linux/fs/direct-io.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/direct-io.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 *
   7 * O_DIRECT
   8 *
   9 * 04Jul2002    Andrew Morton
  10 *              Initial version
  11 * 11Sep2002    janetinc@us.ibm.com
  12 *              added readv/writev support.
  13 * 29Oct2002    Andrew Morton
  14 *              rewrote bio_add_page() support.
  15 * 30Oct2002    pbadari@us.ibm.com
  16 *              added support for non-aligned IO.
  17 * 06Nov2002    pbadari@us.ibm.com
  18 *              added asynchronous IO support.
  19 * 21Jul2003    nathans@sgi.com
  20 *              added IO completion notifier.
  21 */
  22
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/types.h>
  26#include <linux/fs.h>
  27#include <linux/mm.h>
  28#include <linux/slab.h>
  29#include <linux/highmem.h>
  30#include <linux/pagemap.h>
  31#include <linux/task_io_accounting_ops.h>
  32#include <linux/bio.h>
  33#include <linux/wait.h>
  34#include <linux/err.h>
  35#include <linux/blkdev.h>
  36#include <linux/buffer_head.h>
  37#include <linux/rwsem.h>
  38#include <linux/uio.h>
  39#include <linux/atomic.h>
  40#include <linux/prefetch.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * How many user pages to map in one call to get_user_pages().  This determines
  46 * the size of a structure in the slab cache
  47 */
  48#define DIO_PAGES       64
  49
  50/*
  51 * Flags for dio_complete()
  52 */
  53#define DIO_COMPLETE_ASYNC              0x01    /* This is async IO */
  54#define DIO_COMPLETE_INVALIDATE         0x02    /* Can invalidate pages */
  55
  56/*
  57 * This code generally works in units of "dio_blocks".  A dio_block is
  58 * somewhere between the hard sector size and the filesystem block size.  it
  59 * is determined on a per-invocation basis.   When talking to the filesystem
  60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  61 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
  62 * to bio_block quantities by shifting left by blkfactor.
  63 *
  64 * If blkfactor is zero then the user's request was aligned to the filesystem's
  65 * blocksize.
  66 */
  67
  68/* dio_state only used in the submission path */
  69
  70struct dio_submit {
  71        struct bio *bio;                /* bio under assembly */
  72        unsigned blkbits;               /* doesn't change */
  73        unsigned blkfactor;             /* When we're using an alignment which
  74                                           is finer than the filesystem's soft
  75                                           blocksize, this specifies how much
  76                                           finer.  blkfactor=2 means 1/4-block
  77                                           alignment.  Does not change */
  78        unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
  79                                           been performed at the start of a
  80                                           write */
  81        int pages_in_io;                /* approximate total IO pages */
  82        sector_t block_in_file;         /* Current offset into the underlying
  83                                           file in dio_block units. */
  84        unsigned blocks_available;      /* At block_in_file.  changes */
  85        int reap_counter;               /* rate limit reaping */
  86        sector_t final_block_in_request;/* doesn't change */
  87        int boundary;                   /* prev block is at a boundary */
  88        get_block_t *get_block;         /* block mapping function */
  89        dio_submit_t *submit_io;        /* IO submition function */
  90
  91        loff_t logical_offset_in_bio;   /* current first logical block in bio */
  92        sector_t final_block_in_bio;    /* current final block in bio + 1 */
  93        sector_t next_block_for_io;     /* next block to be put under IO,
  94                                           in dio_blocks units */
  95
  96        /*
  97         * Deferred addition of a page to the dio.  These variables are
  98         * private to dio_send_cur_page(), submit_page_section() and
  99         * dio_bio_add_page().
 100         */
 101        struct page *cur_page;          /* The page */
 102        unsigned cur_page_offset;       /* Offset into it, in bytes */
 103        unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
 104        sector_t cur_page_block;        /* Where it starts */
 105        loff_t cur_page_fs_offset;      /* Offset in file */
 106
 107        struct iov_iter *iter;
 108        /*
 109         * Page queue.  These variables belong to dio_refill_pages() and
 110         * dio_get_page().
 111         */
 112        unsigned head;                  /* next page to process */
 113        unsigned tail;                  /* last valid page + 1 */
 114        size_t from, to;
 115};
 116
 117/* dio_state communicated between submission path and end_io */
 118struct dio {
 119        int flags;                      /* doesn't change */
 120        int op;
 121        int op_flags;
 122        blk_qc_t bio_cookie;
 123        struct gendisk *bio_disk;
 124        struct inode *inode;
 125        loff_t i_size;                  /* i_size when submitted */
 126        dio_iodone_t *end_io;           /* IO completion function */
 127
 128        void *private;                  /* copy from map_bh.b_private */
 129
 130        /* BIO completion state */
 131        spinlock_t bio_lock;            /* protects BIO fields below */
 132        int page_errors;                /* errno from get_user_pages() */
 133        int is_async;                   /* is IO async ? */
 134        bool defer_completion;          /* defer AIO completion to workqueue? */
 135        bool should_dirty;              /* if pages should be dirtied */
 136        int io_error;                   /* IO error in completion path */
 137        unsigned long refcount;         /* direct_io_worker() and bios */
 138        struct bio *bio_list;           /* singly linked via bi_private */
 139        struct task_struct *waiter;     /* waiting task (NULL if none) */
 140
 141        /* AIO related stuff */
 142        struct kiocb *iocb;             /* kiocb */
 143        ssize_t result;                 /* IO result */
 144
 145        /*
 146         * pages[] (and any fields placed after it) are not zeroed out at
 147         * allocation time.  Don't add new fields after pages[] unless you
 148         * wish that they not be zeroed.
 149         */
 150        union {
 151                struct page *pages[DIO_PAGES];  /* page buffer */
 152                struct work_struct complete_work;/* deferred AIO completion */
 153        };
 154} ____cacheline_aligned_in_smp;
 155
 156static struct kmem_cache *dio_cache __read_mostly;
 157
 158/*
 159 * How many pages are in the queue?
 160 */
 161static inline unsigned dio_pages_present(struct dio_submit *sdio)
 162{
 163        return sdio->tail - sdio->head;
 164}
 165
 166/*
 167 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
 168 */
 169static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
 170{
 171        ssize_t ret;
 172
 173        ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
 174                                &sdio->from);
 175
 176        if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
 177                struct page *page = ZERO_PAGE(0);
 178                /*
 179                 * A memory fault, but the filesystem has some outstanding
 180                 * mapped blocks.  We need to use those blocks up to avoid
 181                 * leaking stale data in the file.
 182                 */
 183                if (dio->page_errors == 0)
 184                        dio->page_errors = ret;
 185                get_page(page);
 186                dio->pages[0] = page;
 187                sdio->head = 0;
 188                sdio->tail = 1;
 189                sdio->from = 0;
 190                sdio->to = PAGE_SIZE;
 191                return 0;
 192        }
 193
 194        if (ret >= 0) {
 195                iov_iter_advance(sdio->iter, ret);
 196                ret += sdio->from;
 197                sdio->head = 0;
 198                sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
 199                sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
 200                return 0;
 201        }
 202        return ret;     
 203}
 204
 205/*
 206 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
 207 * buffered inside the dio so that we can call get_user_pages() against a
 208 * decent number of pages, less frequently.  To provide nicer use of the
 209 * L1 cache.
 210 */
 211static inline struct page *dio_get_page(struct dio *dio,
 212                                        struct dio_submit *sdio)
 213{
 214        if (dio_pages_present(sdio) == 0) {
 215                int ret;
 216
 217                ret = dio_refill_pages(dio, sdio);
 218                if (ret)
 219                        return ERR_PTR(ret);
 220                BUG_ON(dio_pages_present(sdio) == 0);
 221        }
 222        return dio->pages[sdio->head];
 223}
 224
 225/*
 226 * dio_complete() - called when all DIO BIO I/O has been completed
 227 *
 228 * This drops i_dio_count, lets interested parties know that a DIO operation
 229 * has completed, and calculates the resulting return code for the operation.
 230 *
 231 * It lets the filesystem know if it registered an interest earlier via
 232 * get_block.  Pass the private field of the map buffer_head so that
 233 * filesystems can use it to hold additional state between get_block calls and
 234 * dio_complete.
 235 */
 236static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
 237{
 238        loff_t offset = dio->iocb->ki_pos;
 239        ssize_t transferred = 0;
 240        int err;
 241
 242        /*
 243         * AIO submission can race with bio completion to get here while
 244         * expecting to have the last io completed by bio completion.
 245         * In that case -EIOCBQUEUED is in fact not an error we want
 246         * to preserve through this call.
 247         */
 248        if (ret == -EIOCBQUEUED)
 249                ret = 0;
 250
 251        if (dio->result) {
 252                transferred = dio->result;
 253
 254                /* Check for short read case */
 255                if ((dio->op == REQ_OP_READ) &&
 256                    ((offset + transferred) > dio->i_size))
 257                        transferred = dio->i_size - offset;
 258                /* ignore EFAULT if some IO has been done */
 259                if (unlikely(ret == -EFAULT) && transferred)
 260                        ret = 0;
 261        }
 262
 263        if (ret == 0)
 264                ret = dio->page_errors;
 265        if (ret == 0)
 266                ret = dio->io_error;
 267        if (ret == 0)
 268                ret = transferred;
 269
 270        if (dio->end_io) {
 271                // XXX: ki_pos??
 272                err = dio->end_io(dio->iocb, offset, ret, dio->private);
 273                if (err)
 274                        ret = err;
 275        }
 276
 277        /*
 278         * Try again to invalidate clean pages which might have been cached by
 279         * non-direct readahead, or faulted in by get_user_pages() if the source
 280         * of the write was an mmap'ed region of the file we're writing.  Either
 281         * one is a pretty crazy thing to do, so we don't support it 100%.  If
 282         * this invalidation fails, tough, the write still worked...
 283         *
 284         * And this page cache invalidation has to be after dio->end_io(), as
 285         * some filesystems convert unwritten extents to real allocations in
 286         * end_io() when necessary, otherwise a racing buffer read would cache
 287         * zeros from unwritten extents.
 288         */
 289        if (flags & DIO_COMPLETE_INVALIDATE &&
 290            ret > 0 && dio->op == REQ_OP_WRITE &&
 291            dio->inode->i_mapping->nrpages) {
 292                err = invalidate_inode_pages2_range(dio->inode->i_mapping,
 293                                        offset >> PAGE_SHIFT,
 294                                        (offset + ret - 1) >> PAGE_SHIFT);
 295                if (err)
 296                        dio_warn_stale_pagecache(dio->iocb->ki_filp);
 297        }
 298
 299        inode_dio_end(dio->inode);
 300
 301        if (flags & DIO_COMPLETE_ASYNC) {
 302                /*
 303                 * generic_write_sync expects ki_pos to have been updated
 304                 * already, but the submission path only does this for
 305                 * synchronous I/O.
 306                 */
 307                dio->iocb->ki_pos += transferred;
 308
 309                if (ret > 0 && dio->op == REQ_OP_WRITE)
 310                        ret = generic_write_sync(dio->iocb, ret);
 311                dio->iocb->ki_complete(dio->iocb, ret, 0);
 312        }
 313
 314        kmem_cache_free(dio_cache, dio);
 315        return ret;
 316}
 317
 318static void dio_aio_complete_work(struct work_struct *work)
 319{
 320        struct dio *dio = container_of(work, struct dio, complete_work);
 321
 322        dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
 323}
 324
 325static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
 326
 327/*
 328 * Asynchronous IO callback. 
 329 */
 330static void dio_bio_end_aio(struct bio *bio)
 331{
 332        struct dio *dio = bio->bi_private;
 333        unsigned long remaining;
 334        unsigned long flags;
 335        bool defer_completion = false;
 336
 337        /* cleanup the bio */
 338        dio_bio_complete(dio, bio);
 339
 340        spin_lock_irqsave(&dio->bio_lock, flags);
 341        remaining = --dio->refcount;
 342        if (remaining == 1 && dio->waiter)
 343                wake_up_process(dio->waiter);
 344        spin_unlock_irqrestore(&dio->bio_lock, flags);
 345
 346        if (remaining == 0) {
 347                /*
 348                 * Defer completion when defer_completion is set or
 349                 * when the inode has pages mapped and this is AIO write.
 350                 * We need to invalidate those pages because there is a
 351                 * chance they contain stale data in the case buffered IO
 352                 * went in between AIO submission and completion into the
 353                 * same region.
 354                 */
 355                if (dio->result)
 356                        defer_completion = dio->defer_completion ||
 357                                           (dio->op == REQ_OP_WRITE &&
 358                                            dio->inode->i_mapping->nrpages);
 359                if (defer_completion) {
 360                        INIT_WORK(&dio->complete_work, dio_aio_complete_work);
 361                        queue_work(dio->inode->i_sb->s_dio_done_wq,
 362                                   &dio->complete_work);
 363                } else {
 364                        dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
 365                }
 366        }
 367}
 368
 369/*
 370 * The BIO completion handler simply queues the BIO up for the process-context
 371 * handler.
 372 *
 373 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
 374 * implement a singly-linked list of completed BIOs, at dio->bio_list.
 375 */
 376static void dio_bio_end_io(struct bio *bio)
 377{
 378        struct dio *dio = bio->bi_private;
 379        unsigned long flags;
 380
 381        spin_lock_irqsave(&dio->bio_lock, flags);
 382        bio->bi_private = dio->bio_list;
 383        dio->bio_list = bio;
 384        if (--dio->refcount == 1 && dio->waiter)
 385                wake_up_process(dio->waiter);
 386        spin_unlock_irqrestore(&dio->bio_lock, flags);
 387}
 388
 389/**
 390 * dio_end_io - handle the end io action for the given bio
 391 * @bio: The direct io bio thats being completed
 392 *
 393 * This is meant to be called by any filesystem that uses their own dio_submit_t
 394 * so that the DIO specific endio actions are dealt with after the filesystem
 395 * has done it's completion work.
 396 */
 397void dio_end_io(struct bio *bio)
 398{
 399        struct dio *dio = bio->bi_private;
 400
 401        if (dio->is_async)
 402                dio_bio_end_aio(bio);
 403        else
 404                dio_bio_end_io(bio);
 405}
 406EXPORT_SYMBOL_GPL(dio_end_io);
 407
 408static inline void
 409dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
 410              struct block_device *bdev,
 411              sector_t first_sector, int nr_vecs)
 412{
 413        struct bio *bio;
 414
 415        /*
 416         * bio_alloc() is guaranteed to return a bio when allowed to sleep and
 417         * we request a valid number of vectors.
 418         */
 419        bio = bio_alloc(GFP_KERNEL, nr_vecs);
 420
 421        bio_set_dev(bio, bdev);
 422        bio->bi_iter.bi_sector = first_sector;
 423        bio_set_op_attrs(bio, dio->op, dio->op_flags);
 424        if (dio->is_async)
 425                bio->bi_end_io = dio_bio_end_aio;
 426        else
 427                bio->bi_end_io = dio_bio_end_io;
 428
 429        bio->bi_write_hint = dio->iocb->ki_hint;
 430
 431        sdio->bio = bio;
 432        sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
 433}
 434
 435/*
 436 * In the AIO read case we speculatively dirty the pages before starting IO.
 437 * During IO completion, any of these pages which happen to have been written
 438 * back will be redirtied by bio_check_pages_dirty().
 439 *
 440 * bios hold a dio reference between submit_bio and ->end_io.
 441 */
 442static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
 443{
 444        struct bio *bio = sdio->bio;
 445        unsigned long flags;
 446
 447        bio->bi_private = dio;
 448
 449        spin_lock_irqsave(&dio->bio_lock, flags);
 450        dio->refcount++;
 451        spin_unlock_irqrestore(&dio->bio_lock, flags);
 452
 453        if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
 454                bio_set_pages_dirty(bio);
 455
 456        dio->bio_disk = bio->bi_disk;
 457
 458        if (sdio->submit_io) {
 459                sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
 460                dio->bio_cookie = BLK_QC_T_NONE;
 461        } else
 462                dio->bio_cookie = submit_bio(bio);
 463
 464        sdio->bio = NULL;
 465        sdio->boundary = 0;
 466        sdio->logical_offset_in_bio = 0;
 467}
 468
 469/*
 470 * Release any resources in case of a failure
 471 */
 472static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
 473{
 474        while (sdio->head < sdio->tail)
 475                put_page(dio->pages[sdio->head++]);
 476}
 477
 478/*
 479 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
 480 * returned once all BIOs have been completed.  This must only be called once
 481 * all bios have been issued so that dio->refcount can only decrease.  This
 482 * requires that that the caller hold a reference on the dio.
 483 */
 484static struct bio *dio_await_one(struct dio *dio)
 485{
 486        unsigned long flags;
 487        struct bio *bio = NULL;
 488
 489        spin_lock_irqsave(&dio->bio_lock, flags);
 490
 491        /*
 492         * Wait as long as the list is empty and there are bios in flight.  bio
 493         * completion drops the count, maybe adds to the list, and wakes while
 494         * holding the bio_lock so we don't need set_current_state()'s barrier
 495         * and can call it after testing our condition.
 496         */
 497        while (dio->refcount > 1 && dio->bio_list == NULL) {
 498                __set_current_state(TASK_UNINTERRUPTIBLE);
 499                dio->waiter = current;
 500                spin_unlock_irqrestore(&dio->bio_lock, flags);
 501                if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
 502                    !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
 503                        blk_io_schedule();
 504                /* wake up sets us TASK_RUNNING */
 505                spin_lock_irqsave(&dio->bio_lock, flags);
 506                dio->waiter = NULL;
 507        }
 508        if (dio->bio_list) {
 509                bio = dio->bio_list;
 510                dio->bio_list = bio->bi_private;
 511        }
 512        spin_unlock_irqrestore(&dio->bio_lock, flags);
 513        return bio;
 514}
 515
 516/*
 517 * Process one completed BIO.  No locks are held.
 518 */
 519static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
 520{
 521        blk_status_t err = bio->bi_status;
 522        bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
 523
 524        if (err) {
 525                if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
 526                        dio->io_error = -EAGAIN;
 527                else
 528                        dio->io_error = -EIO;
 529        }
 530
 531        if (dio->is_async && should_dirty) {
 532                bio_check_pages_dirty(bio);     /* transfers ownership */
 533        } else {
 534                bio_release_pages(bio, should_dirty);
 535                bio_put(bio);
 536        }
 537        return err;
 538}
 539
 540/*
 541 * Wait on and process all in-flight BIOs.  This must only be called once
 542 * all bios have been issued so that the refcount can only decrease.
 543 * This just waits for all bios to make it through dio_bio_complete.  IO
 544 * errors are propagated through dio->io_error and should be propagated via
 545 * dio_complete().
 546 */
 547static void dio_await_completion(struct dio *dio)
 548{
 549        struct bio *bio;
 550        do {
 551                bio = dio_await_one(dio);
 552                if (bio)
 553                        dio_bio_complete(dio, bio);
 554        } while (bio);
 555}
 556
 557/*
 558 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
 559 * to keep the memory consumption sane we periodically reap any completed BIOs
 560 * during the BIO generation phase.
 561 *
 562 * This also helps to limit the peak amount of pinned userspace memory.
 563 */
 564static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
 565{
 566        int ret = 0;
 567
 568        if (sdio->reap_counter++ >= 64) {
 569                while (dio->bio_list) {
 570                        unsigned long flags;
 571                        struct bio *bio;
 572                        int ret2;
 573
 574                        spin_lock_irqsave(&dio->bio_lock, flags);
 575                        bio = dio->bio_list;
 576                        dio->bio_list = bio->bi_private;
 577                        spin_unlock_irqrestore(&dio->bio_lock, flags);
 578                        ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
 579                        if (ret == 0)
 580                                ret = ret2;
 581                }
 582                sdio->reap_counter = 0;
 583        }
 584        return ret;
 585}
 586
 587/*
 588 * Create workqueue for deferred direct IO completions. We allocate the
 589 * workqueue when it's first needed. This avoids creating workqueue for
 590 * filesystems that don't need it and also allows us to create the workqueue
 591 * late enough so the we can include s_id in the name of the workqueue.
 592 */
 593int sb_init_dio_done_wq(struct super_block *sb)
 594{
 595        struct workqueue_struct *old;
 596        struct workqueue_struct *wq = alloc_workqueue("dio/%s",
 597                                                      WQ_MEM_RECLAIM, 0,
 598                                                      sb->s_id);
 599        if (!wq)
 600                return -ENOMEM;
 601        /*
 602         * This has to be atomic as more DIOs can race to create the workqueue
 603         */
 604        old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
 605        /* Someone created workqueue before us? Free ours... */
 606        if (old)
 607                destroy_workqueue(wq);
 608        return 0;
 609}
 610
 611static int dio_set_defer_completion(struct dio *dio)
 612{
 613        struct super_block *sb = dio->inode->i_sb;
 614
 615        if (dio->defer_completion)
 616                return 0;
 617        dio->defer_completion = true;
 618        if (!sb->s_dio_done_wq)
 619                return sb_init_dio_done_wq(sb);
 620        return 0;
 621}
 622
 623/*
 624 * Call into the fs to map some more disk blocks.  We record the current number
 625 * of available blocks at sdio->blocks_available.  These are in units of the
 626 * fs blocksize, i_blocksize(inode).
 627 *
 628 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
 629 * it uses the passed inode-relative block number as the file offset, as usual.
 630 *
 631 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
 632 * has remaining to do.  The fs should not map more than this number of blocks.
 633 *
 634 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
 635 * indicate how much contiguous disk space has been made available at
 636 * bh->b_blocknr.
 637 *
 638 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
 639 * This isn't very efficient...
 640 *
 641 * In the case of filesystem holes: the fs may return an arbitrarily-large
 642 * hole by returning an appropriate value in b_size and by clearing
 643 * buffer_mapped().  However the direct-io code will only process holes one
 644 * block at a time - it will repeatedly call get_block() as it walks the hole.
 645 */
 646static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
 647                           struct buffer_head *map_bh)
 648{
 649        int ret;
 650        sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
 651        sector_t fs_endblk;     /* Into file, in filesystem-sized blocks */
 652        unsigned long fs_count; /* Number of filesystem-sized blocks */
 653        int create;
 654        unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
 655        loff_t i_size;
 656
 657        /*
 658         * If there was a memory error and we've overwritten all the
 659         * mapped blocks then we can now return that memory error
 660         */
 661        ret = dio->page_errors;
 662        if (ret == 0) {
 663                BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
 664                fs_startblk = sdio->block_in_file >> sdio->blkfactor;
 665                fs_endblk = (sdio->final_block_in_request - 1) >>
 666                                        sdio->blkfactor;
 667                fs_count = fs_endblk - fs_startblk + 1;
 668
 669                map_bh->b_state = 0;
 670                map_bh->b_size = fs_count << i_blkbits;
 671
 672                /*
 673                 * For writes that could fill holes inside i_size on a
 674                 * DIO_SKIP_HOLES filesystem we forbid block creations: only
 675                 * overwrites are permitted. We will return early to the caller
 676                 * once we see an unmapped buffer head returned, and the caller
 677                 * will fall back to buffered I/O.
 678                 *
 679                 * Otherwise the decision is left to the get_blocks method,
 680                 * which may decide to handle it or also return an unmapped
 681                 * buffer head.
 682                 */
 683                create = dio->op == REQ_OP_WRITE;
 684                if (dio->flags & DIO_SKIP_HOLES) {
 685                        i_size = i_size_read(dio->inode);
 686                        if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
 687                                create = 0;
 688                }
 689
 690                ret = (*sdio->get_block)(dio->inode, fs_startblk,
 691                                                map_bh, create);
 692
 693                /* Store for completion */
 694                dio->private = map_bh->b_private;
 695
 696                if (ret == 0 && buffer_defer_completion(map_bh))
 697                        ret = dio_set_defer_completion(dio);
 698        }
 699        return ret;
 700}
 701
 702/*
 703 * There is no bio.  Make one now.
 704 */
 705static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
 706                sector_t start_sector, struct buffer_head *map_bh)
 707{
 708        sector_t sector;
 709        int ret, nr_pages;
 710
 711        ret = dio_bio_reap(dio, sdio);
 712        if (ret)
 713                goto out;
 714        sector = start_sector << (sdio->blkbits - 9);
 715        nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
 716        BUG_ON(nr_pages <= 0);
 717        dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
 718        sdio->boundary = 0;
 719out:
 720        return ret;
 721}
 722
 723/*
 724 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
 725 * that was successful then update final_block_in_bio and take a ref against
 726 * the just-added page.
 727 *
 728 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
 729 */
 730static inline int dio_bio_add_page(struct dio_submit *sdio)
 731{
 732        int ret;
 733
 734        ret = bio_add_page(sdio->bio, sdio->cur_page,
 735                        sdio->cur_page_len, sdio->cur_page_offset);
 736        if (ret == sdio->cur_page_len) {
 737                /*
 738                 * Decrement count only, if we are done with this page
 739                 */
 740                if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
 741                        sdio->pages_in_io--;
 742                get_page(sdio->cur_page);
 743                sdio->final_block_in_bio = sdio->cur_page_block +
 744                        (sdio->cur_page_len >> sdio->blkbits);
 745                ret = 0;
 746        } else {
 747                ret = 1;
 748        }
 749        return ret;
 750}
 751                
 752/*
 753 * Put cur_page under IO.  The section of cur_page which is described by
 754 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
 755 * starts on-disk at cur_page_block.
 756 *
 757 * We take a ref against the page here (on behalf of its presence in the bio).
 758 *
 759 * The caller of this function is responsible for removing cur_page from the
 760 * dio, and for dropping the refcount which came from that presence.
 761 */
 762static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
 763                struct buffer_head *map_bh)
 764{
 765        int ret = 0;
 766
 767        if (sdio->bio) {
 768                loff_t cur_offset = sdio->cur_page_fs_offset;
 769                loff_t bio_next_offset = sdio->logical_offset_in_bio +
 770                        sdio->bio->bi_iter.bi_size;
 771
 772                /*
 773                 * See whether this new request is contiguous with the old.
 774                 *
 775                 * Btrfs cannot handle having logically non-contiguous requests
 776                 * submitted.  For example if you have
 777                 *
 778                 * Logical:  [0-4095][HOLE][8192-12287]
 779                 * Physical: [0-4095]      [4096-8191]
 780                 *
 781                 * We cannot submit those pages together as one BIO.  So if our
 782                 * current logical offset in the file does not equal what would
 783                 * be the next logical offset in the bio, submit the bio we
 784                 * have.
 785                 */
 786                if (sdio->final_block_in_bio != sdio->cur_page_block ||
 787                    cur_offset != bio_next_offset)
 788                        dio_bio_submit(dio, sdio);
 789        }
 790
 791        if (sdio->bio == NULL) {
 792                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 793                if (ret)
 794                        goto out;
 795        }
 796
 797        if (dio_bio_add_page(sdio) != 0) {
 798                dio_bio_submit(dio, sdio);
 799                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 800                if (ret == 0) {
 801                        ret = dio_bio_add_page(sdio);
 802                        BUG_ON(ret != 0);
 803                }
 804        }
 805out:
 806        return ret;
 807}
 808
 809/*
 810 * An autonomous function to put a chunk of a page under deferred IO.
 811 *
 812 * The caller doesn't actually know (or care) whether this piece of page is in
 813 * a BIO, or is under IO or whatever.  We just take care of all possible 
 814 * situations here.  The separation between the logic of do_direct_IO() and
 815 * that of submit_page_section() is important for clarity.  Please don't break.
 816 *
 817 * The chunk of page starts on-disk at blocknr.
 818 *
 819 * We perform deferred IO, by recording the last-submitted page inside our
 820 * private part of the dio structure.  If possible, we just expand the IO
 821 * across that page here.
 822 *
 823 * If that doesn't work out then we put the old page into the bio and add this
 824 * page to the dio instead.
 825 */
 826static inline int
 827submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
 828                    unsigned offset, unsigned len, sector_t blocknr,
 829                    struct buffer_head *map_bh)
 830{
 831        int ret = 0;
 832
 833        if (dio->op == REQ_OP_WRITE) {
 834                /*
 835                 * Read accounting is performed in submit_bio()
 836                 */
 837                task_io_account_write(len);
 838        }
 839
 840        /*
 841         * Can we just grow the current page's presence in the dio?
 842         */
 843        if (sdio->cur_page == page &&
 844            sdio->cur_page_offset + sdio->cur_page_len == offset &&
 845            sdio->cur_page_block +
 846            (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
 847                sdio->cur_page_len += len;
 848                goto out;
 849        }
 850
 851        /*
 852         * If there's a deferred page already there then send it.
 853         */
 854        if (sdio->cur_page) {
 855                ret = dio_send_cur_page(dio, sdio, map_bh);
 856                put_page(sdio->cur_page);
 857                sdio->cur_page = NULL;
 858                if (ret)
 859                        return ret;
 860        }
 861
 862        get_page(page);         /* It is in dio */
 863        sdio->cur_page = page;
 864        sdio->cur_page_offset = offset;
 865        sdio->cur_page_len = len;
 866        sdio->cur_page_block = blocknr;
 867        sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
 868out:
 869        /*
 870         * If sdio->boundary then we want to schedule the IO now to
 871         * avoid metadata seeks.
 872         */
 873        if (sdio->boundary) {
 874                ret = dio_send_cur_page(dio, sdio, map_bh);
 875                if (sdio->bio)
 876                        dio_bio_submit(dio, sdio);
 877                put_page(sdio->cur_page);
 878                sdio->cur_page = NULL;
 879        }
 880        return ret;
 881}
 882
 883/*
 884 * If we are not writing the entire block and get_block() allocated
 885 * the block for us, we need to fill-in the unused portion of the
 886 * block with zeros. This happens only if user-buffer, fileoffset or
 887 * io length is not filesystem block-size multiple.
 888 *
 889 * `end' is zero if we're doing the start of the IO, 1 at the end of the
 890 * IO.
 891 */
 892static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
 893                int end, struct buffer_head *map_bh)
 894{
 895        unsigned dio_blocks_per_fs_block;
 896        unsigned this_chunk_blocks;     /* In dio_blocks */
 897        unsigned this_chunk_bytes;
 898        struct page *page;
 899
 900        sdio->start_zero_done = 1;
 901        if (!sdio->blkfactor || !buffer_new(map_bh))
 902                return;
 903
 904        dio_blocks_per_fs_block = 1 << sdio->blkfactor;
 905        this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
 906
 907        if (!this_chunk_blocks)
 908                return;
 909
 910        /*
 911         * We need to zero out part of an fs block.  It is either at the
 912         * beginning or the end of the fs block.
 913         */
 914        if (end) 
 915                this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
 916
 917        this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
 918
 919        page = ZERO_PAGE(0);
 920        if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
 921                                sdio->next_block_for_io, map_bh))
 922                return;
 923
 924        sdio->next_block_for_io += this_chunk_blocks;
 925}
 926
 927/*
 928 * Walk the user pages, and the file, mapping blocks to disk and generating
 929 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
 930 * into submit_page_section(), which takes care of the next stage of submission
 931 *
 932 * Direct IO against a blockdev is different from a file.  Because we can
 933 * happily perform page-sized but 512-byte aligned IOs.  It is important that
 934 * blockdev IO be able to have fine alignment and large sizes.
 935 *
 936 * So what we do is to permit the ->get_block function to populate bh.b_size
 937 * with the size of IO which is permitted at this offset and this i_blkbits.
 938 *
 939 * For best results, the blockdev should be set up with 512-byte i_blkbits and
 940 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
 941 * fine alignment but still allows this function to work in PAGE_SIZE units.
 942 */
 943static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
 944                        struct buffer_head *map_bh)
 945{
 946        const unsigned blkbits = sdio->blkbits;
 947        const unsigned i_blkbits = blkbits + sdio->blkfactor;
 948        int ret = 0;
 949
 950        while (sdio->block_in_file < sdio->final_block_in_request) {
 951                struct page *page;
 952                size_t from, to;
 953
 954                page = dio_get_page(dio, sdio);
 955                if (IS_ERR(page)) {
 956                        ret = PTR_ERR(page);
 957                        goto out;
 958                }
 959                from = sdio->head ? 0 : sdio->from;
 960                to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
 961                sdio->head++;
 962
 963                while (from < to) {
 964                        unsigned this_chunk_bytes;      /* # of bytes mapped */
 965                        unsigned this_chunk_blocks;     /* # of blocks */
 966                        unsigned u;
 967
 968                        if (sdio->blocks_available == 0) {
 969                                /*
 970                                 * Need to go and map some more disk
 971                                 */
 972                                unsigned long blkmask;
 973                                unsigned long dio_remainder;
 974
 975                                ret = get_more_blocks(dio, sdio, map_bh);
 976                                if (ret) {
 977                                        put_page(page);
 978                                        goto out;
 979                                }
 980                                if (!buffer_mapped(map_bh))
 981                                        goto do_holes;
 982
 983                                sdio->blocks_available =
 984                                                map_bh->b_size >> blkbits;
 985                                sdio->next_block_for_io =
 986                                        map_bh->b_blocknr << sdio->blkfactor;
 987                                if (buffer_new(map_bh)) {
 988                                        clean_bdev_aliases(
 989                                                map_bh->b_bdev,
 990                                                map_bh->b_blocknr,
 991                                                map_bh->b_size >> i_blkbits);
 992                                }
 993
 994                                if (!sdio->blkfactor)
 995                                        goto do_holes;
 996
 997                                blkmask = (1 << sdio->blkfactor) - 1;
 998                                dio_remainder = (sdio->block_in_file & blkmask);
 999
1000                                /*
1001                                 * If we are at the start of IO and that IO
1002                                 * starts partway into a fs-block,
1003                                 * dio_remainder will be non-zero.  If the IO
1004                                 * is a read then we can simply advance the IO
1005                                 * cursor to the first block which is to be
1006                                 * read.  But if the IO is a write and the
1007                                 * block was newly allocated we cannot do that;
1008                                 * the start of the fs block must be zeroed out
1009                                 * on-disk
1010                                 */
1011                                if (!buffer_new(map_bh))
1012                                        sdio->next_block_for_io += dio_remainder;
1013                                sdio->blocks_available -= dio_remainder;
1014                        }
1015do_holes:
1016                        /* Handle holes */
1017                        if (!buffer_mapped(map_bh)) {
1018                                loff_t i_size_aligned;
1019
1020                                /* AKPM: eargh, -ENOTBLK is a hack */
1021                                if (dio->op == REQ_OP_WRITE) {
1022                                        put_page(page);
1023                                        return -ENOTBLK;
1024                                }
1025
1026                                /*
1027                                 * Be sure to account for a partial block as the
1028                                 * last block in the file
1029                                 */
1030                                i_size_aligned = ALIGN(i_size_read(dio->inode),
1031                                                        1 << blkbits);
1032                                if (sdio->block_in_file >=
1033                                                i_size_aligned >> blkbits) {
1034                                        /* We hit eof */
1035                                        put_page(page);
1036                                        goto out;
1037                                }
1038                                zero_user(page, from, 1 << blkbits);
1039                                sdio->block_in_file++;
1040                                from += 1 << blkbits;
1041                                dio->result += 1 << blkbits;
1042                                goto next_block;
1043                        }
1044
1045                        /*
1046                         * If we're performing IO which has an alignment which
1047                         * is finer than the underlying fs, go check to see if
1048                         * we must zero out the start of this block.
1049                         */
1050                        if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1051                                dio_zero_block(dio, sdio, 0, map_bh);
1052
1053                        /*
1054                         * Work out, in this_chunk_blocks, how much disk we
1055                         * can add to this page
1056                         */
1057                        this_chunk_blocks = sdio->blocks_available;
1058                        u = (to - from) >> blkbits;
1059                        if (this_chunk_blocks > u)
1060                                this_chunk_blocks = u;
1061                        u = sdio->final_block_in_request - sdio->block_in_file;
1062                        if (this_chunk_blocks > u)
1063                                this_chunk_blocks = u;
1064                        this_chunk_bytes = this_chunk_blocks << blkbits;
1065                        BUG_ON(this_chunk_bytes == 0);
1066
1067                        if (this_chunk_blocks == sdio->blocks_available)
1068                                sdio->boundary = buffer_boundary(map_bh);
1069                        ret = submit_page_section(dio, sdio, page,
1070                                                  from,
1071                                                  this_chunk_bytes,
1072                                                  sdio->next_block_for_io,
1073                                                  map_bh);
1074                        if (ret) {
1075                                put_page(page);
1076                                goto out;
1077                        }
1078                        sdio->next_block_for_io += this_chunk_blocks;
1079
1080                        sdio->block_in_file += this_chunk_blocks;
1081                        from += this_chunk_bytes;
1082                        dio->result += this_chunk_bytes;
1083                        sdio->blocks_available -= this_chunk_blocks;
1084next_block:
1085                        BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1086                        if (sdio->block_in_file == sdio->final_block_in_request)
1087                                break;
1088                }
1089
1090                /* Drop the ref which was taken in get_user_pages() */
1091                put_page(page);
1092        }
1093out:
1094        return ret;
1095}
1096
1097static inline int drop_refcount(struct dio *dio)
1098{
1099        int ret2;
1100        unsigned long flags;
1101
1102        /*
1103         * Sync will always be dropping the final ref and completing the
1104         * operation.  AIO can if it was a broken operation described above or
1105         * in fact if all the bios race to complete before we get here.  In
1106         * that case dio_complete() translates the EIOCBQUEUED into the proper
1107         * return code that the caller will hand to ->complete().
1108         *
1109         * This is managed by the bio_lock instead of being an atomic_t so that
1110         * completion paths can drop their ref and use the remaining count to
1111         * decide to wake the submission path atomically.
1112         */
1113        spin_lock_irqsave(&dio->bio_lock, flags);
1114        ret2 = --dio->refcount;
1115        spin_unlock_irqrestore(&dio->bio_lock, flags);
1116        return ret2;
1117}
1118
1119/*
1120 * This is a library function for use by filesystem drivers.
1121 *
1122 * The locking rules are governed by the flags parameter:
1123 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1124 *    scheme for dumb filesystems.
1125 *    For writes this function is called under i_mutex and returns with
1126 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1127 *    taken and dropped again before returning.
1128 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1129 *    internal locking but rather rely on the filesystem to synchronize
1130 *    direct I/O reads/writes versus each other and truncate.
1131 *
1132 * To help with locking against truncate we incremented the i_dio_count
1133 * counter before starting direct I/O, and decrement it once we are done.
1134 * Truncate can wait for it to reach zero to provide exclusion.  It is
1135 * expected that filesystem provide exclusion between new direct I/O
1136 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1137 * but other filesystems need to take care of this on their own.
1138 *
1139 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1140 * is always inlined. Otherwise gcc is unable to split the structure into
1141 * individual fields and will generate much worse code. This is important
1142 * for the whole file.
1143 */
1144static inline ssize_t
1145do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1146                      struct block_device *bdev, struct iov_iter *iter,
1147                      get_block_t get_block, dio_iodone_t end_io,
1148                      dio_submit_t submit_io, int flags)
1149{
1150        unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1151        unsigned blkbits = i_blkbits;
1152        unsigned blocksize_mask = (1 << blkbits) - 1;
1153        ssize_t retval = -EINVAL;
1154        const size_t count = iov_iter_count(iter);
1155        loff_t offset = iocb->ki_pos;
1156        const loff_t end = offset + count;
1157        struct dio *dio;
1158        struct dio_submit sdio = { 0, };
1159        struct buffer_head map_bh = { 0, };
1160        struct blk_plug plug;
1161        unsigned long align = offset | iov_iter_alignment(iter);
1162
1163        /*
1164         * Avoid references to bdev if not absolutely needed to give
1165         * the early prefetch in the caller enough time.
1166         */
1167
1168        if (align & blocksize_mask) {
1169                if (bdev)
1170                        blkbits = blksize_bits(bdev_logical_block_size(bdev));
1171                blocksize_mask = (1 << blkbits) - 1;
1172                if (align & blocksize_mask)
1173                        goto out;
1174        }
1175
1176        /* watch out for a 0 len io from a tricksy fs */
1177        if (iov_iter_rw(iter) == READ && !count)
1178                return 0;
1179
1180        dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1181        retval = -ENOMEM;
1182        if (!dio)
1183                goto out;
1184        /*
1185         * Believe it or not, zeroing out the page array caused a .5%
1186         * performance regression in a database benchmark.  So, we take
1187         * care to only zero out what's needed.
1188         */
1189        memset(dio, 0, offsetof(struct dio, pages));
1190
1191        dio->flags = flags;
1192        if (dio->flags & DIO_LOCKING) {
1193                if (iov_iter_rw(iter) == READ) {
1194                        struct address_space *mapping =
1195                                        iocb->ki_filp->f_mapping;
1196
1197                        /* will be released by direct_io_worker */
1198                        inode_lock(inode);
1199
1200                        retval = filemap_write_and_wait_range(mapping, offset,
1201                                                              end - 1);
1202                        if (retval) {
1203                                inode_unlock(inode);
1204                                kmem_cache_free(dio_cache, dio);
1205                                goto out;
1206                        }
1207                }
1208        }
1209
1210        /* Once we sampled i_size check for reads beyond EOF */
1211        dio->i_size = i_size_read(inode);
1212        if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1213                if (dio->flags & DIO_LOCKING)
1214                        inode_unlock(inode);
1215                kmem_cache_free(dio_cache, dio);
1216                retval = 0;
1217                goto out;
1218        }
1219
1220        /*
1221         * For file extending writes updating i_size before data writeouts
1222         * complete can expose uninitialized blocks in dumb filesystems.
1223         * In that case we need to wait for I/O completion even if asked
1224         * for an asynchronous write.
1225         */
1226        if (is_sync_kiocb(iocb))
1227                dio->is_async = false;
1228        else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1229                dio->is_async = false;
1230        else
1231                dio->is_async = true;
1232
1233        dio->inode = inode;
1234        if (iov_iter_rw(iter) == WRITE) {
1235                dio->op = REQ_OP_WRITE;
1236                dio->op_flags = REQ_SYNC | REQ_IDLE;
1237                if (iocb->ki_flags & IOCB_NOWAIT)
1238                        dio->op_flags |= REQ_NOWAIT;
1239        } else {
1240                dio->op = REQ_OP_READ;
1241        }
1242        if (iocb->ki_flags & IOCB_HIPRI)
1243                dio->op_flags |= REQ_HIPRI;
1244
1245        /*
1246         * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1247         * so that we can call ->fsync.
1248         */
1249        if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1250                retval = 0;
1251                if (iocb->ki_flags & IOCB_DSYNC)
1252                        retval = dio_set_defer_completion(dio);
1253                else if (!dio->inode->i_sb->s_dio_done_wq) {
1254                        /*
1255                         * In case of AIO write racing with buffered read we
1256                         * need to defer completion. We can't decide this now,
1257                         * however the workqueue needs to be initialized here.
1258                         */
1259                        retval = sb_init_dio_done_wq(dio->inode->i_sb);
1260                }
1261                if (retval) {
1262                        /*
1263                         * We grab i_mutex only for reads so we don't have
1264                         * to release it here
1265                         */
1266                        kmem_cache_free(dio_cache, dio);
1267                        goto out;
1268                }
1269        }
1270
1271        /*
1272         * Will be decremented at I/O completion time.
1273         */
1274        inode_dio_begin(inode);
1275
1276        retval = 0;
1277        sdio.blkbits = blkbits;
1278        sdio.blkfactor = i_blkbits - blkbits;
1279        sdio.block_in_file = offset >> blkbits;
1280
1281        sdio.get_block = get_block;
1282        dio->end_io = end_io;
1283        sdio.submit_io = submit_io;
1284        sdio.final_block_in_bio = -1;
1285        sdio.next_block_for_io = -1;
1286
1287        dio->iocb = iocb;
1288
1289        spin_lock_init(&dio->bio_lock);
1290        dio->refcount = 1;
1291
1292        dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1293        sdio.iter = iter;
1294        sdio.final_block_in_request = end >> blkbits;
1295
1296        /*
1297         * In case of non-aligned buffers, we may need 2 more
1298         * pages since we need to zero out first and last block.
1299         */
1300        if (unlikely(sdio.blkfactor))
1301                sdio.pages_in_io = 2;
1302
1303        sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1304
1305        blk_start_plug(&plug);
1306
1307        retval = do_direct_IO(dio, &sdio, &map_bh);
1308        if (retval)
1309                dio_cleanup(dio, &sdio);
1310
1311        if (retval == -ENOTBLK) {
1312                /*
1313                 * The remaining part of the request will be
1314                 * be handled by buffered I/O when we return
1315                 */
1316                retval = 0;
1317        }
1318        /*
1319         * There may be some unwritten disk at the end of a part-written
1320         * fs-block-sized block.  Go zero that now.
1321         */
1322        dio_zero_block(dio, &sdio, 1, &map_bh);
1323
1324        if (sdio.cur_page) {
1325                ssize_t ret2;
1326
1327                ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1328                if (retval == 0)
1329                        retval = ret2;
1330                put_page(sdio.cur_page);
1331                sdio.cur_page = NULL;
1332        }
1333        if (sdio.bio)
1334                dio_bio_submit(dio, &sdio);
1335
1336        blk_finish_plug(&plug);
1337
1338        /*
1339         * It is possible that, we return short IO due to end of file.
1340         * In that case, we need to release all the pages we got hold on.
1341         */
1342        dio_cleanup(dio, &sdio);
1343
1344        /*
1345         * All block lookups have been performed. For READ requests
1346         * we can let i_mutex go now that its achieved its purpose
1347         * of protecting us from looking up uninitialized blocks.
1348         */
1349        if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1350                inode_unlock(dio->inode);
1351
1352        /*
1353         * The only time we want to leave bios in flight is when a successful
1354         * partial aio read or full aio write have been setup.  In that case
1355         * bio completion will call aio_complete.  The only time it's safe to
1356         * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1357         * This had *better* be the only place that raises -EIOCBQUEUED.
1358         */
1359        BUG_ON(retval == -EIOCBQUEUED);
1360        if (dio->is_async && retval == 0 && dio->result &&
1361            (iov_iter_rw(iter) == READ || dio->result == count))
1362                retval = -EIOCBQUEUED;
1363        else
1364                dio_await_completion(dio);
1365
1366        if (drop_refcount(dio) == 0) {
1367                retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1368        } else
1369                BUG_ON(retval != -EIOCBQUEUED);
1370
1371out:
1372        return retval;
1373}
1374
1375ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1376                             struct block_device *bdev, struct iov_iter *iter,
1377                             get_block_t get_block,
1378                             dio_iodone_t end_io, dio_submit_t submit_io,
1379                             int flags)
1380{
1381        /*
1382         * The block device state is needed in the end to finally
1383         * submit everything.  Since it's likely to be cache cold
1384         * prefetch it here as first thing to hide some of the
1385         * latency.
1386         *
1387         * Attempt to prefetch the pieces we likely need later.
1388         */
1389        prefetch(&bdev->bd_disk->part_tbl);
1390        prefetch(bdev->bd_queue);
1391        prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1392
1393        return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1394                                     end_io, submit_io, flags);
1395}
1396
1397EXPORT_SYMBOL(__blockdev_direct_IO);
1398
1399static __init int dio_init(void)
1400{
1401        dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1402        return 0;
1403}
1404module_init(dio_init)
1405