linux/fs/btrfs/space-info.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include "misc.h"
   4#include "ctree.h"
   5#include "space-info.h"
   6#include "sysfs.h"
   7#include "volumes.h"
   8#include "free-space-cache.h"
   9#include "ordered-data.h"
  10#include "transaction.h"
  11#include "block-group.h"
  12
  13/*
  14 * HOW DOES SPACE RESERVATION WORK
  15 *
  16 * If you want to know about delalloc specifically, there is a separate comment
  17 * for that with the delalloc code.  This comment is about how the whole system
  18 * works generally.
  19 *
  20 * BASIC CONCEPTS
  21 *
  22 *   1) space_info.  This is the ultimate arbiter of how much space we can use.
  23 *   There's a description of the bytes_ fields with the struct declaration,
  24 *   refer to that for specifics on each field.  Suffice it to say that for
  25 *   reservations we care about total_bytes - SUM(space_info->bytes_) when
  26 *   determining if there is space to make an allocation.  There is a space_info
  27 *   for METADATA, SYSTEM, and DATA areas.
  28 *
  29 *   2) block_rsv's.  These are basically buckets for every different type of
  30 *   metadata reservation we have.  You can see the comment in the block_rsv
  31 *   code on the rules for each type, but generally block_rsv->reserved is how
  32 *   much space is accounted for in space_info->bytes_may_use.
  33 *
  34 *   3) btrfs_calc*_size.  These are the worst case calculations we used based
  35 *   on the number of items we will want to modify.  We have one for changing
  36 *   items, and one for inserting new items.  Generally we use these helpers to
  37 *   determine the size of the block reserves, and then use the actual bytes
  38 *   values to adjust the space_info counters.
  39 *
  40 * MAKING RESERVATIONS, THE NORMAL CASE
  41 *
  42 *   We call into either btrfs_reserve_data_bytes() or
  43 *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
  44 *   num_bytes we want to reserve.
  45 *
  46 *   ->reserve
  47 *     space_info->bytes_may_reserve += num_bytes
  48 *
  49 *   ->extent allocation
  50 *     Call btrfs_add_reserved_bytes() which does
  51 *     space_info->bytes_may_reserve -= num_bytes
  52 *     space_info->bytes_reserved += extent_bytes
  53 *
  54 *   ->insert reference
  55 *     Call btrfs_update_block_group() which does
  56 *     space_info->bytes_reserved -= extent_bytes
  57 *     space_info->bytes_used += extent_bytes
  58 *
  59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
  60 *
  61 *   Assume we are unable to simply make the reservation because we do not have
  62 *   enough space
  63 *
  64 *   -> __reserve_bytes
  65 *     create a reserve_ticket with ->bytes set to our reservation, add it to
  66 *     the tail of space_info->tickets, kick async flush thread
  67 *
  68 *   ->handle_reserve_ticket
  69 *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
  70 *     on the ticket.
  71 *
  72 *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
  73 *     Flushes various things attempting to free up space.
  74 *
  75 *   -> btrfs_try_granting_tickets()
  76 *     This is called by anything that either subtracts space from
  77 *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
  78 *     space_info->total_bytes.  This loops through the ->priority_tickets and
  79 *     then the ->tickets list checking to see if the reservation can be
  80 *     completed.  If it can the space is added to space_info->bytes_may_use and
  81 *     the ticket is woken up.
  82 *
  83 *   -> ticket wakeup
  84 *     Check if ->bytes == 0, if it does we got our reservation and we can carry
  85 *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
  86 *     were interrupted.)
  87 *
  88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
  89 *
  90 *   Same as the above, except we add ourselves to the
  91 *   space_info->priority_tickets, and we do not use ticket->wait, we simply
  92 *   call flush_space() ourselves for the states that are safe for us to call
  93 *   without deadlocking and hope for the best.
  94 *
  95 * THE FLUSHING STATES
  96 *
  97 *   Generally speaking we will have two cases for each state, a "nice" state
  98 *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
  99 *   reduce the locking over head on the various trees, and even to keep from
 100 *   doing any work at all in the case of delayed refs.  Each of these delayed
 101 *   things however hold reservations, and so letting them run allows us to
 102 *   reclaim space so we can make new reservations.
 103 *
 104 *   FLUSH_DELAYED_ITEMS
 105 *     Every inode has a delayed item to update the inode.  Take a simple write
 106 *     for example, we would update the inode item at write time to update the
 107 *     mtime, and then again at finish_ordered_io() time in order to update the
 108 *     isize or bytes.  We keep these delayed items to coalesce these operations
 109 *     into a single operation done on demand.  These are an easy way to reclaim
 110 *     metadata space.
 111 *
 112 *   FLUSH_DELALLOC
 113 *     Look at the delalloc comment to get an idea of how much space is reserved
 114 *     for delayed allocation.  We can reclaim some of this space simply by
 115 *     running delalloc, but usually we need to wait for ordered extents to
 116 *     reclaim the bulk of this space.
 117 *
 118 *   FLUSH_DELAYED_REFS
 119 *     We have a block reserve for the outstanding delayed refs space, and every
 120 *     delayed ref operation holds a reservation.  Running these is a quick way
 121 *     to reclaim space, but we want to hold this until the end because COW can
 122 *     churn a lot and we can avoid making some extent tree modifications if we
 123 *     are able to delay for as long as possible.
 124 *
 125 *   ALLOC_CHUNK
 126 *     We will skip this the first time through space reservation, because of
 127 *     overcommit and we don't want to have a lot of useless metadata space when
 128 *     our worst case reservations will likely never come true.
 129 *
 130 *   RUN_DELAYED_IPUTS
 131 *     If we're freeing inodes we're likely freeing checksums, file extent
 132 *     items, and extent tree items.  Loads of space could be freed up by these
 133 *     operations, however they won't be usable until the transaction commits.
 134 *
 135 *   COMMIT_TRANS
 136 *     may_commit_transaction() is the ultimate arbiter on whether we commit the
 137 *     transaction or not.  In order to avoid constantly churning we do all the
 138 *     above flushing first and then commit the transaction as the last resort.
 139 *     However we need to take into account things like pinned space that would
 140 *     be freed, plus any delayed work we may not have gotten rid of in the case
 141 *     of metadata.
 142 *
 143 * OVERCOMMIT
 144 *
 145 *   Because we hold so many reservations for metadata we will allow you to
 146 *   reserve more space than is currently free in the currently allocate
 147 *   metadata space.  This only happens with metadata, data does not allow
 148 *   overcommitting.
 149 *
 150 *   You can see the current logic for when we allow overcommit in
 151 *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
 152 *   is no unallocated space to be had, all reservations are kept within the
 153 *   free space in the allocated metadata chunks.
 154 *
 155 *   Because of overcommitting, you generally want to use the
 156 *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
 157 *   thing with or without extra unallocated space.
 158 */
 159
 160u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
 161                          bool may_use_included)
 162{
 163        ASSERT(s_info);
 164        return s_info->bytes_used + s_info->bytes_reserved +
 165                s_info->bytes_pinned + s_info->bytes_readonly +
 166                (may_use_included ? s_info->bytes_may_use : 0);
 167}
 168
 169/*
 170 * after adding space to the filesystem, we need to clear the full flags
 171 * on all the space infos.
 172 */
 173void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 174{
 175        struct list_head *head = &info->space_info;
 176        struct btrfs_space_info *found;
 177
 178        rcu_read_lock();
 179        list_for_each_entry_rcu(found, head, list)
 180                found->full = 0;
 181        rcu_read_unlock();
 182}
 183
 184static int create_space_info(struct btrfs_fs_info *info, u64 flags)
 185{
 186
 187        struct btrfs_space_info *space_info;
 188        int i;
 189        int ret;
 190
 191        space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
 192        if (!space_info)
 193                return -ENOMEM;
 194
 195        ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
 196                                 GFP_KERNEL);
 197        if (ret) {
 198                kfree(space_info);
 199                return ret;
 200        }
 201
 202        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 203                INIT_LIST_HEAD(&space_info->block_groups[i]);
 204        init_rwsem(&space_info->groups_sem);
 205        spin_lock_init(&space_info->lock);
 206        space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
 207        space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
 208        INIT_LIST_HEAD(&space_info->ro_bgs);
 209        INIT_LIST_HEAD(&space_info->tickets);
 210        INIT_LIST_HEAD(&space_info->priority_tickets);
 211
 212        ret = btrfs_sysfs_add_space_info_type(info, space_info);
 213        if (ret)
 214                return ret;
 215
 216        list_add_rcu(&space_info->list, &info->space_info);
 217        if (flags & BTRFS_BLOCK_GROUP_DATA)
 218                info->data_sinfo = space_info;
 219
 220        return ret;
 221}
 222
 223int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
 224{
 225        struct btrfs_super_block *disk_super;
 226        u64 features;
 227        u64 flags;
 228        int mixed = 0;
 229        int ret;
 230
 231        disk_super = fs_info->super_copy;
 232        if (!btrfs_super_root(disk_super))
 233                return -EINVAL;
 234
 235        features = btrfs_super_incompat_flags(disk_super);
 236        if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
 237                mixed = 1;
 238
 239        flags = BTRFS_BLOCK_GROUP_SYSTEM;
 240        ret = create_space_info(fs_info, flags);
 241        if (ret)
 242                goto out;
 243
 244        if (mixed) {
 245                flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
 246                ret = create_space_info(fs_info, flags);
 247        } else {
 248                flags = BTRFS_BLOCK_GROUP_METADATA;
 249                ret = create_space_info(fs_info, flags);
 250                if (ret)
 251                        goto out;
 252
 253                flags = BTRFS_BLOCK_GROUP_DATA;
 254                ret = create_space_info(fs_info, flags);
 255        }
 256out:
 257        return ret;
 258}
 259
 260void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
 261                             u64 total_bytes, u64 bytes_used,
 262                             u64 bytes_readonly,
 263                             struct btrfs_space_info **space_info)
 264{
 265        struct btrfs_space_info *found;
 266        int factor;
 267
 268        factor = btrfs_bg_type_to_factor(flags);
 269
 270        found = btrfs_find_space_info(info, flags);
 271        ASSERT(found);
 272        spin_lock(&found->lock);
 273        found->total_bytes += total_bytes;
 274        found->disk_total += total_bytes * factor;
 275        found->bytes_used += bytes_used;
 276        found->disk_used += bytes_used * factor;
 277        found->bytes_readonly += bytes_readonly;
 278        if (total_bytes > 0)
 279                found->full = 0;
 280        btrfs_try_granting_tickets(info, found);
 281        spin_unlock(&found->lock);
 282        *space_info = found;
 283}
 284
 285struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
 286                                               u64 flags)
 287{
 288        struct list_head *head = &info->space_info;
 289        struct btrfs_space_info *found;
 290
 291        flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 292
 293        rcu_read_lock();
 294        list_for_each_entry_rcu(found, head, list) {
 295                if (found->flags & flags) {
 296                        rcu_read_unlock();
 297                        return found;
 298                }
 299        }
 300        rcu_read_unlock();
 301        return NULL;
 302}
 303
 304static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
 305{
 306        return (global->size << 1);
 307}
 308
 309static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
 310                          struct btrfs_space_info *space_info,
 311                          enum btrfs_reserve_flush_enum flush)
 312{
 313        u64 profile;
 314        u64 avail;
 315        int factor;
 316
 317        if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
 318                profile = btrfs_system_alloc_profile(fs_info);
 319        else
 320                profile = btrfs_metadata_alloc_profile(fs_info);
 321
 322        avail = atomic64_read(&fs_info->free_chunk_space);
 323
 324        /*
 325         * If we have dup, raid1 or raid10 then only half of the free
 326         * space is actually usable.  For raid56, the space info used
 327         * doesn't include the parity drive, so we don't have to
 328         * change the math
 329         */
 330        factor = btrfs_bg_type_to_factor(profile);
 331        avail = div_u64(avail, factor);
 332
 333        /*
 334         * If we aren't flushing all things, let us overcommit up to
 335         * 1/2th of the space. If we can flush, don't let us overcommit
 336         * too much, let it overcommit up to 1/8 of the space.
 337         */
 338        if (flush == BTRFS_RESERVE_FLUSH_ALL)
 339                avail >>= 3;
 340        else
 341                avail >>= 1;
 342        return avail;
 343}
 344
 345int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
 346                         struct btrfs_space_info *space_info, u64 bytes,
 347                         enum btrfs_reserve_flush_enum flush)
 348{
 349        u64 avail;
 350        u64 used;
 351
 352        /* Don't overcommit when in mixed mode */
 353        if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
 354                return 0;
 355
 356        used = btrfs_space_info_used(space_info, true);
 357        avail = calc_available_free_space(fs_info, space_info, flush);
 358
 359        if (used + bytes < space_info->total_bytes + avail)
 360                return 1;
 361        return 0;
 362}
 363
 364static void remove_ticket(struct btrfs_space_info *space_info,
 365                          struct reserve_ticket *ticket)
 366{
 367        if (!list_empty(&ticket->list)) {
 368                list_del_init(&ticket->list);
 369                ASSERT(space_info->reclaim_size >= ticket->bytes);
 370                space_info->reclaim_size -= ticket->bytes;
 371        }
 372}
 373
 374/*
 375 * This is for space we already have accounted in space_info->bytes_may_use, so
 376 * basically when we're returning space from block_rsv's.
 377 */
 378void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
 379                                struct btrfs_space_info *space_info)
 380{
 381        struct list_head *head;
 382        enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
 383
 384        lockdep_assert_held(&space_info->lock);
 385
 386        head = &space_info->priority_tickets;
 387again:
 388        while (!list_empty(head)) {
 389                struct reserve_ticket *ticket;
 390                u64 used = btrfs_space_info_used(space_info, true);
 391
 392                ticket = list_first_entry(head, struct reserve_ticket, list);
 393
 394                /* Check and see if our ticket can be satisified now. */
 395                if ((used + ticket->bytes <= space_info->total_bytes) ||
 396                    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
 397                                         flush)) {
 398                        btrfs_space_info_update_bytes_may_use(fs_info,
 399                                                              space_info,
 400                                                              ticket->bytes);
 401                        remove_ticket(space_info, ticket);
 402                        ticket->bytes = 0;
 403                        space_info->tickets_id++;
 404                        wake_up(&ticket->wait);
 405                } else {
 406                        break;
 407                }
 408        }
 409
 410        if (head == &space_info->priority_tickets) {
 411                head = &space_info->tickets;
 412                flush = BTRFS_RESERVE_FLUSH_ALL;
 413                goto again;
 414        }
 415}
 416
 417#define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
 418do {                                                                    \
 419        struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
 420        spin_lock(&__rsv->lock);                                        \
 421        btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
 422                   __rsv->size, __rsv->reserved);                       \
 423        spin_unlock(&__rsv->lock);                                      \
 424} while (0)
 425
 426static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 427                                    struct btrfs_space_info *info)
 428{
 429        lockdep_assert_held(&info->lock);
 430
 431        btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
 432                   info->flags,
 433                   info->total_bytes - btrfs_space_info_used(info, true),
 434                   info->full ? "" : "not ");
 435        btrfs_info(fs_info,
 436                "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
 437                info->total_bytes, info->bytes_used, info->bytes_pinned,
 438                info->bytes_reserved, info->bytes_may_use,
 439                info->bytes_readonly);
 440
 441        DUMP_BLOCK_RSV(fs_info, global_block_rsv);
 442        DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
 443        DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
 444        DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
 445        DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
 446
 447}
 448
 449void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 450                           struct btrfs_space_info *info, u64 bytes,
 451                           int dump_block_groups)
 452{
 453        struct btrfs_block_group *cache;
 454        int index = 0;
 455
 456        spin_lock(&info->lock);
 457        __btrfs_dump_space_info(fs_info, info);
 458        spin_unlock(&info->lock);
 459
 460        if (!dump_block_groups)
 461                return;
 462
 463        down_read(&info->groups_sem);
 464again:
 465        list_for_each_entry(cache, &info->block_groups[index], list) {
 466                spin_lock(&cache->lock);
 467                btrfs_info(fs_info,
 468                        "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
 469                        cache->start, cache->length, cache->used, cache->pinned,
 470                        cache->reserved, cache->ro ? "[readonly]" : "");
 471                btrfs_dump_free_space(cache, bytes);
 472                spin_unlock(&cache->lock);
 473        }
 474        if (++index < BTRFS_NR_RAID_TYPES)
 475                goto again;
 476        up_read(&info->groups_sem);
 477}
 478
 479static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
 480                                         unsigned long nr_pages, int nr_items)
 481{
 482        struct super_block *sb = fs_info->sb;
 483
 484        if (down_read_trylock(&sb->s_umount)) {
 485                writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
 486                up_read(&sb->s_umount);
 487        } else {
 488                /*
 489                 * We needn't worry the filesystem going from r/w to r/o though
 490                 * we don't acquire ->s_umount mutex, because the filesystem
 491                 * should guarantee the delalloc inodes list be empty after
 492                 * the filesystem is readonly(all dirty pages are written to
 493                 * the disk).
 494                 */
 495                btrfs_start_delalloc_roots(fs_info, nr_items);
 496                if (!current->journal_info)
 497                        btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
 498        }
 499}
 500
 501static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
 502                                        u64 to_reclaim)
 503{
 504        u64 bytes;
 505        u64 nr;
 506
 507        bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 508        nr = div64_u64(to_reclaim, bytes);
 509        if (!nr)
 510                nr = 1;
 511        return nr;
 512}
 513
 514#define EXTENT_SIZE_PER_ITEM    SZ_256K
 515
 516/*
 517 * shrink metadata reservation for delalloc
 518 */
 519static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
 520                            u64 orig, bool wait_ordered)
 521{
 522        struct btrfs_space_info *space_info;
 523        struct btrfs_trans_handle *trans;
 524        u64 delalloc_bytes;
 525        u64 dio_bytes;
 526        u64 async_pages;
 527        u64 items;
 528        long time_left;
 529        unsigned long nr_pages;
 530        int loops;
 531
 532        /* Calc the number of the pages we need flush for space reservation */
 533        items = calc_reclaim_items_nr(fs_info, to_reclaim);
 534        to_reclaim = items * EXTENT_SIZE_PER_ITEM;
 535
 536        trans = (struct btrfs_trans_handle *)current->journal_info;
 537        space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 538
 539        delalloc_bytes = percpu_counter_sum_positive(
 540                                                &fs_info->delalloc_bytes);
 541        dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
 542        if (delalloc_bytes == 0 && dio_bytes == 0) {
 543                if (trans)
 544                        return;
 545                if (wait_ordered)
 546                        btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 547                return;
 548        }
 549
 550        /*
 551         * If we are doing more ordered than delalloc we need to just wait on
 552         * ordered extents, otherwise we'll waste time trying to flush delalloc
 553         * that likely won't give us the space back we need.
 554         */
 555        if (dio_bytes > delalloc_bytes)
 556                wait_ordered = true;
 557
 558        loops = 0;
 559        while ((delalloc_bytes || dio_bytes) && loops < 3) {
 560                nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
 561
 562                /*
 563                 * Triggers inode writeback for up to nr_pages. This will invoke
 564                 * ->writepages callback and trigger delalloc filling
 565                 *  (btrfs_run_delalloc_range()).
 566                 */
 567                btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
 568
 569                /*
 570                 * We need to wait for the compressed pages to start before
 571                 * we continue.
 572                 */
 573                async_pages = atomic_read(&fs_info->async_delalloc_pages);
 574                if (!async_pages)
 575                        goto skip_async;
 576
 577                /*
 578                 * Calculate how many compressed pages we want to be written
 579                 * before we continue. I.e if there are more async pages than we
 580                 * require wait_event will wait until nr_pages are written.
 581                 */
 582                if (async_pages <= nr_pages)
 583                        async_pages = 0;
 584                else
 585                        async_pages -= nr_pages;
 586
 587                wait_event(fs_info->async_submit_wait,
 588                           atomic_read(&fs_info->async_delalloc_pages) <=
 589                           (int)async_pages);
 590skip_async:
 591                spin_lock(&space_info->lock);
 592                if (list_empty(&space_info->tickets) &&
 593                    list_empty(&space_info->priority_tickets)) {
 594                        spin_unlock(&space_info->lock);
 595                        break;
 596                }
 597                spin_unlock(&space_info->lock);
 598
 599                loops++;
 600                if (wait_ordered && !trans) {
 601                        btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 602                } else {
 603                        time_left = schedule_timeout_killable(1);
 604                        if (time_left)
 605                                break;
 606                }
 607                delalloc_bytes = percpu_counter_sum_positive(
 608                                                &fs_info->delalloc_bytes);
 609                dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
 610        }
 611}
 612
 613/**
 614 * maybe_commit_transaction - possibly commit the transaction if its ok to
 615 * @root - the root we're allocating for
 616 * @bytes - the number of bytes we want to reserve
 617 * @force - force the commit
 618 *
 619 * This will check to make sure that committing the transaction will actually
 620 * get us somewhere and then commit the transaction if it does.  Otherwise it
 621 * will return -ENOSPC.
 622 */
 623static int may_commit_transaction(struct btrfs_fs_info *fs_info,
 624                                  struct btrfs_space_info *space_info)
 625{
 626        struct reserve_ticket *ticket = NULL;
 627        struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
 628        struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 629        struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
 630        struct btrfs_trans_handle *trans;
 631        u64 bytes_needed;
 632        u64 reclaim_bytes = 0;
 633        u64 cur_free_bytes = 0;
 634
 635        trans = (struct btrfs_trans_handle *)current->journal_info;
 636        if (trans)
 637                return -EAGAIN;
 638
 639        spin_lock(&space_info->lock);
 640        cur_free_bytes = btrfs_space_info_used(space_info, true);
 641        if (cur_free_bytes < space_info->total_bytes)
 642                cur_free_bytes = space_info->total_bytes - cur_free_bytes;
 643        else
 644                cur_free_bytes = 0;
 645
 646        if (!list_empty(&space_info->priority_tickets))
 647                ticket = list_first_entry(&space_info->priority_tickets,
 648                                          struct reserve_ticket, list);
 649        else if (!list_empty(&space_info->tickets))
 650                ticket = list_first_entry(&space_info->tickets,
 651                                          struct reserve_ticket, list);
 652        bytes_needed = (ticket) ? ticket->bytes : 0;
 653
 654        if (bytes_needed > cur_free_bytes)
 655                bytes_needed -= cur_free_bytes;
 656        else
 657                bytes_needed = 0;
 658        spin_unlock(&space_info->lock);
 659
 660        if (!bytes_needed)
 661                return 0;
 662
 663        trans = btrfs_join_transaction(fs_info->extent_root);
 664        if (IS_ERR(trans))
 665                return PTR_ERR(trans);
 666
 667        /*
 668         * See if there is enough pinned space to make this reservation, or if
 669         * we have block groups that are going to be freed, allowing us to
 670         * possibly do a chunk allocation the next loop through.
 671         */
 672        if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
 673            __percpu_counter_compare(&space_info->total_bytes_pinned,
 674                                     bytes_needed,
 675                                     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
 676                goto commit;
 677
 678        /*
 679         * See if there is some space in the delayed insertion reservation for
 680         * this reservation.
 681         */
 682        if (space_info != delayed_rsv->space_info)
 683                goto enospc;
 684
 685        spin_lock(&delayed_rsv->lock);
 686        reclaim_bytes += delayed_rsv->reserved;
 687        spin_unlock(&delayed_rsv->lock);
 688
 689        spin_lock(&delayed_refs_rsv->lock);
 690        reclaim_bytes += delayed_refs_rsv->reserved;
 691        spin_unlock(&delayed_refs_rsv->lock);
 692
 693        spin_lock(&trans_rsv->lock);
 694        reclaim_bytes += trans_rsv->reserved;
 695        spin_unlock(&trans_rsv->lock);
 696
 697        if (reclaim_bytes >= bytes_needed)
 698                goto commit;
 699        bytes_needed -= reclaim_bytes;
 700
 701        if (__percpu_counter_compare(&space_info->total_bytes_pinned,
 702                                   bytes_needed,
 703                                   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
 704                goto enospc;
 705
 706commit:
 707        return btrfs_commit_transaction(trans);
 708enospc:
 709        btrfs_end_transaction(trans);
 710        return -ENOSPC;
 711}
 712
 713/*
 714 * Try to flush some data based on policy set by @state. This is only advisory
 715 * and may fail for various reasons. The caller is supposed to examine the
 716 * state of @space_info to detect the outcome.
 717 */
 718static void flush_space(struct btrfs_fs_info *fs_info,
 719                       struct btrfs_space_info *space_info, u64 num_bytes,
 720                       int state)
 721{
 722        struct btrfs_root *root = fs_info->extent_root;
 723        struct btrfs_trans_handle *trans;
 724        int nr;
 725        int ret = 0;
 726
 727        switch (state) {
 728        case FLUSH_DELAYED_ITEMS_NR:
 729        case FLUSH_DELAYED_ITEMS:
 730                if (state == FLUSH_DELAYED_ITEMS_NR)
 731                        nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
 732                else
 733                        nr = -1;
 734
 735                trans = btrfs_join_transaction(root);
 736                if (IS_ERR(trans)) {
 737                        ret = PTR_ERR(trans);
 738                        break;
 739                }
 740                ret = btrfs_run_delayed_items_nr(trans, nr);
 741                btrfs_end_transaction(trans);
 742                break;
 743        case FLUSH_DELALLOC:
 744        case FLUSH_DELALLOC_WAIT:
 745                shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
 746                                state == FLUSH_DELALLOC_WAIT);
 747                break;
 748        case FLUSH_DELAYED_REFS_NR:
 749        case FLUSH_DELAYED_REFS:
 750                trans = btrfs_join_transaction(root);
 751                if (IS_ERR(trans)) {
 752                        ret = PTR_ERR(trans);
 753                        break;
 754                }
 755                if (state == FLUSH_DELAYED_REFS_NR)
 756                        nr = calc_reclaim_items_nr(fs_info, num_bytes);
 757                else
 758                        nr = 0;
 759                btrfs_run_delayed_refs(trans, nr);
 760                btrfs_end_transaction(trans);
 761                break;
 762        case ALLOC_CHUNK:
 763        case ALLOC_CHUNK_FORCE:
 764                trans = btrfs_join_transaction(root);
 765                if (IS_ERR(trans)) {
 766                        ret = PTR_ERR(trans);
 767                        break;
 768                }
 769                ret = btrfs_chunk_alloc(trans,
 770                                btrfs_metadata_alloc_profile(fs_info),
 771                                (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
 772                                        CHUNK_ALLOC_FORCE);
 773                btrfs_end_transaction(trans);
 774                if (ret > 0 || ret == -ENOSPC)
 775                        ret = 0;
 776                break;
 777        case RUN_DELAYED_IPUTS:
 778                /*
 779                 * If we have pending delayed iputs then we could free up a
 780                 * bunch of pinned space, so make sure we run the iputs before
 781                 * we do our pinned bytes check below.
 782                 */
 783                btrfs_run_delayed_iputs(fs_info);
 784                btrfs_wait_on_delayed_iputs(fs_info);
 785                break;
 786        case COMMIT_TRANS:
 787                ret = may_commit_transaction(fs_info, space_info);
 788                break;
 789        default:
 790                ret = -ENOSPC;
 791                break;
 792        }
 793
 794        trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
 795                                ret);
 796        return;
 797}
 798
 799static inline u64
 800btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
 801                                 struct btrfs_space_info *space_info)
 802{
 803        u64 used;
 804        u64 avail;
 805        u64 expected;
 806        u64 to_reclaim = space_info->reclaim_size;
 807
 808        lockdep_assert_held(&space_info->lock);
 809
 810        avail = calc_available_free_space(fs_info, space_info,
 811                                          BTRFS_RESERVE_FLUSH_ALL);
 812        used = btrfs_space_info_used(space_info, true);
 813
 814        /*
 815         * We may be flushing because suddenly we have less space than we had
 816         * before, and now we're well over-committed based on our current free
 817         * space.  If that's the case add in our overage so we make sure to put
 818         * appropriate pressure on the flushing state machine.
 819         */
 820        if (space_info->total_bytes + avail < used)
 821                to_reclaim += used - (space_info->total_bytes + avail);
 822
 823        if (to_reclaim)
 824                return to_reclaim;
 825
 826        to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
 827        if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
 828                                 BTRFS_RESERVE_FLUSH_ALL))
 829                return 0;
 830
 831        used = btrfs_space_info_used(space_info, true);
 832
 833        if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
 834                                 BTRFS_RESERVE_FLUSH_ALL))
 835                expected = div_factor_fine(space_info->total_bytes, 95);
 836        else
 837                expected = div_factor_fine(space_info->total_bytes, 90);
 838
 839        if (used > expected)
 840                to_reclaim = used - expected;
 841        else
 842                to_reclaim = 0;
 843        to_reclaim = min(to_reclaim, space_info->bytes_may_use +
 844                                     space_info->bytes_reserved);
 845        return to_reclaim;
 846}
 847
 848static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
 849                                        struct btrfs_space_info *space_info,
 850                                        u64 used)
 851{
 852        u64 thresh = div_factor_fine(space_info->total_bytes, 98);
 853
 854        /* If we're just plain full then async reclaim just slows us down. */
 855        if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
 856                return 0;
 857
 858        if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
 859                return 0;
 860
 861        return (used >= thresh && !btrfs_fs_closing(fs_info) &&
 862                !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
 863}
 864
 865static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
 866                                  struct btrfs_space_info *space_info,
 867                                  struct reserve_ticket *ticket)
 868{
 869        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 870        u64 min_bytes;
 871
 872        if (global_rsv->space_info != space_info)
 873                return false;
 874
 875        spin_lock(&global_rsv->lock);
 876        min_bytes = div_factor(global_rsv->size, 1);
 877        if (global_rsv->reserved < min_bytes + ticket->bytes) {
 878                spin_unlock(&global_rsv->lock);
 879                return false;
 880        }
 881        global_rsv->reserved -= ticket->bytes;
 882        remove_ticket(space_info, ticket);
 883        ticket->bytes = 0;
 884        wake_up(&ticket->wait);
 885        space_info->tickets_id++;
 886        if (global_rsv->reserved < global_rsv->size)
 887                global_rsv->full = 0;
 888        spin_unlock(&global_rsv->lock);
 889
 890        return true;
 891}
 892
 893/*
 894 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
 895 * @fs_info - fs_info for this fs
 896 * @space_info - the space info we were flushing
 897 *
 898 * We call this when we've exhausted our flushing ability and haven't made
 899 * progress in satisfying tickets.  The reservation code handles tickets in
 900 * order, so if there is a large ticket first and then smaller ones we could
 901 * very well satisfy the smaller tickets.  This will attempt to wake up any
 902 * tickets in the list to catch this case.
 903 *
 904 * This function returns true if it was able to make progress by clearing out
 905 * other tickets, or if it stumbles across a ticket that was smaller than the
 906 * first ticket.
 907 */
 908static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
 909                                   struct btrfs_space_info *space_info)
 910{
 911        struct reserve_ticket *ticket;
 912        u64 tickets_id = space_info->tickets_id;
 913        u64 first_ticket_bytes = 0;
 914
 915        if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 916                btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
 917                __btrfs_dump_space_info(fs_info, space_info);
 918        }
 919
 920        while (!list_empty(&space_info->tickets) &&
 921               tickets_id == space_info->tickets_id) {
 922                ticket = list_first_entry(&space_info->tickets,
 923                                          struct reserve_ticket, list);
 924
 925                if (ticket->steal &&
 926                    steal_from_global_rsv(fs_info, space_info, ticket))
 927                        return true;
 928
 929                /*
 930                 * may_commit_transaction will avoid committing the transaction
 931                 * if it doesn't feel like the space reclaimed by the commit
 932                 * would result in the ticket succeeding.  However if we have a
 933                 * smaller ticket in the queue it may be small enough to be
 934                 * satisified by committing the transaction, so if any
 935                 * subsequent ticket is smaller than the first ticket go ahead
 936                 * and send us back for another loop through the enospc flushing
 937                 * code.
 938                 */
 939                if (first_ticket_bytes == 0)
 940                        first_ticket_bytes = ticket->bytes;
 941                else if (first_ticket_bytes > ticket->bytes)
 942                        return true;
 943
 944                if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
 945                        btrfs_info(fs_info, "failing ticket with %llu bytes",
 946                                   ticket->bytes);
 947
 948                remove_ticket(space_info, ticket);
 949                ticket->error = -ENOSPC;
 950                wake_up(&ticket->wait);
 951
 952                /*
 953                 * We're just throwing tickets away, so more flushing may not
 954                 * trip over btrfs_try_granting_tickets, so we need to call it
 955                 * here to see if we can make progress with the next ticket in
 956                 * the list.
 957                 */
 958                btrfs_try_granting_tickets(fs_info, space_info);
 959        }
 960        return (tickets_id != space_info->tickets_id);
 961}
 962
 963/*
 964 * This is for normal flushers, we can wait all goddamned day if we want to.  We
 965 * will loop and continuously try to flush as long as we are making progress.
 966 * We count progress as clearing off tickets each time we have to loop.
 967 */
 968static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
 969{
 970        struct btrfs_fs_info *fs_info;
 971        struct btrfs_space_info *space_info;
 972        u64 to_reclaim;
 973        int flush_state;
 974        int commit_cycles = 0;
 975        u64 last_tickets_id;
 976
 977        fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
 978        space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 979
 980        spin_lock(&space_info->lock);
 981        to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
 982        if (!to_reclaim) {
 983                space_info->flush = 0;
 984                spin_unlock(&space_info->lock);
 985                return;
 986        }
 987        last_tickets_id = space_info->tickets_id;
 988        spin_unlock(&space_info->lock);
 989
 990        flush_state = FLUSH_DELAYED_ITEMS_NR;
 991        do {
 992                flush_space(fs_info, space_info, to_reclaim, flush_state);
 993                spin_lock(&space_info->lock);
 994                if (list_empty(&space_info->tickets)) {
 995                        space_info->flush = 0;
 996                        spin_unlock(&space_info->lock);
 997                        return;
 998                }
 999                to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1000                                                              space_info);
1001                if (last_tickets_id == space_info->tickets_id) {
1002                        flush_state++;
1003                } else {
1004                        last_tickets_id = space_info->tickets_id;
1005                        flush_state = FLUSH_DELAYED_ITEMS_NR;
1006                        if (commit_cycles)
1007                                commit_cycles--;
1008                }
1009
1010                /*
1011                 * We don't want to force a chunk allocation until we've tried
1012                 * pretty hard to reclaim space.  Think of the case where we
1013                 * freed up a bunch of space and so have a lot of pinned space
1014                 * to reclaim.  We would rather use that than possibly create a
1015                 * underutilized metadata chunk.  So if this is our first run
1016                 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1017                 * commit the transaction.  If nothing has changed the next go
1018                 * around then we can force a chunk allocation.
1019                 */
1020                if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1021                        flush_state++;
1022
1023                if (flush_state > COMMIT_TRANS) {
1024                        commit_cycles++;
1025                        if (commit_cycles > 2) {
1026                                if (maybe_fail_all_tickets(fs_info, space_info)) {
1027                                        flush_state = FLUSH_DELAYED_ITEMS_NR;
1028                                        commit_cycles--;
1029                                } else {
1030                                        space_info->flush = 0;
1031                                }
1032                        } else {
1033                                flush_state = FLUSH_DELAYED_ITEMS_NR;
1034                        }
1035                }
1036                spin_unlock(&space_info->lock);
1037        } while (flush_state <= COMMIT_TRANS);
1038}
1039
1040void btrfs_init_async_reclaim_work(struct work_struct *work)
1041{
1042        INIT_WORK(work, btrfs_async_reclaim_metadata_space);
1043}
1044
1045static const enum btrfs_flush_state priority_flush_states[] = {
1046        FLUSH_DELAYED_ITEMS_NR,
1047        FLUSH_DELAYED_ITEMS,
1048        ALLOC_CHUNK,
1049};
1050
1051static const enum btrfs_flush_state evict_flush_states[] = {
1052        FLUSH_DELAYED_ITEMS_NR,
1053        FLUSH_DELAYED_ITEMS,
1054        FLUSH_DELAYED_REFS_NR,
1055        FLUSH_DELAYED_REFS,
1056        FLUSH_DELALLOC,
1057        FLUSH_DELALLOC_WAIT,
1058        ALLOC_CHUNK,
1059        COMMIT_TRANS,
1060};
1061
1062static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1063                                struct btrfs_space_info *space_info,
1064                                struct reserve_ticket *ticket,
1065                                const enum btrfs_flush_state *states,
1066                                int states_nr)
1067{
1068        u64 to_reclaim;
1069        int flush_state;
1070
1071        spin_lock(&space_info->lock);
1072        to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1073        if (!to_reclaim) {
1074                spin_unlock(&space_info->lock);
1075                return;
1076        }
1077        spin_unlock(&space_info->lock);
1078
1079        flush_state = 0;
1080        do {
1081                flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1082                flush_state++;
1083                spin_lock(&space_info->lock);
1084                if (ticket->bytes == 0) {
1085                        spin_unlock(&space_info->lock);
1086                        return;
1087                }
1088                spin_unlock(&space_info->lock);
1089        } while (flush_state < states_nr);
1090}
1091
1092static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1093                                struct btrfs_space_info *space_info,
1094                                struct reserve_ticket *ticket)
1095
1096{
1097        DEFINE_WAIT(wait);
1098        int ret = 0;
1099
1100        spin_lock(&space_info->lock);
1101        while (ticket->bytes > 0 && ticket->error == 0) {
1102                ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1103                if (ret) {
1104                        /*
1105                         * Delete us from the list. After we unlock the space
1106                         * info, we don't want the async reclaim job to reserve
1107                         * space for this ticket. If that would happen, then the
1108                         * ticket's task would not known that space was reserved
1109                         * despite getting an error, resulting in a space leak
1110                         * (bytes_may_use counter of our space_info).
1111                         */
1112                        remove_ticket(space_info, ticket);
1113                        ticket->error = -EINTR;
1114                        break;
1115                }
1116                spin_unlock(&space_info->lock);
1117
1118                schedule();
1119
1120                finish_wait(&ticket->wait, &wait);
1121                spin_lock(&space_info->lock);
1122        }
1123        spin_unlock(&space_info->lock);
1124}
1125
1126/**
1127 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1128 * @fs_info - the fs
1129 * @space_info - the space_info for the reservation
1130 * @ticket - the ticket for the reservation
1131 * @flush - how much we can flush
1132 *
1133 * This does the work of figuring out how to flush for the ticket, waiting for
1134 * the reservation, and returning the appropriate error if there is one.
1135 */
1136static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1137                                 struct btrfs_space_info *space_info,
1138                                 struct reserve_ticket *ticket,
1139                                 enum btrfs_reserve_flush_enum flush)
1140{
1141        int ret;
1142
1143        switch (flush) {
1144        case BTRFS_RESERVE_FLUSH_ALL:
1145        case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1146                wait_reserve_ticket(fs_info, space_info, ticket);
1147                break;
1148        case BTRFS_RESERVE_FLUSH_LIMIT:
1149                priority_reclaim_metadata_space(fs_info, space_info, ticket,
1150                                                priority_flush_states,
1151                                                ARRAY_SIZE(priority_flush_states));
1152                break;
1153        case BTRFS_RESERVE_FLUSH_EVICT:
1154                priority_reclaim_metadata_space(fs_info, space_info, ticket,
1155                                                evict_flush_states,
1156                                                ARRAY_SIZE(evict_flush_states));
1157                break;
1158        default:
1159                ASSERT(0);
1160                break;
1161        }
1162
1163        spin_lock(&space_info->lock);
1164        ret = ticket->error;
1165        if (ticket->bytes || ticket->error) {
1166                /*
1167                 * We were a priority ticket, so we need to delete ourselves
1168                 * from the list.  Because we could have other priority tickets
1169                 * behind us that require less space, run
1170                 * btrfs_try_granting_tickets() to see if their reservations can
1171                 * now be made.
1172                 */
1173                if (!list_empty(&ticket->list)) {
1174                        remove_ticket(space_info, ticket);
1175                        btrfs_try_granting_tickets(fs_info, space_info);
1176                }
1177
1178                if (!ret)
1179                        ret = -ENOSPC;
1180        }
1181        spin_unlock(&space_info->lock);
1182        ASSERT(list_empty(&ticket->list));
1183        /*
1184         * Check that we can't have an error set if the reservation succeeded,
1185         * as that would confuse tasks and lead them to error out without
1186         * releasing reserved space (if an error happens the expectation is that
1187         * space wasn't reserved at all).
1188         */
1189        ASSERT(!(ticket->bytes == 0 && ticket->error));
1190        return ret;
1191}
1192
1193/*
1194 * This returns true if this flush state will go through the ordinary flushing
1195 * code.
1196 */
1197static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1198{
1199        return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1200                (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1201}
1202
1203/**
1204 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1205 * @root - the root we're allocating for
1206 * @space_info - the space info we want to allocate from
1207 * @orig_bytes - the number of bytes we want
1208 * @flush - whether or not we can flush to make our reservation
1209 *
1210 * This will reserve orig_bytes number of bytes from the space info associated
1211 * with the block_rsv.  If there is not enough space it will make an attempt to
1212 * flush out space to make room.  It will do this by flushing delalloc if
1213 * possible or committing the transaction.  If flush is 0 then no attempts to
1214 * regain reservations will be made and this will fail if there is not enough
1215 * space already.
1216 */
1217static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1218                                    struct btrfs_space_info *space_info,
1219                                    u64 orig_bytes,
1220                                    enum btrfs_reserve_flush_enum flush)
1221{
1222        struct reserve_ticket ticket;
1223        u64 used;
1224        int ret = 0;
1225        bool pending_tickets;
1226
1227        ASSERT(orig_bytes);
1228        ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1229
1230        spin_lock(&space_info->lock);
1231        ret = -ENOSPC;
1232        used = btrfs_space_info_used(space_info, true);
1233
1234        /*
1235         * We don't want NO_FLUSH allocations to jump everybody, they can
1236         * generally handle ENOSPC in a different way, so treat them the same as
1237         * normal flushers when it comes to skipping pending tickets.
1238         */
1239        if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1240                pending_tickets = !list_empty(&space_info->tickets) ||
1241                        !list_empty(&space_info->priority_tickets);
1242        else
1243                pending_tickets = !list_empty(&space_info->priority_tickets);
1244
1245        /*
1246         * Carry on if we have enough space (short-circuit) OR call
1247         * can_overcommit() to ensure we can overcommit to continue.
1248         */
1249        if (!pending_tickets &&
1250            ((used + orig_bytes <= space_info->total_bytes) ||
1251             btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1252                btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1253                                                      orig_bytes);
1254                ret = 0;
1255        }
1256
1257        /*
1258         * If we couldn't make a reservation then setup our reservation ticket
1259         * and kick the async worker if it's not already running.
1260         *
1261         * If we are a priority flusher then we just need to add our ticket to
1262         * the list and we will do our own flushing further down.
1263         */
1264        if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1265                ticket.bytes = orig_bytes;
1266                ticket.error = 0;
1267                space_info->reclaim_size += ticket.bytes;
1268                init_waitqueue_head(&ticket.wait);
1269                ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1270                if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1271                    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
1272                        list_add_tail(&ticket.list, &space_info->tickets);
1273                        if (!space_info->flush) {
1274                                space_info->flush = 1;
1275                                trace_btrfs_trigger_flush(fs_info,
1276                                                          space_info->flags,
1277                                                          orig_bytes, flush,
1278                                                          "enospc");
1279                                queue_work(system_unbound_wq,
1280                                           &fs_info->async_reclaim_work);
1281                        }
1282                } else {
1283                        list_add_tail(&ticket.list,
1284                                      &space_info->priority_tickets);
1285                }
1286        } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1287                used += orig_bytes;
1288                /*
1289                 * We will do the space reservation dance during log replay,
1290                 * which means we won't have fs_info->fs_root set, so don't do
1291                 * the async reclaim as we will panic.
1292                 */
1293                if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1294                    need_do_async_reclaim(fs_info, space_info, used) &&
1295                    !work_busy(&fs_info->async_reclaim_work)) {
1296                        trace_btrfs_trigger_flush(fs_info, space_info->flags,
1297                                                  orig_bytes, flush, "preempt");
1298                        queue_work(system_unbound_wq,
1299                                   &fs_info->async_reclaim_work);
1300                }
1301        }
1302        spin_unlock(&space_info->lock);
1303        if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1304                return ret;
1305
1306        return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1307}
1308
1309/**
1310 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1311 * @root - the root we're allocating for
1312 * @block_rsv - the block_rsv we're allocating for
1313 * @orig_bytes - the number of bytes we want
1314 * @flush - whether or not we can flush to make our reservation
1315 *
1316 * This will reserve orig_bytes number of bytes from the space info associated
1317 * with the block_rsv.  If there is not enough space it will make an attempt to
1318 * flush out space to make room.  It will do this by flushing delalloc if
1319 * possible or committing the transaction.  If flush is 0 then no attempts to
1320 * regain reservations will be made and this will fail if there is not enough
1321 * space already.
1322 */
1323int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1324                                 struct btrfs_block_rsv *block_rsv,
1325                                 u64 orig_bytes,
1326                                 enum btrfs_reserve_flush_enum flush)
1327{
1328        struct btrfs_fs_info *fs_info = root->fs_info;
1329        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1330        int ret;
1331
1332        ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1333                                       orig_bytes, flush);
1334        if (ret == -ENOSPC &&
1335            unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1336                if (block_rsv != global_rsv &&
1337                    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1338                        ret = 0;
1339        }
1340        if (ret == -ENOSPC) {
1341                trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1342                                              block_rsv->space_info->flags,
1343                                              orig_bytes, 1);
1344
1345                if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1346                        btrfs_dump_space_info(fs_info, block_rsv->space_info,
1347                                              orig_bytes, 0);
1348        }
1349        return ret;
1350}
1351