linux/fs/dlm/lowcomms.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/******************************************************************************
   3*******************************************************************************
   4**
   5**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
   6**  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
   7**
   8**
   9*******************************************************************************
  10******************************************************************************/
  11
  12/*
  13 * lowcomms.c
  14 *
  15 * This is the "low-level" comms layer.
  16 *
  17 * It is responsible for sending/receiving messages
  18 * from other nodes in the cluster.
  19 *
  20 * Cluster nodes are referred to by their nodeids. nodeids are
  21 * simply 32 bit numbers to the locking module - if they need to
  22 * be expanded for the cluster infrastructure then that is its
  23 * responsibility. It is this layer's
  24 * responsibility to resolve these into IP address or
  25 * whatever it needs for inter-node communication.
  26 *
  27 * The comms level is two kernel threads that deal mainly with
  28 * the receiving of messages from other nodes and passing them
  29 * up to the mid-level comms layer (which understands the
  30 * message format) for execution by the locking core, and
  31 * a send thread which does all the setting up of connections
  32 * to remote nodes and the sending of data. Threads are not allowed
  33 * to send their own data because it may cause them to wait in times
  34 * of high load. Also, this way, the sending thread can collect together
  35 * messages bound for one node and send them in one block.
  36 *
  37 * lowcomms will choose to use either TCP or SCTP as its transport layer
  38 * depending on the configuration variable 'protocol'. This should be set
  39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
  40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
  41 * for the DLM to function.
  42 *
  43 */
  44
  45#include <asm/ioctls.h>
  46#include <net/sock.h>
  47#include <net/tcp.h>
  48#include <linux/pagemap.h>
  49#include <linux/file.h>
  50#include <linux/mutex.h>
  51#include <linux/sctp.h>
  52#include <linux/slab.h>
  53#include <net/sctp/sctp.h>
  54#include <net/ipv6.h>
  55
  56#include "dlm_internal.h"
  57#include "lowcomms.h"
  58#include "midcomms.h"
  59#include "config.h"
  60
  61#define NEEDED_RMEM (4*1024*1024)
  62#define CONN_HASH_SIZE 32
  63
  64/* Number of messages to send before rescheduling */
  65#define MAX_SEND_MSG_COUNT 25
  66
  67struct cbuf {
  68        unsigned int base;
  69        unsigned int len;
  70        unsigned int mask;
  71};
  72
  73static void cbuf_add(struct cbuf *cb, int n)
  74{
  75        cb->len += n;
  76}
  77
  78static int cbuf_data(struct cbuf *cb)
  79{
  80        return ((cb->base + cb->len) & cb->mask);
  81}
  82
  83static void cbuf_init(struct cbuf *cb, int size)
  84{
  85        cb->base = cb->len = 0;
  86        cb->mask = size-1;
  87}
  88
  89static void cbuf_eat(struct cbuf *cb, int n)
  90{
  91        cb->len  -= n;
  92        cb->base += n;
  93        cb->base &= cb->mask;
  94}
  95
  96static bool cbuf_empty(struct cbuf *cb)
  97{
  98        return cb->len == 0;
  99}
 100
 101struct connection {
 102        struct socket *sock;    /* NULL if not connected */
 103        uint32_t nodeid;        /* So we know who we are in the list */
 104        struct mutex sock_mutex;
 105        unsigned long flags;
 106#define CF_READ_PENDING 1
 107#define CF_WRITE_PENDING 2
 108#define CF_INIT_PENDING 4
 109#define CF_IS_OTHERCON 5
 110#define CF_CLOSE 6
 111#define CF_APP_LIMITED 7
 112#define CF_CLOSING 8
 113        struct list_head writequeue;  /* List of outgoing writequeue_entries */
 114        spinlock_t writequeue_lock;
 115        int (*rx_action) (struct connection *); /* What to do when active */
 116        void (*connect_action) (struct connection *);   /* What to do to connect */
 117        struct page *rx_page;
 118        struct cbuf cb;
 119        int retries;
 120#define MAX_CONNECT_RETRIES 3
 121        struct hlist_node list;
 122        struct connection *othercon;
 123        struct work_struct rwork; /* Receive workqueue */
 124        struct work_struct swork; /* Send workqueue */
 125};
 126#define sock2con(x) ((struct connection *)(x)->sk_user_data)
 127
 128/* An entry waiting to be sent */
 129struct writequeue_entry {
 130        struct list_head list;
 131        struct page *page;
 132        int offset;
 133        int len;
 134        int end;
 135        int users;
 136        struct connection *con;
 137};
 138
 139struct dlm_node_addr {
 140        struct list_head list;
 141        int nodeid;
 142        int addr_count;
 143        int curr_addr_index;
 144        struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
 145};
 146
 147static struct listen_sock_callbacks {
 148        void (*sk_error_report)(struct sock *);
 149        void (*sk_data_ready)(struct sock *);
 150        void (*sk_state_change)(struct sock *);
 151        void (*sk_write_space)(struct sock *);
 152} listen_sock;
 153
 154static LIST_HEAD(dlm_node_addrs);
 155static DEFINE_SPINLOCK(dlm_node_addrs_spin);
 156
 157static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
 158static int dlm_local_count;
 159static int dlm_allow_conn;
 160
 161/* Work queues */
 162static struct workqueue_struct *recv_workqueue;
 163static struct workqueue_struct *send_workqueue;
 164
 165static struct hlist_head connection_hash[CONN_HASH_SIZE];
 166static DEFINE_MUTEX(connections_lock);
 167static struct kmem_cache *con_cache;
 168
 169static void process_recv_sockets(struct work_struct *work);
 170static void process_send_sockets(struct work_struct *work);
 171
 172
 173/* This is deliberately very simple because most clusters have simple
 174   sequential nodeids, so we should be able to go straight to a connection
 175   struct in the array */
 176static inline int nodeid_hash(int nodeid)
 177{
 178        return nodeid & (CONN_HASH_SIZE-1);
 179}
 180
 181static struct connection *__find_con(int nodeid)
 182{
 183        int r;
 184        struct connection *con;
 185
 186        r = nodeid_hash(nodeid);
 187
 188        hlist_for_each_entry(con, &connection_hash[r], list) {
 189                if (con->nodeid == nodeid)
 190                        return con;
 191        }
 192        return NULL;
 193}
 194
 195/*
 196 * If 'allocation' is zero then we don't attempt to create a new
 197 * connection structure for this node.
 198 */
 199static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
 200{
 201        struct connection *con = NULL;
 202        int r;
 203
 204        con = __find_con(nodeid);
 205        if (con || !alloc)
 206                return con;
 207
 208        con = kmem_cache_zalloc(con_cache, alloc);
 209        if (!con)
 210                return NULL;
 211
 212        r = nodeid_hash(nodeid);
 213        hlist_add_head(&con->list, &connection_hash[r]);
 214
 215        con->nodeid = nodeid;
 216        mutex_init(&con->sock_mutex);
 217        INIT_LIST_HEAD(&con->writequeue);
 218        spin_lock_init(&con->writequeue_lock);
 219        INIT_WORK(&con->swork, process_send_sockets);
 220        INIT_WORK(&con->rwork, process_recv_sockets);
 221
 222        /* Setup action pointers for child sockets */
 223        if (con->nodeid) {
 224                struct connection *zerocon = __find_con(0);
 225
 226                con->connect_action = zerocon->connect_action;
 227                if (!con->rx_action)
 228                        con->rx_action = zerocon->rx_action;
 229        }
 230
 231        return con;
 232}
 233
 234/* Loop round all connections */
 235static void foreach_conn(void (*conn_func)(struct connection *c))
 236{
 237        int i;
 238        struct hlist_node *n;
 239        struct connection *con;
 240
 241        for (i = 0; i < CONN_HASH_SIZE; i++) {
 242                hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
 243                        conn_func(con);
 244        }
 245}
 246
 247static struct connection *nodeid2con(int nodeid, gfp_t allocation)
 248{
 249        struct connection *con;
 250
 251        mutex_lock(&connections_lock);
 252        con = __nodeid2con(nodeid, allocation);
 253        mutex_unlock(&connections_lock);
 254
 255        return con;
 256}
 257
 258static struct dlm_node_addr *find_node_addr(int nodeid)
 259{
 260        struct dlm_node_addr *na;
 261
 262        list_for_each_entry(na, &dlm_node_addrs, list) {
 263                if (na->nodeid == nodeid)
 264                        return na;
 265        }
 266        return NULL;
 267}
 268
 269static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
 270{
 271        switch (x->ss_family) {
 272        case AF_INET: {
 273                struct sockaddr_in *sinx = (struct sockaddr_in *)x;
 274                struct sockaddr_in *siny = (struct sockaddr_in *)y;
 275                if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
 276                        return 0;
 277                if (sinx->sin_port != siny->sin_port)
 278                        return 0;
 279                break;
 280        }
 281        case AF_INET6: {
 282                struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
 283                struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
 284                if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
 285                        return 0;
 286                if (sinx->sin6_port != siny->sin6_port)
 287                        return 0;
 288                break;
 289        }
 290        default:
 291                return 0;
 292        }
 293        return 1;
 294}
 295
 296static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
 297                          struct sockaddr *sa_out, bool try_new_addr)
 298{
 299        struct sockaddr_storage sas;
 300        struct dlm_node_addr *na;
 301
 302        if (!dlm_local_count)
 303                return -1;
 304
 305        spin_lock(&dlm_node_addrs_spin);
 306        na = find_node_addr(nodeid);
 307        if (na && na->addr_count) {
 308                memcpy(&sas, na->addr[na->curr_addr_index],
 309                       sizeof(struct sockaddr_storage));
 310
 311                if (try_new_addr) {
 312                        na->curr_addr_index++;
 313                        if (na->curr_addr_index == na->addr_count)
 314                                na->curr_addr_index = 0;
 315                }
 316        }
 317        spin_unlock(&dlm_node_addrs_spin);
 318
 319        if (!na)
 320                return -EEXIST;
 321
 322        if (!na->addr_count)
 323                return -ENOENT;
 324
 325        if (sas_out)
 326                memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
 327
 328        if (!sa_out)
 329                return 0;
 330
 331        if (dlm_local_addr[0]->ss_family == AF_INET) {
 332                struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
 333                struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
 334                ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
 335        } else {
 336                struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
 337                struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
 338                ret6->sin6_addr = in6->sin6_addr;
 339        }
 340
 341        return 0;
 342}
 343
 344static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
 345{
 346        struct dlm_node_addr *na;
 347        int rv = -EEXIST;
 348        int addr_i;
 349
 350        spin_lock(&dlm_node_addrs_spin);
 351        list_for_each_entry(na, &dlm_node_addrs, list) {
 352                if (!na->addr_count)
 353                        continue;
 354
 355                for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
 356                        if (addr_compare(na->addr[addr_i], addr)) {
 357                                *nodeid = na->nodeid;
 358                                rv = 0;
 359                                goto unlock;
 360                        }
 361                }
 362        }
 363unlock:
 364        spin_unlock(&dlm_node_addrs_spin);
 365        return rv;
 366}
 367
 368int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
 369{
 370        struct sockaddr_storage *new_addr;
 371        struct dlm_node_addr *new_node, *na;
 372
 373        new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
 374        if (!new_node)
 375                return -ENOMEM;
 376
 377        new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
 378        if (!new_addr) {
 379                kfree(new_node);
 380                return -ENOMEM;
 381        }
 382
 383        memcpy(new_addr, addr, len);
 384
 385        spin_lock(&dlm_node_addrs_spin);
 386        na = find_node_addr(nodeid);
 387        if (!na) {
 388                new_node->nodeid = nodeid;
 389                new_node->addr[0] = new_addr;
 390                new_node->addr_count = 1;
 391                list_add(&new_node->list, &dlm_node_addrs);
 392                spin_unlock(&dlm_node_addrs_spin);
 393                return 0;
 394        }
 395
 396        if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
 397                spin_unlock(&dlm_node_addrs_spin);
 398                kfree(new_addr);
 399                kfree(new_node);
 400                return -ENOSPC;
 401        }
 402
 403        na->addr[na->addr_count++] = new_addr;
 404        spin_unlock(&dlm_node_addrs_spin);
 405        kfree(new_node);
 406        return 0;
 407}
 408
 409/* Data available on socket or listen socket received a connect */
 410static void lowcomms_data_ready(struct sock *sk)
 411{
 412        struct connection *con;
 413
 414        read_lock_bh(&sk->sk_callback_lock);
 415        con = sock2con(sk);
 416        if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
 417                queue_work(recv_workqueue, &con->rwork);
 418        read_unlock_bh(&sk->sk_callback_lock);
 419}
 420
 421static void lowcomms_write_space(struct sock *sk)
 422{
 423        struct connection *con;
 424
 425        read_lock_bh(&sk->sk_callback_lock);
 426        con = sock2con(sk);
 427        if (!con)
 428                goto out;
 429
 430        clear_bit(SOCK_NOSPACE, &con->sock->flags);
 431
 432        if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
 433                con->sock->sk->sk_write_pending--;
 434                clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
 435        }
 436
 437        queue_work(send_workqueue, &con->swork);
 438out:
 439        read_unlock_bh(&sk->sk_callback_lock);
 440}
 441
 442static inline void lowcomms_connect_sock(struct connection *con)
 443{
 444        if (test_bit(CF_CLOSE, &con->flags))
 445                return;
 446        queue_work(send_workqueue, &con->swork);
 447        cond_resched();
 448}
 449
 450static void lowcomms_state_change(struct sock *sk)
 451{
 452        /* SCTP layer is not calling sk_data_ready when the connection
 453         * is done, so we catch the signal through here. Also, it
 454         * doesn't switch socket state when entering shutdown, so we
 455         * skip the write in that case.
 456         */
 457        if (sk->sk_shutdown) {
 458                if (sk->sk_shutdown == RCV_SHUTDOWN)
 459                        lowcomms_data_ready(sk);
 460        } else if (sk->sk_state == TCP_ESTABLISHED) {
 461                lowcomms_write_space(sk);
 462        }
 463}
 464
 465int dlm_lowcomms_connect_node(int nodeid)
 466{
 467        struct connection *con;
 468
 469        if (nodeid == dlm_our_nodeid())
 470                return 0;
 471
 472        con = nodeid2con(nodeid, GFP_NOFS);
 473        if (!con)
 474                return -ENOMEM;
 475        lowcomms_connect_sock(con);
 476        return 0;
 477}
 478
 479static void lowcomms_error_report(struct sock *sk)
 480{
 481        struct connection *con;
 482        struct sockaddr_storage saddr;
 483        void (*orig_report)(struct sock *) = NULL;
 484
 485        read_lock_bh(&sk->sk_callback_lock);
 486        con = sock2con(sk);
 487        if (con == NULL)
 488                goto out;
 489
 490        orig_report = listen_sock.sk_error_report;
 491        if (con->sock == NULL ||
 492            kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
 493                printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 494                                   "sending to node %d, port %d, "
 495                                   "sk_err=%d/%d\n", dlm_our_nodeid(),
 496                                   con->nodeid, dlm_config.ci_tcp_port,
 497                                   sk->sk_err, sk->sk_err_soft);
 498        } else if (saddr.ss_family == AF_INET) {
 499                struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
 500
 501                printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 502                                   "sending to node %d at %pI4, port %d, "
 503                                   "sk_err=%d/%d\n", dlm_our_nodeid(),
 504                                   con->nodeid, &sin4->sin_addr.s_addr,
 505                                   dlm_config.ci_tcp_port, sk->sk_err,
 506                                   sk->sk_err_soft);
 507        } else {
 508                struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
 509
 510                printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 511                                   "sending to node %d at %u.%u.%u.%u, "
 512                                   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
 513                                   con->nodeid, sin6->sin6_addr.s6_addr32[0],
 514                                   sin6->sin6_addr.s6_addr32[1],
 515                                   sin6->sin6_addr.s6_addr32[2],
 516                                   sin6->sin6_addr.s6_addr32[3],
 517                                   dlm_config.ci_tcp_port, sk->sk_err,
 518                                   sk->sk_err_soft);
 519        }
 520out:
 521        read_unlock_bh(&sk->sk_callback_lock);
 522        if (orig_report)
 523                orig_report(sk);
 524}
 525
 526/* Note: sk_callback_lock must be locked before calling this function. */
 527static void save_listen_callbacks(struct socket *sock)
 528{
 529        struct sock *sk = sock->sk;
 530
 531        listen_sock.sk_data_ready = sk->sk_data_ready;
 532        listen_sock.sk_state_change = sk->sk_state_change;
 533        listen_sock.sk_write_space = sk->sk_write_space;
 534        listen_sock.sk_error_report = sk->sk_error_report;
 535}
 536
 537static void restore_callbacks(struct socket *sock)
 538{
 539        struct sock *sk = sock->sk;
 540
 541        write_lock_bh(&sk->sk_callback_lock);
 542        sk->sk_user_data = NULL;
 543        sk->sk_data_ready = listen_sock.sk_data_ready;
 544        sk->sk_state_change = listen_sock.sk_state_change;
 545        sk->sk_write_space = listen_sock.sk_write_space;
 546        sk->sk_error_report = listen_sock.sk_error_report;
 547        write_unlock_bh(&sk->sk_callback_lock);
 548}
 549
 550/* Make a socket active */
 551static void add_sock(struct socket *sock, struct connection *con)
 552{
 553        struct sock *sk = sock->sk;
 554
 555        write_lock_bh(&sk->sk_callback_lock);
 556        con->sock = sock;
 557
 558        sk->sk_user_data = con;
 559        /* Install a data_ready callback */
 560        sk->sk_data_ready = lowcomms_data_ready;
 561        sk->sk_write_space = lowcomms_write_space;
 562        sk->sk_state_change = lowcomms_state_change;
 563        sk->sk_allocation = GFP_NOFS;
 564        sk->sk_error_report = lowcomms_error_report;
 565        write_unlock_bh(&sk->sk_callback_lock);
 566}
 567
 568/* Add the port number to an IPv6 or 4 sockaddr and return the address
 569   length */
 570static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
 571                          int *addr_len)
 572{
 573        saddr->ss_family =  dlm_local_addr[0]->ss_family;
 574        if (saddr->ss_family == AF_INET) {
 575                struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
 576                in4_addr->sin_port = cpu_to_be16(port);
 577                *addr_len = sizeof(struct sockaddr_in);
 578                memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
 579        } else {
 580                struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
 581                in6_addr->sin6_port = cpu_to_be16(port);
 582                *addr_len = sizeof(struct sockaddr_in6);
 583        }
 584        memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
 585}
 586
 587/* Close a remote connection and tidy up */
 588static void close_connection(struct connection *con, bool and_other,
 589                             bool tx, bool rx)
 590{
 591        bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
 592
 593        if (tx && !closing && cancel_work_sync(&con->swork)) {
 594                log_print("canceled swork for node %d", con->nodeid);
 595                clear_bit(CF_WRITE_PENDING, &con->flags);
 596        }
 597        if (rx && !closing && cancel_work_sync(&con->rwork)) {
 598                log_print("canceled rwork for node %d", con->nodeid);
 599                clear_bit(CF_READ_PENDING, &con->flags);
 600        }
 601
 602        mutex_lock(&con->sock_mutex);
 603        if (con->sock) {
 604                restore_callbacks(con->sock);
 605                sock_release(con->sock);
 606                con->sock = NULL;
 607        }
 608        if (con->othercon && and_other) {
 609                /* Will only re-enter once. */
 610                close_connection(con->othercon, false, true, true);
 611        }
 612        if (con->rx_page) {
 613                __free_page(con->rx_page);
 614                con->rx_page = NULL;
 615        }
 616
 617        con->retries = 0;
 618        mutex_unlock(&con->sock_mutex);
 619        clear_bit(CF_CLOSING, &con->flags);
 620}
 621
 622/* Data received from remote end */
 623static int receive_from_sock(struct connection *con)
 624{
 625        int ret = 0;
 626        struct msghdr msg = {};
 627        struct kvec iov[2];
 628        unsigned len;
 629        int r;
 630        int call_again_soon = 0;
 631        int nvec;
 632
 633        mutex_lock(&con->sock_mutex);
 634
 635        if (con->sock == NULL) {
 636                ret = -EAGAIN;
 637                goto out_close;
 638        }
 639        if (con->nodeid == 0) {
 640                ret = -EINVAL;
 641                goto out_close;
 642        }
 643
 644        if (con->rx_page == NULL) {
 645                /*
 646                 * This doesn't need to be atomic, but I think it should
 647                 * improve performance if it is.
 648                 */
 649                con->rx_page = alloc_page(GFP_ATOMIC);
 650                if (con->rx_page == NULL)
 651                        goto out_resched;
 652                cbuf_init(&con->cb, PAGE_SIZE);
 653        }
 654
 655        /*
 656         * iov[0] is the bit of the circular buffer between the current end
 657         * point (cb.base + cb.len) and the end of the buffer.
 658         */
 659        iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
 660        iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
 661        iov[1].iov_len = 0;
 662        nvec = 1;
 663
 664        /*
 665         * iov[1] is the bit of the circular buffer between the start of the
 666         * buffer and the start of the currently used section (cb.base)
 667         */
 668        if (cbuf_data(&con->cb) >= con->cb.base) {
 669                iov[0].iov_len = PAGE_SIZE - cbuf_data(&con->cb);
 670                iov[1].iov_len = con->cb.base;
 671                iov[1].iov_base = page_address(con->rx_page);
 672                nvec = 2;
 673        }
 674        len = iov[0].iov_len + iov[1].iov_len;
 675        iov_iter_kvec(&msg.msg_iter, READ, iov, nvec, len);
 676
 677        r = ret = sock_recvmsg(con->sock, &msg, MSG_DONTWAIT | MSG_NOSIGNAL);
 678        if (ret <= 0)
 679                goto out_close;
 680        else if (ret == len)
 681                call_again_soon = 1;
 682
 683        cbuf_add(&con->cb, ret);
 684        ret = dlm_process_incoming_buffer(con->nodeid,
 685                                          page_address(con->rx_page),
 686                                          con->cb.base, con->cb.len,
 687                                          PAGE_SIZE);
 688        if (ret == -EBADMSG) {
 689                log_print("lowcomms: addr=%p, base=%u, len=%u, read=%d",
 690                          page_address(con->rx_page), con->cb.base,
 691                          con->cb.len, r);
 692        }
 693        if (ret < 0)
 694                goto out_close;
 695        cbuf_eat(&con->cb, ret);
 696
 697        if (cbuf_empty(&con->cb) && !call_again_soon) {
 698                __free_page(con->rx_page);
 699                con->rx_page = NULL;
 700        }
 701
 702        if (call_again_soon)
 703                goto out_resched;
 704        mutex_unlock(&con->sock_mutex);
 705        return 0;
 706
 707out_resched:
 708        if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
 709                queue_work(recv_workqueue, &con->rwork);
 710        mutex_unlock(&con->sock_mutex);
 711        return -EAGAIN;
 712
 713out_close:
 714        mutex_unlock(&con->sock_mutex);
 715        if (ret != -EAGAIN) {
 716                close_connection(con, true, true, false);
 717                /* Reconnect when there is something to send */
 718        }
 719        /* Don't return success if we really got EOF */
 720        if (ret == 0)
 721                ret = -EAGAIN;
 722
 723        return ret;
 724}
 725
 726/* Listening socket is busy, accept a connection */
 727static int accept_from_sock(struct connection *con)
 728{
 729        int result;
 730        struct sockaddr_storage peeraddr;
 731        struct socket *newsock;
 732        int len;
 733        int nodeid;
 734        struct connection *newcon;
 735        struct connection *addcon;
 736
 737        mutex_lock(&connections_lock);
 738        if (!dlm_allow_conn) {
 739                mutex_unlock(&connections_lock);
 740                return -1;
 741        }
 742        mutex_unlock(&connections_lock);
 743
 744        mutex_lock_nested(&con->sock_mutex, 0);
 745
 746        if (!con->sock) {
 747                mutex_unlock(&con->sock_mutex);
 748                return -ENOTCONN;
 749        }
 750
 751        result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
 752        if (result < 0)
 753                goto accept_err;
 754
 755        /* Get the connected socket's peer */
 756        memset(&peeraddr, 0, sizeof(peeraddr));
 757        len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
 758        if (len < 0) {
 759                result = -ECONNABORTED;
 760                goto accept_err;
 761        }
 762
 763        /* Get the new node's NODEID */
 764        make_sockaddr(&peeraddr, 0, &len);
 765        if (addr_to_nodeid(&peeraddr, &nodeid)) {
 766                unsigned char *b=(unsigned char *)&peeraddr;
 767                log_print("connect from non cluster node");
 768                print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
 769                                     b, sizeof(struct sockaddr_storage));
 770                sock_release(newsock);
 771                mutex_unlock(&con->sock_mutex);
 772                return -1;
 773        }
 774
 775        log_print("got connection from %d", nodeid);
 776
 777        /*  Check to see if we already have a connection to this node. This
 778         *  could happen if the two nodes initiate a connection at roughly
 779         *  the same time and the connections cross on the wire.
 780         *  In this case we store the incoming one in "othercon"
 781         */
 782        newcon = nodeid2con(nodeid, GFP_NOFS);
 783        if (!newcon) {
 784                result = -ENOMEM;
 785                goto accept_err;
 786        }
 787        mutex_lock_nested(&newcon->sock_mutex, 1);
 788        if (newcon->sock) {
 789                struct connection *othercon = newcon->othercon;
 790
 791                if (!othercon) {
 792                        othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
 793                        if (!othercon) {
 794                                log_print("failed to allocate incoming socket");
 795                                mutex_unlock(&newcon->sock_mutex);
 796                                result = -ENOMEM;
 797                                goto accept_err;
 798                        }
 799                        othercon->nodeid = nodeid;
 800                        othercon->rx_action = receive_from_sock;
 801                        mutex_init(&othercon->sock_mutex);
 802                        INIT_LIST_HEAD(&othercon->writequeue);
 803                        spin_lock_init(&othercon->writequeue_lock);
 804                        INIT_WORK(&othercon->swork, process_send_sockets);
 805                        INIT_WORK(&othercon->rwork, process_recv_sockets);
 806                        set_bit(CF_IS_OTHERCON, &othercon->flags);
 807                }
 808                mutex_lock_nested(&othercon->sock_mutex, 2);
 809                if (!othercon->sock) {
 810                        newcon->othercon = othercon;
 811                        add_sock(newsock, othercon);
 812                        addcon = othercon;
 813                        mutex_unlock(&othercon->sock_mutex);
 814                }
 815                else {
 816                        printk("Extra connection from node %d attempted\n", nodeid);
 817                        result = -EAGAIN;
 818                        mutex_unlock(&othercon->sock_mutex);
 819                        mutex_unlock(&newcon->sock_mutex);
 820                        goto accept_err;
 821                }
 822        }
 823        else {
 824                newcon->rx_action = receive_from_sock;
 825                /* accept copies the sk after we've saved the callbacks, so we
 826                   don't want to save them a second time or comm errors will
 827                   result in calling sk_error_report recursively. */
 828                add_sock(newsock, newcon);
 829                addcon = newcon;
 830        }
 831
 832        mutex_unlock(&newcon->sock_mutex);
 833
 834        /*
 835         * Add it to the active queue in case we got data
 836         * between processing the accept adding the socket
 837         * to the read_sockets list
 838         */
 839        if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
 840                queue_work(recv_workqueue, &addcon->rwork);
 841        mutex_unlock(&con->sock_mutex);
 842
 843        return 0;
 844
 845accept_err:
 846        mutex_unlock(&con->sock_mutex);
 847        if (newsock)
 848                sock_release(newsock);
 849
 850        if (result != -EAGAIN)
 851                log_print("error accepting connection from node: %d", result);
 852        return result;
 853}
 854
 855static void free_entry(struct writequeue_entry *e)
 856{
 857        __free_page(e->page);
 858        kfree(e);
 859}
 860
 861/*
 862 * writequeue_entry_complete - try to delete and free write queue entry
 863 * @e: write queue entry to try to delete
 864 * @completed: bytes completed
 865 *
 866 * writequeue_lock must be held.
 867 */
 868static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
 869{
 870        e->offset += completed;
 871        e->len -= completed;
 872
 873        if (e->len == 0 && e->users == 0) {
 874                list_del(&e->list);
 875                free_entry(e);
 876        }
 877}
 878
 879/*
 880 * sctp_bind_addrs - bind a SCTP socket to all our addresses
 881 */
 882static int sctp_bind_addrs(struct connection *con, uint16_t port)
 883{
 884        struct sockaddr_storage localaddr;
 885        struct sockaddr *addr = (struct sockaddr *)&localaddr;
 886        int i, addr_len, result = 0;
 887
 888        for (i = 0; i < dlm_local_count; i++) {
 889                memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
 890                make_sockaddr(&localaddr, port, &addr_len);
 891
 892                if (!i)
 893                        result = kernel_bind(con->sock, addr, addr_len);
 894                else
 895                        result = sock_bind_add(con->sock->sk, addr, addr_len);
 896
 897                if (result < 0) {
 898                        log_print("Can't bind to %d addr number %d, %d.\n",
 899                                  port, i + 1, result);
 900                        break;
 901                }
 902        }
 903        return result;
 904}
 905
 906/* Initiate an SCTP association.
 907   This is a special case of send_to_sock() in that we don't yet have a
 908   peeled-off socket for this association, so we use the listening socket
 909   and add the primary IP address of the remote node.
 910 */
 911static void sctp_connect_to_sock(struct connection *con)
 912{
 913        struct sockaddr_storage daddr;
 914        int result;
 915        int addr_len;
 916        struct socket *sock;
 917
 918        if (con->nodeid == 0) {
 919                log_print("attempt to connect sock 0 foiled");
 920                return;
 921        }
 922
 923        mutex_lock(&con->sock_mutex);
 924
 925        /* Some odd races can cause double-connects, ignore them */
 926        if (con->retries++ > MAX_CONNECT_RETRIES)
 927                goto out;
 928
 929        if (con->sock) {
 930                log_print("node %d already connected.", con->nodeid);
 931                goto out;
 932        }
 933
 934        memset(&daddr, 0, sizeof(daddr));
 935        result = nodeid_to_addr(con->nodeid, &daddr, NULL, true);
 936        if (result < 0) {
 937                log_print("no address for nodeid %d", con->nodeid);
 938                goto out;
 939        }
 940
 941        /* Create a socket to communicate with */
 942        result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
 943                                  SOCK_STREAM, IPPROTO_SCTP, &sock);
 944        if (result < 0)
 945                goto socket_err;
 946
 947        con->rx_action = receive_from_sock;
 948        con->connect_action = sctp_connect_to_sock;
 949        add_sock(sock, con);
 950
 951        /* Bind to all addresses. */
 952        if (sctp_bind_addrs(con, 0))
 953                goto bind_err;
 954
 955        make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
 956
 957        log_print("connecting to %d", con->nodeid);
 958
 959        /* Turn off Nagle's algorithm */
 960        sctp_sock_set_nodelay(sock->sk);
 961
 962        /*
 963         * Make sock->ops->connect() function return in specified time,
 964         * since O_NONBLOCK argument in connect() function does not work here,
 965         * then, we should restore the default value of this attribute.
 966         */
 967        sock_set_sndtimeo(sock->sk, 5);
 968        result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
 969                                   0);
 970        sock_set_sndtimeo(sock->sk, 0);
 971
 972        if (result == -EINPROGRESS)
 973                result = 0;
 974        if (result == 0)
 975                goto out;
 976
 977bind_err:
 978        con->sock = NULL;
 979        sock_release(sock);
 980
 981socket_err:
 982        /*
 983         * Some errors are fatal and this list might need adjusting. For other
 984         * errors we try again until the max number of retries is reached.
 985         */
 986        if (result != -EHOSTUNREACH &&
 987            result != -ENETUNREACH &&
 988            result != -ENETDOWN &&
 989            result != -EINVAL &&
 990            result != -EPROTONOSUPPORT) {
 991                log_print("connect %d try %d error %d", con->nodeid,
 992                          con->retries, result);
 993                mutex_unlock(&con->sock_mutex);
 994                msleep(1000);
 995                lowcomms_connect_sock(con);
 996                return;
 997        }
 998
 999out:
1000        mutex_unlock(&con->sock_mutex);
1001}
1002
1003/* Connect a new socket to its peer */
1004static void tcp_connect_to_sock(struct connection *con)
1005{
1006        struct sockaddr_storage saddr, src_addr;
1007        int addr_len;
1008        struct socket *sock = NULL;
1009        int result;
1010
1011        if (con->nodeid == 0) {
1012                log_print("attempt to connect sock 0 foiled");
1013                return;
1014        }
1015
1016        mutex_lock(&con->sock_mutex);
1017        if (con->retries++ > MAX_CONNECT_RETRIES)
1018                goto out;
1019
1020        /* Some odd races can cause double-connects, ignore them */
1021        if (con->sock)
1022                goto out;
1023
1024        /* Create a socket to communicate with */
1025        result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1026                                  SOCK_STREAM, IPPROTO_TCP, &sock);
1027        if (result < 0)
1028                goto out_err;
1029
1030        memset(&saddr, 0, sizeof(saddr));
1031        result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
1032        if (result < 0) {
1033                log_print("no address for nodeid %d", con->nodeid);
1034                goto out_err;
1035        }
1036
1037        con->rx_action = receive_from_sock;
1038        con->connect_action = tcp_connect_to_sock;
1039        add_sock(sock, con);
1040
1041        /* Bind to our cluster-known address connecting to avoid
1042           routing problems */
1043        memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1044        make_sockaddr(&src_addr, 0, &addr_len);
1045        result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1046                                 addr_len);
1047        if (result < 0) {
1048                log_print("could not bind for connect: %d", result);
1049                /* This *may* not indicate a critical error */
1050        }
1051
1052        make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1053
1054        log_print("connecting to %d", con->nodeid);
1055
1056        /* Turn off Nagle's algorithm */
1057        tcp_sock_set_nodelay(sock->sk);
1058
1059        result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1060                                   O_NONBLOCK);
1061        if (result == -EINPROGRESS)
1062                result = 0;
1063        if (result == 0)
1064                goto out;
1065
1066out_err:
1067        if (con->sock) {
1068                sock_release(con->sock);
1069                con->sock = NULL;
1070        } else if (sock) {
1071                sock_release(sock);
1072        }
1073        /*
1074         * Some errors are fatal and this list might need adjusting. For other
1075         * errors we try again until the max number of retries is reached.
1076         */
1077        if (result != -EHOSTUNREACH &&
1078            result != -ENETUNREACH &&
1079            result != -ENETDOWN && 
1080            result != -EINVAL &&
1081            result != -EPROTONOSUPPORT) {
1082                log_print("connect %d try %d error %d", con->nodeid,
1083                          con->retries, result);
1084                mutex_unlock(&con->sock_mutex);
1085                msleep(1000);
1086                lowcomms_connect_sock(con);
1087                return;
1088        }
1089out:
1090        mutex_unlock(&con->sock_mutex);
1091        return;
1092}
1093
1094static struct socket *tcp_create_listen_sock(struct connection *con,
1095                                             struct sockaddr_storage *saddr)
1096{
1097        struct socket *sock = NULL;
1098        int result = 0;
1099        int addr_len;
1100
1101        if (dlm_local_addr[0]->ss_family == AF_INET)
1102                addr_len = sizeof(struct sockaddr_in);
1103        else
1104                addr_len = sizeof(struct sockaddr_in6);
1105
1106        /* Create a socket to communicate with */
1107        result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1108                                  SOCK_STREAM, IPPROTO_TCP, &sock);
1109        if (result < 0) {
1110                log_print("Can't create listening comms socket");
1111                goto create_out;
1112        }
1113
1114        /* Turn off Nagle's algorithm */
1115        tcp_sock_set_nodelay(sock->sk);
1116
1117        sock_set_reuseaddr(sock->sk);
1118
1119        write_lock_bh(&sock->sk->sk_callback_lock);
1120        sock->sk->sk_user_data = con;
1121        save_listen_callbacks(sock);
1122        con->rx_action = accept_from_sock;
1123        con->connect_action = tcp_connect_to_sock;
1124        write_unlock_bh(&sock->sk->sk_callback_lock);
1125
1126        /* Bind to our port */
1127        make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1128        result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1129        if (result < 0) {
1130                log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1131                sock_release(sock);
1132                sock = NULL;
1133                con->sock = NULL;
1134                goto create_out;
1135        }
1136        sock_set_keepalive(sock->sk);
1137
1138        result = sock->ops->listen(sock, 5);
1139        if (result < 0) {
1140                log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1141                sock_release(sock);
1142                sock = NULL;
1143                goto create_out;
1144        }
1145
1146create_out:
1147        return sock;
1148}
1149
1150/* Get local addresses */
1151static void init_local(void)
1152{
1153        struct sockaddr_storage sas, *addr;
1154        int i;
1155
1156        dlm_local_count = 0;
1157        for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1158                if (dlm_our_addr(&sas, i))
1159                        break;
1160
1161                addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1162                if (!addr)
1163                        break;
1164                dlm_local_addr[dlm_local_count++] = addr;
1165        }
1166}
1167
1168/* Initialise SCTP socket and bind to all interfaces */
1169static int sctp_listen_for_all(void)
1170{
1171        struct socket *sock = NULL;
1172        int result = -EINVAL;
1173        struct connection *con = nodeid2con(0, GFP_NOFS);
1174
1175        if (!con)
1176                return -ENOMEM;
1177
1178        log_print("Using SCTP for communications");
1179
1180        result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1181                                  SOCK_STREAM, IPPROTO_SCTP, &sock);
1182        if (result < 0) {
1183                log_print("Can't create comms socket, check SCTP is loaded");
1184                goto out;
1185        }
1186
1187        sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1188        sctp_sock_set_nodelay(sock->sk);
1189
1190        write_lock_bh(&sock->sk->sk_callback_lock);
1191        /* Init con struct */
1192        sock->sk->sk_user_data = con;
1193        save_listen_callbacks(sock);
1194        con->sock = sock;
1195        con->sock->sk->sk_data_ready = lowcomms_data_ready;
1196        con->rx_action = accept_from_sock;
1197        con->connect_action = sctp_connect_to_sock;
1198
1199        write_unlock_bh(&sock->sk->sk_callback_lock);
1200
1201        /* Bind to all addresses. */
1202        if (sctp_bind_addrs(con, dlm_config.ci_tcp_port))
1203                goto create_delsock;
1204
1205        result = sock->ops->listen(sock, 5);
1206        if (result < 0) {
1207                log_print("Can't set socket listening");
1208                goto create_delsock;
1209        }
1210
1211        return 0;
1212
1213create_delsock:
1214        sock_release(sock);
1215        con->sock = NULL;
1216out:
1217        return result;
1218}
1219
1220static int tcp_listen_for_all(void)
1221{
1222        struct socket *sock = NULL;
1223        struct connection *con = nodeid2con(0, GFP_NOFS);
1224        int result = -EINVAL;
1225
1226        if (!con)
1227                return -ENOMEM;
1228
1229        /* We don't support multi-homed hosts */
1230        if (dlm_local_addr[1] != NULL) {
1231                log_print("TCP protocol can't handle multi-homed hosts, "
1232                          "try SCTP");
1233                return -EINVAL;
1234        }
1235
1236        log_print("Using TCP for communications");
1237
1238        sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1239        if (sock) {
1240                add_sock(sock, con);
1241                result = 0;
1242        }
1243        else {
1244                result = -EADDRINUSE;
1245        }
1246
1247        return result;
1248}
1249
1250
1251
1252static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1253                                                     gfp_t allocation)
1254{
1255        struct writequeue_entry *entry;
1256
1257        entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1258        if (!entry)
1259                return NULL;
1260
1261        entry->page = alloc_page(allocation);
1262        if (!entry->page) {
1263                kfree(entry);
1264                return NULL;
1265        }
1266
1267        entry->offset = 0;
1268        entry->len = 0;
1269        entry->end = 0;
1270        entry->users = 0;
1271        entry->con = con;
1272
1273        return entry;
1274}
1275
1276void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1277{
1278        struct connection *con;
1279        struct writequeue_entry *e;
1280        int offset = 0;
1281
1282        con = nodeid2con(nodeid, allocation);
1283        if (!con)
1284                return NULL;
1285
1286        spin_lock(&con->writequeue_lock);
1287        e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1288        if ((&e->list == &con->writequeue) ||
1289            (PAGE_SIZE - e->end < len)) {
1290                e = NULL;
1291        } else {
1292                offset = e->end;
1293                e->end += len;
1294                e->users++;
1295        }
1296        spin_unlock(&con->writequeue_lock);
1297
1298        if (e) {
1299        got_one:
1300                *ppc = page_address(e->page) + offset;
1301                return e;
1302        }
1303
1304        e = new_writequeue_entry(con, allocation);
1305        if (e) {
1306                spin_lock(&con->writequeue_lock);
1307                offset = e->end;
1308                e->end += len;
1309                e->users++;
1310                list_add_tail(&e->list, &con->writequeue);
1311                spin_unlock(&con->writequeue_lock);
1312                goto got_one;
1313        }
1314        return NULL;
1315}
1316
1317void dlm_lowcomms_commit_buffer(void *mh)
1318{
1319        struct writequeue_entry *e = (struct writequeue_entry *)mh;
1320        struct connection *con = e->con;
1321        int users;
1322
1323        spin_lock(&con->writequeue_lock);
1324        users = --e->users;
1325        if (users)
1326                goto out;
1327        e->len = e->end - e->offset;
1328        spin_unlock(&con->writequeue_lock);
1329
1330        queue_work(send_workqueue, &con->swork);
1331        return;
1332
1333out:
1334        spin_unlock(&con->writequeue_lock);
1335        return;
1336}
1337
1338/* Send a message */
1339static void send_to_sock(struct connection *con)
1340{
1341        int ret = 0;
1342        const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1343        struct writequeue_entry *e;
1344        int len, offset;
1345        int count = 0;
1346
1347        mutex_lock(&con->sock_mutex);
1348        if (con->sock == NULL)
1349                goto out_connect;
1350
1351        spin_lock(&con->writequeue_lock);
1352        for (;;) {
1353                e = list_entry(con->writequeue.next, struct writequeue_entry,
1354                               list);
1355                if ((struct list_head *) e == &con->writequeue)
1356                        break;
1357
1358                len = e->len;
1359                offset = e->offset;
1360                BUG_ON(len == 0 && e->users == 0);
1361                spin_unlock(&con->writequeue_lock);
1362
1363                ret = 0;
1364                if (len) {
1365                        ret = kernel_sendpage(con->sock, e->page, offset, len,
1366                                              msg_flags);
1367                        if (ret == -EAGAIN || ret == 0) {
1368                                if (ret == -EAGAIN &&
1369                                    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1370                                    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1371                                        /* Notify TCP that we're limited by the
1372                                         * application window size.
1373                                         */
1374                                        set_bit(SOCK_NOSPACE, &con->sock->flags);
1375                                        con->sock->sk->sk_write_pending++;
1376                                }
1377                                cond_resched();
1378                                goto out;
1379                        } else if (ret < 0)
1380                                goto send_error;
1381                }
1382
1383                /* Don't starve people filling buffers */
1384                if (++count >= MAX_SEND_MSG_COUNT) {
1385                        cond_resched();
1386                        count = 0;
1387                }
1388
1389                spin_lock(&con->writequeue_lock);
1390                writequeue_entry_complete(e, ret);
1391        }
1392        spin_unlock(&con->writequeue_lock);
1393out:
1394        mutex_unlock(&con->sock_mutex);
1395        return;
1396
1397send_error:
1398        mutex_unlock(&con->sock_mutex);
1399        close_connection(con, true, false, true);
1400        /* Requeue the send work. When the work daemon runs again, it will try
1401           a new connection, then call this function again. */
1402        queue_work(send_workqueue, &con->swork);
1403        return;
1404
1405out_connect:
1406        mutex_unlock(&con->sock_mutex);
1407        queue_work(send_workqueue, &con->swork);
1408        cond_resched();
1409}
1410
1411static void clean_one_writequeue(struct connection *con)
1412{
1413        struct writequeue_entry *e, *safe;
1414
1415        spin_lock(&con->writequeue_lock);
1416        list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1417                list_del(&e->list);
1418                free_entry(e);
1419        }
1420        spin_unlock(&con->writequeue_lock);
1421}
1422
1423/* Called from recovery when it knows that a node has
1424   left the cluster */
1425int dlm_lowcomms_close(int nodeid)
1426{
1427        struct connection *con;
1428        struct dlm_node_addr *na;
1429
1430        log_print("closing connection to node %d", nodeid);
1431        con = nodeid2con(nodeid, 0);
1432        if (con) {
1433                set_bit(CF_CLOSE, &con->flags);
1434                close_connection(con, true, true, true);
1435                clean_one_writequeue(con);
1436        }
1437
1438        spin_lock(&dlm_node_addrs_spin);
1439        na = find_node_addr(nodeid);
1440        if (na) {
1441                list_del(&na->list);
1442                while (na->addr_count--)
1443                        kfree(na->addr[na->addr_count]);
1444                kfree(na);
1445        }
1446        spin_unlock(&dlm_node_addrs_spin);
1447
1448        return 0;
1449}
1450
1451/* Receive workqueue function */
1452static void process_recv_sockets(struct work_struct *work)
1453{
1454        struct connection *con = container_of(work, struct connection, rwork);
1455        int err;
1456
1457        clear_bit(CF_READ_PENDING, &con->flags);
1458        do {
1459                err = con->rx_action(con);
1460        } while (!err);
1461}
1462
1463/* Send workqueue function */
1464static void process_send_sockets(struct work_struct *work)
1465{
1466        struct connection *con = container_of(work, struct connection, swork);
1467
1468        clear_bit(CF_WRITE_PENDING, &con->flags);
1469        if (con->sock == NULL) /* not mutex protected so check it inside too */
1470                con->connect_action(con);
1471        if (!list_empty(&con->writequeue))
1472                send_to_sock(con);
1473}
1474
1475
1476/* Discard all entries on the write queues */
1477static void clean_writequeues(void)
1478{
1479        foreach_conn(clean_one_writequeue);
1480}
1481
1482static void work_stop(void)
1483{
1484        if (recv_workqueue)
1485                destroy_workqueue(recv_workqueue);
1486        if (send_workqueue)
1487                destroy_workqueue(send_workqueue);
1488}
1489
1490static int work_start(void)
1491{
1492        recv_workqueue = alloc_workqueue("dlm_recv",
1493                                         WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1494        if (!recv_workqueue) {
1495                log_print("can't start dlm_recv");
1496                return -ENOMEM;
1497        }
1498
1499        send_workqueue = alloc_workqueue("dlm_send",
1500                                         WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1501        if (!send_workqueue) {
1502                log_print("can't start dlm_send");
1503                destroy_workqueue(recv_workqueue);
1504                return -ENOMEM;
1505        }
1506
1507        return 0;
1508}
1509
1510static void _stop_conn(struct connection *con, bool and_other)
1511{
1512        mutex_lock(&con->sock_mutex);
1513        set_bit(CF_CLOSE, &con->flags);
1514        set_bit(CF_READ_PENDING, &con->flags);
1515        set_bit(CF_WRITE_PENDING, &con->flags);
1516        if (con->sock && con->sock->sk) {
1517                write_lock_bh(&con->sock->sk->sk_callback_lock);
1518                con->sock->sk->sk_user_data = NULL;
1519                write_unlock_bh(&con->sock->sk->sk_callback_lock);
1520        }
1521        if (con->othercon && and_other)
1522                _stop_conn(con->othercon, false);
1523        mutex_unlock(&con->sock_mutex);
1524}
1525
1526static void stop_conn(struct connection *con)
1527{
1528        _stop_conn(con, true);
1529}
1530
1531static void free_conn(struct connection *con)
1532{
1533        close_connection(con, true, true, true);
1534        if (con->othercon)
1535                kmem_cache_free(con_cache, con->othercon);
1536        hlist_del(&con->list);
1537        kmem_cache_free(con_cache, con);
1538}
1539
1540static void work_flush(void)
1541{
1542        int ok;
1543        int i;
1544        struct hlist_node *n;
1545        struct connection *con;
1546
1547        if (recv_workqueue)
1548                flush_workqueue(recv_workqueue);
1549        if (send_workqueue)
1550                flush_workqueue(send_workqueue);
1551        do {
1552                ok = 1;
1553                foreach_conn(stop_conn);
1554                if (recv_workqueue)
1555                        flush_workqueue(recv_workqueue);
1556                if (send_workqueue)
1557                        flush_workqueue(send_workqueue);
1558                for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1559                        hlist_for_each_entry_safe(con, n,
1560                                                  &connection_hash[i], list) {
1561                                ok &= test_bit(CF_READ_PENDING, &con->flags);
1562                                ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1563                                if (con->othercon) {
1564                                        ok &= test_bit(CF_READ_PENDING,
1565                                                       &con->othercon->flags);
1566                                        ok &= test_bit(CF_WRITE_PENDING,
1567                                                       &con->othercon->flags);
1568                                }
1569                        }
1570                }
1571        } while (!ok);
1572}
1573
1574void dlm_lowcomms_stop(void)
1575{
1576        /* Set all the flags to prevent any
1577           socket activity.
1578        */
1579        mutex_lock(&connections_lock);
1580        dlm_allow_conn = 0;
1581        mutex_unlock(&connections_lock);
1582        work_flush();
1583        clean_writequeues();
1584        foreach_conn(free_conn);
1585        work_stop();
1586
1587        kmem_cache_destroy(con_cache);
1588}
1589
1590int dlm_lowcomms_start(void)
1591{
1592        int error = -EINVAL;
1593        struct connection *con;
1594        int i;
1595
1596        for (i = 0; i < CONN_HASH_SIZE; i++)
1597                INIT_HLIST_HEAD(&connection_hash[i]);
1598
1599        init_local();
1600        if (!dlm_local_count) {
1601                error = -ENOTCONN;
1602                log_print("no local IP address has been set");
1603                goto fail;
1604        }
1605
1606        error = -ENOMEM;
1607        con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1608                                      __alignof__(struct connection), 0,
1609                                      NULL);
1610        if (!con_cache)
1611                goto fail;
1612
1613        error = work_start();
1614        if (error)
1615                goto fail_destroy;
1616
1617        dlm_allow_conn = 1;
1618
1619        /* Start listening */
1620        if (dlm_config.ci_protocol == 0)
1621                error = tcp_listen_for_all();
1622        else
1623                error = sctp_listen_for_all();
1624        if (error)
1625                goto fail_unlisten;
1626
1627        return 0;
1628
1629fail_unlisten:
1630        dlm_allow_conn = 0;
1631        con = nodeid2con(0,0);
1632        if (con) {
1633                close_connection(con, false, true, true);
1634                kmem_cache_free(con_cache, con);
1635        }
1636fail_destroy:
1637        kmem_cache_destroy(con_cache);
1638fail:
1639        return error;
1640}
1641
1642void dlm_lowcomms_exit(void)
1643{
1644        struct dlm_node_addr *na, *safe;
1645
1646        spin_lock(&dlm_node_addrs_spin);
1647        list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1648                list_del(&na->list);
1649                while (na->addr_count--)
1650                        kfree(na->addr[na->addr_count]);
1651                kfree(na);
1652        }
1653        spin_unlock(&dlm_node_addrs_spin);
1654}
1655