linux/fs/ext4/inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *      (jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/dax.h>
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/bitops.h>
  41#include <linux/iomap.h>
  42#include <linux/iversion.h>
  43
  44#include "ext4_jbd2.h"
  45#include "xattr.h"
  46#include "acl.h"
  47#include "truncate.h"
  48
  49#include <trace/events/ext4.h>
  50
  51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  52                              struct ext4_inode_info *ei)
  53{
  54        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  55        __u32 csum;
  56        __u16 dummy_csum = 0;
  57        int offset = offsetof(struct ext4_inode, i_checksum_lo);
  58        unsigned int csum_size = sizeof(dummy_csum);
  59
  60        csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  61        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  62        offset += csum_size;
  63        csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  64                           EXT4_GOOD_OLD_INODE_SIZE - offset);
  65
  66        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  67                offset = offsetof(struct ext4_inode, i_checksum_hi);
  68                csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  69                                   EXT4_GOOD_OLD_INODE_SIZE,
  70                                   offset - EXT4_GOOD_OLD_INODE_SIZE);
  71                if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  72                        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  73                                           csum_size);
  74                        offset += csum_size;
  75                }
  76                csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  77                                   EXT4_INODE_SIZE(inode->i_sb) - offset);
  78        }
  79
  80        return csum;
  81}
  82
  83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  84                                  struct ext4_inode_info *ei)
  85{
  86        __u32 provided, calculated;
  87
  88        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  89            cpu_to_le32(EXT4_OS_LINUX) ||
  90            !ext4_has_metadata_csum(inode->i_sb))
  91                return 1;
  92
  93        provided = le16_to_cpu(raw->i_checksum_lo);
  94        calculated = ext4_inode_csum(inode, raw, ei);
  95        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  96            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  97                provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  98        else
  99                calculated &= 0xFFFF;
 100
 101        return provided == calculated;
 102}
 103
 104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 105                                struct ext4_inode_info *ei)
 106{
 107        __u32 csum;
 108
 109        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 110            cpu_to_le32(EXT4_OS_LINUX) ||
 111            !ext4_has_metadata_csum(inode->i_sb))
 112                return;
 113
 114        csum = ext4_inode_csum(inode, raw, ei);
 115        raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 116        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 117            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 118                raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 119}
 120
 121static inline int ext4_begin_ordered_truncate(struct inode *inode,
 122                                              loff_t new_size)
 123{
 124        trace_ext4_begin_ordered_truncate(inode, new_size);
 125        /*
 126         * If jinode is zero, then we never opened the file for
 127         * writing, so there's no need to call
 128         * jbd2_journal_begin_ordered_truncate() since there's no
 129         * outstanding writes we need to flush.
 130         */
 131        if (!EXT4_I(inode)->jinode)
 132                return 0;
 133        return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 134                                                   EXT4_I(inode)->jinode,
 135                                                   new_size);
 136}
 137
 138static void ext4_invalidatepage(struct page *page, unsigned int offset,
 139                                unsigned int length);
 140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 143                                  int pextents);
 144
 145/*
 146 * Test whether an inode is a fast symlink.
 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 148 */
 149int ext4_inode_is_fast_symlink(struct inode *inode)
 150{
 151        if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 152                int ea_blocks = EXT4_I(inode)->i_file_acl ?
 153                                EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 154
 155                if (ext4_has_inline_data(inode))
 156                        return 0;
 157
 158                return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 159        }
 160        return S_ISLNK(inode->i_mode) && inode->i_size &&
 161               (inode->i_size < EXT4_N_BLOCKS * 4);
 162}
 163
 164/*
 165 * Called at the last iput() if i_nlink is zero.
 166 */
 167void ext4_evict_inode(struct inode *inode)
 168{
 169        handle_t *handle;
 170        int err;
 171        /*
 172         * Credits for final inode cleanup and freeing:
 173         * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 174         * (xattr block freeing), bitmap, group descriptor (inode freeing)
 175         */
 176        int extra_credits = 6;
 177        struct ext4_xattr_inode_array *ea_inode_array = NULL;
 178
 179        trace_ext4_evict_inode(inode);
 180
 181        if (inode->i_nlink) {
 182                /*
 183                 * When journalling data dirty buffers are tracked only in the
 184                 * journal. So although mm thinks everything is clean and
 185                 * ready for reaping the inode might still have some pages to
 186                 * write in the running transaction or waiting to be
 187                 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 188                 * (via truncate_inode_pages()) to discard these buffers can
 189                 * cause data loss. Also even if we did not discard these
 190                 * buffers, we would have no way to find them after the inode
 191                 * is reaped and thus user could see stale data if he tries to
 192                 * read them before the transaction is checkpointed. So be
 193                 * careful and force everything to disk here... We use
 194                 * ei->i_datasync_tid to store the newest transaction
 195                 * containing inode's data.
 196                 *
 197                 * Note that directories do not have this problem because they
 198                 * don't use page cache.
 199                 */
 200                if (inode->i_ino != EXT4_JOURNAL_INO &&
 201                    ext4_should_journal_data(inode) &&
 202                    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 203                    inode->i_data.nrpages) {
 204                        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 205                        tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 206
 207                        jbd2_complete_transaction(journal, commit_tid);
 208                        filemap_write_and_wait(&inode->i_data);
 209                }
 210                truncate_inode_pages_final(&inode->i_data);
 211
 212                goto no_delete;
 213        }
 214
 215        if (is_bad_inode(inode))
 216                goto no_delete;
 217        dquot_initialize(inode);
 218
 219        if (ext4_should_order_data(inode))
 220                ext4_begin_ordered_truncate(inode, 0);
 221        truncate_inode_pages_final(&inode->i_data);
 222
 223        /*
 224         * For inodes with journalled data, transaction commit could have
 225         * dirtied the inode. Flush worker is ignoring it because of I_FREEING
 226         * flag but we still need to remove the inode from the writeback lists.
 227         */
 228        if (!list_empty_careful(&inode->i_io_list)) {
 229                WARN_ON_ONCE(!ext4_should_journal_data(inode));
 230                inode_io_list_del(inode);
 231        }
 232
 233        /*
 234         * Protect us against freezing - iput() caller didn't have to have any
 235         * protection against it
 236         */
 237        sb_start_intwrite(inode->i_sb);
 238
 239        if (!IS_NOQUOTA(inode))
 240                extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 241
 242        /*
 243         * Block bitmap, group descriptor, and inode are accounted in both
 244         * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 245         */
 246        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 247                         ext4_blocks_for_truncate(inode) + extra_credits - 3);
 248        if (IS_ERR(handle)) {
 249                ext4_std_error(inode->i_sb, PTR_ERR(handle));
 250                /*
 251                 * If we're going to skip the normal cleanup, we still need to
 252                 * make sure that the in-core orphan linked list is properly
 253                 * cleaned up.
 254                 */
 255                ext4_orphan_del(NULL, inode);
 256                sb_end_intwrite(inode->i_sb);
 257                goto no_delete;
 258        }
 259
 260        if (IS_SYNC(inode))
 261                ext4_handle_sync(handle);
 262
 263        /*
 264         * Set inode->i_size to 0 before calling ext4_truncate(). We need
 265         * special handling of symlinks here because i_size is used to
 266         * determine whether ext4_inode_info->i_data contains symlink data or
 267         * block mappings. Setting i_size to 0 will remove its fast symlink
 268         * status. Erase i_data so that it becomes a valid empty block map.
 269         */
 270        if (ext4_inode_is_fast_symlink(inode))
 271                memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 272        inode->i_size = 0;
 273        err = ext4_mark_inode_dirty(handle, inode);
 274        if (err) {
 275                ext4_warning(inode->i_sb,
 276                             "couldn't mark inode dirty (err %d)", err);
 277                goto stop_handle;
 278        }
 279        if (inode->i_blocks) {
 280                err = ext4_truncate(inode);
 281                if (err) {
 282                        ext4_error_err(inode->i_sb, -err,
 283                                       "couldn't truncate inode %lu (err %d)",
 284                                       inode->i_ino, err);
 285                        goto stop_handle;
 286                }
 287        }
 288
 289        /* Remove xattr references. */
 290        err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 291                                      extra_credits);
 292        if (err) {
 293                ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 294stop_handle:
 295                ext4_journal_stop(handle);
 296                ext4_orphan_del(NULL, inode);
 297                sb_end_intwrite(inode->i_sb);
 298                ext4_xattr_inode_array_free(ea_inode_array);
 299                goto no_delete;
 300        }
 301
 302        /*
 303         * Kill off the orphan record which ext4_truncate created.
 304         * AKPM: I think this can be inside the above `if'.
 305         * Note that ext4_orphan_del() has to be able to cope with the
 306         * deletion of a non-existent orphan - this is because we don't
 307         * know if ext4_truncate() actually created an orphan record.
 308         * (Well, we could do this if we need to, but heck - it works)
 309         */
 310        ext4_orphan_del(handle, inode);
 311        EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
 312
 313        /*
 314         * One subtle ordering requirement: if anything has gone wrong
 315         * (transaction abort, IO errors, whatever), then we can still
 316         * do these next steps (the fs will already have been marked as
 317         * having errors), but we can't free the inode if the mark_dirty
 318         * fails.
 319         */
 320        if (ext4_mark_inode_dirty(handle, inode))
 321                /* If that failed, just do the required in-core inode clear. */
 322                ext4_clear_inode(inode);
 323        else
 324                ext4_free_inode(handle, inode);
 325        ext4_journal_stop(handle);
 326        sb_end_intwrite(inode->i_sb);
 327        ext4_xattr_inode_array_free(ea_inode_array);
 328        return;
 329no_delete:
 330        ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
 331}
 332
 333#ifdef CONFIG_QUOTA
 334qsize_t *ext4_get_reserved_space(struct inode *inode)
 335{
 336        return &EXT4_I(inode)->i_reserved_quota;
 337}
 338#endif
 339
 340/*
 341 * Called with i_data_sem down, which is important since we can call
 342 * ext4_discard_preallocations() from here.
 343 */
 344void ext4_da_update_reserve_space(struct inode *inode,
 345                                        int used, int quota_claim)
 346{
 347        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 348        struct ext4_inode_info *ei = EXT4_I(inode);
 349
 350        spin_lock(&ei->i_block_reservation_lock);
 351        trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 352        if (unlikely(used > ei->i_reserved_data_blocks)) {
 353                ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 354                         "with only %d reserved data blocks",
 355                         __func__, inode->i_ino, used,
 356                         ei->i_reserved_data_blocks);
 357                WARN_ON(1);
 358                used = ei->i_reserved_data_blocks;
 359        }
 360
 361        /* Update per-inode reservations */
 362        ei->i_reserved_data_blocks -= used;
 363        percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 364
 365        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 366
 367        /* Update quota subsystem for data blocks */
 368        if (quota_claim)
 369                dquot_claim_block(inode, EXT4_C2B(sbi, used));
 370        else {
 371                /*
 372                 * We did fallocate with an offset that is already delayed
 373                 * allocated. So on delayed allocated writeback we should
 374                 * not re-claim the quota for fallocated blocks.
 375                 */
 376                dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 377        }
 378
 379        /*
 380         * If we have done all the pending block allocations and if
 381         * there aren't any writers on the inode, we can discard the
 382         * inode's preallocations.
 383         */
 384        if ((ei->i_reserved_data_blocks == 0) &&
 385            !inode_is_open_for_write(inode))
 386                ext4_discard_preallocations(inode);
 387}
 388
 389static int __check_block_validity(struct inode *inode, const char *func,
 390                                unsigned int line,
 391                                struct ext4_map_blocks *map)
 392{
 393        if (ext4_has_feature_journal(inode->i_sb) &&
 394            (inode->i_ino ==
 395             le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 396                return 0;
 397        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 398                                   map->m_len)) {
 399                ext4_error_inode(inode, func, line, map->m_pblk,
 400                                 "lblock %lu mapped to illegal pblock %llu "
 401                                 "(length %d)", (unsigned long) map->m_lblk,
 402                                 map->m_pblk, map->m_len);
 403                return -EFSCORRUPTED;
 404        }
 405        return 0;
 406}
 407
 408int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 409                       ext4_lblk_t len)
 410{
 411        int ret;
 412
 413        if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 414                return fscrypt_zeroout_range(inode, lblk, pblk, len);
 415
 416        ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 417        if (ret > 0)
 418                ret = 0;
 419
 420        return ret;
 421}
 422
 423#define check_block_validity(inode, map)        \
 424        __check_block_validity((inode), __func__, __LINE__, (map))
 425
 426#ifdef ES_AGGRESSIVE_TEST
 427static void ext4_map_blocks_es_recheck(handle_t *handle,
 428                                       struct inode *inode,
 429                                       struct ext4_map_blocks *es_map,
 430                                       struct ext4_map_blocks *map,
 431                                       int flags)
 432{
 433        int retval;
 434
 435        map->m_flags = 0;
 436        /*
 437         * There is a race window that the result is not the same.
 438         * e.g. xfstests #223 when dioread_nolock enables.  The reason
 439         * is that we lookup a block mapping in extent status tree with
 440         * out taking i_data_sem.  So at the time the unwritten extent
 441         * could be converted.
 442         */
 443        down_read(&EXT4_I(inode)->i_data_sem);
 444        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 445                retval = ext4_ext_map_blocks(handle, inode, map, 0);
 446        } else {
 447                retval = ext4_ind_map_blocks(handle, inode, map, 0);
 448        }
 449        up_read((&EXT4_I(inode)->i_data_sem));
 450
 451        /*
 452         * We don't check m_len because extent will be collpased in status
 453         * tree.  So the m_len might not equal.
 454         */
 455        if (es_map->m_lblk != map->m_lblk ||
 456            es_map->m_flags != map->m_flags ||
 457            es_map->m_pblk != map->m_pblk) {
 458                printk("ES cache assertion failed for inode: %lu "
 459                       "es_cached ex [%d/%d/%llu/%x] != "
 460                       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 461                       inode->i_ino, es_map->m_lblk, es_map->m_len,
 462                       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 463                       map->m_len, map->m_pblk, map->m_flags,
 464                       retval, flags);
 465        }
 466}
 467#endif /* ES_AGGRESSIVE_TEST */
 468
 469/*
 470 * The ext4_map_blocks() function tries to look up the requested blocks,
 471 * and returns if the blocks are already mapped.
 472 *
 473 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 474 * and store the allocated blocks in the result buffer head and mark it
 475 * mapped.
 476 *
 477 * If file type is extents based, it will call ext4_ext_map_blocks(),
 478 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 479 * based files
 480 *
 481 * On success, it returns the number of blocks being mapped or allocated.  if
 482 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 483 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 484 *
 485 * It returns 0 if plain look up failed (blocks have not been allocated), in
 486 * that case, @map is returned as unmapped but we still do fill map->m_len to
 487 * indicate the length of a hole starting at map->m_lblk.
 488 *
 489 * It returns the error in case of allocation failure.
 490 */
 491int ext4_map_blocks(handle_t *handle, struct inode *inode,
 492                    struct ext4_map_blocks *map, int flags)
 493{
 494        struct extent_status es;
 495        int retval;
 496        int ret = 0;
 497#ifdef ES_AGGRESSIVE_TEST
 498        struct ext4_map_blocks orig_map;
 499
 500        memcpy(&orig_map, map, sizeof(*map));
 501#endif
 502
 503        map->m_flags = 0;
 504        ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
 505                  flags, map->m_len, (unsigned long) map->m_lblk);
 506
 507        /*
 508         * ext4_map_blocks returns an int, and m_len is an unsigned int
 509         */
 510        if (unlikely(map->m_len > INT_MAX))
 511                map->m_len = INT_MAX;
 512
 513        /* We can handle the block number less than EXT_MAX_BLOCKS */
 514        if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 515                return -EFSCORRUPTED;
 516
 517        /* Lookup extent status tree firstly */
 518        if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 519                if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 520                        map->m_pblk = ext4_es_pblock(&es) +
 521                                        map->m_lblk - es.es_lblk;
 522                        map->m_flags |= ext4_es_is_written(&es) ?
 523                                        EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 524                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 525                        if (retval > map->m_len)
 526                                retval = map->m_len;
 527                        map->m_len = retval;
 528                } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 529                        map->m_pblk = 0;
 530                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 531                        if (retval > map->m_len)
 532                                retval = map->m_len;
 533                        map->m_len = retval;
 534                        retval = 0;
 535                } else {
 536                        BUG();
 537                }
 538#ifdef ES_AGGRESSIVE_TEST
 539                ext4_map_blocks_es_recheck(handle, inode, map,
 540                                           &orig_map, flags);
 541#endif
 542                goto found;
 543        }
 544
 545        /*
 546         * Try to see if we can get the block without requesting a new
 547         * file system block.
 548         */
 549        down_read(&EXT4_I(inode)->i_data_sem);
 550        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 551                retval = ext4_ext_map_blocks(handle, inode, map, 0);
 552        } else {
 553                retval = ext4_ind_map_blocks(handle, inode, map, 0);
 554        }
 555        if (retval > 0) {
 556                unsigned int status;
 557
 558                if (unlikely(retval != map->m_len)) {
 559                        ext4_warning(inode->i_sb,
 560                                     "ES len assertion failed for inode "
 561                                     "%lu: retval %d != map->m_len %d",
 562                                     inode->i_ino, retval, map->m_len);
 563                        WARN_ON(1);
 564                }
 565
 566                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 567                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 568                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 569                    !(status & EXTENT_STATUS_WRITTEN) &&
 570                    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 571                                       map->m_lblk + map->m_len - 1))
 572                        status |= EXTENT_STATUS_DELAYED;
 573                ret = ext4_es_insert_extent(inode, map->m_lblk,
 574                                            map->m_len, map->m_pblk, status);
 575                if (ret < 0)
 576                        retval = ret;
 577        }
 578        up_read((&EXT4_I(inode)->i_data_sem));
 579
 580found:
 581        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 582                ret = check_block_validity(inode, map);
 583                if (ret != 0)
 584                        return ret;
 585        }
 586
 587        /* If it is only a block(s) look up */
 588        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 589                return retval;
 590
 591        /*
 592         * Returns if the blocks have already allocated
 593         *
 594         * Note that if blocks have been preallocated
 595         * ext4_ext_get_block() returns the create = 0
 596         * with buffer head unmapped.
 597         */
 598        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 599                /*
 600                 * If we need to convert extent to unwritten
 601                 * we continue and do the actual work in
 602                 * ext4_ext_map_blocks()
 603                 */
 604                if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 605                        return retval;
 606
 607        /*
 608         * Here we clear m_flags because after allocating an new extent,
 609         * it will be set again.
 610         */
 611        map->m_flags &= ~EXT4_MAP_FLAGS;
 612
 613        /*
 614         * New blocks allocate and/or writing to unwritten extent
 615         * will possibly result in updating i_data, so we take
 616         * the write lock of i_data_sem, and call get_block()
 617         * with create == 1 flag.
 618         */
 619        down_write(&EXT4_I(inode)->i_data_sem);
 620
 621        /*
 622         * We need to check for EXT4 here because migrate
 623         * could have changed the inode type in between
 624         */
 625        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 626                retval = ext4_ext_map_blocks(handle, inode, map, flags);
 627        } else {
 628                retval = ext4_ind_map_blocks(handle, inode, map, flags);
 629
 630                if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 631                        /*
 632                         * We allocated new blocks which will result in
 633                         * i_data's format changing.  Force the migrate
 634                         * to fail by clearing migrate flags
 635                         */
 636                        ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 637                }
 638
 639                /*
 640                 * Update reserved blocks/metadata blocks after successful
 641                 * block allocation which had been deferred till now. We don't
 642                 * support fallocate for non extent files. So we can update
 643                 * reserve space here.
 644                 */
 645                if ((retval > 0) &&
 646                        (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 647                        ext4_da_update_reserve_space(inode, retval, 1);
 648        }
 649
 650        if (retval > 0) {
 651                unsigned int status;
 652
 653                if (unlikely(retval != map->m_len)) {
 654                        ext4_warning(inode->i_sb,
 655                                     "ES len assertion failed for inode "
 656                                     "%lu: retval %d != map->m_len %d",
 657                                     inode->i_ino, retval, map->m_len);
 658                        WARN_ON(1);
 659                }
 660
 661                /*
 662                 * We have to zeroout blocks before inserting them into extent
 663                 * status tree. Otherwise someone could look them up there and
 664                 * use them before they are really zeroed. We also have to
 665                 * unmap metadata before zeroing as otherwise writeback can
 666                 * overwrite zeros with stale data from block device.
 667                 */
 668                if (flags & EXT4_GET_BLOCKS_ZERO &&
 669                    map->m_flags & EXT4_MAP_MAPPED &&
 670                    map->m_flags & EXT4_MAP_NEW) {
 671                        ret = ext4_issue_zeroout(inode, map->m_lblk,
 672                                                 map->m_pblk, map->m_len);
 673                        if (ret) {
 674                                retval = ret;
 675                                goto out_sem;
 676                        }
 677                }
 678
 679                /*
 680                 * If the extent has been zeroed out, we don't need to update
 681                 * extent status tree.
 682                 */
 683                if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 684                    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 685                        if (ext4_es_is_written(&es))
 686                                goto out_sem;
 687                }
 688                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 689                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 690                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 691                    !(status & EXTENT_STATUS_WRITTEN) &&
 692                    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 693                                       map->m_lblk + map->m_len - 1))
 694                        status |= EXTENT_STATUS_DELAYED;
 695                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 696                                            map->m_pblk, status);
 697                if (ret < 0) {
 698                        retval = ret;
 699                        goto out_sem;
 700                }
 701        }
 702
 703out_sem:
 704        up_write((&EXT4_I(inode)->i_data_sem));
 705        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 706                ret = check_block_validity(inode, map);
 707                if (ret != 0)
 708                        return ret;
 709
 710                /*
 711                 * Inodes with freshly allocated blocks where contents will be
 712                 * visible after transaction commit must be on transaction's
 713                 * ordered data list.
 714                 */
 715                if (map->m_flags & EXT4_MAP_NEW &&
 716                    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 717                    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 718                    !ext4_is_quota_file(inode) &&
 719                    ext4_should_order_data(inode)) {
 720                        loff_t start_byte =
 721                                (loff_t)map->m_lblk << inode->i_blkbits;
 722                        loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 723
 724                        if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 725                                ret = ext4_jbd2_inode_add_wait(handle, inode,
 726                                                start_byte, length);
 727                        else
 728                                ret = ext4_jbd2_inode_add_write(handle, inode,
 729                                                start_byte, length);
 730                        if (ret)
 731                                return ret;
 732                }
 733        }
 734
 735        if (retval < 0)
 736                ext_debug(inode, "failed with err %d\n", retval);
 737        return retval;
 738}
 739
 740/*
 741 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 742 * we have to be careful as someone else may be manipulating b_state as well.
 743 */
 744static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 745{
 746        unsigned long old_state;
 747        unsigned long new_state;
 748
 749        flags &= EXT4_MAP_FLAGS;
 750
 751        /* Dummy buffer_head? Set non-atomically. */
 752        if (!bh->b_page) {
 753                bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 754                return;
 755        }
 756        /*
 757         * Someone else may be modifying b_state. Be careful! This is ugly but
 758         * once we get rid of using bh as a container for mapping information
 759         * to pass to / from get_block functions, this can go away.
 760         */
 761        do {
 762                old_state = READ_ONCE(bh->b_state);
 763                new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 764        } while (unlikely(
 765                 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 766}
 767
 768static int _ext4_get_block(struct inode *inode, sector_t iblock,
 769                           struct buffer_head *bh, int flags)
 770{
 771        struct ext4_map_blocks map;
 772        int ret = 0;
 773
 774        if (ext4_has_inline_data(inode))
 775                return -ERANGE;
 776
 777        map.m_lblk = iblock;
 778        map.m_len = bh->b_size >> inode->i_blkbits;
 779
 780        ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 781                              flags);
 782        if (ret > 0) {
 783                map_bh(bh, inode->i_sb, map.m_pblk);
 784                ext4_update_bh_state(bh, map.m_flags);
 785                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 786                ret = 0;
 787        } else if (ret == 0) {
 788                /* hole case, need to fill in bh->b_size */
 789                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 790        }
 791        return ret;
 792}
 793
 794int ext4_get_block(struct inode *inode, sector_t iblock,
 795                   struct buffer_head *bh, int create)
 796{
 797        return _ext4_get_block(inode, iblock, bh,
 798                               create ? EXT4_GET_BLOCKS_CREATE : 0);
 799}
 800
 801/*
 802 * Get block function used when preparing for buffered write if we require
 803 * creating an unwritten extent if blocks haven't been allocated.  The extent
 804 * will be converted to written after the IO is complete.
 805 */
 806int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 807                             struct buffer_head *bh_result, int create)
 808{
 809        ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 810                   inode->i_ino, create);
 811        return _ext4_get_block(inode, iblock, bh_result,
 812                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
 813}
 814
 815/* Maximum number of blocks we map for direct IO at once. */
 816#define DIO_MAX_BLOCKS 4096
 817
 818/*
 819 * `handle' can be NULL if create is zero
 820 */
 821struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 822                                ext4_lblk_t block, int map_flags)
 823{
 824        struct ext4_map_blocks map;
 825        struct buffer_head *bh;
 826        int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 827        int err;
 828
 829        J_ASSERT(handle != NULL || create == 0);
 830
 831        map.m_lblk = block;
 832        map.m_len = 1;
 833        err = ext4_map_blocks(handle, inode, &map, map_flags);
 834
 835        if (err == 0)
 836                return create ? ERR_PTR(-ENOSPC) : NULL;
 837        if (err < 0)
 838                return ERR_PTR(err);
 839
 840        bh = sb_getblk(inode->i_sb, map.m_pblk);
 841        if (unlikely(!bh))
 842                return ERR_PTR(-ENOMEM);
 843        if (map.m_flags & EXT4_MAP_NEW) {
 844                J_ASSERT(create != 0);
 845                J_ASSERT(handle != NULL);
 846
 847                /*
 848                 * Now that we do not always journal data, we should
 849                 * keep in mind whether this should always journal the
 850                 * new buffer as metadata.  For now, regular file
 851                 * writes use ext4_get_block instead, so it's not a
 852                 * problem.
 853                 */
 854                lock_buffer(bh);
 855                BUFFER_TRACE(bh, "call get_create_access");
 856                err = ext4_journal_get_create_access(handle, bh);
 857                if (unlikely(err)) {
 858                        unlock_buffer(bh);
 859                        goto errout;
 860                }
 861                if (!buffer_uptodate(bh)) {
 862                        memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 863                        set_buffer_uptodate(bh);
 864                }
 865                unlock_buffer(bh);
 866                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 867                err = ext4_handle_dirty_metadata(handle, inode, bh);
 868                if (unlikely(err))
 869                        goto errout;
 870        } else
 871                BUFFER_TRACE(bh, "not a new buffer");
 872        return bh;
 873errout:
 874        brelse(bh);
 875        return ERR_PTR(err);
 876}
 877
 878struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 879                               ext4_lblk_t block, int map_flags)
 880{
 881        struct buffer_head *bh;
 882
 883        bh = ext4_getblk(handle, inode, block, map_flags);
 884        if (IS_ERR(bh))
 885                return bh;
 886        if (!bh || ext4_buffer_uptodate(bh))
 887                return bh;
 888        ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
 889        wait_on_buffer(bh);
 890        if (buffer_uptodate(bh))
 891                return bh;
 892        put_bh(bh);
 893        return ERR_PTR(-EIO);
 894}
 895
 896/* Read a contiguous batch of blocks. */
 897int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 898                     bool wait, struct buffer_head **bhs)
 899{
 900        int i, err;
 901
 902        for (i = 0; i < bh_count; i++) {
 903                bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 904                if (IS_ERR(bhs[i])) {
 905                        err = PTR_ERR(bhs[i]);
 906                        bh_count = i;
 907                        goto out_brelse;
 908                }
 909        }
 910
 911        for (i = 0; i < bh_count; i++)
 912                /* Note that NULL bhs[i] is valid because of holes. */
 913                if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 914                        ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
 915                                    &bhs[i]);
 916
 917        if (!wait)
 918                return 0;
 919
 920        for (i = 0; i < bh_count; i++)
 921                if (bhs[i])
 922                        wait_on_buffer(bhs[i]);
 923
 924        for (i = 0; i < bh_count; i++) {
 925                if (bhs[i] && !buffer_uptodate(bhs[i])) {
 926                        err = -EIO;
 927                        goto out_brelse;
 928                }
 929        }
 930        return 0;
 931
 932out_brelse:
 933        for (i = 0; i < bh_count; i++) {
 934                brelse(bhs[i]);
 935                bhs[i] = NULL;
 936        }
 937        return err;
 938}
 939
 940int ext4_walk_page_buffers(handle_t *handle,
 941                           struct buffer_head *head,
 942                           unsigned from,
 943                           unsigned to,
 944                           int *partial,
 945                           int (*fn)(handle_t *handle,
 946                                     struct buffer_head *bh))
 947{
 948        struct buffer_head *bh;
 949        unsigned block_start, block_end;
 950        unsigned blocksize = head->b_size;
 951        int err, ret = 0;
 952        struct buffer_head *next;
 953
 954        for (bh = head, block_start = 0;
 955             ret == 0 && (bh != head || !block_start);
 956             block_start = block_end, bh = next) {
 957                next = bh->b_this_page;
 958                block_end = block_start + blocksize;
 959                if (block_end <= from || block_start >= to) {
 960                        if (partial && !buffer_uptodate(bh))
 961                                *partial = 1;
 962                        continue;
 963                }
 964                err = (*fn)(handle, bh);
 965                if (!ret)
 966                        ret = err;
 967        }
 968        return ret;
 969}
 970
 971/*
 972 * To preserve ordering, it is essential that the hole instantiation and
 973 * the data write be encapsulated in a single transaction.  We cannot
 974 * close off a transaction and start a new one between the ext4_get_block()
 975 * and the commit_write().  So doing the jbd2_journal_start at the start of
 976 * prepare_write() is the right place.
 977 *
 978 * Also, this function can nest inside ext4_writepage().  In that case, we
 979 * *know* that ext4_writepage() has generated enough buffer credits to do the
 980 * whole page.  So we won't block on the journal in that case, which is good,
 981 * because the caller may be PF_MEMALLOC.
 982 *
 983 * By accident, ext4 can be reentered when a transaction is open via
 984 * quota file writes.  If we were to commit the transaction while thus
 985 * reentered, there can be a deadlock - we would be holding a quota
 986 * lock, and the commit would never complete if another thread had a
 987 * transaction open and was blocking on the quota lock - a ranking
 988 * violation.
 989 *
 990 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 991 * will _not_ run commit under these circumstances because handle->h_ref
 992 * is elevated.  We'll still have enough credits for the tiny quotafile
 993 * write.
 994 */
 995int do_journal_get_write_access(handle_t *handle,
 996                                struct buffer_head *bh)
 997{
 998        int dirty = buffer_dirty(bh);
 999        int ret;
1000
1001        if (!buffer_mapped(bh) || buffer_freed(bh))
1002                return 0;
1003        /*
1004         * __block_write_begin() could have dirtied some buffers. Clean
1005         * the dirty bit as jbd2_journal_get_write_access() could complain
1006         * otherwise about fs integrity issues. Setting of the dirty bit
1007         * by __block_write_begin() isn't a real problem here as we clear
1008         * the bit before releasing a page lock and thus writeback cannot
1009         * ever write the buffer.
1010         */
1011        if (dirty)
1012                clear_buffer_dirty(bh);
1013        BUFFER_TRACE(bh, "get write access");
1014        ret = ext4_journal_get_write_access(handle, bh);
1015        if (!ret && dirty)
1016                ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1017        return ret;
1018}
1019
1020#ifdef CONFIG_FS_ENCRYPTION
1021static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1022                                  get_block_t *get_block)
1023{
1024        unsigned from = pos & (PAGE_SIZE - 1);
1025        unsigned to = from + len;
1026        struct inode *inode = page->mapping->host;
1027        unsigned block_start, block_end;
1028        sector_t block;
1029        int err = 0;
1030        unsigned blocksize = inode->i_sb->s_blocksize;
1031        unsigned bbits;
1032        struct buffer_head *bh, *head, *wait[2];
1033        int nr_wait = 0;
1034        int i;
1035
1036        BUG_ON(!PageLocked(page));
1037        BUG_ON(from > PAGE_SIZE);
1038        BUG_ON(to > PAGE_SIZE);
1039        BUG_ON(from > to);
1040
1041        if (!page_has_buffers(page))
1042                create_empty_buffers(page, blocksize, 0);
1043        head = page_buffers(page);
1044        bbits = ilog2(blocksize);
1045        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1046
1047        for (bh = head, block_start = 0; bh != head || !block_start;
1048            block++, block_start = block_end, bh = bh->b_this_page) {
1049                block_end = block_start + blocksize;
1050                if (block_end <= from || block_start >= to) {
1051                        if (PageUptodate(page)) {
1052                                if (!buffer_uptodate(bh))
1053                                        set_buffer_uptodate(bh);
1054                        }
1055                        continue;
1056                }
1057                if (buffer_new(bh))
1058                        clear_buffer_new(bh);
1059                if (!buffer_mapped(bh)) {
1060                        WARN_ON(bh->b_size != blocksize);
1061                        err = get_block(inode, block, bh, 1);
1062                        if (err)
1063                                break;
1064                        if (buffer_new(bh)) {
1065                                if (PageUptodate(page)) {
1066                                        clear_buffer_new(bh);
1067                                        set_buffer_uptodate(bh);
1068                                        mark_buffer_dirty(bh);
1069                                        continue;
1070                                }
1071                                if (block_end > to || block_start < from)
1072                                        zero_user_segments(page, to, block_end,
1073                                                           block_start, from);
1074                                continue;
1075                        }
1076                }
1077                if (PageUptodate(page)) {
1078                        if (!buffer_uptodate(bh))
1079                                set_buffer_uptodate(bh);
1080                        continue;
1081                }
1082                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1083                    !buffer_unwritten(bh) &&
1084                    (block_start < from || block_end > to)) {
1085                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1086                        wait[nr_wait++] = bh;
1087                }
1088        }
1089        /*
1090         * If we issued read requests, let them complete.
1091         */
1092        for (i = 0; i < nr_wait; i++) {
1093                wait_on_buffer(wait[i]);
1094                if (!buffer_uptodate(wait[i]))
1095                        err = -EIO;
1096        }
1097        if (unlikely(err)) {
1098                page_zero_new_buffers(page, from, to);
1099        } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1100                for (i = 0; i < nr_wait; i++) {
1101                        int err2;
1102
1103                        err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1104                                                                bh_offset(wait[i]));
1105                        if (err2) {
1106                                clear_buffer_uptodate(wait[i]);
1107                                err = err2;
1108                        }
1109                }
1110        }
1111
1112        return err;
1113}
1114#endif
1115
1116static int ext4_write_begin(struct file *file, struct address_space *mapping,
1117                            loff_t pos, unsigned len, unsigned flags,
1118                            struct page **pagep, void **fsdata)
1119{
1120        struct inode *inode = mapping->host;
1121        int ret, needed_blocks;
1122        handle_t *handle;
1123        int retries = 0;
1124        struct page *page;
1125        pgoff_t index;
1126        unsigned from, to;
1127
1128        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1129                return -EIO;
1130
1131        trace_ext4_write_begin(inode, pos, len, flags);
1132        /*
1133         * Reserve one block more for addition to orphan list in case
1134         * we allocate blocks but write fails for some reason
1135         */
1136        needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1137        index = pos >> PAGE_SHIFT;
1138        from = pos & (PAGE_SIZE - 1);
1139        to = from + len;
1140
1141        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1142                ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1143                                                    flags, pagep);
1144                if (ret < 0)
1145                        return ret;
1146                if (ret == 1)
1147                        return 0;
1148        }
1149
1150        /*
1151         * grab_cache_page_write_begin() can take a long time if the
1152         * system is thrashing due to memory pressure, or if the page
1153         * is being written back.  So grab it first before we start
1154         * the transaction handle.  This also allows us to allocate
1155         * the page (if needed) without using GFP_NOFS.
1156         */
1157retry_grab:
1158        page = grab_cache_page_write_begin(mapping, index, flags);
1159        if (!page)
1160                return -ENOMEM;
1161        unlock_page(page);
1162
1163retry_journal:
1164        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1165        if (IS_ERR(handle)) {
1166                put_page(page);
1167                return PTR_ERR(handle);
1168        }
1169
1170        lock_page(page);
1171        if (page->mapping != mapping) {
1172                /* The page got truncated from under us */
1173                unlock_page(page);
1174                put_page(page);
1175                ext4_journal_stop(handle);
1176                goto retry_grab;
1177        }
1178        /* In case writeback began while the page was unlocked */
1179        wait_for_stable_page(page);
1180
1181#ifdef CONFIG_FS_ENCRYPTION
1182        if (ext4_should_dioread_nolock(inode))
1183                ret = ext4_block_write_begin(page, pos, len,
1184                                             ext4_get_block_unwritten);
1185        else
1186                ret = ext4_block_write_begin(page, pos, len,
1187                                             ext4_get_block);
1188#else
1189        if (ext4_should_dioread_nolock(inode))
1190                ret = __block_write_begin(page, pos, len,
1191                                          ext4_get_block_unwritten);
1192        else
1193                ret = __block_write_begin(page, pos, len, ext4_get_block);
1194#endif
1195        if (!ret && ext4_should_journal_data(inode)) {
1196                ret = ext4_walk_page_buffers(handle, page_buffers(page),
1197                                             from, to, NULL,
1198                                             do_journal_get_write_access);
1199        }
1200
1201        if (ret) {
1202                bool extended = (pos + len > inode->i_size) &&
1203                                !ext4_verity_in_progress(inode);
1204
1205                unlock_page(page);
1206                /*
1207                 * __block_write_begin may have instantiated a few blocks
1208                 * outside i_size.  Trim these off again. Don't need
1209                 * i_size_read because we hold i_mutex.
1210                 *
1211                 * Add inode to orphan list in case we crash before
1212                 * truncate finishes
1213                 */
1214                if (extended && ext4_can_truncate(inode))
1215                        ext4_orphan_add(handle, inode);
1216
1217                ext4_journal_stop(handle);
1218                if (extended) {
1219                        ext4_truncate_failed_write(inode);
1220                        /*
1221                         * If truncate failed early the inode might
1222                         * still be on the orphan list; we need to
1223                         * make sure the inode is removed from the
1224                         * orphan list in that case.
1225                         */
1226                        if (inode->i_nlink)
1227                                ext4_orphan_del(NULL, inode);
1228                }
1229
1230                if (ret == -ENOSPC &&
1231                    ext4_should_retry_alloc(inode->i_sb, &retries))
1232                        goto retry_journal;
1233                put_page(page);
1234                return ret;
1235        }
1236        *pagep = page;
1237        return ret;
1238}
1239
1240/* For write_end() in data=journal mode */
1241static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1242{
1243        int ret;
1244        if (!buffer_mapped(bh) || buffer_freed(bh))
1245                return 0;
1246        set_buffer_uptodate(bh);
1247        ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1248        clear_buffer_meta(bh);
1249        clear_buffer_prio(bh);
1250        return ret;
1251}
1252
1253/*
1254 * We need to pick up the new inode size which generic_commit_write gave us
1255 * `file' can be NULL - eg, when called from page_symlink().
1256 *
1257 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1258 * buffers are managed internally.
1259 */
1260static int ext4_write_end(struct file *file,
1261                          struct address_space *mapping,
1262                          loff_t pos, unsigned len, unsigned copied,
1263                          struct page *page, void *fsdata)
1264{
1265        handle_t *handle = ext4_journal_current_handle();
1266        struct inode *inode = mapping->host;
1267        loff_t old_size = inode->i_size;
1268        int ret = 0, ret2;
1269        int i_size_changed = 0;
1270        int inline_data = ext4_has_inline_data(inode);
1271        bool verity = ext4_verity_in_progress(inode);
1272
1273        trace_ext4_write_end(inode, pos, len, copied);
1274        if (inline_data) {
1275                ret = ext4_write_inline_data_end(inode, pos, len,
1276                                                 copied, page);
1277                if (ret < 0) {
1278                        unlock_page(page);
1279                        put_page(page);
1280                        goto errout;
1281                }
1282                copied = ret;
1283        } else
1284                copied = block_write_end(file, mapping, pos,
1285                                         len, copied, page, fsdata);
1286        /*
1287         * it's important to update i_size while still holding page lock:
1288         * page writeout could otherwise come in and zero beyond i_size.
1289         *
1290         * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1291         * blocks are being written past EOF, so skip the i_size update.
1292         */
1293        if (!verity)
1294                i_size_changed = ext4_update_inode_size(inode, pos + copied);
1295        unlock_page(page);
1296        put_page(page);
1297
1298        if (old_size < pos && !verity)
1299                pagecache_isize_extended(inode, old_size, pos);
1300        /*
1301         * Don't mark the inode dirty under page lock. First, it unnecessarily
1302         * makes the holding time of page lock longer. Second, it forces lock
1303         * ordering of page lock and transaction start for journaling
1304         * filesystems.
1305         */
1306        if (i_size_changed || inline_data)
1307                ret = ext4_mark_inode_dirty(handle, inode);
1308
1309        if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1310                /* if we have allocated more blocks and copied
1311                 * less. We will have blocks allocated outside
1312                 * inode->i_size. So truncate them
1313                 */
1314                ext4_orphan_add(handle, inode);
1315errout:
1316        ret2 = ext4_journal_stop(handle);
1317        if (!ret)
1318                ret = ret2;
1319
1320        if (pos + len > inode->i_size && !verity) {
1321                ext4_truncate_failed_write(inode);
1322                /*
1323                 * If truncate failed early the inode might still be
1324                 * on the orphan list; we need to make sure the inode
1325                 * is removed from the orphan list in that case.
1326                 */
1327                if (inode->i_nlink)
1328                        ext4_orphan_del(NULL, inode);
1329        }
1330
1331        return ret ? ret : copied;
1332}
1333
1334/*
1335 * This is a private version of page_zero_new_buffers() which doesn't
1336 * set the buffer to be dirty, since in data=journalled mode we need
1337 * to call ext4_handle_dirty_metadata() instead.
1338 */
1339static void ext4_journalled_zero_new_buffers(handle_t *handle,
1340                                            struct page *page,
1341                                            unsigned from, unsigned to)
1342{
1343        unsigned int block_start = 0, block_end;
1344        struct buffer_head *head, *bh;
1345
1346        bh = head = page_buffers(page);
1347        do {
1348                block_end = block_start + bh->b_size;
1349                if (buffer_new(bh)) {
1350                        if (block_end > from && block_start < to) {
1351                                if (!PageUptodate(page)) {
1352                                        unsigned start, size;
1353
1354                                        start = max(from, block_start);
1355                                        size = min(to, block_end) - start;
1356
1357                                        zero_user(page, start, size);
1358                                        write_end_fn(handle, bh);
1359                                }
1360                                clear_buffer_new(bh);
1361                        }
1362                }
1363                block_start = block_end;
1364                bh = bh->b_this_page;
1365        } while (bh != head);
1366}
1367
1368static int ext4_journalled_write_end(struct file *file,
1369                                     struct address_space *mapping,
1370                                     loff_t pos, unsigned len, unsigned copied,
1371                                     struct page *page, void *fsdata)
1372{
1373        handle_t *handle = ext4_journal_current_handle();
1374        struct inode *inode = mapping->host;
1375        loff_t old_size = inode->i_size;
1376        int ret = 0, ret2;
1377        int partial = 0;
1378        unsigned from, to;
1379        int size_changed = 0;
1380        int inline_data = ext4_has_inline_data(inode);
1381        bool verity = ext4_verity_in_progress(inode);
1382
1383        trace_ext4_journalled_write_end(inode, pos, len, copied);
1384        from = pos & (PAGE_SIZE - 1);
1385        to = from + len;
1386
1387        BUG_ON(!ext4_handle_valid(handle));
1388
1389        if (inline_data) {
1390                ret = ext4_write_inline_data_end(inode, pos, len,
1391                                                 copied, page);
1392                if (ret < 0) {
1393                        unlock_page(page);
1394                        put_page(page);
1395                        goto errout;
1396                }
1397                copied = ret;
1398        } else if (unlikely(copied < len) && !PageUptodate(page)) {
1399                copied = 0;
1400                ext4_journalled_zero_new_buffers(handle, page, from, to);
1401        } else {
1402                if (unlikely(copied < len))
1403                        ext4_journalled_zero_new_buffers(handle, page,
1404                                                         from + copied, to);
1405                ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1406                                             from + copied, &partial,
1407                                             write_end_fn);
1408                if (!partial)
1409                        SetPageUptodate(page);
1410        }
1411        if (!verity)
1412                size_changed = ext4_update_inode_size(inode, pos + copied);
1413        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1414        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1415        unlock_page(page);
1416        put_page(page);
1417
1418        if (old_size < pos && !verity)
1419                pagecache_isize_extended(inode, old_size, pos);
1420
1421        if (size_changed || inline_data) {
1422                ret2 = ext4_mark_inode_dirty(handle, inode);
1423                if (!ret)
1424                        ret = ret2;
1425        }
1426
1427        if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1428                /* if we have allocated more blocks and copied
1429                 * less. We will have blocks allocated outside
1430                 * inode->i_size. So truncate them
1431                 */
1432                ext4_orphan_add(handle, inode);
1433
1434errout:
1435        ret2 = ext4_journal_stop(handle);
1436        if (!ret)
1437                ret = ret2;
1438        if (pos + len > inode->i_size && !verity) {
1439                ext4_truncate_failed_write(inode);
1440                /*
1441                 * If truncate failed early the inode might still be
1442                 * on the orphan list; we need to make sure the inode
1443                 * is removed from the orphan list in that case.
1444                 */
1445                if (inode->i_nlink)
1446                        ext4_orphan_del(NULL, inode);
1447        }
1448
1449        return ret ? ret : copied;
1450}
1451
1452/*
1453 * Reserve space for a single cluster
1454 */
1455static int ext4_da_reserve_space(struct inode *inode)
1456{
1457        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1458        struct ext4_inode_info *ei = EXT4_I(inode);
1459        int ret;
1460
1461        /*
1462         * We will charge metadata quota at writeout time; this saves
1463         * us from metadata over-estimation, though we may go over by
1464         * a small amount in the end.  Here we just reserve for data.
1465         */
1466        ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467        if (ret)
1468                return ret;
1469
1470        spin_lock(&ei->i_block_reservation_lock);
1471        if (ext4_claim_free_clusters(sbi, 1, 0)) {
1472                spin_unlock(&ei->i_block_reservation_lock);
1473                dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474                return -ENOSPC;
1475        }
1476        ei->i_reserved_data_blocks++;
1477        trace_ext4_da_reserve_space(inode);
1478        spin_unlock(&ei->i_block_reservation_lock);
1479
1480        return 0;       /* success */
1481}
1482
1483void ext4_da_release_space(struct inode *inode, int to_free)
1484{
1485        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1486        struct ext4_inode_info *ei = EXT4_I(inode);
1487
1488        if (!to_free)
1489                return;         /* Nothing to release, exit */
1490
1491        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1492
1493        trace_ext4_da_release_space(inode, to_free);
1494        if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495                /*
1496                 * if there aren't enough reserved blocks, then the
1497                 * counter is messed up somewhere.  Since this
1498                 * function is called from invalidate page, it's
1499                 * harmless to return without any action.
1500                 */
1501                ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502                         "ino %lu, to_free %d with only %d reserved "
1503                         "data blocks", inode->i_ino, to_free,
1504                         ei->i_reserved_data_blocks);
1505                WARN_ON(1);
1506                to_free = ei->i_reserved_data_blocks;
1507        }
1508        ei->i_reserved_data_blocks -= to_free;
1509
1510        /* update fs dirty data blocks counter */
1511        percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1512
1513        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1514
1515        dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1516}
1517
1518/*
1519 * Delayed allocation stuff
1520 */
1521
1522struct mpage_da_data {
1523        struct inode *inode;
1524        struct writeback_control *wbc;
1525
1526        pgoff_t first_page;     /* The first page to write */
1527        pgoff_t next_page;      /* Current page to examine */
1528        pgoff_t last_page;      /* Last page to examine */
1529        /*
1530         * Extent to map - this can be after first_page because that can be
1531         * fully mapped. We somewhat abuse m_flags to store whether the extent
1532         * is delalloc or unwritten.
1533         */
1534        struct ext4_map_blocks map;
1535        struct ext4_io_submit io_submit;        /* IO submission data */
1536        unsigned int do_map:1;
1537        unsigned int scanned_until_end:1;
1538};
1539
1540static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1541                                       bool invalidate)
1542{
1543        int nr_pages, i;
1544        pgoff_t index, end;
1545        struct pagevec pvec;
1546        struct inode *inode = mpd->inode;
1547        struct address_space *mapping = inode->i_mapping;
1548
1549        /* This is necessary when next_page == 0. */
1550        if (mpd->first_page >= mpd->next_page)
1551                return;
1552
1553        mpd->scanned_until_end = 0;
1554        index = mpd->first_page;
1555        end   = mpd->next_page - 1;
1556        if (invalidate) {
1557                ext4_lblk_t start, last;
1558                start = index << (PAGE_SHIFT - inode->i_blkbits);
1559                last = end << (PAGE_SHIFT - inode->i_blkbits);
1560                ext4_es_remove_extent(inode, start, last - start + 1);
1561        }
1562
1563        pagevec_init(&pvec);
1564        while (index <= end) {
1565                nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1566                if (nr_pages == 0)
1567                        break;
1568                for (i = 0; i < nr_pages; i++) {
1569                        struct page *page = pvec.pages[i];
1570
1571                        BUG_ON(!PageLocked(page));
1572                        BUG_ON(PageWriteback(page));
1573                        if (invalidate) {
1574                                if (page_mapped(page))
1575                                        clear_page_dirty_for_io(page);
1576                                block_invalidatepage(page, 0, PAGE_SIZE);
1577                                ClearPageUptodate(page);
1578                        }
1579                        unlock_page(page);
1580                }
1581                pagevec_release(&pvec);
1582        }
1583}
1584
1585static void ext4_print_free_blocks(struct inode *inode)
1586{
1587        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588        struct super_block *sb = inode->i_sb;
1589        struct ext4_inode_info *ei = EXT4_I(inode);
1590
1591        ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1592               EXT4_C2B(EXT4_SB(inode->i_sb),
1593                        ext4_count_free_clusters(sb)));
1594        ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1595        ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1596               (long long) EXT4_C2B(EXT4_SB(sb),
1597                percpu_counter_sum(&sbi->s_freeclusters_counter)));
1598        ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1599               (long long) EXT4_C2B(EXT4_SB(sb),
1600                percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1601        ext4_msg(sb, KERN_CRIT, "Block reservation details");
1602        ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1603                 ei->i_reserved_data_blocks);
1604        return;
1605}
1606
1607static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1608{
1609        return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1610}
1611
1612/*
1613 * ext4_insert_delayed_block - adds a delayed block to the extents status
1614 *                             tree, incrementing the reserved cluster/block
1615 *                             count or making a pending reservation
1616 *                             where needed
1617 *
1618 * @inode - file containing the newly added block
1619 * @lblk - logical block to be added
1620 *
1621 * Returns 0 on success, negative error code on failure.
1622 */
1623static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1624{
1625        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1626        int ret;
1627        bool allocated = false;
1628
1629        /*
1630         * If the cluster containing lblk is shared with a delayed,
1631         * written, or unwritten extent in a bigalloc file system, it's
1632         * already been accounted for and does not need to be reserved.
1633         * A pending reservation must be made for the cluster if it's
1634         * shared with a written or unwritten extent and doesn't already
1635         * have one.  Written and unwritten extents can be purged from the
1636         * extents status tree if the system is under memory pressure, so
1637         * it's necessary to examine the extent tree if a search of the
1638         * extents status tree doesn't get a match.
1639         */
1640        if (sbi->s_cluster_ratio == 1) {
1641                ret = ext4_da_reserve_space(inode);
1642                if (ret != 0)   /* ENOSPC */
1643                        goto errout;
1644        } else {   /* bigalloc */
1645                if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1646                        if (!ext4_es_scan_clu(inode,
1647                                              &ext4_es_is_mapped, lblk)) {
1648                                ret = ext4_clu_mapped(inode,
1649                                                      EXT4_B2C(sbi, lblk));
1650                                if (ret < 0)
1651                                        goto errout;
1652                                if (ret == 0) {
1653                                        ret = ext4_da_reserve_space(inode);
1654                                        if (ret != 0)   /* ENOSPC */
1655                                                goto errout;
1656                                } else {
1657                                        allocated = true;
1658                                }
1659                        } else {
1660                                allocated = true;
1661                        }
1662                }
1663        }
1664
1665        ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1666
1667errout:
1668        return ret;
1669}
1670
1671/*
1672 * This function is grabs code from the very beginning of
1673 * ext4_map_blocks, but assumes that the caller is from delayed write
1674 * time. This function looks up the requested blocks and sets the
1675 * buffer delay bit under the protection of i_data_sem.
1676 */
1677static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1678                              struct ext4_map_blocks *map,
1679                              struct buffer_head *bh)
1680{
1681        struct extent_status es;
1682        int retval;
1683        sector_t invalid_block = ~((sector_t) 0xffff);
1684#ifdef ES_AGGRESSIVE_TEST
1685        struct ext4_map_blocks orig_map;
1686
1687        memcpy(&orig_map, map, sizeof(*map));
1688#endif
1689
1690        if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1691                invalid_block = ~0;
1692
1693        map->m_flags = 0;
1694        ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1695                  (unsigned long) map->m_lblk);
1696
1697        /* Lookup extent status tree firstly */
1698        if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1699                if (ext4_es_is_hole(&es)) {
1700                        retval = 0;
1701                        down_read(&EXT4_I(inode)->i_data_sem);
1702                        goto add_delayed;
1703                }
1704
1705                /*
1706                 * Delayed extent could be allocated by fallocate.
1707                 * So we need to check it.
1708                 */
1709                if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1710                        map_bh(bh, inode->i_sb, invalid_block);
1711                        set_buffer_new(bh);
1712                        set_buffer_delay(bh);
1713                        return 0;
1714                }
1715
1716                map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1717                retval = es.es_len - (iblock - es.es_lblk);
1718                if (retval > map->m_len)
1719                        retval = map->m_len;
1720                map->m_len = retval;
1721                if (ext4_es_is_written(&es))
1722                        map->m_flags |= EXT4_MAP_MAPPED;
1723                else if (ext4_es_is_unwritten(&es))
1724                        map->m_flags |= EXT4_MAP_UNWRITTEN;
1725                else
1726                        BUG();
1727
1728#ifdef ES_AGGRESSIVE_TEST
1729                ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1730#endif
1731                return retval;
1732        }
1733
1734        /*
1735         * Try to see if we can get the block without requesting a new
1736         * file system block.
1737         */
1738        down_read(&EXT4_I(inode)->i_data_sem);
1739        if (ext4_has_inline_data(inode))
1740                retval = 0;
1741        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1742                retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1743        else
1744                retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1745
1746add_delayed:
1747        if (retval == 0) {
1748                int ret;
1749
1750                /*
1751                 * XXX: __block_prepare_write() unmaps passed block,
1752                 * is it OK?
1753                 */
1754
1755                ret = ext4_insert_delayed_block(inode, map->m_lblk);
1756                if (ret != 0) {
1757                        retval = ret;
1758                        goto out_unlock;
1759                }
1760
1761                map_bh(bh, inode->i_sb, invalid_block);
1762                set_buffer_new(bh);
1763                set_buffer_delay(bh);
1764        } else if (retval > 0) {
1765                int ret;
1766                unsigned int status;
1767
1768                if (unlikely(retval != map->m_len)) {
1769                        ext4_warning(inode->i_sb,
1770                                     "ES len assertion failed for inode "
1771                                     "%lu: retval %d != map->m_len %d",
1772                                     inode->i_ino, retval, map->m_len);
1773                        WARN_ON(1);
1774                }
1775
1776                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1777                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1778                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1779                                            map->m_pblk, status);
1780                if (ret != 0)
1781                        retval = ret;
1782        }
1783
1784out_unlock:
1785        up_read((&EXT4_I(inode)->i_data_sem));
1786
1787        return retval;
1788}
1789
1790/*
1791 * This is a special get_block_t callback which is used by
1792 * ext4_da_write_begin().  It will either return mapped block or
1793 * reserve space for a single block.
1794 *
1795 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1796 * We also have b_blocknr = -1 and b_bdev initialized properly
1797 *
1798 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1799 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1800 * initialized properly.
1801 */
1802int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1803                           struct buffer_head *bh, int create)
1804{
1805        struct ext4_map_blocks map;
1806        int ret = 0;
1807
1808        BUG_ON(create == 0);
1809        BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1810
1811        map.m_lblk = iblock;
1812        map.m_len = 1;
1813
1814        /*
1815         * first, we need to know whether the block is allocated already
1816         * preallocated blocks are unmapped but should treated
1817         * the same as allocated blocks.
1818         */
1819        ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1820        if (ret <= 0)
1821                return ret;
1822
1823        map_bh(bh, inode->i_sb, map.m_pblk);
1824        ext4_update_bh_state(bh, map.m_flags);
1825
1826        if (buffer_unwritten(bh)) {
1827                /* A delayed write to unwritten bh should be marked
1828                 * new and mapped.  Mapped ensures that we don't do
1829                 * get_block multiple times when we write to the same
1830                 * offset and new ensures that we do proper zero out
1831                 * for partial write.
1832                 */
1833                set_buffer_new(bh);
1834                set_buffer_mapped(bh);
1835        }
1836        return 0;
1837}
1838
1839static int bget_one(handle_t *handle, struct buffer_head *bh)
1840{
1841        get_bh(bh);
1842        return 0;
1843}
1844
1845static int bput_one(handle_t *handle, struct buffer_head *bh)
1846{
1847        put_bh(bh);
1848        return 0;
1849}
1850
1851static int __ext4_journalled_writepage(struct page *page,
1852                                       unsigned int len)
1853{
1854        struct address_space *mapping = page->mapping;
1855        struct inode *inode = mapping->host;
1856        struct buffer_head *page_bufs = NULL;
1857        handle_t *handle = NULL;
1858        int ret = 0, err = 0;
1859        int inline_data = ext4_has_inline_data(inode);
1860        struct buffer_head *inode_bh = NULL;
1861
1862        ClearPageChecked(page);
1863
1864        if (inline_data) {
1865                BUG_ON(page->index != 0);
1866                BUG_ON(len > ext4_get_max_inline_size(inode));
1867                inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1868                if (inode_bh == NULL)
1869                        goto out;
1870        } else {
1871                page_bufs = page_buffers(page);
1872                if (!page_bufs) {
1873                        BUG();
1874                        goto out;
1875                }
1876                ext4_walk_page_buffers(handle, page_bufs, 0, len,
1877                                       NULL, bget_one);
1878        }
1879        /*
1880         * We need to release the page lock before we start the
1881         * journal, so grab a reference so the page won't disappear
1882         * out from under us.
1883         */
1884        get_page(page);
1885        unlock_page(page);
1886
1887        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1888                                    ext4_writepage_trans_blocks(inode));
1889        if (IS_ERR(handle)) {
1890                ret = PTR_ERR(handle);
1891                put_page(page);
1892                goto out_no_pagelock;
1893        }
1894        BUG_ON(!ext4_handle_valid(handle));
1895
1896        lock_page(page);
1897        put_page(page);
1898        if (page->mapping != mapping) {
1899                /* The page got truncated from under us */
1900                ext4_journal_stop(handle);
1901                ret = 0;
1902                goto out;
1903        }
1904
1905        if (inline_data) {
1906                ret = ext4_mark_inode_dirty(handle, inode);
1907        } else {
1908                ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1909                                             do_journal_get_write_access);
1910
1911                err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1912                                             write_end_fn);
1913        }
1914        if (ret == 0)
1915                ret = err;
1916        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1917        err = ext4_journal_stop(handle);
1918        if (!ret)
1919                ret = err;
1920
1921        if (!ext4_has_inline_data(inode))
1922                ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1923                                       NULL, bput_one);
1924        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1925out:
1926        unlock_page(page);
1927out_no_pagelock:
1928        brelse(inode_bh);
1929        return ret;
1930}
1931
1932/*
1933 * Note that we don't need to start a transaction unless we're journaling data
1934 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1935 * need to file the inode to the transaction's list in ordered mode because if
1936 * we are writing back data added by write(), the inode is already there and if
1937 * we are writing back data modified via mmap(), no one guarantees in which
1938 * transaction the data will hit the disk. In case we are journaling data, we
1939 * cannot start transaction directly because transaction start ranks above page
1940 * lock so we have to do some magic.
1941 *
1942 * This function can get called via...
1943 *   - ext4_writepages after taking page lock (have journal handle)
1944 *   - journal_submit_inode_data_buffers (no journal handle)
1945 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1946 *   - grab_page_cache when doing write_begin (have journal handle)
1947 *
1948 * We don't do any block allocation in this function. If we have page with
1949 * multiple blocks we need to write those buffer_heads that are mapped. This
1950 * is important for mmaped based write. So if we do with blocksize 1K
1951 * truncate(f, 1024);
1952 * a = mmap(f, 0, 4096);
1953 * a[0] = 'a';
1954 * truncate(f, 4096);
1955 * we have in the page first buffer_head mapped via page_mkwrite call back
1956 * but other buffer_heads would be unmapped but dirty (dirty done via the
1957 * do_wp_page). So writepage should write the first block. If we modify
1958 * the mmap area beyond 1024 we will again get a page_fault and the
1959 * page_mkwrite callback will do the block allocation and mark the
1960 * buffer_heads mapped.
1961 *
1962 * We redirty the page if we have any buffer_heads that is either delay or
1963 * unwritten in the page.
1964 *
1965 * We can get recursively called as show below.
1966 *
1967 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1968 *              ext4_writepage()
1969 *
1970 * But since we don't do any block allocation we should not deadlock.
1971 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1972 */
1973static int ext4_writepage(struct page *page,
1974                          struct writeback_control *wbc)
1975{
1976        int ret = 0;
1977        loff_t size;
1978        unsigned int len;
1979        struct buffer_head *page_bufs = NULL;
1980        struct inode *inode = page->mapping->host;
1981        struct ext4_io_submit io_submit;
1982        bool keep_towrite = false;
1983
1984        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1985                inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1986                unlock_page(page);
1987                return -EIO;
1988        }
1989
1990        trace_ext4_writepage(page);
1991        size = i_size_read(inode);
1992        if (page->index == size >> PAGE_SHIFT &&
1993            !ext4_verity_in_progress(inode))
1994                len = size & ~PAGE_MASK;
1995        else
1996                len = PAGE_SIZE;
1997
1998        page_bufs = page_buffers(page);
1999        /*
2000         * We cannot do block allocation or other extent handling in this
2001         * function. If there are buffers needing that, we have to redirty
2002         * the page. But we may reach here when we do a journal commit via
2003         * journal_submit_inode_data_buffers() and in that case we must write
2004         * allocated buffers to achieve data=ordered mode guarantees.
2005         *
2006         * Also, if there is only one buffer per page (the fs block
2007         * size == the page size), if one buffer needs block
2008         * allocation or needs to modify the extent tree to clear the
2009         * unwritten flag, we know that the page can't be written at
2010         * all, so we might as well refuse the write immediately.
2011         * Unfortunately if the block size != page size, we can't as
2012         * easily detect this case using ext4_walk_page_buffers(), but
2013         * for the extremely common case, this is an optimization that
2014         * skips a useless round trip through ext4_bio_write_page().
2015         */
2016        if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2017                                   ext4_bh_delay_or_unwritten)) {
2018                redirty_page_for_writepage(wbc, page);
2019                if ((current->flags & PF_MEMALLOC) ||
2020                    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2021                        /*
2022                         * For memory cleaning there's no point in writing only
2023                         * some buffers. So just bail out. Warn if we came here
2024                         * from direct reclaim.
2025                         */
2026                        WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2027                                                        == PF_MEMALLOC);
2028                        unlock_page(page);
2029                        return 0;
2030                }
2031                keep_towrite = true;
2032        }
2033
2034        if (PageChecked(page) && ext4_should_journal_data(inode))
2035                /*
2036                 * It's mmapped pagecache.  Add buffers and journal it.  There
2037                 * doesn't seem much point in redirtying the page here.
2038                 */
2039                return __ext4_journalled_writepage(page, len);
2040
2041        ext4_io_submit_init(&io_submit, wbc);
2042        io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2043        if (!io_submit.io_end) {
2044                redirty_page_for_writepage(wbc, page);
2045                unlock_page(page);
2046                return -ENOMEM;
2047        }
2048        ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2049        ext4_io_submit(&io_submit);
2050        /* Drop io_end reference we got from init */
2051        ext4_put_io_end_defer(io_submit.io_end);
2052        return ret;
2053}
2054
2055static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2056{
2057        int len;
2058        loff_t size;
2059        int err;
2060
2061        BUG_ON(page->index != mpd->first_page);
2062        clear_page_dirty_for_io(page);
2063        /*
2064         * We have to be very careful here!  Nothing protects writeback path
2065         * against i_size changes and the page can be writeably mapped into
2066         * page tables. So an application can be growing i_size and writing
2067         * data through mmap while writeback runs. clear_page_dirty_for_io()
2068         * write-protects our page in page tables and the page cannot get
2069         * written to again until we release page lock. So only after
2070         * clear_page_dirty_for_io() we are safe to sample i_size for
2071         * ext4_bio_write_page() to zero-out tail of the written page. We rely
2072         * on the barrier provided by TestClearPageDirty in
2073         * clear_page_dirty_for_io() to make sure i_size is really sampled only
2074         * after page tables are updated.
2075         */
2076        size = i_size_read(mpd->inode);
2077        if (page->index == size >> PAGE_SHIFT &&
2078            !ext4_verity_in_progress(mpd->inode))
2079                len = size & ~PAGE_MASK;
2080        else
2081                len = PAGE_SIZE;
2082        err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2083        if (!err)
2084                mpd->wbc->nr_to_write--;
2085        mpd->first_page++;
2086
2087        return err;
2088}
2089
2090#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2091
2092/*
2093 * mballoc gives us at most this number of blocks...
2094 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2095 * The rest of mballoc seems to handle chunks up to full group size.
2096 */
2097#define MAX_WRITEPAGES_EXTENT_LEN 2048
2098
2099/*
2100 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2101 *
2102 * @mpd - extent of blocks
2103 * @lblk - logical number of the block in the file
2104 * @bh - buffer head we want to add to the extent
2105 *
2106 * The function is used to collect contig. blocks in the same state. If the
2107 * buffer doesn't require mapping for writeback and we haven't started the
2108 * extent of buffers to map yet, the function returns 'true' immediately - the
2109 * caller can write the buffer right away. Otherwise the function returns true
2110 * if the block has been added to the extent, false if the block couldn't be
2111 * added.
2112 */
2113static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2114                                   struct buffer_head *bh)
2115{
2116        struct ext4_map_blocks *map = &mpd->map;
2117
2118        /* Buffer that doesn't need mapping for writeback? */
2119        if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2120            (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2121                /* So far no extent to map => we write the buffer right away */
2122                if (map->m_len == 0)
2123                        return true;
2124                return false;
2125        }
2126
2127        /* First block in the extent? */
2128        if (map->m_len == 0) {
2129                /* We cannot map unless handle is started... */
2130                if (!mpd->do_map)
2131                        return false;
2132                map->m_lblk = lblk;
2133                map->m_len = 1;
2134                map->m_flags = bh->b_state & BH_FLAGS;
2135                return true;
2136        }
2137
2138        /* Don't go larger than mballoc is willing to allocate */
2139        if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2140                return false;
2141
2142        /* Can we merge the block to our big extent? */
2143        if (lblk == map->m_lblk + map->m_len &&
2144            (bh->b_state & BH_FLAGS) == map->m_flags) {
2145                map->m_len++;
2146                return true;
2147        }
2148        return false;
2149}
2150
2151/*
2152 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2153 *
2154 * @mpd - extent of blocks for mapping
2155 * @head - the first buffer in the page
2156 * @bh - buffer we should start processing from
2157 * @lblk - logical number of the block in the file corresponding to @bh
2158 *
2159 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2160 * the page for IO if all buffers in this page were mapped and there's no
2161 * accumulated extent of buffers to map or add buffers in the page to the
2162 * extent of buffers to map. The function returns 1 if the caller can continue
2163 * by processing the next page, 0 if it should stop adding buffers to the
2164 * extent to map because we cannot extend it anymore. It can also return value
2165 * < 0 in case of error during IO submission.
2166 */
2167static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2168                                   struct buffer_head *head,
2169                                   struct buffer_head *bh,
2170                                   ext4_lblk_t lblk)
2171{
2172        struct inode *inode = mpd->inode;
2173        int err;
2174        ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2175                                                        >> inode->i_blkbits;
2176
2177        if (ext4_verity_in_progress(inode))
2178                blocks = EXT_MAX_BLOCKS;
2179
2180        do {
2181                BUG_ON(buffer_locked(bh));
2182
2183                if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2184                        /* Found extent to map? */
2185                        if (mpd->map.m_len)
2186                                return 0;
2187                        /* Buffer needs mapping and handle is not started? */
2188                        if (!mpd->do_map)
2189                                return 0;
2190                        /* Everything mapped so far and we hit EOF */
2191                        break;
2192                }
2193        } while (lblk++, (bh = bh->b_this_page) != head);
2194        /* So far everything mapped? Submit the page for IO. */
2195        if (mpd->map.m_len == 0) {
2196                err = mpage_submit_page(mpd, head->b_page);
2197                if (err < 0)
2198                        return err;
2199        }
2200        if (lblk >= blocks) {
2201                mpd->scanned_until_end = 1;
2202                return 0;
2203        }
2204        return 1;
2205}
2206
2207/*
2208 * mpage_process_page - update page buffers corresponding to changed extent and
2209 *                     may submit fully mapped page for IO
2210 *
2211 * @mpd         - description of extent to map, on return next extent to map
2212 * @m_lblk      - logical block mapping.
2213 * @m_pblk      - corresponding physical mapping.
2214 * @map_bh      - determines on return whether this page requires any further
2215 *                mapping or not.
2216 * Scan given page buffers corresponding to changed extent and update buffer
2217 * state according to new extent state.
2218 * We map delalloc buffers to their physical location, clear unwritten bits.
2219 * If the given page is not fully mapped, we update @map to the next extent in
2220 * the given page that needs mapping & return @map_bh as true.
2221 */
2222static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2223                              ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2224                              bool *map_bh)
2225{
2226        struct buffer_head *head, *bh;
2227        ext4_io_end_t *io_end = mpd->io_submit.io_end;
2228        ext4_lblk_t lblk = *m_lblk;
2229        ext4_fsblk_t pblock = *m_pblk;
2230        int err = 0;
2231        int blkbits = mpd->inode->i_blkbits;
2232        ssize_t io_end_size = 0;
2233        struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2234
2235        bh = head = page_buffers(page);
2236        do {
2237                if (lblk < mpd->map.m_lblk)
2238                        continue;
2239                if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2240                        /*
2241                         * Buffer after end of mapped extent.
2242                         * Find next buffer in the page to map.
2243                         */
2244                        mpd->map.m_len = 0;
2245                        mpd->map.m_flags = 0;
2246                        io_end_vec->size += io_end_size;
2247                        io_end_size = 0;
2248
2249                        err = mpage_process_page_bufs(mpd, head, bh, lblk);
2250                        if (err > 0)
2251                                err = 0;
2252                        if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2253                                io_end_vec = ext4_alloc_io_end_vec(io_end);
2254                                if (IS_ERR(io_end_vec)) {
2255                                        err = PTR_ERR(io_end_vec);
2256                                        goto out;
2257                                }
2258                                io_end_vec->offset = mpd->map.m_lblk << blkbits;
2259                        }
2260                        *map_bh = true;
2261                        goto out;
2262                }
2263                if (buffer_delay(bh)) {
2264                        clear_buffer_delay(bh);
2265                        bh->b_blocknr = pblock++;
2266                }
2267                clear_buffer_unwritten(bh);
2268                io_end_size += (1 << blkbits);
2269        } while (lblk++, (bh = bh->b_this_page) != head);
2270
2271        io_end_vec->size += io_end_size;
2272        io_end_size = 0;
2273        *map_bh = false;
2274out:
2275        *m_lblk = lblk;
2276        *m_pblk = pblock;
2277        return err;
2278}
2279
2280/*
2281 * mpage_map_buffers - update buffers corresponding to changed extent and
2282 *                     submit fully mapped pages for IO
2283 *
2284 * @mpd - description of extent to map, on return next extent to map
2285 *
2286 * Scan buffers corresponding to changed extent (we expect corresponding pages
2287 * to be already locked) and update buffer state according to new extent state.
2288 * We map delalloc buffers to their physical location, clear unwritten bits,
2289 * and mark buffers as uninit when we perform writes to unwritten extents
2290 * and do extent conversion after IO is finished. If the last page is not fully
2291 * mapped, we update @map to the next extent in the last page that needs
2292 * mapping. Otherwise we submit the page for IO.
2293 */
2294static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2295{
2296        struct pagevec pvec;
2297        int nr_pages, i;
2298        struct inode *inode = mpd->inode;
2299        int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2300        pgoff_t start, end;
2301        ext4_lblk_t lblk;
2302        ext4_fsblk_t pblock;
2303        int err;
2304        bool map_bh = false;
2305
2306        start = mpd->map.m_lblk >> bpp_bits;
2307        end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2308        lblk = start << bpp_bits;
2309        pblock = mpd->map.m_pblk;
2310
2311        pagevec_init(&pvec);
2312        while (start <= end) {
2313                nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2314                                                &start, end);
2315                if (nr_pages == 0)
2316                        break;
2317                for (i = 0; i < nr_pages; i++) {
2318                        struct page *page = pvec.pages[i];
2319
2320                        err = mpage_process_page(mpd, page, &lblk, &pblock,
2321                                                 &map_bh);
2322                        /*
2323                         * If map_bh is true, means page may require further bh
2324                         * mapping, or maybe the page was submitted for IO.
2325                         * So we return to call further extent mapping.
2326                         */
2327                        if (err < 0 || map_bh)
2328                                goto out;
2329                        /* Page fully mapped - let IO run! */
2330                        err = mpage_submit_page(mpd, page);
2331                        if (err < 0)
2332                                goto out;
2333                }
2334                pagevec_release(&pvec);
2335        }
2336        /* Extent fully mapped and matches with page boundary. We are done. */
2337        mpd->map.m_len = 0;
2338        mpd->map.m_flags = 0;
2339        return 0;
2340out:
2341        pagevec_release(&pvec);
2342        return err;
2343}
2344
2345static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2346{
2347        struct inode *inode = mpd->inode;
2348        struct ext4_map_blocks *map = &mpd->map;
2349        int get_blocks_flags;
2350        int err, dioread_nolock;
2351
2352        trace_ext4_da_write_pages_extent(inode, map);
2353        /*
2354         * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2355         * to convert an unwritten extent to be initialized (in the case
2356         * where we have written into one or more preallocated blocks).  It is
2357         * possible that we're going to need more metadata blocks than
2358         * previously reserved. However we must not fail because we're in
2359         * writeback and there is nothing we can do about it so it might result
2360         * in data loss.  So use reserved blocks to allocate metadata if
2361         * possible.
2362         *
2363         * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2364         * the blocks in question are delalloc blocks.  This indicates
2365         * that the blocks and quotas has already been checked when
2366         * the data was copied into the page cache.
2367         */
2368        get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2369                           EXT4_GET_BLOCKS_METADATA_NOFAIL |
2370                           EXT4_GET_BLOCKS_IO_SUBMIT;
2371        dioread_nolock = ext4_should_dioread_nolock(inode);
2372        if (dioread_nolock)
2373                get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2374        if (map->m_flags & BIT(BH_Delay))
2375                get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2376
2377        err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2378        if (err < 0)
2379                return err;
2380        if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2381                if (!mpd->io_submit.io_end->handle &&
2382                    ext4_handle_valid(handle)) {
2383                        mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2384                        handle->h_rsv_handle = NULL;
2385                }
2386                ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2387        }
2388
2389        BUG_ON(map->m_len == 0);
2390        return 0;
2391}
2392
2393/*
2394 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2395 *                               mpd->len and submit pages underlying it for IO
2396 *
2397 * @handle - handle for journal operations
2398 * @mpd - extent to map
2399 * @give_up_on_write - we set this to true iff there is a fatal error and there
2400 *                     is no hope of writing the data. The caller should discard
2401 *                     dirty pages to avoid infinite loops.
2402 *
2403 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2404 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2405 * them to initialized or split the described range from larger unwritten
2406 * extent. Note that we need not map all the described range since allocation
2407 * can return less blocks or the range is covered by more unwritten extents. We
2408 * cannot map more because we are limited by reserved transaction credits. On
2409 * the other hand we always make sure that the last touched page is fully
2410 * mapped so that it can be written out (and thus forward progress is
2411 * guaranteed). After mapping we submit all mapped pages for IO.
2412 */
2413static int mpage_map_and_submit_extent(handle_t *handle,
2414                                       struct mpage_da_data *mpd,
2415                                       bool *give_up_on_write)
2416{
2417        struct inode *inode = mpd->inode;
2418        struct ext4_map_blocks *map = &mpd->map;
2419        int err;
2420        loff_t disksize;
2421        int progress = 0;
2422        ext4_io_end_t *io_end = mpd->io_submit.io_end;
2423        struct ext4_io_end_vec *io_end_vec;
2424
2425        io_end_vec = ext4_alloc_io_end_vec(io_end);
2426        if (IS_ERR(io_end_vec))
2427                return PTR_ERR(io_end_vec);
2428        io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2429        do {
2430                err = mpage_map_one_extent(handle, mpd);
2431                if (err < 0) {
2432                        struct super_block *sb = inode->i_sb;
2433
2434                        if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2435                            EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2436                                goto invalidate_dirty_pages;
2437                        /*
2438                         * Let the uper layers retry transient errors.
2439                         * In the case of ENOSPC, if ext4_count_free_blocks()
2440                         * is non-zero, a commit should free up blocks.
2441                         */
2442                        if ((err == -ENOMEM) ||
2443                            (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2444                                if (progress)
2445                                        goto update_disksize;
2446                                return err;
2447                        }
2448                        ext4_msg(sb, KERN_CRIT,
2449                                 "Delayed block allocation failed for "
2450                                 "inode %lu at logical offset %llu with"
2451                                 " max blocks %u with error %d",
2452                                 inode->i_ino,
2453                                 (unsigned long long)map->m_lblk,
2454                                 (unsigned)map->m_len, -err);
2455                        ext4_msg(sb, KERN_CRIT,
2456                                 "This should not happen!! Data will "
2457                                 "be lost\n");
2458                        if (err == -ENOSPC)
2459                                ext4_print_free_blocks(inode);
2460                invalidate_dirty_pages:
2461                        *give_up_on_write = true;
2462                        return err;
2463                }
2464                progress = 1;
2465                /*
2466                 * Update buffer state, submit mapped pages, and get us new
2467                 * extent to map
2468                 */
2469                err = mpage_map_and_submit_buffers(mpd);
2470                if (err < 0)
2471                        goto update_disksize;
2472        } while (map->m_len);
2473
2474update_disksize:
2475        /*
2476         * Update on-disk size after IO is submitted.  Races with
2477         * truncate are avoided by checking i_size under i_data_sem.
2478         */
2479        disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2480        if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2481                int err2;
2482                loff_t i_size;
2483
2484                down_write(&EXT4_I(inode)->i_data_sem);
2485                i_size = i_size_read(inode);
2486                if (disksize > i_size)
2487                        disksize = i_size;
2488                if (disksize > EXT4_I(inode)->i_disksize)
2489                        EXT4_I(inode)->i_disksize = disksize;
2490                up_write(&EXT4_I(inode)->i_data_sem);
2491                err2 = ext4_mark_inode_dirty(handle, inode);
2492                if (err2) {
2493                        ext4_error_err(inode->i_sb, -err2,
2494                                       "Failed to mark inode %lu dirty",
2495                                       inode->i_ino);
2496                }
2497                if (!err)
2498                        err = err2;
2499        }
2500        return err;
2501}
2502
2503/*
2504 * Calculate the total number of credits to reserve for one writepages
2505 * iteration. This is called from ext4_writepages(). We map an extent of
2506 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2507 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2508 * bpp - 1 blocks in bpp different extents.
2509 */
2510static int ext4_da_writepages_trans_blocks(struct inode *inode)
2511{
2512        int bpp = ext4_journal_blocks_per_page(inode);
2513
2514        return ext4_meta_trans_blocks(inode,
2515                                MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2516}
2517
2518/*
2519 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2520 *                               and underlying extent to map
2521 *
2522 * @mpd - where to look for pages
2523 *
2524 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2525 * IO immediately. When we find a page which isn't mapped we start accumulating
2526 * extent of buffers underlying these pages that needs mapping (formed by
2527 * either delayed or unwritten buffers). We also lock the pages containing
2528 * these buffers. The extent found is returned in @mpd structure (starting at
2529 * mpd->lblk with length mpd->len blocks).
2530 *
2531 * Note that this function can attach bios to one io_end structure which are
2532 * neither logically nor physically contiguous. Although it may seem as an
2533 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2534 * case as we need to track IO to all buffers underlying a page in one io_end.
2535 */
2536static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2537{
2538        struct address_space *mapping = mpd->inode->i_mapping;
2539        struct pagevec pvec;
2540        unsigned int nr_pages;
2541        long left = mpd->wbc->nr_to_write;
2542        pgoff_t index = mpd->first_page;
2543        pgoff_t end = mpd->last_page;
2544        xa_mark_t tag;
2545        int i, err = 0;
2546        int blkbits = mpd->inode->i_blkbits;
2547        ext4_lblk_t lblk;
2548        struct buffer_head *head;
2549
2550        if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2551                tag = PAGECACHE_TAG_TOWRITE;
2552        else
2553                tag = PAGECACHE_TAG_DIRTY;
2554
2555        pagevec_init(&pvec);
2556        mpd->map.m_len = 0;
2557        mpd->next_page = index;
2558        while (index <= end) {
2559                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2560                                tag);
2561                if (nr_pages == 0)
2562                        break;
2563
2564                for (i = 0; i < nr_pages; i++) {
2565                        struct page *page = pvec.pages[i];
2566
2567                        /*
2568                         * Accumulated enough dirty pages? This doesn't apply
2569                         * to WB_SYNC_ALL mode. For integrity sync we have to
2570                         * keep going because someone may be concurrently
2571                         * dirtying pages, and we might have synced a lot of
2572                         * newly appeared dirty pages, but have not synced all
2573                         * of the old dirty pages.
2574                         */
2575                        if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2576                                goto out;
2577
2578                        /* If we can't merge this page, we are done. */
2579                        if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2580                                goto out;
2581
2582                        lock_page(page);
2583                        /*
2584                         * If the page is no longer dirty, or its mapping no
2585                         * longer corresponds to inode we are writing (which
2586                         * means it has been truncated or invalidated), or the
2587                         * page is already under writeback and we are not doing
2588                         * a data integrity writeback, skip the page
2589                         */
2590                        if (!PageDirty(page) ||
2591                            (PageWriteback(page) &&
2592                             (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2593                            unlikely(page->mapping != mapping)) {
2594                                unlock_page(page);
2595                                continue;
2596                        }
2597
2598                        wait_on_page_writeback(page);
2599                        BUG_ON(PageWriteback(page));
2600
2601                        if (mpd->map.m_len == 0)
2602                                mpd->first_page = page->index;
2603                        mpd->next_page = page->index + 1;
2604                        /* Add all dirty buffers to mpd */
2605                        lblk = ((ext4_lblk_t)page->index) <<
2606                                (PAGE_SHIFT - blkbits);
2607                        head = page_buffers(page);
2608                        err = mpage_process_page_bufs(mpd, head, head, lblk);
2609                        if (err <= 0)
2610                                goto out;
2611                        err = 0;
2612                        left--;
2613                }
2614                pagevec_release(&pvec);
2615                cond_resched();
2616        }
2617        mpd->scanned_until_end = 1;
2618        return 0;
2619out:
2620        pagevec_release(&pvec);
2621        return err;
2622}
2623
2624static int ext4_writepages(struct address_space *mapping,
2625                           struct writeback_control *wbc)
2626{
2627        pgoff_t writeback_index = 0;
2628        long nr_to_write = wbc->nr_to_write;
2629        int range_whole = 0;
2630        int cycled = 1;
2631        handle_t *handle = NULL;
2632        struct mpage_da_data mpd;
2633        struct inode *inode = mapping->host;
2634        int needed_blocks, rsv_blocks = 0, ret = 0;
2635        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2636        struct blk_plug plug;
2637        bool give_up_on_write = false;
2638
2639        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2640                return -EIO;
2641
2642        percpu_down_read(&sbi->s_writepages_rwsem);
2643        trace_ext4_writepages(inode, wbc);
2644
2645        /*
2646         * No pages to write? This is mainly a kludge to avoid starting
2647         * a transaction for special inodes like journal inode on last iput()
2648         * because that could violate lock ordering on umount
2649         */
2650        if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2651                goto out_writepages;
2652
2653        if (ext4_should_journal_data(inode)) {
2654                ret = generic_writepages(mapping, wbc);
2655                goto out_writepages;
2656        }
2657
2658        /*
2659         * If the filesystem has aborted, it is read-only, so return
2660         * right away instead of dumping stack traces later on that
2661         * will obscure the real source of the problem.  We test
2662         * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2663         * the latter could be true if the filesystem is mounted
2664         * read-only, and in that case, ext4_writepages should
2665         * *never* be called, so if that ever happens, we would want
2666         * the stack trace.
2667         */
2668        if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2669                     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2670                ret = -EROFS;
2671                goto out_writepages;
2672        }
2673
2674        /*
2675         * If we have inline data and arrive here, it means that
2676         * we will soon create the block for the 1st page, so
2677         * we'd better clear the inline data here.
2678         */
2679        if (ext4_has_inline_data(inode)) {
2680                /* Just inode will be modified... */
2681                handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2682                if (IS_ERR(handle)) {
2683                        ret = PTR_ERR(handle);
2684                        goto out_writepages;
2685                }
2686                BUG_ON(ext4_test_inode_state(inode,
2687                                EXT4_STATE_MAY_INLINE_DATA));
2688                ext4_destroy_inline_data(handle, inode);
2689                ext4_journal_stop(handle);
2690        }
2691
2692        if (ext4_should_dioread_nolock(inode)) {
2693                /*
2694                 * We may need to convert up to one extent per block in
2695                 * the page and we may dirty the inode.
2696                 */
2697                rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2698                                                PAGE_SIZE >> inode->i_blkbits);
2699        }
2700
2701        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2702                range_whole = 1;
2703
2704        if (wbc->range_cyclic) {
2705                writeback_index = mapping->writeback_index;
2706                if (writeback_index)
2707                        cycled = 0;
2708                mpd.first_page = writeback_index;
2709                mpd.last_page = -1;
2710        } else {
2711                mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2712                mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2713        }
2714
2715        mpd.inode = inode;
2716        mpd.wbc = wbc;
2717        ext4_io_submit_init(&mpd.io_submit, wbc);
2718retry:
2719        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2720                tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2721        blk_start_plug(&plug);
2722
2723        /*
2724         * First writeback pages that don't need mapping - we can avoid
2725         * starting a transaction unnecessarily and also avoid being blocked
2726         * in the block layer on device congestion while having transaction
2727         * started.
2728         */
2729        mpd.do_map = 0;
2730        mpd.scanned_until_end = 0;
2731        mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2732        if (!mpd.io_submit.io_end) {
2733                ret = -ENOMEM;
2734                goto unplug;
2735        }
2736        ret = mpage_prepare_extent_to_map(&mpd);
2737        /* Unlock pages we didn't use */
2738        mpage_release_unused_pages(&mpd, false);
2739        /* Submit prepared bio */
2740        ext4_io_submit(&mpd.io_submit);
2741        ext4_put_io_end_defer(mpd.io_submit.io_end);
2742        mpd.io_submit.io_end = NULL;
2743        if (ret < 0)
2744                goto unplug;
2745
2746        while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2747                /* For each extent of pages we use new io_end */
2748                mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2749                if (!mpd.io_submit.io_end) {
2750                        ret = -ENOMEM;
2751                        break;
2752                }
2753
2754                /*
2755                 * We have two constraints: We find one extent to map and we
2756                 * must always write out whole page (makes a difference when
2757                 * blocksize < pagesize) so that we don't block on IO when we
2758                 * try to write out the rest of the page. Journalled mode is
2759                 * not supported by delalloc.
2760                 */
2761                BUG_ON(ext4_should_journal_data(inode));
2762                needed_blocks = ext4_da_writepages_trans_blocks(inode);
2763
2764                /* start a new transaction */
2765                handle = ext4_journal_start_with_reserve(inode,
2766                                EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2767                if (IS_ERR(handle)) {
2768                        ret = PTR_ERR(handle);
2769                        ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2770                               "%ld pages, ino %lu; err %d", __func__,
2771                                wbc->nr_to_write, inode->i_ino, ret);
2772                        /* Release allocated io_end */
2773                        ext4_put_io_end(mpd.io_submit.io_end);
2774                        mpd.io_submit.io_end = NULL;
2775                        break;
2776                }
2777                mpd.do_map = 1;
2778
2779                trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2780                ret = mpage_prepare_extent_to_map(&mpd);
2781                if (!ret && mpd.map.m_len)
2782                        ret = mpage_map_and_submit_extent(handle, &mpd,
2783                                        &give_up_on_write);
2784                /*
2785                 * Caution: If the handle is synchronous,
2786                 * ext4_journal_stop() can wait for transaction commit
2787                 * to finish which may depend on writeback of pages to
2788                 * complete or on page lock to be released.  In that
2789                 * case, we have to wait until after after we have
2790                 * submitted all the IO, released page locks we hold,
2791                 * and dropped io_end reference (for extent conversion
2792                 * to be able to complete) before stopping the handle.
2793                 */
2794                if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2795                        ext4_journal_stop(handle);
2796                        handle = NULL;
2797                        mpd.do_map = 0;
2798                }
2799                /* Unlock pages we didn't use */
2800                mpage_release_unused_pages(&mpd, give_up_on_write);
2801                /* Submit prepared bio */
2802                ext4_io_submit(&mpd.io_submit);
2803
2804                /*
2805                 * Drop our io_end reference we got from init. We have
2806                 * to be careful and use deferred io_end finishing if
2807                 * we are still holding the transaction as we can
2808                 * release the last reference to io_end which may end
2809                 * up doing unwritten extent conversion.
2810                 */
2811                if (handle) {
2812                        ext4_put_io_end_defer(mpd.io_submit.io_end);
2813                        ext4_journal_stop(handle);
2814                } else
2815                        ext4_put_io_end(mpd.io_submit.io_end);
2816                mpd.io_submit.io_end = NULL;
2817
2818                if (ret == -ENOSPC && sbi->s_journal) {
2819                        /*
2820                         * Commit the transaction which would
2821                         * free blocks released in the transaction
2822                         * and try again
2823                         */
2824                        jbd2_journal_force_commit_nested(sbi->s_journal);
2825                        ret = 0;
2826                        continue;
2827                }
2828                /* Fatal error - ENOMEM, EIO... */
2829                if (ret)
2830                        break;
2831        }
2832unplug:
2833        blk_finish_plug(&plug);
2834        if (!ret && !cycled && wbc->nr_to_write > 0) {
2835                cycled = 1;
2836                mpd.last_page = writeback_index - 1;
2837                mpd.first_page = 0;
2838                goto retry;
2839        }
2840
2841        /* Update index */
2842        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2843                /*
2844                 * Set the writeback_index so that range_cyclic
2845                 * mode will write it back later
2846                 */
2847                mapping->writeback_index = mpd.first_page;
2848
2849out_writepages:
2850        trace_ext4_writepages_result(inode, wbc, ret,
2851                                     nr_to_write - wbc->nr_to_write);
2852        percpu_up_read(&sbi->s_writepages_rwsem);
2853        return ret;
2854}
2855
2856static int ext4_dax_writepages(struct address_space *mapping,
2857                               struct writeback_control *wbc)
2858{
2859        int ret;
2860        long nr_to_write = wbc->nr_to_write;
2861        struct inode *inode = mapping->host;
2862        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2863
2864        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2865                return -EIO;
2866
2867        percpu_down_read(&sbi->s_writepages_rwsem);
2868        trace_ext4_writepages(inode, wbc);
2869
2870        ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2871        trace_ext4_writepages_result(inode, wbc, ret,
2872                                     nr_to_write - wbc->nr_to_write);
2873        percpu_up_read(&sbi->s_writepages_rwsem);
2874        return ret;
2875}
2876
2877static int ext4_nonda_switch(struct super_block *sb)
2878{
2879        s64 free_clusters, dirty_clusters;
2880        struct ext4_sb_info *sbi = EXT4_SB(sb);
2881
2882        /*
2883         * switch to non delalloc mode if we are running low
2884         * on free block. The free block accounting via percpu
2885         * counters can get slightly wrong with percpu_counter_batch getting
2886         * accumulated on each CPU without updating global counters
2887         * Delalloc need an accurate free block accounting. So switch
2888         * to non delalloc when we are near to error range.
2889         */
2890        free_clusters =
2891                percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2892        dirty_clusters =
2893                percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2894        /*
2895         * Start pushing delalloc when 1/2 of free blocks are dirty.
2896         */
2897        if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2898                try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2899
2900        if (2 * free_clusters < 3 * dirty_clusters ||
2901            free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2902                /*
2903                 * free block count is less than 150% of dirty blocks
2904                 * or free blocks is less than watermark
2905                 */
2906                return 1;
2907        }
2908        return 0;
2909}
2910
2911/* We always reserve for an inode update; the superblock could be there too */
2912static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2913{
2914        if (likely(ext4_has_feature_large_file(inode->i_sb)))
2915                return 1;
2916
2917        if (pos + len <= 0x7fffffffULL)
2918                return 1;
2919
2920        /* We might need to update the superblock to set LARGE_FILE */
2921        return 2;
2922}
2923
2924static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2925                               loff_t pos, unsigned len, unsigned flags,
2926                               struct page **pagep, void **fsdata)
2927{
2928        int ret, retries = 0;
2929        struct page *page;
2930        pgoff_t index;
2931        struct inode *inode = mapping->host;
2932        handle_t *handle;
2933
2934        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2935                return -EIO;
2936
2937        index = pos >> PAGE_SHIFT;
2938
2939        if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2940            ext4_verity_in_progress(inode)) {
2941                *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2942                return ext4_write_begin(file, mapping, pos,
2943                                        len, flags, pagep, fsdata);
2944        }
2945        *fsdata = (void *)0;
2946        trace_ext4_da_write_begin(inode, pos, len, flags);
2947
2948        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2949                ret = ext4_da_write_inline_data_begin(mapping, inode,
2950                                                      pos, len, flags,
2951                                                      pagep, fsdata);
2952                if (ret < 0)
2953                        return ret;
2954                if (ret == 1)
2955                        return 0;
2956        }
2957
2958        /*
2959         * grab_cache_page_write_begin() can take a long time if the
2960         * system is thrashing due to memory pressure, or if the page
2961         * is being written back.  So grab it first before we start
2962         * the transaction handle.  This also allows us to allocate
2963         * the page (if needed) without using GFP_NOFS.
2964         */
2965retry_grab:
2966        page = grab_cache_page_write_begin(mapping, index, flags);
2967        if (!page)
2968                return -ENOMEM;
2969        unlock_page(page);
2970
2971        /*
2972         * With delayed allocation, we don't log the i_disksize update
2973         * if there is delayed block allocation. But we still need
2974         * to journalling the i_disksize update if writes to the end
2975         * of file which has an already mapped buffer.
2976         */
2977retry_journal:
2978        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2979                                ext4_da_write_credits(inode, pos, len));
2980        if (IS_ERR(handle)) {
2981                put_page(page);
2982                return PTR_ERR(handle);
2983        }
2984
2985        lock_page(page);
2986        if (page->mapping != mapping) {
2987                /* The page got truncated from under us */
2988                unlock_page(page);
2989                put_page(page);
2990                ext4_journal_stop(handle);
2991                goto retry_grab;
2992        }
2993        /* In case writeback began while the page was unlocked */
2994        wait_for_stable_page(page);
2995
2996#ifdef CONFIG_FS_ENCRYPTION
2997        ret = ext4_block_write_begin(page, pos, len,
2998                                     ext4_da_get_block_prep);
2999#else
3000        ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3001#endif
3002        if (ret < 0) {
3003                unlock_page(page);
3004                ext4_journal_stop(handle);
3005                /*
3006                 * block_write_begin may have instantiated a few blocks
3007                 * outside i_size.  Trim these off again. Don't need
3008                 * i_size_read because we hold i_mutex.
3009                 */
3010                if (pos + len > inode->i_size)
3011                        ext4_truncate_failed_write(inode);
3012
3013                if (ret == -ENOSPC &&
3014                    ext4_should_retry_alloc(inode->i_sb, &retries))
3015                        goto retry_journal;
3016
3017                put_page(page);
3018                return ret;
3019        }
3020
3021        *pagep = page;
3022        return ret;
3023}
3024
3025/*
3026 * Check if we should update i_disksize
3027 * when write to the end of file but not require block allocation
3028 */
3029static int ext4_da_should_update_i_disksize(struct page *page,
3030                                            unsigned long offset)
3031{
3032        struct buffer_head *bh;
3033        struct inode *inode = page->mapping->host;
3034        unsigned int idx;
3035        int i;
3036
3037        bh = page_buffers(page);
3038        idx = offset >> inode->i_blkbits;
3039
3040        for (i = 0; i < idx; i++)
3041                bh = bh->b_this_page;
3042
3043        if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3044                return 0;
3045        return 1;
3046}
3047
3048static int ext4_da_write_end(struct file *file,
3049                             struct address_space *mapping,
3050                             loff_t pos, unsigned len, unsigned copied,
3051                             struct page *page, void *fsdata)
3052{
3053        struct inode *inode = mapping->host;
3054        int ret = 0, ret2;
3055        handle_t *handle = ext4_journal_current_handle();
3056        loff_t new_i_size;
3057        unsigned long start, end;
3058        int write_mode = (int)(unsigned long)fsdata;
3059
3060        if (write_mode == FALL_BACK_TO_NONDELALLOC)
3061                return ext4_write_end(file, mapping, pos,
3062                                      len, copied, page, fsdata);
3063
3064        trace_ext4_da_write_end(inode, pos, len, copied);
3065        start = pos & (PAGE_SIZE - 1);
3066        end = start + copied - 1;
3067
3068        /*
3069         * generic_write_end() will run mark_inode_dirty() if i_size
3070         * changes.  So let's piggyback the i_disksize mark_inode_dirty
3071         * into that.
3072         */
3073        new_i_size = pos + copied;
3074        if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3075                if (ext4_has_inline_data(inode) ||
3076                    ext4_da_should_update_i_disksize(page, end)) {
3077                        ext4_update_i_disksize(inode, new_i_size);
3078                        /* We need to mark inode dirty even if
3079                         * new_i_size is less that inode->i_size
3080                         * bu greater than i_disksize.(hint delalloc)
3081                         */
3082                        ret = ext4_mark_inode_dirty(handle, inode);
3083                }
3084        }
3085
3086        if (write_mode != CONVERT_INLINE_DATA &&
3087            ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3088            ext4_has_inline_data(inode))
3089                ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3090                                                     page);
3091        else
3092                ret2 = generic_write_end(file, mapping, pos, len, copied,
3093                                                        page, fsdata);
3094
3095        copied = ret2;
3096        if (ret2 < 0)
3097                ret = ret2;
3098        ret2 = ext4_journal_stop(handle);
3099        if (unlikely(ret2 && !ret))
3100                ret = ret2;
3101
3102        return ret ? ret : copied;
3103}
3104
3105/*
3106 * Force all delayed allocation blocks to be allocated for a given inode.
3107 */
3108int ext4_alloc_da_blocks(struct inode *inode)
3109{
3110        trace_ext4_alloc_da_blocks(inode);
3111
3112        if (!EXT4_I(inode)->i_reserved_data_blocks)
3113                return 0;
3114
3115        /*
3116         * We do something simple for now.  The filemap_flush() will
3117         * also start triggering a write of the data blocks, which is
3118         * not strictly speaking necessary (and for users of
3119         * laptop_mode, not even desirable).  However, to do otherwise
3120         * would require replicating code paths in:
3121         *
3122         * ext4_writepages() ->
3123         *    write_cache_pages() ---> (via passed in callback function)
3124         *        __mpage_da_writepage() -->
3125         *           mpage_add_bh_to_extent()
3126         *           mpage_da_map_blocks()
3127         *
3128         * The problem is that write_cache_pages(), located in
3129         * mm/page-writeback.c, marks pages clean in preparation for
3130         * doing I/O, which is not desirable if we're not planning on
3131         * doing I/O at all.
3132         *
3133         * We could call write_cache_pages(), and then redirty all of
3134         * the pages by calling redirty_page_for_writepage() but that
3135         * would be ugly in the extreme.  So instead we would need to
3136         * replicate parts of the code in the above functions,
3137         * simplifying them because we wouldn't actually intend to
3138         * write out the pages, but rather only collect contiguous
3139         * logical block extents, call the multi-block allocator, and
3140         * then update the buffer heads with the block allocations.
3141         *
3142         * For now, though, we'll cheat by calling filemap_flush(),
3143         * which will map the blocks, and start the I/O, but not
3144         * actually wait for the I/O to complete.
3145         */
3146        return filemap_flush(inode->i_mapping);
3147}
3148
3149/*
3150 * bmap() is special.  It gets used by applications such as lilo and by
3151 * the swapper to find the on-disk block of a specific piece of data.
3152 *
3153 * Naturally, this is dangerous if the block concerned is still in the
3154 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3155 * filesystem and enables swap, then they may get a nasty shock when the
3156 * data getting swapped to that swapfile suddenly gets overwritten by
3157 * the original zero's written out previously to the journal and
3158 * awaiting writeback in the kernel's buffer cache.
3159 *
3160 * So, if we see any bmap calls here on a modified, data-journaled file,
3161 * take extra steps to flush any blocks which might be in the cache.
3162 */
3163static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3164{
3165        struct inode *inode = mapping->host;
3166        journal_t *journal;
3167        int err;
3168
3169        /*
3170         * We can get here for an inline file via the FIBMAP ioctl
3171         */
3172        if (ext4_has_inline_data(inode))
3173                return 0;
3174
3175        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3176                        test_opt(inode->i_sb, DELALLOC)) {
3177                /*
3178                 * With delalloc we want to sync the file
3179                 * so that we can make sure we allocate
3180                 * blocks for file
3181                 */
3182                filemap_write_and_wait(mapping);
3183        }
3184
3185        if (EXT4_JOURNAL(inode) &&
3186            ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3187                /*
3188                 * This is a REALLY heavyweight approach, but the use of
3189                 * bmap on dirty files is expected to be extremely rare:
3190                 * only if we run lilo or swapon on a freshly made file
3191                 * do we expect this to happen.
3192                 *
3193                 * (bmap requires CAP_SYS_RAWIO so this does not
3194                 * represent an unprivileged user DOS attack --- we'd be
3195                 * in trouble if mortal users could trigger this path at
3196                 * will.)
3197                 *
3198                 * NB. EXT4_STATE_JDATA is not set on files other than
3199                 * regular files.  If somebody wants to bmap a directory
3200                 * or symlink and gets confused because the buffer
3201                 * hasn't yet been flushed to disk, they deserve
3202                 * everything they get.
3203                 */
3204
3205                ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3206                journal = EXT4_JOURNAL(inode);
3207                jbd2_journal_lock_updates(journal);
3208                err = jbd2_journal_flush(journal);
3209                jbd2_journal_unlock_updates(journal);
3210
3211                if (err)
3212                        return 0;
3213        }
3214
3215        return iomap_bmap(mapping, block, &ext4_iomap_ops);
3216}
3217
3218static int ext4_readpage(struct file *file, struct page *page)
3219{
3220        int ret = -EAGAIN;
3221        struct inode *inode = page->mapping->host;
3222
3223        trace_ext4_readpage(page);
3224
3225        if (ext4_has_inline_data(inode))
3226                ret = ext4_readpage_inline(inode, page);
3227
3228        if (ret == -EAGAIN)
3229                return ext4_mpage_readpages(inode, NULL, page);
3230
3231        return ret;
3232}
3233
3234static void ext4_readahead(struct readahead_control *rac)
3235{
3236        struct inode *inode = rac->mapping->host;
3237
3238        /* If the file has inline data, no need to do readahead. */
3239        if (ext4_has_inline_data(inode))
3240                return;
3241
3242        ext4_mpage_readpages(inode, rac, NULL);
3243}
3244
3245static void ext4_invalidatepage(struct page *page, unsigned int offset,
3246                                unsigned int length)
3247{
3248        trace_ext4_invalidatepage(page, offset, length);
3249
3250        /* No journalling happens on data buffers when this function is used */
3251        WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3252
3253        block_invalidatepage(page, offset, length);
3254}
3255
3256static int __ext4_journalled_invalidatepage(struct page *page,
3257                                            unsigned int offset,
3258                                            unsigned int length)
3259{
3260        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3261
3262        trace_ext4_journalled_invalidatepage(page, offset, length);
3263
3264        /*
3265         * If it's a full truncate we just forget about the pending dirtying
3266         */
3267        if (offset == 0 && length == PAGE_SIZE)
3268                ClearPageChecked(page);
3269
3270        return jbd2_journal_invalidatepage(journal, page, offset, length);
3271}
3272
3273/* Wrapper for aops... */
3274static void ext4_journalled_invalidatepage(struct page *page,
3275                                           unsigned int offset,
3276                                           unsigned int length)
3277{
3278        WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3279}
3280
3281static int ext4_releasepage(struct page *page, gfp_t wait)
3282{
3283        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3284
3285        trace_ext4_releasepage(page);
3286
3287        /* Page has dirty journalled data -> cannot release */
3288        if (PageChecked(page))
3289                return 0;
3290        if (journal)
3291                return jbd2_journal_try_to_free_buffers(journal, page, wait);
3292        else
3293                return try_to_free_buffers(page);
3294}
3295
3296static bool ext4_inode_datasync_dirty(struct inode *inode)
3297{
3298        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3299
3300        if (journal)
3301                return !jbd2_transaction_committed(journal,
3302                                        EXT4_I(inode)->i_datasync_tid);
3303        /* Any metadata buffers to write? */
3304        if (!list_empty(&inode->i_mapping->private_list))
3305                return true;
3306        return inode->i_state & I_DIRTY_DATASYNC;
3307}
3308
3309static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3310                           struct ext4_map_blocks *map, loff_t offset,
3311                           loff_t length)
3312{
3313        u8 blkbits = inode->i_blkbits;
3314
3315        /*
3316         * Writes that span EOF might trigger an I/O size update on completion,
3317         * so consider them to be dirty for the purpose of O_DSYNC, even if
3318         * there is no other metadata changes being made or are pending.
3319         */
3320        iomap->flags = 0;
3321        if (ext4_inode_datasync_dirty(inode) ||
3322            offset + length > i_size_read(inode))
3323                iomap->flags |= IOMAP_F_DIRTY;
3324
3325        if (map->m_flags & EXT4_MAP_NEW)
3326                iomap->flags |= IOMAP_F_NEW;
3327
3328        iomap->bdev = inode->i_sb->s_bdev;
3329        iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3330        iomap->offset = (u64) map->m_lblk << blkbits;
3331        iomap->length = (u64) map->m_len << blkbits;
3332
3333        if ((map->m_flags & EXT4_MAP_MAPPED) &&
3334            !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3335                iomap->flags |= IOMAP_F_MERGED;
3336
3337        /*
3338         * Flags passed to ext4_map_blocks() for direct I/O writes can result
3339         * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3340         * set. In order for any allocated unwritten extents to be converted
3341         * into written extents correctly within the ->end_io() handler, we
3342         * need to ensure that the iomap->type is set appropriately. Hence, the
3343         * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3344         * been set first.
3345         */
3346        if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3347                iomap->type = IOMAP_UNWRITTEN;
3348                iomap->addr = (u64) map->m_pblk << blkbits;
3349        } else if (map->m_flags & EXT4_MAP_MAPPED) {
3350                iomap->type = IOMAP_MAPPED;
3351                iomap->addr = (u64) map->m_pblk << blkbits;
3352        } else {
3353                iomap->type = IOMAP_HOLE;
3354                iomap->addr = IOMAP_NULL_ADDR;
3355        }
3356}
3357
3358static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3359                            unsigned int flags)
3360{
3361        handle_t *handle;
3362        u8 blkbits = inode->i_blkbits;
3363        int ret, dio_credits, m_flags = 0, retries = 0;
3364
3365        /*
3366         * Trim the mapping request to the maximum value that we can map at
3367         * once for direct I/O.
3368         */
3369        if (map->m_len > DIO_MAX_BLOCKS)
3370                map->m_len = DIO_MAX_BLOCKS;
3371        dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3372
3373retry:
3374        /*
3375         * Either we allocate blocks and then don't get an unwritten extent, so
3376         * in that case we have reserved enough credits. Or, the blocks are
3377         * already allocated and unwritten. In that case, the extent conversion
3378         * fits into the credits as well.
3379         */
3380        handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3381        if (IS_ERR(handle))
3382                return PTR_ERR(handle);
3383
3384        /*
3385         * DAX and direct I/O are the only two operations that are currently
3386         * supported with IOMAP_WRITE.
3387         */
3388        WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3389        if (IS_DAX(inode))
3390                m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3391        /*
3392         * We use i_size instead of i_disksize here because delalloc writeback
3393         * can complete at any point during the I/O and subsequently push the
3394         * i_disksize out to i_size. This could be beyond where direct I/O is
3395         * happening and thus expose allocated blocks to direct I/O reads.
3396         */
3397        else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3398                m_flags = EXT4_GET_BLOCKS_CREATE;
3399        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3400                m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3401
3402        ret = ext4_map_blocks(handle, inode, map, m_flags);
3403
3404        /*
3405         * We cannot fill holes in indirect tree based inodes as that could
3406         * expose stale data in the case of a crash. Use the magic error code
3407         * to fallback to buffered I/O.
3408         */
3409        if (!m_flags && !ret)
3410                ret = -ENOTBLK;
3411
3412        ext4_journal_stop(handle);
3413        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3414                goto retry;
3415
3416        return ret;
3417}
3418
3419
3420static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3421                unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3422{
3423        int ret;
3424        struct ext4_map_blocks map;
3425        u8 blkbits = inode->i_blkbits;
3426
3427        if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3428                return -EINVAL;
3429
3430        if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3431                return -ERANGE;
3432
3433        /*
3434         * Calculate the first and last logical blocks respectively.
3435         */
3436        map.m_lblk = offset >> blkbits;
3437        map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3438                          EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3439
3440        if (flags & IOMAP_WRITE)
3441                ret = ext4_iomap_alloc(inode, &map, flags);
3442        else
3443                ret = ext4_map_blocks(NULL, inode, &map, 0);
3444
3445        if (ret < 0)
3446                return ret;
3447
3448        ext4_set_iomap(inode, iomap, &map, offset, length);
3449
3450        return 0;
3451}
3452
3453static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3454                loff_t length, unsigned flags, struct iomap *iomap,
3455                struct iomap *srcmap)
3456{
3457        int ret;
3458
3459        /*
3460         * Even for writes we don't need to allocate blocks, so just pretend
3461         * we are reading to save overhead of starting a transaction.
3462         */
3463        flags &= ~IOMAP_WRITE;
3464        ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3465        WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3466        return ret;
3467}
3468
3469static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3470                          ssize_t written, unsigned flags, struct iomap *iomap)
3471{
3472        /*
3473         * Check to see whether an error occurred while writing out the data to
3474         * the allocated blocks. If so, return the magic error code so that we
3475         * fallback to buffered I/O and attempt to complete the remainder of
3476         * the I/O. Any blocks that may have been allocated in preparation for
3477         * the direct I/O will be reused during buffered I/O.
3478         */
3479        if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3480                return -ENOTBLK;
3481
3482        return 0;
3483}
3484
3485const struct iomap_ops ext4_iomap_ops = {
3486        .iomap_begin            = ext4_iomap_begin,
3487        .iomap_end              = ext4_iomap_end,
3488};
3489
3490const struct iomap_ops ext4_iomap_overwrite_ops = {
3491        .iomap_begin            = ext4_iomap_overwrite_begin,
3492        .iomap_end              = ext4_iomap_end,
3493};
3494
3495static bool ext4_iomap_is_delalloc(struct inode *inode,
3496                                   struct ext4_map_blocks *map)
3497{
3498        struct extent_status es;
3499        ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3500
3501        ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3502                                  map->m_lblk, end, &es);
3503
3504        if (!es.es_len || es.es_lblk > end)
3505                return false;
3506
3507        if (es.es_lblk > map->m_lblk) {
3508                map->m_len = es.es_lblk - map->m_lblk;
3509                return false;
3510        }
3511
3512        offset = map->m_lblk - es.es_lblk;
3513        map->m_len = es.es_len - offset;
3514
3515        return true;
3516}
3517
3518static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3519                                   loff_t length, unsigned int flags,
3520                                   struct iomap *iomap, struct iomap *srcmap)
3521{
3522        int ret;
3523        bool delalloc = false;
3524        struct ext4_map_blocks map;
3525        u8 blkbits = inode->i_blkbits;
3526
3527        if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3528                return -EINVAL;
3529
3530        if (ext4_has_inline_data(inode)) {
3531                ret = ext4_inline_data_iomap(inode, iomap);
3532                if (ret != -EAGAIN) {
3533                        if (ret == 0 && offset >= iomap->length)
3534                                ret = -ENOENT;
3535                        return ret;
3536                }
3537        }
3538
3539        /*
3540         * Calculate the first and last logical block respectively.
3541         */
3542        map.m_lblk = offset >> blkbits;
3543        map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3544                          EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3545
3546        /*
3547         * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3548         * So handle it here itself instead of querying ext4_map_blocks().
3549         * Since ext4_map_blocks() will warn about it and will return
3550         * -EIO error.
3551         */
3552        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3553                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3554
3555                if (offset >= sbi->s_bitmap_maxbytes) {
3556                        map.m_flags = 0;
3557                        goto set_iomap;
3558                }
3559        }
3560
3561        ret = ext4_map_blocks(NULL, inode, &map, 0);
3562        if (ret < 0)
3563                return ret;
3564        if (ret == 0)
3565                delalloc = ext4_iomap_is_delalloc(inode, &map);
3566
3567set_iomap:
3568        ext4_set_iomap(inode, iomap, &map, offset, length);
3569        if (delalloc && iomap->type == IOMAP_HOLE)
3570                iomap->type = IOMAP_DELALLOC;
3571
3572        return 0;
3573}
3574
3575const struct iomap_ops ext4_iomap_report_ops = {
3576        .iomap_begin = ext4_iomap_begin_report,
3577};
3578
3579/*
3580 * Pages can be marked dirty completely asynchronously from ext4's journalling
3581 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3582 * much here because ->set_page_dirty is called under VFS locks.  The page is
3583 * not necessarily locked.
3584 *
3585 * We cannot just dirty the page and leave attached buffers clean, because the
3586 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3587 * or jbddirty because all the journalling code will explode.
3588 *
3589 * So what we do is to mark the page "pending dirty" and next time writepage
3590 * is called, propagate that into the buffers appropriately.
3591 */
3592static int ext4_journalled_set_page_dirty(struct page *page)
3593{
3594        SetPageChecked(page);
3595        return __set_page_dirty_nobuffers(page);
3596}
3597
3598static int ext4_set_page_dirty(struct page *page)
3599{
3600        WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3601        WARN_ON_ONCE(!page_has_buffers(page));
3602        return __set_page_dirty_buffers(page);
3603}
3604
3605static const struct address_space_operations ext4_aops = {
3606        .readpage               = ext4_readpage,
3607        .readahead              = ext4_readahead,
3608        .writepage              = ext4_writepage,
3609        .writepages             = ext4_writepages,
3610        .write_begin            = ext4_write_begin,
3611        .write_end              = ext4_write_end,
3612        .set_page_dirty         = ext4_set_page_dirty,
3613        .bmap                   = ext4_bmap,
3614        .invalidatepage         = ext4_invalidatepage,
3615        .releasepage            = ext4_releasepage,
3616        .direct_IO              = noop_direct_IO,
3617        .migratepage            = buffer_migrate_page,
3618        .is_partially_uptodate  = block_is_partially_uptodate,
3619        .error_remove_page      = generic_error_remove_page,
3620};
3621
3622static const struct address_space_operations ext4_journalled_aops = {
3623        .readpage               = ext4_readpage,
3624        .readahead              = ext4_readahead,
3625        .writepage              = ext4_writepage,
3626        .writepages             = ext4_writepages,
3627        .write_begin            = ext4_write_begin,
3628        .write_end              = ext4_journalled_write_end,
3629        .set_page_dirty         = ext4_journalled_set_page_dirty,
3630        .bmap                   = ext4_bmap,
3631        .invalidatepage         = ext4_journalled_invalidatepage,
3632        .releasepage            = ext4_releasepage,
3633        .direct_IO              = noop_direct_IO,
3634        .is_partially_uptodate  = block_is_partially_uptodate,
3635        .error_remove_page      = generic_error_remove_page,
3636};
3637
3638static const struct address_space_operations ext4_da_aops = {
3639        .readpage               = ext4_readpage,
3640        .readahead              = ext4_readahead,
3641        .writepage              = ext4_writepage,
3642        .writepages             = ext4_writepages,
3643        .write_begin            = ext4_da_write_begin,
3644        .write_end              = ext4_da_write_end,
3645        .set_page_dirty         = ext4_set_page_dirty,
3646        .bmap                   = ext4_bmap,
3647        .invalidatepage         = ext4_invalidatepage,
3648        .releasepage            = ext4_releasepage,
3649        .direct_IO              = noop_direct_IO,
3650        .migratepage            = buffer_migrate_page,
3651        .is_partially_uptodate  = block_is_partially_uptodate,
3652        .error_remove_page      = generic_error_remove_page,
3653};
3654
3655static const struct address_space_operations ext4_dax_aops = {
3656        .writepages             = ext4_dax_writepages,
3657        .direct_IO              = noop_direct_IO,
3658        .set_page_dirty         = noop_set_page_dirty,
3659        .bmap                   = ext4_bmap,
3660        .invalidatepage         = noop_invalidatepage,
3661};
3662
3663void ext4_set_aops(struct inode *inode)
3664{
3665        switch (ext4_inode_journal_mode(inode)) {
3666        case EXT4_INODE_ORDERED_DATA_MODE:
3667        case EXT4_INODE_WRITEBACK_DATA_MODE:
3668                break;
3669        case EXT4_INODE_JOURNAL_DATA_MODE:
3670                inode->i_mapping->a_ops = &ext4_journalled_aops;
3671                return;
3672        default:
3673                BUG();
3674        }
3675        if (IS_DAX(inode))
3676                inode->i_mapping->a_ops = &ext4_dax_aops;
3677        else if (test_opt(inode->i_sb, DELALLOC))
3678                inode->i_mapping->a_ops = &ext4_da_aops;
3679        else
3680                inode->i_mapping->a_ops = &ext4_aops;
3681}
3682
3683static int __ext4_block_zero_page_range(handle_t *handle,
3684                struct address_space *mapping, loff_t from, loff_t length)
3685{
3686        ext4_fsblk_t index = from >> PAGE_SHIFT;
3687        unsigned offset = from & (PAGE_SIZE-1);
3688        unsigned blocksize, pos;
3689        ext4_lblk_t iblock;
3690        struct inode *inode = mapping->host;
3691        struct buffer_head *bh;
3692        struct page *page;
3693        int err = 0;
3694
3695        page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3696                                   mapping_gfp_constraint(mapping, ~__GFP_FS));
3697        if (!page)
3698                return -ENOMEM;
3699
3700        blocksize = inode->i_sb->s_blocksize;
3701
3702        iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3703
3704        if (!page_has_buffers(page))
3705                create_empty_buffers(page, blocksize, 0);
3706
3707        /* Find the buffer that contains "offset" */
3708        bh = page_buffers(page);
3709        pos = blocksize;
3710        while (offset >= pos) {
3711                bh = bh->b_this_page;
3712                iblock++;
3713                pos += blocksize;
3714        }
3715        if (buffer_freed(bh)) {
3716                BUFFER_TRACE(bh, "freed: skip");
3717                goto unlock;
3718        }
3719        if (!buffer_mapped(bh)) {
3720                BUFFER_TRACE(bh, "unmapped");
3721                ext4_get_block(inode, iblock, bh, 0);
3722                /* unmapped? It's a hole - nothing to do */
3723                if (!buffer_mapped(bh)) {
3724                        BUFFER_TRACE(bh, "still unmapped");
3725                        goto unlock;
3726                }
3727        }
3728
3729        /* Ok, it's mapped. Make sure it's up-to-date */
3730        if (PageUptodate(page))
3731                set_buffer_uptodate(bh);
3732
3733        if (!buffer_uptodate(bh)) {
3734                err = -EIO;
3735                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3736                wait_on_buffer(bh);
3737                /* Uhhuh. Read error. Complain and punt. */
3738                if (!buffer_uptodate(bh))
3739                        goto unlock;
3740                if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3741                        /* We expect the key to be set. */
3742                        BUG_ON(!fscrypt_has_encryption_key(inode));
3743                        err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3744                                                               bh_offset(bh));
3745                        if (err) {
3746                                clear_buffer_uptodate(bh);
3747                                goto unlock;
3748                        }
3749                }
3750        }
3751        if (ext4_should_journal_data(inode)) {
3752                BUFFER_TRACE(bh, "get write access");
3753                err = ext4_journal_get_write_access(handle, bh);
3754                if (err)
3755                        goto unlock;
3756        }
3757        zero_user(page, offset, length);
3758        BUFFER_TRACE(bh, "zeroed end of block");
3759
3760        if (ext4_should_journal_data(inode)) {
3761                err = ext4_handle_dirty_metadata(handle, inode, bh);
3762        } else {
3763                err = 0;
3764                mark_buffer_dirty(bh);
3765                if (ext4_should_order_data(inode))
3766                        err = ext4_jbd2_inode_add_write(handle, inode, from,
3767                                        length);
3768        }
3769
3770unlock:
3771        unlock_page(page);
3772        put_page(page);
3773        return err;
3774}
3775
3776/*
3777 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3778 * starting from file offset 'from'.  The range to be zero'd must
3779 * be contained with in one block.  If the specified range exceeds
3780 * the end of the block it will be shortened to end of the block
3781 * that cooresponds to 'from'
3782 */
3783static int ext4_block_zero_page_range(handle_t *handle,
3784                struct address_space *mapping, loff_t from, loff_t length)
3785{
3786        struct inode *inode = mapping->host;
3787        unsigned offset = from & (PAGE_SIZE-1);
3788        unsigned blocksize = inode->i_sb->s_blocksize;
3789        unsigned max = blocksize - (offset & (blocksize - 1));
3790
3791        /*
3792         * correct length if it does not fall between
3793         * 'from' and the end of the block
3794         */
3795        if (length > max || length < 0)
3796                length = max;
3797
3798        if (IS_DAX(inode)) {
3799                return iomap_zero_range(inode, from, length, NULL,
3800                                        &ext4_iomap_ops);
3801        }
3802        return __ext4_block_zero_page_range(handle, mapping, from, length);
3803}
3804
3805/*
3806 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3807 * up to the end of the block which corresponds to `from'.
3808 * This required during truncate. We need to physically zero the tail end
3809 * of that block so it doesn't yield old data if the file is later grown.
3810 */
3811static int ext4_block_truncate_page(handle_t *handle,
3812                struct address_space *mapping, loff_t from)
3813{
3814        unsigned offset = from & (PAGE_SIZE-1);
3815        unsigned length;
3816        unsigned blocksize;
3817        struct inode *inode = mapping->host;
3818
3819        /* If we are processing an encrypted inode during orphan list handling */
3820        if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3821                return 0;
3822
3823        blocksize = inode->i_sb->s_blocksize;
3824        length = blocksize - (offset & (blocksize - 1));
3825
3826        return ext4_block_zero_page_range(handle, mapping, from, length);
3827}
3828
3829int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3830                             loff_t lstart, loff_t length)
3831{
3832        struct super_block *sb = inode->i_sb;
3833        struct address_space *mapping = inode->i_mapping;
3834        unsigned partial_start, partial_end;
3835        ext4_fsblk_t start, end;
3836        loff_t byte_end = (lstart + length - 1);
3837        int err = 0;
3838
3839        partial_start = lstart & (sb->s_blocksize - 1);
3840        partial_end = byte_end & (sb->s_blocksize - 1);
3841
3842        start = lstart >> sb->s_blocksize_bits;
3843        end = byte_end >> sb->s_blocksize_bits;
3844
3845        /* Handle partial zero within the single block */
3846        if (start == end &&
3847            (partial_start || (partial_end != sb->s_blocksize - 1))) {
3848                err = ext4_block_zero_page_range(handle, mapping,
3849                                                 lstart, length);
3850                return err;
3851        }
3852        /* Handle partial zero out on the start of the range */
3853        if (partial_start) {
3854                err = ext4_block_zero_page_range(handle, mapping,
3855                                                 lstart, sb->s_blocksize);
3856                if (err)
3857                        return err;
3858        }
3859        /* Handle partial zero out on the end of the range */
3860        if (partial_end != sb->s_blocksize - 1)
3861                err = ext4_block_zero_page_range(handle, mapping,
3862                                                 byte_end - partial_end,
3863                                                 partial_end + 1);
3864        return err;
3865}
3866
3867int ext4_can_truncate(struct inode *inode)
3868{
3869        if (S_ISREG(inode->i_mode))
3870                return 1;
3871        if (S_ISDIR(inode->i_mode))
3872                return 1;
3873        if (S_ISLNK(inode->i_mode))
3874                return !ext4_inode_is_fast_symlink(inode);
3875        return 0;
3876}
3877
3878/*
3879 * We have to make sure i_disksize gets properly updated before we truncate
3880 * page cache due to hole punching or zero range. Otherwise i_disksize update
3881 * can get lost as it may have been postponed to submission of writeback but
3882 * that will never happen after we truncate page cache.
3883 */
3884int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3885                                      loff_t len)
3886{
3887        handle_t *handle;
3888        int ret;
3889
3890        loff_t size = i_size_read(inode);
3891
3892        WARN_ON(!inode_is_locked(inode));
3893        if (offset > size || offset + len < size)
3894                return 0;
3895
3896        if (EXT4_I(inode)->i_disksize >= size)
3897                return 0;
3898
3899        handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3900        if (IS_ERR(handle))
3901                return PTR_ERR(handle);
3902        ext4_update_i_disksize(inode, size);
3903        ret = ext4_mark_inode_dirty(handle, inode);
3904        ext4_journal_stop(handle);
3905
3906        return ret;
3907}
3908
3909static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3910{
3911        up_write(&ei->i_mmap_sem);
3912        schedule();
3913        down_write(&ei->i_mmap_sem);
3914}
3915
3916int ext4_break_layouts(struct inode *inode)
3917{
3918        struct ext4_inode_info *ei = EXT4_I(inode);
3919        struct page *page;
3920        int error;
3921
3922        if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3923                return -EINVAL;
3924
3925        do {
3926                page = dax_layout_busy_page(inode->i_mapping);
3927                if (!page)
3928                        return 0;
3929
3930                error = ___wait_var_event(&page->_refcount,
3931                                atomic_read(&page->_refcount) == 1,
3932                                TASK_INTERRUPTIBLE, 0, 0,
3933                                ext4_wait_dax_page(ei));
3934        } while (error == 0);
3935
3936        return error;
3937}
3938
3939/*
3940 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3941 * associated with the given offset and length
3942 *
3943 * @inode:  File inode
3944 * @offset: The offset where the hole will begin
3945 * @len:    The length of the hole
3946 *
3947 * Returns: 0 on success or negative on failure
3948 */
3949
3950int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3951{
3952        struct super_block *sb = inode->i_sb;
3953        ext4_lblk_t first_block, stop_block;
3954        struct address_space *mapping = inode->i_mapping;
3955        loff_t first_block_offset, last_block_offset;
3956        handle_t *handle;
3957        unsigned int credits;
3958        int ret = 0, ret2 = 0;
3959
3960        trace_ext4_punch_hole(inode, offset, length, 0);
3961
3962        ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3963        if (ext4_has_inline_data(inode)) {
3964                down_write(&EXT4_I(inode)->i_mmap_sem);
3965                ret = ext4_convert_inline_data(inode);
3966                up_write(&EXT4_I(inode)->i_mmap_sem);
3967                if (ret)
3968                        return ret;
3969        }
3970
3971        /*
3972         * Write out all dirty pages to avoid race conditions
3973         * Then release them.
3974         */
3975        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3976                ret = filemap_write_and_wait_range(mapping, offset,
3977                                                   offset + length - 1);
3978                if (ret)
3979                        return ret;
3980        }
3981
3982        inode_lock(inode);
3983
3984        /* No need to punch hole beyond i_size */
3985        if (offset >= inode->i_size)
3986                goto out_mutex;
3987
3988        /*
3989         * If the hole extends beyond i_size, set the hole
3990         * to end after the page that contains i_size
3991         */
3992        if (offset + length > inode->i_size) {
3993                length = inode->i_size +
3994                   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3995                   offset;
3996        }
3997
3998        if (offset & (sb->s_blocksize - 1) ||
3999            (offset + length) & (sb->s_blocksize - 1)) {
4000                /*
4001                 * Attach jinode to inode for jbd2 if we do any zeroing of
4002                 * partial block
4003                 */
4004                ret = ext4_inode_attach_jinode(inode);
4005                if (ret < 0)
4006                        goto out_mutex;
4007
4008        }
4009
4010        /* Wait all existing dio workers, newcomers will block on i_mutex */
4011        inode_dio_wait(inode);
4012
4013        /*
4014         * Prevent page faults from reinstantiating pages we have released from
4015         * page cache.
4016         */
4017        down_write(&EXT4_I(inode)->i_mmap_sem);
4018
4019        ret = ext4_break_layouts(inode);
4020        if (ret)
4021                goto out_dio;
4022
4023        first_block_offset = round_up(offset, sb->s_blocksize);
4024        last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4025
4026        /* Now release the pages and zero block aligned part of pages*/
4027        if (last_block_offset > first_block_offset) {
4028                ret = ext4_update_disksize_before_punch(inode, offset, length);
4029                if (ret)
4030                        goto out_dio;
4031                truncate_pagecache_range(inode, first_block_offset,
4032                                         last_block_offset);
4033        }
4034
4035        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4036                credits = ext4_writepage_trans_blocks(inode);
4037        else
4038                credits = ext4_blocks_for_truncate(inode);
4039        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4040        if (IS_ERR(handle)) {
4041                ret = PTR_ERR(handle);
4042                ext4_std_error(sb, ret);
4043                goto out_dio;
4044        }
4045
4046        ret = ext4_zero_partial_blocks(handle, inode, offset,
4047                                       length);
4048        if (ret)
4049                goto out_stop;
4050
4051        first_block = (offset + sb->s_blocksize - 1) >>
4052                EXT4_BLOCK_SIZE_BITS(sb);
4053        stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4054
4055        /* If there are blocks to remove, do it */
4056        if (stop_block > first_block) {
4057
4058                down_write(&EXT4_I(inode)->i_data_sem);
4059                ext4_discard_preallocations(inode);
4060
4061                ret = ext4_es_remove_extent(inode, first_block,
4062                                            stop_block - first_block);
4063                if (ret) {
4064                        up_write(&EXT4_I(inode)->i_data_sem);
4065                        goto out_stop;
4066                }
4067
4068                if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4069                        ret = ext4_ext_remove_space(inode, first_block,
4070                                                    stop_block - 1);
4071                else
4072                        ret = ext4_ind_remove_space(handle, inode, first_block,
4073                                                    stop_block);
4074
4075                up_write(&EXT4_I(inode)->i_data_sem);
4076        }
4077        if (IS_SYNC(inode))
4078                ext4_handle_sync(handle);
4079
4080        inode->i_mtime = inode->i_ctime = current_time(inode);
4081        ret2 = ext4_mark_inode_dirty(handle, inode);
4082        if (unlikely(ret2))
4083                ret = ret2;
4084        if (ret >= 0)
4085                ext4_update_inode_fsync_trans(handle, inode, 1);
4086out_stop:
4087        ext4_journal_stop(handle);
4088out_dio:
4089        up_write(&EXT4_I(inode)->i_mmap_sem);
4090out_mutex:
4091        inode_unlock(inode);
4092        return ret;
4093}
4094
4095int ext4_inode_attach_jinode(struct inode *inode)
4096{
4097        struct ext4_inode_info *ei = EXT4_I(inode);
4098        struct jbd2_inode *jinode;
4099
4100        if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4101                return 0;
4102
4103        jinode = jbd2_alloc_inode(GFP_KERNEL);
4104        spin_lock(&inode->i_lock);
4105        if (!ei->jinode) {
4106                if (!jinode) {
4107                        spin_unlock(&inode->i_lock);
4108                        return -ENOMEM;
4109                }
4110                ei->jinode = jinode;
4111                jbd2_journal_init_jbd_inode(ei->jinode, inode);
4112                jinode = NULL;
4113        }
4114        spin_unlock(&inode->i_lock);
4115        if (unlikely(jinode != NULL))
4116                jbd2_free_inode(jinode);
4117        return 0;
4118}
4119
4120/*
4121 * ext4_truncate()
4122 *
4123 * We block out ext4_get_block() block instantiations across the entire
4124 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4125 * simultaneously on behalf of the same inode.
4126 *
4127 * As we work through the truncate and commit bits of it to the journal there
4128 * is one core, guiding principle: the file's tree must always be consistent on
4129 * disk.  We must be able to restart the truncate after a crash.
4130 *
4131 * The file's tree may be transiently inconsistent in memory (although it
4132 * probably isn't), but whenever we close off and commit a journal transaction,
4133 * the contents of (the filesystem + the journal) must be consistent and
4134 * restartable.  It's pretty simple, really: bottom up, right to left (although
4135 * left-to-right works OK too).
4136 *
4137 * Note that at recovery time, journal replay occurs *before* the restart of
4138 * truncate against the orphan inode list.
4139 *
4140 * The committed inode has the new, desired i_size (which is the same as
4141 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4142 * that this inode's truncate did not complete and it will again call
4143 * ext4_truncate() to have another go.  So there will be instantiated blocks
4144 * to the right of the truncation point in a crashed ext4 filesystem.  But
4145 * that's fine - as long as they are linked from the inode, the post-crash
4146 * ext4_truncate() run will find them and release them.
4147 */
4148int ext4_truncate(struct inode *inode)
4149{
4150        struct ext4_inode_info *ei = EXT4_I(inode);
4151        unsigned int credits;
4152        int err = 0, err2;
4153        handle_t *handle;
4154        struct address_space *mapping = inode->i_mapping;
4155
4156        /*
4157         * There is a possibility that we're either freeing the inode
4158         * or it's a completely new inode. In those cases we might not
4159         * have i_mutex locked because it's not necessary.
4160         */
4161        if (!(inode->i_state & (I_NEW|I_FREEING)))
4162                WARN_ON(!inode_is_locked(inode));
4163        trace_ext4_truncate_enter(inode);
4164
4165        if (!ext4_can_truncate(inode))
4166                return 0;
4167
4168        if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4169                ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4170
4171        if (ext4_has_inline_data(inode)) {
4172                int has_inline = 1;
4173
4174                err = ext4_inline_data_truncate(inode, &has_inline);
4175                if (err)
4176                        return err;
4177                if (has_inline)
4178                        return 0;
4179        }
4180
4181        /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4182        if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4183                if (ext4_inode_attach_jinode(inode) < 0)
4184                        return 0;
4185        }
4186
4187        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4188                credits = ext4_writepage_trans_blocks(inode);
4189        else
4190                credits = ext4_blocks_for_truncate(inode);
4191
4192        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4193        if (IS_ERR(handle))
4194                return PTR_ERR(handle);
4195
4196        if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4197                ext4_block_truncate_page(handle, mapping, inode->i_size);
4198
4199        /*
4200         * We add the inode to the orphan list, so that if this
4201         * truncate spans multiple transactions, and we crash, we will
4202         * resume the truncate when the filesystem recovers.  It also
4203         * marks the inode dirty, to catch the new size.
4204         *
4205         * Implication: the file must always be in a sane, consistent
4206         * truncatable state while each transaction commits.
4207         */
4208        err = ext4_orphan_add(handle, inode);
4209        if (err)
4210                goto out_stop;
4211
4212        down_write(&EXT4_I(inode)->i_data_sem);
4213
4214        ext4_discard_preallocations(inode);
4215
4216        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4217                err = ext4_ext_truncate(handle, inode);
4218        else
4219                ext4_ind_truncate(handle, inode);
4220
4221        up_write(&ei->i_data_sem);
4222        if (err)
4223                goto out_stop;
4224
4225        if (IS_SYNC(inode))
4226                ext4_handle_sync(handle);
4227
4228out_stop:
4229        /*
4230         * If this was a simple ftruncate() and the file will remain alive,
4231         * then we need to clear up the orphan record which we created above.
4232         * However, if this was a real unlink then we were called by
4233         * ext4_evict_inode(), and we allow that function to clean up the
4234         * orphan info for us.
4235         */
4236        if (inode->i_nlink)
4237                ext4_orphan_del(handle, inode);
4238
4239        inode->i_mtime = inode->i_ctime = current_time(inode);
4240        err2 = ext4_mark_inode_dirty(handle, inode);
4241        if (unlikely(err2 && !err))
4242                err = err2;
4243        ext4_journal_stop(handle);
4244
4245        trace_ext4_truncate_exit(inode);
4246        return err;
4247}
4248
4249/*
4250 * ext4_get_inode_loc returns with an extra refcount against the inode's
4251 * underlying buffer_head on success. If 'in_mem' is true, we have all
4252 * data in memory that is needed to recreate the on-disk version of this
4253 * inode.
4254 */
4255static int __ext4_get_inode_loc(struct inode *inode,
4256                                struct ext4_iloc *iloc, int in_mem)
4257{
4258        struct ext4_group_desc  *gdp;
4259        struct buffer_head      *bh;
4260        struct super_block      *sb = inode->i_sb;
4261        ext4_fsblk_t            block;
4262        struct blk_plug         plug;
4263        int                     inodes_per_block, inode_offset;
4264
4265        iloc->bh = NULL;
4266        if (inode->i_ino < EXT4_ROOT_INO ||
4267            inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4268                return -EFSCORRUPTED;
4269
4270        iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4271        gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4272        if (!gdp)
4273                return -EIO;
4274
4275        /*
4276         * Figure out the offset within the block group inode table
4277         */
4278        inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4279        inode_offset = ((inode->i_ino - 1) %
4280                        EXT4_INODES_PER_GROUP(sb));
4281        block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4282        iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4283
4284        bh = sb_getblk(sb, block);
4285        if (unlikely(!bh))
4286                return -ENOMEM;
4287        if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4288                goto simulate_eio;
4289        if (!buffer_uptodate(bh)) {
4290                lock_buffer(bh);
4291
4292                /*
4293                 * If the buffer has the write error flag, we have failed
4294                 * to write out another inode in the same block.  In this
4295                 * case, we don't have to read the block because we may
4296                 * read the old inode data successfully.
4297                 */
4298                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4299                        set_buffer_uptodate(bh);
4300
4301                if (buffer_uptodate(bh)) {
4302                        /* someone brought it uptodate while we waited */
4303                        unlock_buffer(bh);
4304                        goto has_buffer;
4305                }
4306
4307                /*
4308                 * If we have all information of the inode in memory and this
4309                 * is the only valid inode in the block, we need not read the
4310                 * block.
4311                 */
4312                if (in_mem) {
4313                        struct buffer_head *bitmap_bh;
4314                        int i, start;
4315
4316                        start = inode_offset & ~(inodes_per_block - 1);
4317
4318                        /* Is the inode bitmap in cache? */
4319                        bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4320                        if (unlikely(!bitmap_bh))
4321                                goto make_io;
4322
4323                        /*
4324                         * If the inode bitmap isn't in cache then the
4325                         * optimisation may end up performing two reads instead
4326                         * of one, so skip it.
4327                         */
4328                        if (!buffer_uptodate(bitmap_bh)) {
4329                                brelse(bitmap_bh);
4330                                goto make_io;
4331                        }
4332                        for (i = start; i < start + inodes_per_block; i++) {
4333                                if (i == inode_offset)
4334                                        continue;
4335                                if (ext4_test_bit(i, bitmap_bh->b_data))
4336                                        break;
4337                        }
4338                        brelse(bitmap_bh);
4339                        if (i == start + inodes_per_block) {
4340                                /* all other inodes are free, so skip I/O */
4341                                memset(bh->b_data, 0, bh->b_size);
4342                                set_buffer_uptodate(bh);
4343                                unlock_buffer(bh);
4344                                goto has_buffer;
4345                        }
4346                }
4347
4348make_io:
4349                /*
4350                 * If we need to do any I/O, try to pre-readahead extra
4351                 * blocks from the inode table.
4352                 */
4353                blk_start_plug(&plug);
4354                if (EXT4_SB(sb)->s_inode_readahead_blks) {
4355                        ext4_fsblk_t b, end, table;
4356                        unsigned num;
4357                        __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4358
4359                        table = ext4_inode_table(sb, gdp);
4360                        /* s_inode_readahead_blks is always a power of 2 */
4361                        b = block & ~((ext4_fsblk_t) ra_blks - 1);
4362                        if (table > b)
4363                                b = table;
4364                        end = b + ra_blks;
4365                        num = EXT4_INODES_PER_GROUP(sb);
4366                        if (ext4_has_group_desc_csum(sb))
4367                                num -= ext4_itable_unused_count(sb, gdp);
4368                        table += num / inodes_per_block;
4369                        if (end > table)
4370                                end = table;
4371                        while (b <= end)
4372                                sb_breadahead_unmovable(sb, b++);
4373                }
4374
4375                /*
4376                 * There are other valid inodes in the buffer, this inode
4377                 * has in-inode xattrs, or we don't have this inode in memory.
4378                 * Read the block from disk.
4379                 */
4380                trace_ext4_load_inode(inode);
4381                get_bh(bh);
4382                bh->b_end_io = end_buffer_read_sync;
4383                submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4384                blk_finish_plug(&plug);
4385                wait_on_buffer(bh);
4386                if (!buffer_uptodate(bh)) {
4387                simulate_eio:
4388                        ext4_error_inode_block(inode, block, EIO,
4389                                               "unable to read itable block");
4390                        brelse(bh);
4391                        return -EIO;
4392                }
4393        }
4394has_buffer:
4395        iloc->bh = bh;
4396        return 0;
4397}
4398
4399int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4400{
4401        /* We have all inode data except xattrs in memory here. */
4402        return __ext4_get_inode_loc(inode, iloc,
4403                !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4404}
4405
4406static bool ext4_should_enable_dax(struct inode *inode)
4407{
4408        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4409
4410        if (test_opt2(inode->i_sb, DAX_NEVER))
4411                return false;
4412        if (!S_ISREG(inode->i_mode))
4413                return false;
4414        if (ext4_should_journal_data(inode))
4415                return false;
4416        if (ext4_has_inline_data(inode))
4417                return false;
4418        if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4419                return false;
4420        if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4421                return false;
4422        if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4423                return false;
4424        if (test_opt(inode->i_sb, DAX_ALWAYS))
4425                return true;
4426
4427        return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4428}
4429
4430void ext4_set_inode_flags(struct inode *inode, bool init)
4431{
4432        unsigned int flags = EXT4_I(inode)->i_flags;
4433        unsigned int new_fl = 0;
4434
4435        WARN_ON_ONCE(IS_DAX(inode) && init);
4436
4437        if (flags & EXT4_SYNC_FL)
4438                new_fl |= S_SYNC;
4439        if (flags & EXT4_APPEND_FL)
4440                new_fl |= S_APPEND;
4441        if (flags & EXT4_IMMUTABLE_FL)
4442                new_fl |= S_IMMUTABLE;
4443        if (flags & EXT4_NOATIME_FL)
4444                new_fl |= S_NOATIME;
4445        if (flags & EXT4_DIRSYNC_FL)
4446                new_fl |= S_DIRSYNC;
4447
4448        /* Because of the way inode_set_flags() works we must preserve S_DAX
4449         * here if already set. */
4450        new_fl |= (inode->i_flags & S_DAX);
4451        if (init && ext4_should_enable_dax(inode))
4452                new_fl |= S_DAX;
4453
4454        if (flags & EXT4_ENCRYPT_FL)
4455                new_fl |= S_ENCRYPTED;
4456        if (flags & EXT4_CASEFOLD_FL)
4457                new_fl |= S_CASEFOLD;
4458        if (flags & EXT4_VERITY_FL)
4459                new_fl |= S_VERITY;
4460        inode_set_flags(inode, new_fl,
4461                        S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4462                        S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4463}
4464
4465static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4466                                  struct ext4_inode_info *ei)
4467{
4468        blkcnt_t i_blocks ;
4469        struct inode *inode = &(ei->vfs_inode);
4470        struct super_block *sb = inode->i_sb;
4471
4472        if (ext4_has_feature_huge_file(sb)) {
4473                /* we are using combined 48 bit field */
4474                i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4475                                        le32_to_cpu(raw_inode->i_blocks_lo);
4476                if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4477                        /* i_blocks represent file system block size */
4478                        return i_blocks  << (inode->i_blkbits - 9);
4479                } else {
4480                        return i_blocks;
4481                }
4482        } else {
4483                return le32_to_cpu(raw_inode->i_blocks_lo);
4484        }
4485}
4486
4487static inline int ext4_iget_extra_inode(struct inode *inode,
4488                                         struct ext4_inode *raw_inode,
4489                                         struct ext4_inode_info *ei)
4490{
4491        __le32 *magic = (void *)raw_inode +
4492                        EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4493
4494        if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4495            EXT4_INODE_SIZE(inode->i_sb) &&
4496            *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4497                ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4498                return ext4_find_inline_data_nolock(inode);
4499        } else
4500                EXT4_I(inode)->i_inline_off = 0;
4501        return 0;
4502}
4503
4504int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4505{
4506        if (!ext4_has_feature_project(inode->i_sb))
4507                return -EOPNOTSUPP;
4508        *projid = EXT4_I(inode)->i_projid;
4509        return 0;
4510}
4511
4512/*
4513 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4514 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4515 * set.
4516 */
4517static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4518{
4519        if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4520                inode_set_iversion_raw(inode, val);
4521        else
4522                inode_set_iversion_queried(inode, val);
4523}
4524static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4525{
4526        if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4527                return inode_peek_iversion_raw(inode);
4528        else
4529                return inode_peek_iversion(inode);
4530}
4531
4532struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4533                          ext4_iget_flags flags, const char *function,
4534                          unsigned int line)
4535{
4536        struct ext4_iloc iloc;
4537        struct ext4_inode *raw_inode;
4538        struct ext4_inode_info *ei;
4539        struct inode *inode;
4540        journal_t *journal = EXT4_SB(sb)->s_journal;
4541        long ret;
4542        loff_t size;
4543        int block;
4544        uid_t i_uid;
4545        gid_t i_gid;
4546        projid_t i_projid;
4547
4548        if ((!(flags & EXT4_IGET_SPECIAL) &&
4549             (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4550            (ino < EXT4_ROOT_INO) ||
4551            (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4552                if (flags & EXT4_IGET_HANDLE)
4553                        return ERR_PTR(-ESTALE);
4554                __ext4_error(sb, function, line, EFSCORRUPTED, 0,
4555                             "inode #%lu: comm %s: iget: illegal inode #",
4556                             ino, current->comm);
4557                return ERR_PTR(-EFSCORRUPTED);
4558        }
4559
4560        inode = iget_locked(sb, ino);
4561        if (!inode)
4562                return ERR_PTR(-ENOMEM);
4563        if (!(inode->i_state & I_NEW))
4564                return inode;
4565
4566        ei = EXT4_I(inode);
4567        iloc.bh = NULL;
4568
4569        ret = __ext4_get_inode_loc(inode, &iloc, 0);
4570        if (ret < 0)
4571                goto bad_inode;
4572        raw_inode = ext4_raw_inode(&iloc);
4573
4574        if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4575                ext4_error_inode(inode, function, line, 0,
4576                                 "iget: root inode unallocated");
4577                ret = -EFSCORRUPTED;
4578                goto bad_inode;
4579        }
4580
4581        if ((flags & EXT4_IGET_HANDLE) &&
4582            (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4583                ret = -ESTALE;
4584                goto bad_inode;
4585        }
4586
4587        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4588                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4589                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4590                        EXT4_INODE_SIZE(inode->i_sb) ||
4591                    (ei->i_extra_isize & 3)) {
4592                        ext4_error_inode(inode, function, line, 0,
4593                                         "iget: bad extra_isize %u "
4594                                         "(inode size %u)",
4595                                         ei->i_extra_isize,
4596                                         EXT4_INODE_SIZE(inode->i_sb));
4597                        ret = -EFSCORRUPTED;
4598                        goto bad_inode;
4599                }
4600        } else
4601                ei->i_extra_isize = 0;
4602
4603        /* Precompute checksum seed for inode metadata */
4604        if (ext4_has_metadata_csum(sb)) {
4605                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4606                __u32 csum;
4607                __le32 inum = cpu_to_le32(inode->i_ino);
4608                __le32 gen = raw_inode->i_generation;
4609                csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4610                                   sizeof(inum));
4611                ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4612                                              sizeof(gen));
4613        }
4614
4615        if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4616            ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4617                ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4618                                     "iget: checksum invalid");
4619                ret = -EFSBADCRC;
4620                goto bad_inode;
4621        }
4622
4623        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4624        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4625        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4626        if (ext4_has_feature_project(sb) &&
4627            EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4628            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4629                i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4630        else
4631                i_projid = EXT4_DEF_PROJID;
4632
4633        if (!(test_opt(inode->i_sb, NO_UID32))) {
4634                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4635                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4636        }
4637        i_uid_write(inode, i_uid);
4638        i_gid_write(inode, i_gid);
4639        ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4640        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4641
4642        ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4643        ei->i_inline_off = 0;
4644        ei->i_dir_start_lookup = 0;
4645        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4646        /* We now have enough fields to check if the inode was active or not.
4647         * This is needed because nfsd might try to access dead inodes
4648         * the test is that same one that e2fsck uses
4649         * NeilBrown 1999oct15
4650         */
4651        if (inode->i_nlink == 0) {
4652                if ((inode->i_mode == 0 ||
4653                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4654                    ino != EXT4_BOOT_LOADER_INO) {
4655                        /* this inode is deleted */
4656                        ret = -ESTALE;
4657                        goto bad_inode;
4658                }
4659                /* The only unlinked inodes we let through here have
4660                 * valid i_mode and are being read by the orphan
4661                 * recovery code: that's fine, we're about to complete
4662                 * the process of deleting those.
4663                 * OR it is the EXT4_BOOT_LOADER_INO which is
4664                 * not initialized on a new filesystem. */
4665        }
4666        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4667        ext4_set_inode_flags(inode, true);
4668        inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4669        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4670        if (ext4_has_feature_64bit(sb))
4671                ei->i_file_acl |=
4672                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4673        inode->i_size = ext4_isize(sb, raw_inode);
4674        if ((size = i_size_read(inode)) < 0) {
4675                ext4_error_inode(inode, function, line, 0,
4676                                 "iget: bad i_size value: %lld", size);
4677                ret = -EFSCORRUPTED;
4678                goto bad_inode;
4679        }
4680        /*
4681         * If dir_index is not enabled but there's dir with INDEX flag set,
4682         * we'd normally treat htree data as empty space. But with metadata
4683         * checksumming that corrupts checksums so forbid that.
4684         */
4685        if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4686            ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4687                ext4_error_inode(inode, function, line, 0,
4688                         "iget: Dir with htree data on filesystem without dir_index feature.");
4689                ret = -EFSCORRUPTED;
4690                goto bad_inode;
4691        }
4692        ei->i_disksize = inode->i_size;
4693#ifdef CONFIG_QUOTA
4694        ei->i_reserved_quota = 0;
4695#endif
4696        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4697        ei->i_block_group = iloc.block_group;
4698        ei->i_last_alloc_group = ~0;
4699        /*
4700         * NOTE! The in-memory inode i_data array is in little-endian order
4701         * even on big-endian machines: we do NOT byteswap the block numbers!
4702         */
4703        for (block = 0; block < EXT4_N_BLOCKS; block++)
4704                ei->i_data[block] = raw_inode->i_block[block];
4705        INIT_LIST_HEAD(&ei->i_orphan);
4706
4707        /*
4708         * Set transaction id's of transactions that have to be committed
4709         * to finish f[data]sync. We set them to currently running transaction
4710         * as we cannot be sure that the inode or some of its metadata isn't
4711         * part of the transaction - the inode could have been reclaimed and
4712         * now it is reread from disk.
4713         */
4714        if (journal) {
4715                transaction_t *transaction;
4716                tid_t tid;
4717
4718                read_lock(&journal->j_state_lock);
4719                if (journal->j_running_transaction)
4720                        transaction = journal->j_running_transaction;
4721                else
4722                        transaction = journal->j_committing_transaction;
4723                if (transaction)
4724                        tid = transaction->t_tid;
4725                else
4726                        tid = journal->j_commit_sequence;
4727                read_unlock(&journal->j_state_lock);
4728                ei->i_sync_tid = tid;
4729                ei->i_datasync_tid = tid;
4730        }
4731
4732        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4733                if (ei->i_extra_isize == 0) {
4734                        /* The extra space is currently unused. Use it. */
4735                        BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4736                        ei->i_extra_isize = sizeof(struct ext4_inode) -
4737                                            EXT4_GOOD_OLD_INODE_SIZE;
4738                } else {
4739                        ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4740                        if (ret)
4741                                goto bad_inode;
4742                }
4743        }
4744
4745        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4746        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4747        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4748        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4749
4750        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4751                u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4752
4753                if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4754                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4755                                ivers |=
4756                    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4757                }
4758                ext4_inode_set_iversion_queried(inode, ivers);
4759        }
4760
4761        ret = 0;
4762        if (ei->i_file_acl &&
4763            !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4764                ext4_error_inode(inode, function, line, 0,
4765                                 "iget: bad extended attribute block %llu",
4766                                 ei->i_file_acl);
4767                ret = -EFSCORRUPTED;
4768                goto bad_inode;
4769        } else if (!ext4_has_inline_data(inode)) {
4770                /* validate the block references in the inode */
4771                if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4772                   (S_ISLNK(inode->i_mode) &&
4773                    !ext4_inode_is_fast_symlink(inode))) {
4774                        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4775                                ret = ext4_ext_check_inode(inode);
4776                        else
4777                                ret = ext4_ind_check_inode(inode);
4778                }
4779        }
4780        if (ret)
4781                goto bad_inode;
4782
4783        if (S_ISREG(inode->i_mode)) {
4784                inode->i_op = &ext4_file_inode_operations;
4785                inode->i_fop = &ext4_file_operations;
4786                ext4_set_aops(inode);
4787        } else if (S_ISDIR(inode->i_mode)) {
4788                inode->i_op = &ext4_dir_inode_operations;
4789                inode->i_fop = &ext4_dir_operations;
4790        } else if (S_ISLNK(inode->i_mode)) {
4791                /* VFS does not allow setting these so must be corruption */
4792                if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4793                        ext4_error_inode(inode, function, line, 0,
4794                                         "iget: immutable or append flags "
4795                                         "not allowed on symlinks");
4796                        ret = -EFSCORRUPTED;
4797                        goto bad_inode;
4798                }
4799                if (IS_ENCRYPTED(inode)) {
4800                        inode->i_op = &ext4_encrypted_symlink_inode_operations;
4801                        ext4_set_aops(inode);
4802                } else if (ext4_inode_is_fast_symlink(inode)) {
4803                        inode->i_link = (char *)ei->i_data;
4804                        inode->i_op = &ext4_fast_symlink_inode_operations;
4805                        nd_terminate_link(ei->i_data, inode->i_size,
4806                                sizeof(ei->i_data) - 1);
4807                } else {
4808                        inode->i_op = &ext4_symlink_inode_operations;
4809                        ext4_set_aops(inode);
4810                }
4811                inode_nohighmem(inode);
4812        } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4813              S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4814                inode->i_op = &ext4_special_inode_operations;
4815                if (raw_inode->i_block[0])
4816                        init_special_inode(inode, inode->i_mode,
4817                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4818                else
4819                        init_special_inode(inode, inode->i_mode,
4820                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4821        } else if (ino == EXT4_BOOT_LOADER_INO) {
4822                make_bad_inode(inode);
4823        } else {
4824                ret = -EFSCORRUPTED;
4825                ext4_error_inode(inode, function, line, 0,
4826                                 "iget: bogus i_mode (%o)", inode->i_mode);
4827                goto bad_inode;
4828        }
4829        if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4830                ext4_error_inode(inode, function, line, 0,
4831                                 "casefold flag without casefold feature");
4832        brelse(iloc.bh);
4833
4834        unlock_new_inode(inode);
4835        return inode;
4836
4837bad_inode:
4838        brelse(iloc.bh);
4839        iget_failed(inode);
4840        return ERR_PTR(ret);
4841}
4842
4843static int ext4_inode_blocks_set(handle_t *handle,
4844                                struct ext4_inode *raw_inode,
4845                                struct ext4_inode_info *ei)
4846{
4847        struct inode *inode = &(ei->vfs_inode);
4848        u64 i_blocks = READ_ONCE(inode->i_blocks);
4849        struct super_block *sb = inode->i_sb;
4850
4851        if (i_blocks <= ~0U) {
4852                /*
4853                 * i_blocks can be represented in a 32 bit variable
4854                 * as multiple of 512 bytes
4855                 */
4856                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4857                raw_inode->i_blocks_high = 0;
4858                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4859                return 0;
4860        }
4861        if (!ext4_has_feature_huge_file(sb))
4862                return -EFBIG;
4863
4864        if (i_blocks <= 0xffffffffffffULL) {
4865                /*
4866                 * i_blocks can be represented in a 48 bit variable
4867                 * as multiple of 512 bytes
4868                 */
4869                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4870                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4871                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4872        } else {
4873                ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4874                /* i_block is stored in file system block size */
4875                i_blocks = i_blocks >> (inode->i_blkbits - 9);
4876                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4877                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4878        }
4879        return 0;
4880}
4881
4882static void __ext4_update_other_inode_time(struct super_block *sb,
4883                                           unsigned long orig_ino,
4884                                           unsigned long ino,
4885                                           struct ext4_inode *raw_inode)
4886{
4887        struct inode *inode;
4888
4889        inode = find_inode_by_ino_rcu(sb, ino);
4890        if (!inode)
4891                return;
4892
4893        if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4894                               I_DIRTY_INODE)) ||
4895            ((inode->i_state & I_DIRTY_TIME) == 0))
4896                return;
4897
4898        spin_lock(&inode->i_lock);
4899        if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4900                                I_DIRTY_INODE)) == 0) &&
4901            (inode->i_state & I_DIRTY_TIME)) {
4902                struct ext4_inode_info  *ei = EXT4_I(inode);
4903
4904                inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4905                spin_unlock(&inode->i_lock);
4906
4907                spin_lock(&ei->i_raw_lock);
4908                EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4909                EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4910                EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4911                ext4_inode_csum_set(inode, raw_inode, ei);
4912                spin_unlock(&ei->i_raw_lock);
4913                trace_ext4_other_inode_update_time(inode, orig_ino);
4914                return;
4915        }
4916        spin_unlock(&inode->i_lock);
4917}
4918
4919/*
4920 * Opportunistically update the other time fields for other inodes in
4921 * the same inode table block.
4922 */
4923static void ext4_update_other_inodes_time(struct super_block *sb,
4924                                          unsigned long orig_ino, char *buf)
4925{
4926        unsigned long ino;
4927        int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4928        int inode_size = EXT4_INODE_SIZE(sb);
4929
4930        /*
4931         * Calculate the first inode in the inode table block.  Inode
4932         * numbers are one-based.  That is, the first inode in a block
4933         * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4934         */
4935        ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4936        rcu_read_lock();
4937        for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4938                if (ino == orig_ino)
4939                        continue;
4940                __ext4_update_other_inode_time(sb, orig_ino, ino,
4941                                               (struct ext4_inode *)buf);
4942        }
4943        rcu_read_unlock();
4944}
4945
4946/*
4947 * Post the struct inode info into an on-disk inode location in the
4948 * buffer-cache.  This gobbles the caller's reference to the
4949 * buffer_head in the inode location struct.
4950 *
4951 * The caller must have write access to iloc->bh.
4952 */
4953static int ext4_do_update_inode(handle_t *handle,
4954                                struct inode *inode,
4955                                struct ext4_iloc *iloc)
4956{
4957        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4958        struct ext4_inode_info *ei = EXT4_I(inode);
4959        struct buffer_head *bh = iloc->bh;
4960        struct super_block *sb = inode->i_sb;
4961        int err = 0, rc, block;
4962        int need_datasync = 0, set_large_file = 0;
4963        uid_t i_uid;
4964        gid_t i_gid;
4965        projid_t i_projid;
4966
4967        spin_lock(&ei->i_raw_lock);
4968
4969        /* For fields not tracked in the in-memory inode,
4970         * initialise them to zero for new inodes. */
4971        if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4972                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4973
4974        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4975        i_uid = i_uid_read(inode);
4976        i_gid = i_gid_read(inode);
4977        i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4978        if (!(test_opt(inode->i_sb, NO_UID32))) {
4979                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4980                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4981/*
4982 * Fix up interoperability with old kernels. Otherwise, old inodes get
4983 * re-used with the upper 16 bits of the uid/gid intact
4984 */
4985                if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4986                        raw_inode->i_uid_high = 0;
4987                        raw_inode->i_gid_high = 0;
4988                } else {
4989                        raw_inode->i_uid_high =
4990                                cpu_to_le16(high_16_bits(i_uid));
4991                        raw_inode->i_gid_high =
4992                                cpu_to_le16(high_16_bits(i_gid));
4993                }
4994        } else {
4995                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4996                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4997                raw_inode->i_uid_high = 0;
4998                raw_inode->i_gid_high = 0;
4999        }
5000        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5001
5002        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5003        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5004        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5005        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5006
5007        err = ext4_inode_blocks_set(handle, raw_inode, ei);
5008        if (err) {
5009                spin_unlock(&ei->i_raw_lock);
5010                goto out_brelse;
5011        }
5012        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5013        raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5014        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5015                raw_inode->i_file_acl_high =
5016                        cpu_to_le16(ei->i_file_acl >> 32);
5017        raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5018        if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5019                ext4_isize_set(raw_inode, ei->i_disksize);
5020                need_datasync = 1;
5021        }
5022        if (ei->i_disksize > 0x7fffffffULL) {
5023                if (!ext4_has_feature_large_file(sb) ||
5024                                EXT4_SB(sb)->s_es->s_rev_level ==
5025                    cpu_to_le32(EXT4_GOOD_OLD_REV))
5026                        set_large_file = 1;
5027        }
5028        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5029        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5030                if (old_valid_dev(inode->i_rdev)) {
5031                        raw_inode->i_block[0] =
5032                                cpu_to_le32(old_encode_dev(inode->i_rdev));
5033                        raw_inode->i_block[1] = 0;
5034                } else {
5035                        raw_inode->i_block[0] = 0;
5036                        raw_inode->i_block[1] =
5037                                cpu_to_le32(new_encode_dev(inode->i_rdev));
5038                        raw_inode->i_block[2] = 0;
5039                }
5040        } else if (!ext4_has_inline_data(inode)) {
5041                for (block = 0; block < EXT4_N_BLOCKS; block++)
5042                        raw_inode->i_block[block] = ei->i_data[block];
5043        }
5044
5045        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5046                u64 ivers = ext4_inode_peek_iversion(inode);
5047
5048                raw_inode->i_disk_version = cpu_to_le32(ivers);
5049                if (ei->i_extra_isize) {
5050                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5051                                raw_inode->i_version_hi =
5052                                        cpu_to_le32(ivers >> 32);
5053                        raw_inode->i_extra_isize =
5054                                cpu_to_le16(ei->i_extra_isize);
5055                }
5056        }
5057
5058        BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5059               i_projid != EXT4_DEF_PROJID);
5060
5061        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5062            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5063                raw_inode->i_projid = cpu_to_le32(i_projid);
5064
5065        ext4_inode_csum_set(inode, raw_inode, ei);
5066        spin_unlock(&ei->i_raw_lock);
5067        if (inode->i_sb->s_flags & SB_LAZYTIME)
5068                ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5069                                              bh->b_data);
5070
5071        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5072        rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5073        if (!err)
5074                err = rc;
5075        ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5076        if (set_large_file) {
5077                BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5078                err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5079                if (err)
5080                        goto out_brelse;
5081                ext4_set_feature_large_file(sb);
5082                ext4_handle_sync(handle);
5083                err = ext4_handle_dirty_super(handle, sb);
5084        }
5085        ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5086out_brelse:
5087        brelse(bh);
5088        ext4_std_error(inode->i_sb, err);
5089        return err;
5090}
5091
5092/*
5093 * ext4_write_inode()
5094 *
5095 * We are called from a few places:
5096 *
5097 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5098 *   Here, there will be no transaction running. We wait for any running
5099 *   transaction to commit.
5100 *
5101 * - Within flush work (sys_sync(), kupdate and such).
5102 *   We wait on commit, if told to.
5103 *
5104 * - Within iput_final() -> write_inode_now()
5105 *   We wait on commit, if told to.
5106 *
5107 * In all cases it is actually safe for us to return without doing anything,
5108 * because the inode has been copied into a raw inode buffer in
5109 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5110 * writeback.
5111 *
5112 * Note that we are absolutely dependent upon all inode dirtiers doing the
5113 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5114 * which we are interested.
5115 *
5116 * It would be a bug for them to not do this.  The code:
5117 *
5118 *      mark_inode_dirty(inode)
5119 *      stuff();
5120 *      inode->i_size = expr;
5121 *
5122 * is in error because write_inode() could occur while `stuff()' is running,
5123 * and the new i_size will be lost.  Plus the inode will no longer be on the
5124 * superblock's dirty inode list.
5125 */
5126int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5127{
5128        int err;
5129
5130        if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5131            sb_rdonly(inode->i_sb))
5132                return 0;
5133
5134        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5135                return -EIO;
5136
5137        if (EXT4_SB(inode->i_sb)->s_journal) {
5138                if (ext4_journal_current_handle()) {
5139                        jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5140                        dump_stack();
5141                        return -EIO;
5142                }
5143
5144                /*
5145                 * No need to force transaction in WB_SYNC_NONE mode. Also
5146                 * ext4_sync_fs() will force the commit after everything is
5147                 * written.
5148                 */
5149                if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5150                        return 0;
5151
5152                err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5153                                                EXT4_I(inode)->i_sync_tid);
5154        } else {
5155                struct ext4_iloc iloc;
5156
5157                err = __ext4_get_inode_loc(inode, &iloc, 0);
5158                if (err)
5159                        return err;
5160                /*
5161                 * sync(2) will flush the whole buffer cache. No need to do
5162                 * it here separately for each inode.
5163                 */
5164                if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5165                        sync_dirty_buffer(iloc.bh);
5166                if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5167                        ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5168                                               "IO error syncing inode");
5169                        err = -EIO;
5170                }
5171                brelse(iloc.bh);
5172        }
5173        return err;
5174}
5175
5176/*
5177 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5178 * buffers that are attached to a page stradding i_size and are undergoing
5179 * commit. In that case we have to wait for commit to finish and try again.
5180 */
5181static void ext4_wait_for_tail_page_commit(struct inode *inode)
5182{
5183        struct page *page;
5184        unsigned offset;
5185        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5186        tid_t commit_tid = 0;
5187        int ret;
5188
5189        offset = inode->i_size & (PAGE_SIZE - 1);
5190        /*
5191         * If the page is fully truncated, we don't need to wait for any commit
5192         * (and we even should not as __ext4_journalled_invalidatepage() may
5193         * strip all buffers from the page but keep the page dirty which can then
5194         * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5195         * buffers). Also we don't need to wait for any commit if all buffers in
5196         * the page remain valid. This is most beneficial for the common case of
5197         * blocksize == PAGESIZE.
5198         */
5199        if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5200                return;
5201        while (1) {
5202                page = find_lock_page(inode->i_mapping,
5203                                      inode->i_size >> PAGE_SHIFT);
5204                if (!page)
5205                        return;
5206                ret = __ext4_journalled_invalidatepage(page, offset,
5207                                                PAGE_SIZE - offset);
5208                unlock_page(page);
5209                put_page(page);
5210                if (ret != -EBUSY)
5211                        return;
5212                commit_tid = 0;
5213                read_lock(&journal->j_state_lock);
5214                if (journal->j_committing_transaction)
5215                        commit_tid = journal->j_committing_transaction->t_tid;
5216                read_unlock(&journal->j_state_lock);
5217                if (commit_tid)
5218                        jbd2_log_wait_commit(journal, commit_tid);
5219        }
5220}
5221
5222/*
5223 * ext4_setattr()
5224 *
5225 * Called from notify_change.
5226 *
5227 * We want to trap VFS attempts to truncate the file as soon as
5228 * possible.  In particular, we want to make sure that when the VFS
5229 * shrinks i_size, we put the inode on the orphan list and modify
5230 * i_disksize immediately, so that during the subsequent flushing of
5231 * dirty pages and freeing of disk blocks, we can guarantee that any
5232 * commit will leave the blocks being flushed in an unused state on
5233 * disk.  (On recovery, the inode will get truncated and the blocks will
5234 * be freed, so we have a strong guarantee that no future commit will
5235 * leave these blocks visible to the user.)
5236 *
5237 * Another thing we have to assure is that if we are in ordered mode
5238 * and inode is still attached to the committing transaction, we must
5239 * we start writeout of all the dirty pages which are being truncated.
5240 * This way we are sure that all the data written in the previous
5241 * transaction are already on disk (truncate waits for pages under
5242 * writeback).
5243 *
5244 * Called with inode->i_mutex down.
5245 */
5246int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5247{
5248        struct inode *inode = d_inode(dentry);
5249        int error, rc = 0;
5250        int orphan = 0;
5251        const unsigned int ia_valid = attr->ia_valid;
5252
5253        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5254                return -EIO;
5255
5256        if (unlikely(IS_IMMUTABLE(inode)))
5257                return -EPERM;
5258
5259        if (unlikely(IS_APPEND(inode) &&
5260                     (ia_valid & (ATTR_MODE | ATTR_UID |
5261                                  ATTR_GID | ATTR_TIMES_SET))))
5262                return -EPERM;
5263
5264        error = setattr_prepare(dentry, attr);
5265        if (error)
5266                return error;
5267
5268        error = fscrypt_prepare_setattr(dentry, attr);
5269        if (error)
5270                return error;
5271
5272        error = fsverity_prepare_setattr(dentry, attr);
5273        if (error)
5274                return error;
5275
5276        if (is_quota_modification(inode, attr)) {
5277                error = dquot_initialize(inode);
5278                if (error)
5279                        return error;
5280        }
5281        if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5282            (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5283                handle_t *handle;
5284
5285                /* (user+group)*(old+new) structure, inode write (sb,
5286                 * inode block, ? - but truncate inode update has it) */
5287                handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5288                        (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5289                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5290                if (IS_ERR(handle)) {
5291                        error = PTR_ERR(handle);
5292                        goto err_out;
5293                }
5294
5295                /* dquot_transfer() calls back ext4_get_inode_usage() which
5296                 * counts xattr inode references.
5297                 */
5298                down_read(&EXT4_I(inode)->xattr_sem);
5299                error = dquot_transfer(inode, attr);
5300                up_read(&EXT4_I(inode)->xattr_sem);
5301
5302                if (error) {
5303                        ext4_journal_stop(handle);
5304                        return error;
5305                }
5306                /* Update corresponding info in inode so that everything is in
5307                 * one transaction */
5308                if (attr->ia_valid & ATTR_UID)
5309                        inode->i_uid = attr->ia_uid;
5310                if (attr->ia_valid & ATTR_GID)
5311                        inode->i_gid = attr->ia_gid;
5312                error = ext4_mark_inode_dirty(handle, inode);
5313                ext4_journal_stop(handle);
5314                if (unlikely(error))
5315                        return error;
5316        }
5317
5318        if (attr->ia_valid & ATTR_SIZE) {
5319                handle_t *handle;
5320                loff_t oldsize = inode->i_size;
5321                int shrink = (attr->ia_size < inode->i_size);
5322
5323                if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5324                        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5325
5326                        if (attr->ia_size > sbi->s_bitmap_maxbytes)
5327                                return -EFBIG;
5328                }
5329                if (!S_ISREG(inode->i_mode))
5330                        return -EINVAL;
5331
5332                if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5333                        inode_inc_iversion(inode);
5334
5335                if (shrink) {
5336                        if (ext4_should_order_data(inode)) {
5337                                error = ext4_begin_ordered_truncate(inode,
5338                                                            attr->ia_size);
5339                                if (error)
5340                                        goto err_out;
5341                        }
5342                        /*
5343                         * Blocks are going to be removed from the inode. Wait
5344                         * for dio in flight.
5345                         */
5346                        inode_dio_wait(inode);
5347                }
5348
5349                down_write(&EXT4_I(inode)->i_mmap_sem);
5350
5351                rc = ext4_break_layouts(inode);
5352                if (rc) {
5353                        up_write(&EXT4_I(inode)->i_mmap_sem);
5354                        return rc;
5355                }
5356
5357                if (attr->ia_size != inode->i_size) {
5358                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5359                        if (IS_ERR(handle)) {
5360                                error = PTR_ERR(handle);
5361                                goto out_mmap_sem;
5362                        }
5363                        if (ext4_handle_valid(handle) && shrink) {
5364                                error = ext4_orphan_add(handle, inode);
5365                                orphan = 1;
5366                        }
5367                        /*
5368                         * Update c/mtime on truncate up, ext4_truncate() will
5369                         * update c/mtime in shrink case below
5370                         */
5371                        if (!shrink) {
5372                                inode->i_mtime = current_time(inode);
5373                                inode->i_ctime = inode->i_mtime;
5374                        }
5375                        down_write(&EXT4_I(inode)->i_data_sem);
5376                        EXT4_I(inode)->i_disksize = attr->ia_size;
5377                        rc = ext4_mark_inode_dirty(handle, inode);
5378                        if (!error)
5379                                error = rc;
5380                        /*
5381                         * We have to update i_size under i_data_sem together
5382                         * with i_disksize to avoid races with writeback code
5383                         * running ext4_wb_update_i_disksize().
5384                         */
5385                        if (!error)
5386                                i_size_write(inode, attr->ia_size);
5387                        up_write(&EXT4_I(inode)->i_data_sem);
5388                        ext4_journal_stop(handle);
5389                        if (error)
5390                                goto out_mmap_sem;
5391                        if (!shrink) {
5392                                pagecache_isize_extended(inode, oldsize,
5393                                                         inode->i_size);
5394                        } else if (ext4_should_journal_data(inode)) {
5395                                ext4_wait_for_tail_page_commit(inode);
5396                        }
5397                }
5398
5399                /*
5400                 * Truncate pagecache after we've waited for commit
5401                 * in data=journal mode to make pages freeable.
5402                 */
5403                truncate_pagecache(inode, inode->i_size);
5404                /*
5405                 * Call ext4_truncate() even if i_size didn't change to
5406                 * truncate possible preallocated blocks.
5407                 */
5408                if (attr->ia_size <= oldsize) {
5409                        rc = ext4_truncate(inode);
5410                        if (rc)
5411                                error = rc;
5412                }
5413out_mmap_sem:
5414                up_write(&EXT4_I(inode)->i_mmap_sem);
5415        }
5416
5417        if (!error) {
5418                setattr_copy(inode, attr);
5419                mark_inode_dirty(inode);
5420        }
5421
5422        /*
5423         * If the call to ext4_truncate failed to get a transaction handle at
5424         * all, we need to clean up the in-core orphan list manually.
5425         */
5426        if (orphan && inode->i_nlink)
5427                ext4_orphan_del(NULL, inode);
5428
5429        if (!error && (ia_valid & ATTR_MODE))
5430                rc = posix_acl_chmod(inode, inode->i_mode);
5431
5432err_out:
5433        ext4_std_error(inode->i_sb, error);
5434        if (!error)
5435                error = rc;
5436        return error;
5437}
5438
5439int ext4_getattr(const struct path *path, struct kstat *stat,
5440                 u32 request_mask, unsigned int query_flags)
5441{
5442        struct inode *inode = d_inode(path->dentry);
5443        struct ext4_inode *raw_inode;
5444        struct ext4_inode_info *ei = EXT4_I(inode);
5445        unsigned int flags;
5446
5447        if ((request_mask & STATX_BTIME) &&
5448            EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5449                stat->result_mask |= STATX_BTIME;
5450                stat->btime.tv_sec = ei->i_crtime.tv_sec;
5451                stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5452        }
5453
5454        flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5455        if (flags & EXT4_APPEND_FL)
5456                stat->attributes |= STATX_ATTR_APPEND;
5457        if (flags & EXT4_COMPR_FL)
5458                stat->attributes |= STATX_ATTR_COMPRESSED;
5459        if (flags & EXT4_ENCRYPT_FL)
5460                stat->attributes |= STATX_ATTR_ENCRYPTED;
5461        if (flags & EXT4_IMMUTABLE_FL)
5462                stat->attributes |= STATX_ATTR_IMMUTABLE;
5463        if (flags & EXT4_NODUMP_FL)
5464                stat->attributes |= STATX_ATTR_NODUMP;
5465        if (flags & EXT4_VERITY_FL)
5466                stat->attributes |= STATX_ATTR_VERITY;
5467
5468        stat->attributes_mask |= (STATX_ATTR_APPEND |
5469                                  STATX_ATTR_COMPRESSED |
5470                                  STATX_ATTR_ENCRYPTED |
5471                                  STATX_ATTR_IMMUTABLE |
5472                                  STATX_ATTR_NODUMP |
5473                                  STATX_ATTR_VERITY);
5474
5475        generic_fillattr(inode, stat);
5476        return 0;
5477}
5478
5479int ext4_file_getattr(const struct path *path, struct kstat *stat,
5480                      u32 request_mask, unsigned int query_flags)
5481{
5482        struct inode *inode = d_inode(path->dentry);
5483        u64 delalloc_blocks;
5484
5485        ext4_getattr(path, stat, request_mask, query_flags);
5486
5487        /*
5488         * If there is inline data in the inode, the inode will normally not
5489         * have data blocks allocated (it may have an external xattr block).
5490         * Report at least one sector for such files, so tools like tar, rsync,
5491         * others don't incorrectly think the file is completely sparse.
5492         */
5493        if (unlikely(ext4_has_inline_data(inode)))
5494                stat->blocks += (stat->size + 511) >> 9;
5495
5496        /*
5497         * We can't update i_blocks if the block allocation is delayed
5498         * otherwise in the case of system crash before the real block
5499         * allocation is done, we will have i_blocks inconsistent with
5500         * on-disk file blocks.
5501         * We always keep i_blocks updated together with real
5502         * allocation. But to not confuse with user, stat
5503         * will return the blocks that include the delayed allocation
5504         * blocks for this file.
5505         */
5506        delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5507                                   EXT4_I(inode)->i_reserved_data_blocks);
5508        stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5509        return 0;
5510}
5511
5512static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5513                                   int pextents)
5514{
5515        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5516                return ext4_ind_trans_blocks(inode, lblocks);
5517        return ext4_ext_index_trans_blocks(inode, pextents);
5518}
5519
5520/*
5521 * Account for index blocks, block groups bitmaps and block group
5522 * descriptor blocks if modify datablocks and index blocks
5523 * worse case, the indexs blocks spread over different block groups
5524 *
5525 * If datablocks are discontiguous, they are possible to spread over
5526 * different block groups too. If they are contiguous, with flexbg,
5527 * they could still across block group boundary.
5528 *
5529 * Also account for superblock, inode, quota and xattr blocks
5530 */
5531static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5532                                  int pextents)
5533{
5534        ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5535        int gdpblocks;
5536        int idxblocks;
5537        int ret = 0;
5538
5539        /*
5540         * How many index blocks need to touch to map @lblocks logical blocks
5541         * to @pextents physical extents?
5542         */
5543        idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5544
5545        ret = idxblocks;
5546
5547        /*
5548         * Now let's see how many group bitmaps and group descriptors need
5549         * to account
5550         */
5551        groups = idxblocks + pextents;
5552        gdpblocks = groups;
5553        if (groups > ngroups)
5554                groups = ngroups;
5555        if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5556                gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5557
5558        /* bitmaps and block group descriptor blocks */
5559        ret += groups + gdpblocks;
5560
5561        /* Blocks for super block, inode, quota and xattr blocks */
5562        ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5563
5564        return ret;
5565}
5566
5567/*
5568 * Calculate the total number of credits to reserve to fit
5569 * the modification of a single pages into a single transaction,
5570 * which may include multiple chunks of block allocations.
5571 *
5572 * This could be called via ext4_write_begin()
5573 *
5574 * We need to consider the worse case, when
5575 * one new block per extent.
5576 */
5577int ext4_writepage_trans_blocks(struct inode *inode)
5578{
5579        int bpp = ext4_journal_blocks_per_page(inode);
5580        int ret;
5581
5582        ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5583
5584        /* Account for data blocks for journalled mode */
5585        if (ext4_should_journal_data(inode))
5586                ret += bpp;
5587        return ret;
5588}
5589
5590/*
5591 * Calculate the journal credits for a chunk of data modification.
5592 *
5593 * This is called from DIO, fallocate or whoever calling
5594 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5595 *
5596 * journal buffers for data blocks are not included here, as DIO
5597 * and fallocate do no need to journal data buffers.
5598 */
5599int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5600{
5601        return ext4_meta_trans_blocks(inode, nrblocks, 1);
5602}
5603
5604/*
5605 * The caller must have previously called ext4_reserve_inode_write().
5606 * Give this, we know that the caller already has write access to iloc->bh.
5607 */
5608int ext4_mark_iloc_dirty(handle_t *handle,
5609                         struct inode *inode, struct ext4_iloc *iloc)
5610{
5611        int err = 0;
5612
5613        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5614                put_bh(iloc->bh);
5615                return -EIO;
5616        }
5617        if (IS_I_VERSION(inode))
5618                inode_inc_iversion(inode);
5619
5620        /* the do_update_inode consumes one bh->b_count */
5621        get_bh(iloc->bh);
5622
5623        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5624        err = ext4_do_update_inode(handle, inode, iloc);
5625        put_bh(iloc->bh);
5626        return err;
5627}
5628
5629/*
5630 * On success, We end up with an outstanding reference count against
5631 * iloc->bh.  This _must_ be cleaned up later.
5632 */
5633
5634int
5635ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5636                         struct ext4_iloc *iloc)
5637{
5638        int err;
5639
5640        if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5641                return -EIO;
5642
5643        err = ext4_get_inode_loc(inode, iloc);
5644        if (!err) {
5645                BUFFER_TRACE(iloc->bh, "get_write_access");
5646                err = ext4_journal_get_write_access(handle, iloc->bh);
5647                if (err) {
5648                        brelse(iloc->bh);
5649                        iloc->bh = NULL;
5650                }
5651        }
5652        ext4_std_error(inode->i_sb, err);
5653        return err;
5654}
5655
5656static int __ext4_expand_extra_isize(struct inode *inode,
5657                                     unsigned int new_extra_isize,
5658                                     struct ext4_iloc *iloc,
5659                                     handle_t *handle, int *no_expand)
5660{
5661        struct ext4_inode *raw_inode;
5662        struct ext4_xattr_ibody_header *header;
5663        unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5664        struct ext4_inode_info *ei = EXT4_I(inode);
5665        int error;
5666
5667        /* this was checked at iget time, but double check for good measure */
5668        if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5669            (ei->i_extra_isize & 3)) {
5670                EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5671                                 ei->i_extra_isize,
5672                                 EXT4_INODE_SIZE(inode->i_sb));
5673                return -EFSCORRUPTED;
5674        }
5675        if ((new_extra_isize < ei->i_extra_isize) ||
5676            (new_extra_isize < 4) ||
5677            (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5678                return -EINVAL; /* Should never happen */
5679
5680        raw_inode = ext4_raw_inode(iloc);
5681
5682        header = IHDR(inode, raw_inode);
5683
5684        /* No extended attributes present */
5685        if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5686            header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5687                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5688                       EXT4_I(inode)->i_extra_isize, 0,
5689                       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5690                EXT4_I(inode)->i_extra_isize = new_extra_isize;
5691                return 0;
5692        }
5693
5694        /* try to expand with EAs present */
5695        error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5696                                           raw_inode, handle);
5697        if (error) {
5698                /*
5699                 * Inode size expansion failed; don't try again
5700                 */
5701                *no_expand = 1;
5702        }
5703
5704        return error;
5705}
5706
5707/*
5708 * Expand an inode by new_extra_isize bytes.
5709 * Returns 0 on success or negative error number on failure.
5710 */
5711static int ext4_try_to_expand_extra_isize(struct inode *inode,
5712                                          unsigned int new_extra_isize,
5713                                          struct ext4_iloc iloc,
5714                                          handle_t *handle)
5715{
5716        int no_expand;
5717        int error;
5718
5719        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5720                return -EOVERFLOW;
5721
5722        /*
5723         * In nojournal mode, we can immediately attempt to expand
5724         * the inode.  When journaled, we first need to obtain extra
5725         * buffer credits since we may write into the EA block
5726         * with this same handle. If journal_extend fails, then it will
5727         * only result in a minor loss of functionality for that inode.
5728         * If this is felt to be critical, then e2fsck should be run to
5729         * force a large enough s_min_extra_isize.
5730         */
5731        if (ext4_journal_extend(handle,
5732                                EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5733                return -ENOSPC;
5734
5735        if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5736                return -EBUSY;
5737
5738        error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5739                                          handle, &no_expand);
5740        ext4_write_unlock_xattr(inode, &no_expand);
5741
5742        return error;
5743}
5744
5745int ext4_expand_extra_isize(struct inode *inode,
5746                            unsigned int new_extra_isize,
5747                            struct ext4_iloc *iloc)
5748{
5749        handle_t *handle;
5750        int no_expand;
5751        int error, rc;
5752
5753        if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5754                brelse(iloc->bh);
5755                return -EOVERFLOW;
5756        }
5757
5758        handle = ext4_journal_start(inode, EXT4_HT_INODE,
5759                                    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5760        if (IS_ERR(handle)) {
5761                error = PTR_ERR(handle);
5762                brelse(iloc->bh);
5763                return error;
5764        }
5765
5766        ext4_write_lock_xattr(inode, &no_expand);
5767
5768        BUFFER_TRACE(iloc->bh, "get_write_access");
5769        error = ext4_journal_get_write_access(handle, iloc->bh);
5770        if (error) {
5771                brelse(iloc->bh);
5772                goto out_unlock;
5773        }
5774
5775        error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5776                                          handle, &no_expand);
5777
5778        rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5779        if (!error)
5780                error = rc;
5781
5782out_unlock:
5783        ext4_write_unlock_xattr(inode, &no_expand);
5784        ext4_journal_stop(handle);
5785        return error;
5786}
5787
5788/*
5789 * What we do here is to mark the in-core inode as clean with respect to inode
5790 * dirtiness (it may still be data-dirty).
5791 * This means that the in-core inode may be reaped by prune_icache
5792 * without having to perform any I/O.  This is a very good thing,
5793 * because *any* task may call prune_icache - even ones which
5794 * have a transaction open against a different journal.
5795 *
5796 * Is this cheating?  Not really.  Sure, we haven't written the
5797 * inode out, but prune_icache isn't a user-visible syncing function.
5798 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5799 * we start and wait on commits.
5800 */
5801int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5802                                const char *func, unsigned int line)
5803{
5804        struct ext4_iloc iloc;
5805        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5806        int err;
5807
5808        might_sleep();
5809        trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5810        err = ext4_reserve_inode_write(handle, inode, &iloc);
5811        if (err)
5812                goto out;
5813
5814        if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5815                ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5816                                               iloc, handle);
5817
5818        err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5819out:
5820        if (unlikely(err))
5821                ext4_error_inode_err(inode, func, line, 0, err,
5822                                        "mark_inode_dirty error");
5823        return err;
5824}
5825
5826/*
5827 * ext4_dirty_inode() is called from __mark_inode_dirty()
5828 *
5829 * We're really interested in the case where a file is being extended.
5830 * i_size has been changed by generic_commit_write() and we thus need
5831 * to include the updated inode in the current transaction.
5832 *
5833 * Also, dquot_alloc_block() will always dirty the inode when blocks
5834 * are allocated to the file.
5835 *
5836 * If the inode is marked synchronous, we don't honour that here - doing
5837 * so would cause a commit on atime updates, which we don't bother doing.
5838 * We handle synchronous inodes at the highest possible level.
5839 *
5840 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5841 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5842 * to copy into the on-disk inode structure are the timestamp files.
5843 */
5844void ext4_dirty_inode(struct inode *inode, int flags)
5845{
5846        handle_t *handle;
5847
5848        if (flags == I_DIRTY_TIME)
5849                return;
5850        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5851        if (IS_ERR(handle))
5852                goto out;
5853
5854        ext4_mark_inode_dirty(handle, inode);
5855
5856        ext4_journal_stop(handle);
5857out:
5858        return;
5859}
5860
5861int ext4_change_inode_journal_flag(struct inode *inode, int val)
5862{
5863        journal_t *journal;
5864        handle_t *handle;
5865        int err;
5866        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5867
5868        /*
5869         * We have to be very careful here: changing a data block's
5870         * journaling status dynamically is dangerous.  If we write a
5871         * data block to the journal, change the status and then delete
5872         * that block, we risk forgetting to revoke the old log record
5873         * from the journal and so a subsequent replay can corrupt data.
5874         * So, first we make sure that the journal is empty and that
5875         * nobody is changing anything.
5876         */
5877
5878        journal = EXT4_JOURNAL(inode);
5879        if (!journal)
5880                return 0;
5881        if (is_journal_aborted(journal))
5882                return -EROFS;
5883
5884        /* Wait for all existing dio workers */
5885        inode_dio_wait(inode);
5886
5887        /*
5888         * Before flushing the journal and switching inode's aops, we have
5889         * to flush all dirty data the inode has. There can be outstanding
5890         * delayed allocations, there can be unwritten extents created by
5891         * fallocate or buffered writes in dioread_nolock mode covered by
5892         * dirty data which can be converted only after flushing the dirty
5893         * data (and journalled aops don't know how to handle these cases).
5894         */
5895        if (val) {
5896                down_write(&EXT4_I(inode)->i_mmap_sem);
5897                err = filemap_write_and_wait(inode->i_mapping);
5898                if (err < 0) {
5899                        up_write(&EXT4_I(inode)->i_mmap_sem);
5900                        return err;
5901                }
5902        }
5903
5904        percpu_down_write(&sbi->s_writepages_rwsem);
5905        jbd2_journal_lock_updates(journal);
5906
5907        /*
5908         * OK, there are no updates running now, and all cached data is
5909         * synced to disk.  We are now in a completely consistent state
5910         * which doesn't have anything in the journal, and we know that
5911         * no filesystem updates are running, so it is safe to modify
5912         * the inode's in-core data-journaling state flag now.
5913         */
5914
5915        if (val)
5916                ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5917        else {
5918                err = jbd2_journal_flush(journal);
5919                if (err < 0) {
5920                        jbd2_journal_unlock_updates(journal);
5921                        percpu_up_write(&sbi->s_writepages_rwsem);
5922                        return err;
5923                }
5924                ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5925        }
5926        ext4_set_aops(inode);
5927
5928        jbd2_journal_unlock_updates(journal);
5929        percpu_up_write(&sbi->s_writepages_rwsem);
5930
5931        if (val)
5932                up_write(&EXT4_I(inode)->i_mmap_sem);
5933
5934        /* Finally we can mark the inode as dirty. */
5935
5936        handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5937        if (IS_ERR(handle))
5938                return PTR_ERR(handle);
5939
5940        err = ext4_mark_inode_dirty(handle, inode);
5941        ext4_handle_sync(handle);
5942        ext4_journal_stop(handle);
5943        ext4_std_error(inode->i_sb, err);
5944
5945        return err;
5946}
5947
5948static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5949{
5950        return !buffer_mapped(bh);
5951}
5952
5953vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5954{
5955        struct vm_area_struct *vma = vmf->vma;
5956        struct page *page = vmf->page;
5957        loff_t size;
5958        unsigned long len;
5959        int err;
5960        vm_fault_t ret;
5961        struct file *file = vma->vm_file;
5962        struct inode *inode = file_inode(file);
5963        struct address_space *mapping = inode->i_mapping;
5964        handle_t *handle;
5965        get_block_t *get_block;
5966        int retries = 0;
5967
5968        if (unlikely(IS_IMMUTABLE(inode)))
5969                return VM_FAULT_SIGBUS;
5970
5971        sb_start_pagefault(inode->i_sb);
5972        file_update_time(vma->vm_file);
5973
5974        down_read(&EXT4_I(inode)->i_mmap_sem);
5975
5976        err = ext4_convert_inline_data(inode);
5977        if (err)
5978                goto out_ret;
5979
5980        /* Delalloc case is easy... */
5981        if (test_opt(inode->i_sb, DELALLOC) &&
5982            !ext4_should_journal_data(inode) &&
5983            !ext4_nonda_switch(inode->i_sb)) {
5984                do {
5985                        err = block_page_mkwrite(vma, vmf,
5986                                                   ext4_da_get_block_prep);
5987                } while (err == -ENOSPC &&
5988                       ext4_should_retry_alloc(inode->i_sb, &retries));
5989                goto out_ret;
5990        }
5991
5992        lock_page(page);
5993        size = i_size_read(inode);
5994        /* Page got truncated from under us? */
5995        if (page->mapping != mapping || page_offset(page) > size) {
5996                unlock_page(page);
5997                ret = VM_FAULT_NOPAGE;
5998                goto out;
5999        }
6000
6001        if (page->index == size >> PAGE_SHIFT)
6002                len = size & ~PAGE_MASK;
6003        else
6004                len = PAGE_SIZE;
6005        /*
6006         * Return if we have all the buffers mapped. This avoids the need to do
6007         * journal_start/journal_stop which can block and take a long time
6008         */
6009        if (page_has_buffers(page)) {
6010                if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6011                                            0, len, NULL,
6012                                            ext4_bh_unmapped)) {
6013                        /* Wait so that we don't change page under IO */
6014                        wait_for_stable_page(page);
6015                        ret = VM_FAULT_LOCKED;
6016                        goto out;
6017                }
6018        }
6019        unlock_page(page);
6020        /* OK, we need to fill the hole... */
6021        if (ext4_should_dioread_nolock(inode))
6022                get_block = ext4_get_block_unwritten;
6023        else
6024                get_block = ext4_get_block;
6025retry_alloc:
6026        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6027                                    ext4_writepage_trans_blocks(inode));
6028        if (IS_ERR(handle)) {
6029                ret = VM_FAULT_SIGBUS;
6030                goto out;
6031        }
6032        err = block_page_mkwrite(vma, vmf, get_block);
6033        if (!err && ext4_should_journal_data(inode)) {
6034                if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6035                          PAGE_SIZE, NULL, do_journal_get_write_access)) {
6036                        unlock_page(page);
6037                        ret = VM_FAULT_SIGBUS;
6038                        ext4_journal_stop(handle);
6039                        goto out;
6040                }
6041                ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6042        }
6043        ext4_journal_stop(handle);
6044        if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6045                goto retry_alloc;
6046out_ret:
6047        ret = block_page_mkwrite_return(err);
6048out:
6049        up_read(&EXT4_I(inode)->i_mmap_sem);
6050        sb_end_pagefault(inode->i_sb);
6051        return ret;
6052}
6053
6054vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6055{
6056        struct inode *inode = file_inode(vmf->vma->vm_file);
6057        vm_fault_t ret;
6058
6059        down_read(&EXT4_I(inode)->i_mmap_sem);
6060        ret = filemap_fault(vmf);
6061        up_read(&EXT4_I(inode)->i_mmap_sem);
6062
6063        return ret;
6064}
6065