry->bitmap && list_empty(&entry->list))
3181                        list_add_tail(&entry->list, bitmaps);
3182                node = rb_next(&entry->offset_index);
3183                if (!node)
3184                        return -ENOSPC;
3185                entry = rb_entry(node, struct btrfs_free_space, offset_index);
3186        }
3187
3188        window_free = entry->bytes;
3189        max_extent = entry->bytes;
3190        first = entry;
3191        last = entry;
3192
3193        for (node = rb_next(&entry->offset_index); node;
3194             node = rb_next(&entry->offset_index)) {
3195                entry = rb_entry(node, struct btrfs_free_space, offset_index);
3196
3197                if (entry->bitmap) {
3198                        if (list_empty(&entry->list))
3199                                list_add_tail(&entry->list, bitmaps);
3200                        continue;
3201                }
3202
3203                if (entry->bytes < min_bytes)
3204                        continue;
3205
3206                last = entry;
3207                window_free += entry->bytes;
3208                if (entry->bytes > max_extent)
3209                        max_extent = entry->bytes;
3210        }
3211
3212        if (window_free < bytes || max_extent < cont1_bytes)
3213                return -ENOSPC;
3214
3215        cluster->window_start = first->offset;
3216
3217        node = &first->offset_index;
3218
3219        /*
3220         * now we've found our entries, pull them out of the free space
3221         * cache and put them into the cluster rbtree
3222         */
3223        do {
3224                int ret;
3225
3226                entry = rb_entry(node, struct btrfs_free_space, offset_index);
3227                node = rb_next(&entry->offset_index);
3228                if (entry->bitmap || entry->bytes < min_bytes)
3229                        continue;
3230
3231                rb_erase(&entry->offset_index, &ctl->free_space_offset);
3232                ret = tree_insert_offset(&cluster->root, entry->offset,
3233                                         &entry->offset_index, 0);
3234                total_size += entry->bytes;
3235                ASSERT(!ret); /* -EEXIST; Logic error */
3236        } while (node && entry != last);
3237
3238        cluster->max_size = max_extent;
3239        trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3240        return 0;
3241}
3242
3243/*
3244 * This specifically looks for bitmaps that may work in the cluster, we assume
3245 * that we have already failed to find extents that will work.
3246 */
3247static noinline int
3248setup_cluster_bitmap(struct btrfs_block_group *block_group,
3249                     struct btrfs_free_cluster *cluster,
3250                     struct list_head *bitmaps, u64 offset, u64 bytes,
3251                     u64 cont1_bytes, u64 min_bytes)
3252{
3253        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3254        struct btrfs_free_space *entry = NULL;
3255        int ret = -ENOSPC;
3256        u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3257
3258        if (ctl->total_bitmaps == 0)
3259                return -ENOSPC;
3260
3261        /*
3262         * The bitmap that covers offset won't be in the list unless offset
3263         * is just its start offset.
3264         */
3265        if (!list_empty(bitmaps))
3266                entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3267
3268        if (!entry || entry->offset != bitmap_offset) {
3269                entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3270                if (entry && list_empty(&entry->list))
3271                        list_add(&entry->list, bitmaps);
3272        }
3273
3274        list_for_each_entry(entry, bitmaps, list) {
3275                if (entry->bytes < bytes)
3276                        continue;
3277                ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3278                                           bytes, cont1_bytes, min_bytes);
3279                if (!ret)
3280                        return 0;
3281        }
3282
3283        /*
3284         * The bitmaps list has all the bitmaps that record free space
3285         * starting after offset, so no more search is required.
3286         */
3287        return -ENOSPC;
3288}
3289
3290/*
3291 * here we try to find a cluster of blocks in a block group.  The goal
3292 * is to find at least bytes+empty_size.
3293 * We might not find them all in one contiguous area.
3294 *
3295 * returns zero and sets up cluster if things worked out, otherwise
3296 * it returns -enospc
3297 */
3298int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3299                             struct btrfs_free_cluster *cluster,
3300                             u64 offset, u64 bytes, u64 empty_size)
3301{
3302        struct btrfs_fs_info *fs_info = block_group->fs_info;
3303        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3304        struct btrfs_free_space *entry, *tmp;
3305        LIST_HEAD(bitmaps);
3306        u64 min_bytes;
3307        u64 cont1_bytes;
3308        int ret;
3309
3310        /*
3311         * Choose the minimum extent size we'll require for this
3312         * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3313         * For metadata, allow allocates with smaller extents.  For
3314         * data, keep it dense.
3315         */
3316        if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3317                cont1_bytes = min_bytes = bytes + empty_size;
3318        } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3319                cont1_bytes = bytes;
3320                min_bytes = fs_info->sectorsize;
3321        } else {
3322                cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3323                min_bytes = fs_info->sectorsize;
3324        }
3325
3326        spin_lock(&ctl->tree_lock);
3327
3328        /*
3329         * If we know we don't have enough space to make a cluster don't even
3330         * bother doing all the work to try and find one.
3331         */
3332        if (ctl->free_space < bytes) {
3333                spin_unlock(&ctl->tree_lock);
3334                return -ENOSPC;
3335        }
3336
3337        spin_lock(&cluster->lock);
3338
3339        /* someone already found a cluster, hooray */
3340        if (cluster->block_group) {
3341                ret = 0;
3342                goto out;
3343        }
3344
3345        trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3346                                 min_bytes);
3347
3348        ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3349                                      bytes + empty_size,
3350                                      cont1_bytes, min_bytes);
3351        if (ret)
3352                ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3353                                           offset, bytes + empty_size,
3354                                           cont1_bytes, min_bytes);
3355
3356        /* Clear our temporary list */
3357        list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3358                list_del_init(&entry->list);
3359
3360        if (!ret) {
3361                atomic_inc(&block_group->count);
3362                list_add_tail(&cluster->block_group_list,
3363                              &block_group->cluster_list);
3364                cluster->block_group = block_group;
3365        } else {
3366                trace_btrfs_failed_cluster_setup(block_group);
3367        }
3368out:
3369        spin_unlock(&cluster->lock);
3370        spin_unlock(&ctl->tree_lock);
3371
3372        return ret;
3373}
3374
3375/*
3376 * simple code to zero out a cluster
3377 */
3378void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3379{
3380        spin_lock_init(&cluster->lock);
3381        spin_lock_init(&cluster->refill_lock);
3382        cluster->root = RB_ROOT;
3383        cluster->max_size = 0;
3384        cluster->fragmented = false;
3385        INIT_LIST_HEAD(&cluster->block_group_list);
3386        cluster->block_group = NULL;
3387}
3388
3389static int do_trimming(struct btrfs_block_group *block_group,
3390                       u64 *total_trimmed, u64 start, u64 bytes,
3391                       u64 reserved_start, u64 reserved_bytes,
3392                       enum btrfs_trim_state reserved_trim_state,
3393                       struct btrfs_trim_range *trim_entry)
3394{
3395        struct btrfs_space_info *space_info = block_group->space_info;
3396        struct btrfs_fs_info *fs_info = block_group->fs_info;
3397        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3398        int ret;
3399        int update = 0;
3400        const u64 end = start + bytes;
3401        const u64 reserved_end = reserved_start + reserved_bytes;
3402        enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3403        u64 trimmed = 0;
3404
3405        spin_lock(&space_info->lock);
3406        spin_lock(&block_group->lock);
3407        if (!block_group->ro) {
3408                block_group->reserved += reserved_bytes;
3409                space_info->bytes_reserved += reserved_bytes;
3410                update = 1;
3411        }
3412        spin_unlock(&block_group->lock);
3413        spin_unlock(&space_info->lock);
3414
3415        ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3416        if (!ret) {
3417                *total_trimmed += trimmed;
3418                trim_state = BTRFS_TRIM_STATE_TRIMMED;
3419        }
3420
3421        mutex_lock(&ctl->cache_writeout_mutex);
3422        if (reserved_start < start)
3423                __btrfs_add_free_space(fs_info, ctl, reserved_start,
3424                                       start - reserved_start,
3425                                       reserved_trim_state);
3426        if (start + bytes < reserved_start + reserved_bytes)
3427                __btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3428                                       reserved_trim_state);
3429        __btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3430        list_del(&trim_entry->list);
3431        mutex_unlock(&ctl->cache_writeout_mutex);
3432
3433        if (update) {
3434                spin_lock(&space_info->lock);
3435                spin_lock(&block_group->lock);
3436                if (block_group->ro)
3437                        space_info->bytes_readonly += reserved_bytes;
3438                block_group->reserved -= reserved_bytes;
3439                space_info->bytes_reserved -= reserved_bytes;
3440                spin_unlock(&block_group->lock);
3441                spin_unlock(&space_info->lock);
3442        }
3443
3444        return ret;
3445}
3446
3447/*
3448 * If @async is set, then we will trim 1 region and return.
3449 */
3450static int trim_no_bitmap(struct btrfs_block_group *block_group,
3451                          u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3452                          bool async)
3453{
3454        struct btrfs_discard_ctl *discard_ctl =
3455                                        &block_group->fs_info->discard_ctl;
3456        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3457        struct btrfs_free_space *entry;
3458        struct rb_node *node;
3459        int ret = 0;
3460        u64 extent_start;
3461        u64 extent_bytes;
3462        enum btrfs_trim_state extent_trim_state;
3463        u64 bytes;
3464        const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3465
3466        while (start < end) {
3467                struct btrfs_trim_range trim_entry;
3468
3469                mutex_lock(&ctl->cache_writeout_mutex);
3470                spin_lock(&ctl->tree_lock);
3471
3472                if (ctl->free_space < minlen)
3473                        goto out_unlock;
3474
3475                entry = tree_search_offset(ctl, start, 0, 1);
3476                if (!entry)
3477                        goto out_unlock;
3478
3479                /* Skip bitmaps and if async, already trimmed entries */
3480                while (entry->bitmap ||
3481                       (async && btrfs_free_space_trimmed(entry))) {
3482                        node = rb_next(&entry->offset_index);
3483                        if (!node)
3484                                goto out_unlock;
3485                        entry = rb_entry(node, struct btrfs_free_space,
3486                                         offset_index);
3487                }
3488
3489                if (entry->offset >= end)
3490                        goto out_unlock;
3491
3492                extent_start = entry->offset;
3493                extent_bytes = entry->bytes;
3494                extent_trim_state = entry->trim_state;
3495                if (async) {
3496                        start = entry->offset;
3497                        bytes = entry->bytes;
3498                        if (bytes < minlen) {
3499                                spin_unlock(&ctl->tree_lock);
3500                                mutex_unlock(&ctl->cache_writeout_mutex);
3501                                goto next;
3502                        }
3503                        unlink_free_space(ctl, entry);
3504                        /*
3505                         * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3506                         * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3507                         * X when we come back around.  So trim it now.
3508                         */
3509                        if (max_discard_size &&
3510                            bytes >= (max_discard_size +
3511                                      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3512                                bytes = max_discard_size;
3513                                extent_bytes = max_discard_size;
3514                                entry->offset += max_discard_size;
3515                                entry->bytes -= max_discard_size;
3516                                link_free_space(ctl, entry);
3517                        } else {
3518                                kmem_cache_free(btrfs_free_space_cachep, entry);
3519                        }
3520                } else {
3521                        start = max(start, extent_start);
3522                        bytes = min(extent_start + extent_bytes, end) - start;
3523                        if (bytes < minlen) {
3524                                spin_unlock(&ctl->tree_lock);
3525                                mutex_unlock(&ctl->cache_writeout_mutex);
3526                                goto next;
3527                        }
3528
3529                        unlink_free_space(ctl, entry);
3530                        kmem_cache_free(btrfs_free_space_cachep, entry);
3531                }
3532
3533                spin_unlock(&ctl->tree_lock);
3534                trim_entry.start = extent_start;
3535                trim_entry.bytes = extent_bytes;
3536                list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3537                mutex_unlock(&ctl->cache_writeout_mutex);
3538
3539                ret = do_trimming(block_group, total_trimmed, start, bytes,
3540                                  extent_start, extent_bytes, extent_trim_state,
3541                                  &trim_entry);
3542                if (ret) {
3543                        block_group->discard_cursor = start + bytes;
3544                        break;
3545                }
3546next:
3547                start += bytes;
3548                block_group->discard_cursor = start;
3549                if (async && *total_trimmed)
3550                        break;
3551
3552                if (fatal_signal_pending(current)) {
3553                        ret = -ERESTARTSYS;
3554                        break;
3555                }
3556
3557                cond_resched();
3558        }
3559
3560        return ret;
3561
3562out_unlock:
3563        block_group->discard_cursor = btrfs_block_group_end(block_group);
3564        spin_unlock(&ctl->tree_lock);
3565        mutex_unlock(&ctl->cache_writeout_mutex);
3566
3567        return ret;
3568}
3569
3570/*
3571 * If we break out of trimming a bitmap prematurely, we should reset the
3572 * trimming bit.  In a rather contrieved case, it's possible to race here so
3573 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3574 *
3575 * start = start of bitmap
3576 * end = near end of bitmap
3577 *
3578 * Thread 1:                    Thread 2:
3579 * trim_bitmaps(start)
3580 *                              trim_bitmaps(end)
3581 *                              end_trimming_bitmap()
3582 * reset_trimming_bitmap()
3583 */
3584static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3585{
3586        struct btrfs_free_space *entry;
3587
3588        spin_lock(&ctl->tree_lock);
3589        entry = tree_search_offset(ctl, offset, 1, 0);
3590        if (entry) {
3591                if (btrfs_free_space_trimmed(entry)) {
3592                        ctl->discardable_extents[BTRFS_STAT_CURR] +=
3593                                entry->bitmap_extents;
3594                        ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3595                }
3596                entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3597        }
3598
3599        spin_unlock(&ctl->tree_lock);
3600}
3601
3602static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3603                                struct btrfs_free_space *entry)
3604{
3605        if (btrfs_free_space_trimming_bitmap(entry)) {
3606                entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3607                ctl->discardable_extents[BTRFS_STAT_CURR] -=
3608                        entry->bitmap_extents;
3609                ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3610        }
3611}
3612
3613/*
3614 * If @async is set, then we will trim 1 region and return.
3615 */
3616static int trim_bitmaps(struct btrfs_block_group *block_group,
3617                        u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3618                        u64 maxlen, bool async)
3619{
3620        struct btrfs_discard_ctl *discard_ctl =
3621                                        &block_group->fs_info->discard_ctl;
3622        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3623        struct btrfs_free_space *entry;
3624        int ret = 0;
3625        int ret2;
3626        u64 bytes;
3627        u64 offset = offset_to_bitmap(ctl, start);
3628        const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3629
3630        while (offset < end) {
3631                bool next_bitmap = false;
3632                struct btrfs_trim_range trim_entry;
3633
3634                mutex_lock(&ctl->cache_writeout_mutex);
3635                spin_lock(&ctl->tree_lock);
3636
3637                if (ctl->free_space < minlen) {
3638                        block_group->discard_cursor =
3639                                btrfs_block_group_end(block_group);
3640                        spin_unlock(&ctl->tree_lock);
3641                        mutex_unlock(&ctl->cache_writeout_mutex);
3642                        break;
3643                }
3644
3645                entry = tree_search_offset(ctl, offset, 1, 0);
3646                /*
3647                 * Bitmaps are marked trimmed lossily now to prevent constant
3648                 * discarding of the same bitmap (the reason why we are bound
3649                 * by the filters).  So, retrim the block group bitmaps when we
3650                 * are preparing to punt to the unused_bgs list.  This uses
3651                 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3652                 * which is the only discard index which sets minlen to 0.
3653                 */
3654                if (!entry || (async && minlen && start == offset &&
3655                               btrfs_free_space_trimmed(entry))) {
3656                        spin_unlock(&ctl->tree_lock);
3657                        mutex_unlock(&ctl->cache_writeout_mutex);
3658                        next_bitmap = true;
3659                        goto next;
3660                }
3661
3662                /*
3663                 * Async discard bitmap trimming begins at by setting the start
3664                 * to be key.objectid and the offset_to_bitmap() aligns to the
3665                 * start of the bitmap.  This lets us know we are fully
3666                 * scanning the bitmap rather than only some portion of it.
3667                 */
3668                if (start == offset)
3669                        entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3670
3671                bytes = minlen;
3672                ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3673                if (ret2 || start >= end) {
3674                        /*
3675                         * We lossily consider a bitmap trimmed if we only skip
3676                         * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3677                         */
3678                        if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3679                                end_trimming_bitmap(ctl, entry);
3680                        else
3681                                entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3682                        spin_unlock(&ctl->tree_lock);
3683                        mutex_unlock(&ctl->cache_writeout_mutex);
3684                        next_bitmap = true;
3685                        goto next;
3686                }
3687
3688                /*
3689                 * We already trimmed a region, but are using the locking above
3690                 * to reset the trim_state.
3691                 */
3692                if (async && *total_trimmed) {
3693                        spin_unlock(&ctl->tree_lock);
3694                        mutex_unlock(&ctl->cache_writeout_mutex);
3695                        goto out;
3696                }
3697
3698                bytes = min(bytes, end - start);
3699                if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3700                        spin_unlock(&ctl->tree_lock);
3701                        mutex_unlock(&ctl->cache_writeout_mutex);
3702                        goto next;
3703                }
3704
3705                /*
3706                 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3707                 * If X < @minlen, we won't trim X when we come back around.
3708                 * So trim it now.  We differ here from trimming extents as we
3709                 * don't keep individual state per bit.
3710                 */
3711                if (async &&
3712                    max_discard_size &&
3713                    bytes > (max_discard_size + minlen))
3714                        bytes = max_discard_size;
3715
3716                bitmap_clear_bits(ctl, entry, start, bytes);
3717                if (entry->bytes == 0)
3718                        free_bitmap(ctl, entry);
3719
3720                spin_unlock(&ctl->tree_lock);
3721                trim_entry.start = start;
3722                trim_entry.bytes = bytes;
3723                list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3724                mutex_unlock(&ctl->cache_writeout_mutex);
3725
3726                ret = do_trimming(block_group, total_trimmed, start, bytes,
3727                                  start, bytes, 0, &trim_entry);
3728                if (ret) {
3729                        reset_trimming_bitmap(ctl, offset);
3730                        block_group->discard_cursor =
3731                                btrfs_block_group_end(block_group);
3732                        break;
3733                }
3734next:
3735                if (next_bitmap) {
3736                        offset += BITS_PER_BITMAP * ctl->unit;
3737                        start = offset;
3738                } else {
3739                        start += bytes;
3740                }
3741                block_group->discard_cursor = start;
3742
3743                if (fatal_signal_pending(current)) {
3744                        if (start != offset)
3745                                reset_trimming_bitmap(ctl, offset);
3746                        ret = -ERESTARTSYS;
3747                        break;
3748                }
3749
3750                cond_resched();
3751        }
3752
3753        if (offset >= end)
3754                block_group->discard_cursor = end;
3755
3756out:
3757        return ret;
3758}
3759
3760int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3761                           u64 *trimmed, u64 start, u64 end, u64 minlen)
3762{
3763        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3764        int ret;
3765        u64 rem = 0;
3766
3767        *trimmed = 0;
3768
3769        spin_lock(&block_group->lock);
3770        if (block_group->removed) {
3771                spin_unlock(&block_group->lock);
3772                return 0;
3773        }
3774        btrfs_freeze_block_group(block_group);
3775        spin_unlock(&block_group->lock);
3776
3777        ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3778        if (ret)
3779                goto out;
3780
3781        ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3782        div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3783        /* If we ended in the middle of a bitmap, reset the trimming flag */
3784        if (rem)
3785                reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3786out:
3787        btrfs_unfreeze_block_group(block_group);
3788        return ret;
3789}
3790
3791int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3792                                   u64 *trimmed, u64 start, u64 end, u64 minlen,
3793                                   bool async)
3794{
3795        int ret;
3796
3797        *trimmed = 0;
3798
3799        spin_lock(&block_group->lock);
3800        if (block_group->removed) {
3801                spin_unlock(&block_group->lock);
3802                return 0;
3803        }
3804        btrfs_freeze_block_group(block_group);
3805        spin_unlock(&block_group->lock);
3806
3807        ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3808        btrfs_unfreeze_block_group(block_group);
3809
3810        return ret;
3811}
3812
3813int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3814                                   u64 *trimmed, u64 start, u64 end, u64 minlen,
3815                                   u64 maxlen, bool async)
3816{
3817        int ret;
3818
3819        *trimmed = 0;
3820
3821        spin_lock(&block_group->lock);
3822        if (block_group->removed) {
3823                spin_unlock(&block_group->lock);
3824                return 0;
3825        }
3826        btrfs_freeze_block_group(block_group);
3827        spin_unlock(&block_group->lock);
3828
3829        ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3830                           async);
3831
3832        btrfs_unfreeze_block_group(block_group);
3833
3834        return ret;
3835}
3836
3837/*
3838 * Find the left-most item in the cache tree, and then return the
3839 * smallest inode number in the item.
3840 *
3841 * Note: the returned inode number may not be the smallest one in
3842 * the tree, if the left-most item is a bitmap.
3843 */
3844u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3845{
3846        struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3847        struct btrfs_free_space *entry = NULL;
3848        u64 ino = 0;
3849
3850        spin_lock(&ctl->tree_lock);
3851
3852        if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3853                goto out;
3854
3855        entry = rb_entry(rb_first(&ctl->free_space_offset),
3856                         struct btrfs_free_space, offset_index);
3857
3858        if (!entry->bitmap) {
3859                ino = entry->offset;
3860
3861                unlink_free_space(ctl, entry);
3862                entry->offset++;
3863                entry->bytes--;
3864                if (!entry->bytes)
3865                        kmem_cache_free(btrfs_free_space_cachep, entry);
3866                else
3867                        link_free_space(ctl, entry);
3868        } else {
3869                u64 offset = 0;
3870                u64 count = 1;
3871                int ret;
3872
3873                ret = search_bitmap(ctl, entry, &offset, &count, true);
3874                /* Logic error; Should be empty if it can't find anything */
3875                ASSERT(!ret);
3876
3877                ino = offset;
3878                bitmap_clear_bits(ctl, entry, offset, 1);
3879                if (entry->bytes == 0)
3880                        free_bitmap(ctl, entry);
3881        }
3882out:
3883        spin_unlock(&ctl->tree_lock);
3884
3885        return ino;
3886}
3887
3888struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3889                                    struct btrfs_path *path)
3890{
3891        struct inode *inode = NULL;
3892
3893        spin_lock(&root->ino_cache_lock);
3894        if (root->ino_cache_inode)
3895                inode = igrab(root->ino_cache_inode);
3896        spin_unlock(&root->ino_cache_lock);
3897        if (inode)
3898                return inode;
3899
3900        inode = __lookup_free_space_inode(root, path, 0);
3901        if (IS_ERR(inode))
3902                return inode;
3903
3904        spin_lock(&root->ino_cache_lock);
3905        if (!btrfs_fs_closing(root->fs_info))
3906                root->ino_cache_inode = igrab(inode);
3907        spin_unlock(&root->ino_cache_lock);
3908
3909        return inode;
3910}
3911
3912int create_free_ino_inode(struct btrfs_root *root,
3913                          struct btrfs_trans_handle *trans,
3914                          struct btrfs_path *path)
3915{
3916        return __create_free_space_inode(root, trans, path,
3917                                         BTRFS_FREE_INO_OBJECTID, 0);
3918}
3919
3920int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3921{
3922        struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3923        struct btrfs_path *path;
3924        struct inode *inode;
3925        int ret = 0;
3926        u64 root_gen = btrfs_root_generation(&root->root_item);
3927
3928        if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3929                return 0;
3930
3931        /*
3932         * If we're unmounting then just return, since this does a search on the
3933         * normal root and not the commit root and we could deadlock.
3934         */
3935        if (btrfs_fs_closing(fs_info))
3936                return 0;
3937
3938        path = btrfs_alloc_path();
3939        if (!path)
3940                return 0;
3941
3942        inode = lookup_free_ino_inode(root, path);
3943        if (IS_ERR(inode))
3944                goto out;
3945
3946        if (root_gen != BTRFS_I(inode)->generation)
3947                goto out_put;
3948
3949        ret = __load_free_space_cache(root, inode, ctl, path, 0);
3950
3951        if (ret < 0)
3952                btrfs_err(fs_info,
3953                        "failed to load free ino cache for root %llu",
3954                        root->root_key.objectid);
3955out_put:
3956        iput(inode);
3957out:
3958        btrfs_free_path(path);
3959        return ret;
3960}
3961
3962int btrfs_write_out_ino_cache(struct btrfs_root *root,
3963                              struct btrfs_trans_handle *trans,
3964                              struct btrfs_path *path,
3965                              struct inode *inode)
3966{
3967        struct btrfs_fs_info *fs_info = root->fs_info;
3968        struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3969        int ret;
3970        struct btrfs_io_ctl io_ctl;
3971        bool release_metadata = true;
3972
3973        if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3974                return 0;
3975
3976        memset(&io_ctl, 0, sizeof(io_ctl));
3977        ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
3978        if (!ret) {
3979                /*
3980                 * At this point writepages() didn't error out, so our metadata
3981                 * reservation is released when the writeback finishes, at
3982                 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3983                 * with or without an error.
3984                 */
3985                release_metadata = false;
3986                ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3987        }
3988
3989        if (ret) {
3990                if (release_metadata)
3991                        btrfs_delalloc_release_metadata(BTRFS_I(inode),
3992                                        inode->i_size, true);
3993                btrfs_debug(fs_info,
3994                          "failed to write free ino cache for root %llu error %d",
3995                          root->root_key.objectid, ret);
3996        }
3997
3998        return ret;
3999}
4000
4001#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4002/*
4003 * Use this if you need to make a bitmap or extent entry specifically, it
4004 * doesn't do any of the merging that add_free_space does, this acts a lot like
4005 * how the free space cache loading stuff works, so you can get really weird
4006 * configurations.
4007 */
4008int test_add_free_space_entry(struct btrfs_block_group *cache,
4009                              u64 offset, u64 bytes, bool bitmap)
4010{
4011        struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4012        struct btrfs_free_space *info = NULL, *bitmap_info;
4013        void *map = NULL;
4014        enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4015        u64 bytes_added;
4016        int ret;
4017
4018again:
4019        if (!info) {
4020                info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4021                if (!info)
4022                        return -ENOMEM;
4023        }
4024
4025        if (!bitmap) {
4026                spin_lock(&ctl->tree_lock);
4027                info->offset = offset;
4028                info->bytes = bytes;
4029                info->max_extent_size = 0;
4030                ret = link_free_space(ctl, info);
4031                spin_unlock(&ctl->tree_lock);
4032                if (ret)
4033                        kmem_cache_free(btrfs_free_space_cachep, info);
4034                return ret;
4035        }
4036
4037        if (!map) {
4038                map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4039                if (!map) {
4040                        kmem_cache_free(btrfs_free_space_cachep, info);
4041                        return -ENOMEM;
4042                }
4043        }
4044
4045        spin_lock(&ctl->tree_lock);
4046        bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4047                                         1, 0);
4048        if (!bitmap_info) {
4049                info->bitmap = map;
4050                map = NULL;
4051                add_new_bitmap(ctl, info, offset);
4052                bitmap_info = info;
4053                info = NULL;
4054        }
4055
4056        bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4057                                          trim_state);
4058
4059        bytes -= bytes_added;
4060        offset += bytes_added;
4061        spin_unlock(&ctl->tree_lock);
4062
4063        if (bytes)
4064                goto again;
4065
4066        if (info)
4067                kmem_cache_free(btrfs_free_space_cachep, info);
4068        if (map)
4069                kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4070        return 0;
4071}
4072
4073/*
4074 * Checks to see if the given range is in the free space cache.  This is really
4075 * just used to check the absence of space, so if there is free space in the
4076 * range at all we will return 1.
4077 */
4078int test_check_exists(struct btrfs_block_group *cache,
4079                      u64 offset, u64 bytes)
4080{
4081        struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4082        struct btrfs_free_space *info;
4083        int ret = 0;
4084
4085        spin_lock(&ctl->tree_lock);
4086        info = tree_search_offset(ctl, offset, 0, 0);
4087        if (!info) {
4088                info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4089                                          1, 0);
4090                if (!info)
4091                        goto out;
4092        }
4093
4094have_info:
4095        if (info->bitmap) {
4096                u64 bit_off, bit_bytes;
4097                struct rb_node *n;
4098                struct btrfs_free_space *tmp;
4099
4100                bit_off = offset;
4101                bit_bytes = ctl->unit;
4102                ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4103                if (!ret) {
4104                        if (bit_off == offset) {
4105                                ret = 1;
4106                                goto out;
4107                        } else if (bit_off > offset &&
4108                                   offset + bytes > bit_off) {
4109                                ret = 1;
4110                                goto out;
4111                        }
4112                }
4113
4114                n = rb_prev(&info->offset_index);
4115                while (n) {
4116                        tmp = rb_entry(n, struct btrfs_free_space,
4117                                       offset_index);
4118                        if (tmp->offset + tmp->bytes < offset)
4119                                break;
4120                        if (offset + bytes < tmp->offset) {
4121                                n = rb_prev(&tmp->offset_index);
4122                                continue;
4123                        }
4124                        info = tmp;
4125                        goto have_info;
4126                }
4127
4128                n = rb_next(&info->offset_index);
4129                while (n) {
4130                        tmp = rb_entry(n, struct btrfs_free_space,
4131                                       offset_index);
4132                        if (offset + bytes < tmp->offset)
4133                                break;
4134                        if (tmp->offset + tmp->bytes < offset) {
4135                                n = rb_next(&tmp->offset_index);
4136                                continue;
4137                        }
4138                        info = tmp;
4139                        goto have_info;
4140                }
4141
4142                ret = 0;
4143                goto out;
4144        }
4145
4146        if (info->offset == offset) {
4147                ret = 1;
4148                goto out;
4149        }
4150
4151        if (offset > info->offset && offset < info->offset + info->bytes)
4152                ret = 1;
4153out:
4154        spin_unlock(&ctl->tree_lock);
4155        return ret;
4156}
4157#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4158