linux/fs/super.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/super.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  super.c contains code to handle: - mount structures
   8 *                                   - super-block tables
   9 *                                   - filesystem drivers list
  10 *                                   - mount system call
  11 *                                   - umount system call
  12 *                                   - ustat system call
  13 *
  14 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  15 *
  16 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  17 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  18 *  Added options to /proc/mounts:
  19 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  20 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  21 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  22 */
  23
  24#include <linux/export.h>
  25#include <linux/slab.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>            /* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/cleancache.h>
  35#include <linux/fscrypt.h>
  36#include <linux/fsnotify.h>
  37#include <linux/lockdep.h>
  38#include <linux/user_namespace.h>
  39#include <linux/fs_context.h>
  40#include <uapi/linux/mount.h>
  41#include "internal.h"
  42
  43static int thaw_super_locked(struct super_block *sb);
  44
  45static LIST_HEAD(super_blocks);
  46static DEFINE_SPINLOCK(sb_lock);
  47
  48static char *sb_writers_name[SB_FREEZE_LEVELS] = {
  49        "sb_writers",
  50        "sb_pagefaults",
  51        "sb_internal",
  52};
  53
  54/*
  55 * One thing we have to be careful of with a per-sb shrinker is that we don't
  56 * drop the last active reference to the superblock from within the shrinker.
  57 * If that happens we could trigger unregistering the shrinker from within the
  58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
  59 * take a passive reference to the superblock to avoid this from occurring.
  60 */
  61static unsigned long super_cache_scan(struct shrinker *shrink,
  62                                      struct shrink_control *sc)
  63{
  64        struct super_block *sb;
  65        long    fs_objects = 0;
  66        long    total_objects;
  67        long    freed = 0;
  68        long    dentries;
  69        long    inodes;
  70
  71        sb = container_of(shrink, struct super_block, s_shrink);
  72
  73        /*
  74         * Deadlock avoidance.  We may hold various FS locks, and we don't want
  75         * to recurse into the FS that called us in clear_inode() and friends..
  76         */
  77        if (!(sc->gfp_mask & __GFP_FS))
  78                return SHRINK_STOP;
  79
  80        if (!trylock_super(sb))
  81                return SHRINK_STOP;
  82
  83        if (sb->s_op->nr_cached_objects)
  84                fs_objects = sb->s_op->nr_cached_objects(sb, sc);
  85
  86        inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
  87        dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
  88        total_objects = dentries + inodes + fs_objects + 1;
  89        if (!total_objects)
  90                total_objects = 1;
  91
  92        /* proportion the scan between the caches */
  93        dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
  94        inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
  95        fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
  96
  97        /*
  98         * prune the dcache first as the icache is pinned by it, then
  99         * prune the icache, followed by the filesystem specific caches
 100         *
 101         * Ensure that we always scan at least one object - memcg kmem
 102         * accounting uses this to fully empty the caches.
 103         */
 104        sc->nr_to_scan = dentries + 1;
 105        freed = prune_dcache_sb(sb, sc);
 106        sc->nr_to_scan = inodes + 1;
 107        freed += prune_icache_sb(sb, sc);
 108
 109        if (fs_objects) {
 110                sc->nr_to_scan = fs_objects + 1;
 111                freed += sb->s_op->free_cached_objects(sb, sc);
 112        }
 113
 114        up_read(&sb->s_umount);
 115        return freed;
 116}
 117
 118static unsigned long super_cache_count(struct shrinker *shrink,
 119                                       struct shrink_control *sc)
 120{
 121        struct super_block *sb;
 122        long    total_objects = 0;
 123
 124        sb = container_of(shrink, struct super_block, s_shrink);
 125
 126        /*
 127         * We don't call trylock_super() here as it is a scalability bottleneck,
 128         * so we're exposed to partial setup state. The shrinker rwsem does not
 129         * protect filesystem operations backing list_lru_shrink_count() or
 130         * s_op->nr_cached_objects(). Counts can change between
 131         * super_cache_count and super_cache_scan, so we really don't need locks
 132         * here.
 133         *
 134         * However, if we are currently mounting the superblock, the underlying
 135         * filesystem might be in a state of partial construction and hence it
 136         * is dangerous to access it.  trylock_super() uses a SB_BORN check to
 137         * avoid this situation, so do the same here. The memory barrier is
 138         * matched with the one in mount_fs() as we don't hold locks here.
 139         */
 140        if (!(sb->s_flags & SB_BORN))
 141                return 0;
 142        smp_rmb();
 143
 144        if (sb->s_op && sb->s_op->nr_cached_objects)
 145                total_objects = sb->s_op->nr_cached_objects(sb, sc);
 146
 147        total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
 148        total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
 149
 150        if (!total_objects)
 151                return SHRINK_EMPTY;
 152
 153        total_objects = vfs_pressure_ratio(total_objects);
 154        return total_objects;
 155}
 156
 157static void destroy_super_work(struct work_struct *work)
 158{
 159        struct super_block *s = container_of(work, struct super_block,
 160                                                        destroy_work);
 161        int i;
 162
 163        for (i = 0; i < SB_FREEZE_LEVELS; i++)
 164                percpu_free_rwsem(&s->s_writers.rw_sem[i]);
 165        kfree(s);
 166}
 167
 168static void destroy_super_rcu(struct rcu_head *head)
 169{
 170        struct super_block *s = container_of(head, struct super_block, rcu);
 171        INIT_WORK(&s->destroy_work, destroy_super_work);
 172        schedule_work(&s->destroy_work);
 173}
 174
 175/* Free a superblock that has never been seen by anyone */
 176static void destroy_unused_super(struct super_block *s)
 177{
 178        if (!s)
 179                return;
 180        up_write(&s->s_umount);
 181        list_lru_destroy(&s->s_dentry_lru);
 182        list_lru_destroy(&s->s_inode_lru);
 183        security_sb_free(s);
 184        put_user_ns(s->s_user_ns);
 185        kfree(s->s_subtype);
 186        free_prealloced_shrinker(&s->s_shrink);
 187        /* no delays needed */
 188        destroy_super_work(&s->destroy_work);
 189}
 190
 191/**
 192 *      alloc_super     -       create new superblock
 193 *      @type:  filesystem type superblock should belong to
 194 *      @flags: the mount flags
 195 *      @user_ns: User namespace for the super_block
 196 *
 197 *      Allocates and initializes a new &struct super_block.  alloc_super()
 198 *      returns a pointer new superblock or %NULL if allocation had failed.
 199 */
 200static struct super_block *alloc_super(struct file_system_type *type, int flags,
 201                                       struct user_namespace *user_ns)
 202{
 203        struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
 204        static const struct super_operations default_op;
 205        int i;
 206
 207        if (!s)
 208                return NULL;
 209
 210        INIT_LIST_HEAD(&s->s_mounts);
 211        s->s_user_ns = get_user_ns(user_ns);
 212        init_rwsem(&s->s_umount);
 213        lockdep_set_class(&s->s_umount, &type->s_umount_key);
 214        /*
 215         * sget() can have s_umount recursion.
 216         *
 217         * When it cannot find a suitable sb, it allocates a new
 218         * one (this one), and tries again to find a suitable old
 219         * one.
 220         *
 221         * In case that succeeds, it will acquire the s_umount
 222         * lock of the old one. Since these are clearly distrinct
 223         * locks, and this object isn't exposed yet, there's no
 224         * risk of deadlocks.
 225         *
 226         * Annotate this by putting this lock in a different
 227         * subclass.
 228         */
 229        down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 230
 231        if (security_sb_alloc(s))
 232                goto fail;
 233
 234        for (i = 0; i < SB_FREEZE_LEVELS; i++) {
 235                if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
 236                                        sb_writers_name[i],
 237                                        &type->s_writers_key[i]))
 238                        goto fail;
 239        }
 240        init_waitqueue_head(&s->s_writers.wait_unfrozen);
 241        s->s_bdi = &noop_backing_dev_info;
 242        s->s_flags = flags;
 243        if (s->s_user_ns != &init_user_ns)
 244                s->s_iflags |= SB_I_NODEV;
 245        INIT_HLIST_NODE(&s->s_instances);
 246        INIT_HLIST_BL_HEAD(&s->s_roots);
 247        mutex_init(&s->s_sync_lock);
 248        INIT_LIST_HEAD(&s->s_inodes);
 249        spin_lock_init(&s->s_inode_list_lock);
 250        INIT_LIST_HEAD(&s->s_inodes_wb);
 251        spin_lock_init(&s->s_inode_wblist_lock);
 252
 253        s->s_count = 1;
 254        atomic_set(&s->s_active, 1);
 255        mutex_init(&s->s_vfs_rename_mutex);
 256        lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 257        init_rwsem(&s->s_dquot.dqio_sem);
 258        s->s_maxbytes = MAX_NON_LFS;
 259        s->s_op = &default_op;
 260        s->s_time_gran = 1000000000;
 261        s->s_time_min = TIME64_MIN;
 262        s->s_time_max = TIME64_MAX;
 263        s->cleancache_poolid = CLEANCACHE_NO_POOL;
 264
 265        s->s_shrink.seeks = DEFAULT_SEEKS;
 266        s->s_shrink.scan_objects = super_cache_scan;
 267        s->s_shrink.count_objects = super_cache_count;
 268        s->s_shrink.batch = 1024;
 269        s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
 270        if (prealloc_shrinker(&s->s_shrink))
 271                goto fail;
 272        if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
 273                goto fail;
 274        if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
 275                goto fail;
 276        return s;
 277
 278fail:
 279        destroy_unused_super(s);
 280        return NULL;
 281}
 282
 283/* Superblock refcounting  */
 284
 285/*
 286 * Drop a superblock's refcount.  The caller must hold sb_lock.
 287 */
 288static void __put_super(struct super_block *s)
 289{
 290        if (!--s->s_count) {
 291                list_del_init(&s->s_list);
 292                WARN_ON(s->s_dentry_lru.node);
 293                WARN_ON(s->s_inode_lru.node);
 294                WARN_ON(!list_empty(&s->s_mounts));
 295                security_sb_free(s);
 296                fscrypt_sb_free(s);
 297                put_user_ns(s->s_user_ns);
 298                kfree(s->s_subtype);
 299                call_rcu(&s->rcu, destroy_super_rcu);
 300        }
 301}
 302
 303/**
 304 *      put_super       -       drop a temporary reference to superblock
 305 *      @sb: superblock in question
 306 *
 307 *      Drops a temporary reference, frees superblock if there's no
 308 *      references left.
 309 */
 310static void put_super(struct super_block *sb)
 311{
 312        spin_lock(&sb_lock);
 313        __put_super(sb);
 314        spin_unlock(&sb_lock);
 315}
 316
 317
 318/**
 319 *      deactivate_locked_super -       drop an active reference to superblock
 320 *      @s: superblock to deactivate
 321 *
 322 *      Drops an active reference to superblock, converting it into a temporary
 323 *      one if there is no other active references left.  In that case we
 324 *      tell fs driver to shut it down and drop the temporary reference we
 325 *      had just acquired.
 326 *
 327 *      Caller holds exclusive lock on superblock; that lock is released.
 328 */
 329void deactivate_locked_super(struct super_block *s)
 330{
 331        struct file_system_type *fs = s->s_type;
 332        if (atomic_dec_and_test(&s->s_active)) {
 333                cleancache_invalidate_fs(s);
 334                unregister_shrinker(&s->s_shrink);
 335                fs->kill_sb(s);
 336
 337                /*
 338                 * Since list_lru_destroy() may sleep, we cannot call it from
 339                 * put_super(), where we hold the sb_lock. Therefore we destroy
 340                 * the lru lists right now.
 341                 */
 342                list_lru_destroy(&s->s_dentry_lru);
 343                list_lru_destroy(&s->s_inode_lru);
 344
 345                put_filesystem(fs);
 346                put_super(s);
 347        } else {
 348                up_write(&s->s_umount);
 349        }
 350}
 351
 352EXPORT_SYMBOL(deactivate_locked_super);
 353
 354/**
 355 *      deactivate_super        -       drop an active reference to superblock
 356 *      @s: superblock to deactivate
 357 *
 358 *      Variant of deactivate_locked_super(), except that superblock is *not*
 359 *      locked by caller.  If we are going to drop the final active reference,
 360 *      lock will be acquired prior to that.
 361 */
 362void deactivate_super(struct super_block *s)
 363{
 364        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 365                down_write(&s->s_umount);
 366                deactivate_locked_super(s);
 367        }
 368}
 369
 370EXPORT_SYMBOL(deactivate_super);
 371
 372/**
 373 *      grab_super - acquire an active reference
 374 *      @s: reference we are trying to make active
 375 *
 376 *      Tries to acquire an active reference.  grab_super() is used when we
 377 *      had just found a superblock in super_blocks or fs_type->fs_supers
 378 *      and want to turn it into a full-blown active reference.  grab_super()
 379 *      is called with sb_lock held and drops it.  Returns 1 in case of
 380 *      success, 0 if we had failed (superblock contents was already dead or
 381 *      dying when grab_super() had been called).  Note that this is only
 382 *      called for superblocks not in rundown mode (== ones still on ->fs_supers
 383 *      of their type), so increment of ->s_count is OK here.
 384 */
 385static int grab_super(struct super_block *s) __releases(sb_lock)
 386{
 387        s->s_count++;
 388        spin_unlock(&sb_lock);
 389        down_write(&s->s_umount);
 390        if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
 391                put_super(s);
 392                return 1;
 393        }
 394        up_write(&s->s_umount);
 395        put_super(s);
 396        return 0;
 397}
 398
 399/*
 400 *      trylock_super - try to grab ->s_umount shared
 401 *      @sb: reference we are trying to grab
 402 *
 403 *      Try to prevent fs shutdown.  This is used in places where we
 404 *      cannot take an active reference but we need to ensure that the
 405 *      filesystem is not shut down while we are working on it. It returns
 406 *      false if we cannot acquire s_umount or if we lose the race and
 407 *      filesystem already got into shutdown, and returns true with the s_umount
 408 *      lock held in read mode in case of success. On successful return,
 409 *      the caller must drop the s_umount lock when done.
 410 *
 411 *      Note that unlike get_super() et.al. this one does *not* bump ->s_count.
 412 *      The reason why it's safe is that we are OK with doing trylock instead
 413 *      of down_read().  There's a couple of places that are OK with that, but
 414 *      it's very much not a general-purpose interface.
 415 */
 416bool trylock_super(struct super_block *sb)
 417{
 418        if (down_read_trylock(&sb->s_umount)) {
 419                if (!hlist_unhashed(&sb->s_instances) &&
 420                    sb->s_root && (sb->s_flags & SB_BORN))
 421                        return true;
 422                up_read(&sb->s_umount);
 423        }
 424
 425        return false;
 426}
 427
 428/**
 429 *      generic_shutdown_super  -       common helper for ->kill_sb()
 430 *      @sb: superblock to kill
 431 *
 432 *      generic_shutdown_super() does all fs-independent work on superblock
 433 *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 434 *      that need destruction out of superblock, call generic_shutdown_super()
 435 *      and release aforementioned objects.  Note: dentries and inodes _are_
 436 *      taken care of and do not need specific handling.
 437 *
 438 *      Upon calling this function, the filesystem may no longer alter or
 439 *      rearrange the set of dentries belonging to this super_block, nor may it
 440 *      change the attachments of dentries to inodes.
 441 */
 442void generic_shutdown_super(struct super_block *sb)
 443{
 444        const struct super_operations *sop = sb->s_op;
 445
 446        if (sb->s_root) {
 447                shrink_dcache_for_umount(sb);
 448                sync_filesystem(sb);
 449                sb->s_flags &= ~SB_ACTIVE;
 450
 451                cgroup_writeback_umount();
 452
 453                /* evict all inodes with zero refcount */
 454                evict_inodes(sb);
 455                /* only nonzero refcount inodes can have marks */
 456                fsnotify_sb_delete(sb);
 457
 458                if (sb->s_dio_done_wq) {
 459                        destroy_workqueue(sb->s_dio_done_wq);
 460                        sb->s_dio_done_wq = NULL;
 461                }
 462
 463                if (sop->put_super)
 464                        sop->put_super(sb);
 465
 466                if (!list_empty(&sb->s_inodes)) {
 467                        printk("VFS: Busy inodes after unmount of %s. "
 468                           "Self-destruct in 5 seconds.  Have a nice day...\n",
 469                           sb->s_id);
 470                }
 471        }
 472        spin_lock(&sb_lock);
 473        /* should be initialized for __put_super_and_need_restart() */
 474        hlist_del_init(&sb->s_instances);
 475        spin_unlock(&sb_lock);
 476        up_write(&sb->s_umount);
 477        if (sb->s_bdi != &noop_backing_dev_info) {
 478                bdi_put(sb->s_bdi);
 479                sb->s_bdi = &noop_backing_dev_info;
 480        }
 481}
 482
 483EXPORT_SYMBOL(generic_shutdown_super);
 484
 485bool mount_capable(struct fs_context *fc)
 486{
 487        if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
 488                return capable(CAP_SYS_ADMIN);
 489        else
 490                return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
 491}
 492
 493/**
 494 * sget_fc - Find or create a superblock
 495 * @fc: Filesystem context.
 496 * @test: Comparison callback
 497 * @set: Setup callback
 498 *
 499 * Find or create a superblock using the parameters stored in the filesystem
 500 * context and the two callback functions.
 501 *
 502 * If an extant superblock is matched, then that will be returned with an
 503 * elevated reference count that the caller must transfer or discard.
 504 *
 505 * If no match is made, a new superblock will be allocated and basic
 506 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
 507 * the set() callback will be invoked), the superblock will be published and it
 508 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
 509 * as yet unset.
 510 */
 511struct super_block *sget_fc(struct fs_context *fc,
 512                            int (*test)(struct super_block *, struct fs_context *),
 513                            int (*set)(struct super_block *, struct fs_context *))
 514{
 515        struct super_block *s = NULL;
 516        struct super_block *old;
 517        struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
 518        int err;
 519
 520retry:
 521        spin_lock(&sb_lock);
 522        if (test) {
 523                hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
 524                        if (test(old, fc))
 525                                goto share_extant_sb;
 526                }
 527        }
 528        if (!s) {
 529                spin_unlock(&sb_lock);
 530                s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
 531                if (!s)
 532                        return ERR_PTR(-ENOMEM);
 533                goto retry;
 534        }
 535
 536        s->s_fs_info = fc->s_fs_info;
 537        err = set(s, fc);
 538        if (err) {
 539                s->s_fs_info = NULL;
 540                spin_unlock(&sb_lock);
 541                destroy_unused_super(s);
 542                return ERR_PTR(err);
 543        }
 544        fc->s_fs_info = NULL;
 545        s->s_type = fc->fs_type;
 546        s->s_iflags |= fc->s_iflags;
 547        strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
 548        list_add_tail(&s->s_list, &super_blocks);
 549        hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
 550        spin_unlock(&sb_lock);
 551        get_filesystem(s->s_type);
 552        register_shrinker_prepared(&s->s_shrink);
 553        return s;
 554
 555share_extant_sb:
 556        if (user_ns != old->s_user_ns) {
 557                spin_unlock(&sb_lock);
 558                destroy_unused_super(s);
 559                return ERR_PTR(-EBUSY);
 560        }
 561        if (!grab_super(old))
 562                goto retry;
 563        destroy_unused_super(s);
 564        return old;
 565}
 566EXPORT_SYMBOL(sget_fc);
 567
 568/**
 569 *      sget    -       find or create a superblock
 570 *      @type:    filesystem type superblock should belong to
 571 *      @test:    comparison callback
 572 *      @set:     setup callback
 573 *      @flags:   mount flags
 574 *      @data:    argument to each of them
 575 */
 576struct super_block *sget(struct file_system_type *type,
 577                        int (*test)(struct super_block *,void *),
 578                        int (*set)(struct super_block *,void *),
 579                        int flags,
 580                        void *data)
 581{
 582        struct user_namespace *user_ns = current_user_ns();
 583        struct super_block *s = NULL;
 584        struct super_block *old;
 585        int err;
 586
 587        /* We don't yet pass the user namespace of the parent
 588         * mount through to here so always use &init_user_ns
 589         * until that changes.
 590         */
 591        if (flags & SB_SUBMOUNT)
 592                user_ns = &init_user_ns;
 593
 594retry:
 595        spin_lock(&sb_lock);
 596        if (test) {
 597                hlist_for_each_entry(old, &type->fs_supers, s_instances) {
 598                        if (!test(old, data))
 599                                continue;
 600                        if (user_ns != old->s_user_ns) {
 601                                spin_unlock(&sb_lock);
 602                                destroy_unused_super(s);
 603                                return ERR_PTR(-EBUSY);
 604                        }
 605                        if (!grab_super(old))
 606                                goto retry;
 607                        destroy_unused_super(s);
 608                        return old;
 609                }
 610        }
 611        if (!s) {
 612                spin_unlock(&sb_lock);
 613                s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
 614                if (!s)
 615                        return ERR_PTR(-ENOMEM);
 616                goto retry;
 617        }
 618
 619        err = set(s, data);
 620        if (err) {
 621                spin_unlock(&sb_lock);
 622                destroy_unused_super(s);
 623                return ERR_PTR(err);
 624        }
 625        s->s_type = type;
 626        strlcpy(s->s_id, type->name, sizeof(s->s_id));
 627        list_add_tail(&s->s_list, &super_blocks);
 628        hlist_add_head(&s->s_instances, &type->fs_supers);
 629        spin_unlock(&sb_lock);
 630        get_filesystem(type);
 631        register_shrinker_prepared(&s->s_shrink);
 632        return s;
 633}
 634EXPORT_SYMBOL(sget);
 635
 636void drop_super(struct super_block *sb)
 637{
 638        up_read(&sb->s_umount);
 639        put_super(sb);
 640}
 641
 642EXPORT_SYMBOL(drop_super);
 643
 644void drop_super_exclusive(struct super_block *sb)
 645{
 646        up_write(&sb->s_umount);
 647        put_super(sb);
 648}
 649EXPORT_SYMBOL(drop_super_exclusive);
 650
 651static void __iterate_supers(void (*f)(struct super_block *))
 652{
 653        struct super_block *sb, *p = NULL;
 654
 655        spin_lock(&sb_lock);
 656        list_for_each_entry(sb, &super_blocks, s_list) {
 657                if (hlist_unhashed(&sb->s_instances))
 658                        continue;
 659                sb->s_count++;
 660                spin_unlock(&sb_lock);
 661
 662                f(sb);
 663
 664                spin_lock(&sb_lock);
 665                if (p)
 666                        __put_super(p);
 667                p = sb;
 668        }
 669        if (p)
 670                __put_super(p);
 671        spin_unlock(&sb_lock);
 672}
 673/**
 674 *      iterate_supers - call function for all active superblocks
 675 *      @f: function to call
 676 *      @arg: argument to pass to it
 677 *
 678 *      Scans the superblock list and calls given function, passing it
 679 *      locked superblock and given argument.
 680 */
 681void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 682{
 683        struct super_block *sb, *p = NULL;
 684
 685        spin_lock(&sb_lock);
 686        list_for_each_entry(sb, &super_blocks, s_list) {
 687                if (hlist_unhashed(&sb->s_instances))
 688                        continue;
 689                sb->s_count++;
 690                spin_unlock(&sb_lock);
 691
 692                down_read(&sb->s_umount);
 693                if (sb->s_root && (sb->s_flags & SB_BORN))
 694                        f(sb, arg);
 695                up_read(&sb->s_umount);
 696
 697                spin_lock(&sb_lock);
 698                if (p)
 699                        __put_super(p);
 700                p = sb;
 701        }
 702        if (p)
 703                __put_super(p);
 704        spin_unlock(&sb_lock);
 705}
 706
 707/**
 708 *      iterate_supers_type - call function for superblocks of given type
 709 *      @type: fs type
 710 *      @f: function to call
 711 *      @arg: argument to pass to it
 712 *
 713 *      Scans the superblock list and calls given function, passing it
 714 *      locked superblock and given argument.
 715 */
 716void iterate_supers_type(struct file_system_type *type,
 717        void (*f)(struct super_block *, void *), void *arg)
 718{
 719        struct super_block *sb, *p = NULL;
 720
 721        spin_lock(&sb_lock);
 722        hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
 723                sb->s_count++;
 724                spin_unlock(&sb_lock);
 725
 726                down_read(&sb->s_umount);
 727                if (sb->s_root && (sb->s_flags & SB_BORN))
 728                        f(sb, arg);
 729                up_read(&sb->s_umount);
 730
 731                spin_lock(&sb_lock);
 732                if (p)
 733                        __put_super(p);
 734                p = sb;
 735        }
 736        if (p)
 737                __put_super(p);
 738        spin_unlock(&sb_lock);
 739}
 740
 741EXPORT_SYMBOL(iterate_supers_type);
 742
 743static struct super_block *__get_super(struct block_device *bdev, bool excl)
 744{
 745        struct super_block *sb;
 746
 747        if (!bdev)
 748                return NULL;
 749
 750        spin_lock(&sb_lock);
 751rescan:
 752        list_for_each_entry(sb, &super_blocks, s_list) {
 753                if (hlist_unhashed(&sb->s_instances))
 754                        continue;
 755                if (sb->s_bdev == bdev) {
 756                        sb->s_count++;
 757                        spin_unlock(&sb_lock);
 758                        if (!excl)
 759                                down_read(&sb->s_umount);
 760                        else
 761                                down_write(&sb->s_umount);
 762                        /* still alive? */
 763                        if (sb->s_root && (sb->s_flags & SB_BORN))
 764                                return sb;
 765                        if (!excl)
 766                                up_read(&sb->s_umount);
 767                        else
 768                                up_write(&sb->s_umount);
 769                        /* nope, got unmounted */
 770                        spin_lock(&sb_lock);
 771                        __put_super(sb);
 772                        goto rescan;
 773                }
 774        }
 775        spin_unlock(&sb_lock);
 776        return NULL;
 777}
 778
 779/**
 780 *      get_super - get the superblock of a device
 781 *      @bdev: device to get the superblock for
 782 *
 783 *      Scans the superblock list and finds the superblock of the file system
 784 *      mounted on the device given. %NULL is returned if no match is found.
 785 */
 786struct super_block *get_super(struct block_device *bdev)
 787{
 788        return __get_super(bdev, false);
 789}
 790EXPORT_SYMBOL(get_super);
 791
 792static struct super_block *__get_super_thawed(struct block_device *bdev,
 793                                              bool excl)
 794{
 795        while (1) {
 796                struct super_block *s = __get_super(bdev, excl);
 797                if (!s || s->s_writers.frozen == SB_UNFROZEN)
 798                        return s;
 799                if (!excl)
 800                        up_read(&s->s_umount);
 801                else
 802                        up_write(&s->s_umount);
 803                wait_event(s->s_writers.wait_unfrozen,
 804                           s->s_writers.frozen == SB_UNFROZEN);
 805                put_super(s);
 806        }
 807}
 808
 809/**
 810 *      get_super_thawed - get thawed superblock of a device
 811 *      @bdev: device to get the superblock for
 812 *
 813 *      Scans the superblock list and finds the superblock of the file system
 814 *      mounted on the device. The superblock is returned once it is thawed
 815 *      (or immediately if it was not frozen). %NULL is returned if no match
 816 *      is found.
 817 */
 818struct super_block *get_super_thawed(struct block_device *bdev)
 819{
 820        return __get_super_thawed(bdev, false);
 821}
 822EXPORT_SYMBOL(get_super_thawed);
 823
 824/**
 825 *      get_super_exclusive_thawed - get thawed superblock of a device
 826 *      @bdev: device to get the superblock for
 827 *
 828 *      Scans the superblock list and finds the superblock of the file system
 829 *      mounted on the device. The superblock is returned once it is thawed
 830 *      (or immediately if it was not frozen) and s_umount semaphore is held
 831 *      in exclusive mode. %NULL is returned if no match is found.
 832 */
 833struct super_block *get_super_exclusive_thawed(struct block_device *bdev)
 834{
 835        return __get_super_thawed(bdev, true);
 836}
 837EXPORT_SYMBOL(get_super_exclusive_thawed);
 838
 839/**
 840 * get_active_super - get an active reference to the superblock of a device
 841 * @bdev: device to get the superblock for
 842 *
 843 * Scans the superblock list and finds the superblock of the file system
 844 * mounted on the device given.  Returns the superblock with an active
 845 * reference or %NULL if none was found.
 846 */
 847struct super_block *get_active_super(struct block_device *bdev)
 848{
 849        struct super_block *sb;
 850
 851        if (!bdev)
 852                return NULL;
 853
 854restart:
 855        spin_lock(&sb_lock);
 856        list_for_each_entry(sb, &super_blocks, s_list) {
 857                if (hlist_unhashed(&sb->s_instances))
 858                        continue;
 859                if (sb->s_bdev == bdev) {
 860                        if (!grab_super(sb))
 861                                goto restart;
 862                        up_write(&sb->s_umount);
 863                        return sb;
 864                }
 865        }
 866        spin_unlock(&sb_lock);
 867        return NULL;
 868}
 869
 870struct super_block *user_get_super(dev_t dev)
 871{
 872        struct super_block *sb;
 873
 874        spin_lock(&sb_lock);
 875rescan:
 876        list_for_each_entry(sb, &super_blocks, s_list) {
 877                if (hlist_unhashed(&sb->s_instances))
 878                        continue;
 879                if (sb->s_dev ==  dev) {
 880                        sb->s_count++;
 881                        spin_unlock(&sb_lock);
 882                        down_read(&sb->s_umount);
 883                        /* still alive? */
 884                        if (sb->s_root && (sb->s_flags & SB_BORN))
 885                                return sb;
 886                        up_read(&sb->s_umount);
 887                        /* nope, got unmounted */
 888                        spin_lock(&sb_lock);
 889                        __put_super(sb);
 890                        goto rescan;
 891                }
 892        }
 893        spin_unlock(&sb_lock);
 894        return NULL;
 895}
 896
 897/**
 898 * reconfigure_super - asks filesystem to change superblock parameters
 899 * @fc: The superblock and configuration
 900 *
 901 * Alters the configuration parameters of a live superblock.
 902 */
 903int reconfigure_super(struct fs_context *fc)
 904{
 905        struct super_block *sb = fc->root->d_sb;
 906        int retval;
 907        bool remount_ro = false;
 908        bool force = fc->sb_flags & SB_FORCE;
 909
 910        if (fc->sb_flags_mask & ~MS_RMT_MASK)
 911                return -EINVAL;
 912        if (sb->s_writers.frozen != SB_UNFROZEN)
 913                return -EBUSY;
 914
 915        retval = security_sb_remount(sb, fc->security);
 916        if (retval)
 917                return retval;
 918
 919        if (fc->sb_flags_mask & SB_RDONLY) {
 920#ifdef CONFIG_BLOCK
 921                if (!(fc->sb_flags & SB_RDONLY) && bdev_read_only(sb->s_bdev))
 922                        return -EACCES;
 923#endif
 924
 925                remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
 926        }
 927
 928        if (remount_ro) {
 929                if (!hlist_empty(&sb->s_pins)) {
 930                        up_write(&sb->s_umount);
 931                        group_pin_kill(&sb->s_pins);
 932                        down_write(&sb->s_umount);
 933                        if (!sb->s_root)
 934                                return 0;
 935                        if (sb->s_writers.frozen != SB_UNFROZEN)
 936                                return -EBUSY;
 937                        remount_ro = !sb_rdonly(sb);
 938                }
 939        }
 940        shrink_dcache_sb(sb);
 941
 942        /* If we are reconfiguring to RDONLY and current sb is read/write,
 943         * make sure there are no files open for writing.
 944         */
 945        if (remount_ro) {
 946                if (force) {
 947                        sb->s_readonly_remount = 1;
 948                        smp_wmb();
 949                } else {
 950                        retval = sb_prepare_remount_readonly(sb);
 951                        if (retval)
 952                                return retval;
 953                }
 954        }
 955
 956        if (fc->ops->reconfigure) {
 957                retval = fc->ops->reconfigure(fc);
 958                if (retval) {
 959                        if (!force)
 960                                goto cancel_readonly;
 961                        /* If forced remount, go ahead despite any errors */
 962                        WARN(1, "forced remount of a %s fs returned %i\n",
 963                             sb->s_type->name, retval);
 964                }
 965        }
 966
 967        WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
 968                                 (fc->sb_flags & fc->sb_flags_mask)));
 969        /* Needs to be ordered wrt mnt_is_readonly() */
 970        smp_wmb();
 971        sb->s_readonly_remount = 0;
 972
 973        /*
 974         * Some filesystems modify their metadata via some other path than the
 975         * bdev buffer cache (eg. use a private mapping, or directories in
 976         * pagecache, etc). Also file data modifications go via their own
 977         * mappings. So If we try to mount readonly then copy the filesystem
 978         * from bdev, we could get stale data, so invalidate it to give a best
 979         * effort at coherency.
 980         */
 981        if (remount_ro && sb->s_bdev)
 982                invalidate_bdev(sb->s_bdev);
 983        return 0;
 984
 985cancel_readonly:
 986        sb->s_readonly_remount = 0;
 987        return retval;
 988}
 989
 990static void do_emergency_remount_callback(struct super_block *sb)
 991{
 992        down_write(&sb->s_umount);
 993        if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
 994            !sb_rdonly(sb)) {
 995                struct fs_context *fc;
 996
 997                fc = fs_context_for_reconfigure(sb->s_root,
 998                                        SB_RDONLY | SB_FORCE, SB_RDONLY);
 999                if (!IS_ERR(fc)) {
1000                        if (parse_monolithic_mount_data(fc, NULL) == 0)
1001                                (void)reconfigure_super(fc);
1002                        put_fs_context(fc);
1003                }
1004        }
1005        up_write(&sb->s_umount);
1006}
1007
1008static void do_emergency_remount(struct work_struct *work)
1009{
1010        __iterate_supers(do_emergency_remount_callback);
1011        kfree(work);
1012        printk("Emergency Remount complete\n");
1013}
1014
1015void emergency_remount(void)
1016{
1017        struct work_struct *work;
1018
1019        work = kmalloc(sizeof(*work), GFP_ATOMIC);
1020        if (work) {
1021                INIT_WORK(work, do_emergency_remount);
1022                schedule_work(work);
1023        }
1024}
1025
1026static void do_thaw_all_callback(struct super_block *sb)
1027{
1028        down_write(&sb->s_umount);
1029        if (sb->s_root && sb->s_flags & SB_BORN) {
1030                emergency_thaw_bdev(sb);
1031                thaw_super_locked(sb);
1032        } else {
1033                up_write(&sb->s_umount);
1034        }
1035}
1036
1037static void do_thaw_all(struct work_struct *work)
1038{
1039        __iterate_supers(do_thaw_all_callback);
1040        kfree(work);
1041        printk(KERN_WARNING "Emergency Thaw complete\n");
1042}
1043
1044/**
1045 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1046 *
1047 * Used for emergency unfreeze of all filesystems via SysRq
1048 */
1049void emergency_thaw_all(void)
1050{
1051        struct work_struct *work;
1052
1053        work = kmalloc(sizeof(*work), GFP_ATOMIC);
1054        if (work) {
1055                INIT_WORK(work, do_thaw_all);
1056                schedule_work(work);
1057        }
1058}
1059
1060static DEFINE_IDA(unnamed_dev_ida);
1061
1062/**
1063 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1064 * @p: Pointer to a dev_t.
1065 *
1066 * Filesystems which don't use real block devices can call this function
1067 * to allocate a virtual block device.
1068 *
1069 * Context: Any context.  Frequently called while holding sb_lock.
1070 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1071 * or -ENOMEM if memory allocation failed.
1072 */
1073int get_anon_bdev(dev_t *p)
1074{
1075        int dev;
1076
1077        /*
1078         * Many userspace utilities consider an FSID of 0 invalid.
1079         * Always return at least 1 from get_anon_bdev.
1080         */
1081        dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1082                        GFP_ATOMIC);
1083        if (dev == -ENOSPC)
1084                dev = -EMFILE;
1085        if (dev < 0)
1086                return dev;
1087
1088        *p = MKDEV(0, dev);
1089        return 0;
1090}
1091EXPORT_SYMBOL(get_anon_bdev);
1092
1093void free_anon_bdev(dev_t dev)
1094{
1095        ida_free(&unnamed_dev_ida, MINOR(dev));
1096}
1097EXPORT_SYMBOL(free_anon_bdev);
1098
1099int set_anon_super(struct super_block *s, void *data)
1100{
1101        return get_anon_bdev(&s->s_dev);
1102}
1103EXPORT_SYMBOL(set_anon_super);
1104
1105void kill_anon_super(struct super_block *sb)
1106{
1107        dev_t dev = sb->s_dev;
1108        generic_shutdown_super(sb);
1109        free_anon_bdev(dev);
1110}
1111EXPORT_SYMBOL(kill_anon_super);
1112
1113void kill_litter_super(struct super_block *sb)
1114{
1115        if (sb->s_root)
1116                d_genocide(sb->s_root);
1117        kill_anon_super(sb);
1118}
1119EXPORT_SYMBOL(kill_litter_super);
1120
1121int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1122{
1123        return set_anon_super(sb, NULL);
1124}
1125EXPORT_SYMBOL(set_anon_super_fc);
1126
1127static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1128{
1129        return sb->s_fs_info == fc->s_fs_info;
1130}
1131
1132static int test_single_super(struct super_block *s, struct fs_context *fc)
1133{
1134        return 1;
1135}
1136
1137/**
1138 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1139 * @fc: The filesystem context holding the parameters
1140 * @keying: How to distinguish superblocks
1141 * @fill_super: Helper to initialise a new superblock
1142 *
1143 * Search for a superblock and create a new one if not found.  The search
1144 * criterion is controlled by @keying.  If the search fails, a new superblock
1145 * is created and @fill_super() is called to initialise it.
1146 *
1147 * @keying can take one of a number of values:
1148 *
1149 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1150 *     system.  This is typically used for special system filesystems.
1151 *
1152 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1153 *     distinct keys (where the key is in s_fs_info).  Searching for the same
1154 *     key again will turn up the superblock for that key.
1155 *
1156 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1157 *     unkeyed.  Each call will get a new superblock.
1158 *
1159 * A permissions check is made by sget_fc() unless we're getting a superblock
1160 * for a kernel-internal mount or a submount.
1161 */
1162int vfs_get_super(struct fs_context *fc,
1163                  enum vfs_get_super_keying keying,
1164                  int (*fill_super)(struct super_block *sb,
1165                                    struct fs_context *fc))
1166{
1167        int (*test)(struct super_block *, struct fs_context *);
1168        struct super_block *sb;
1169        int err;
1170
1171        switch (keying) {
1172        case vfs_get_single_super:
1173        case vfs_get_single_reconf_super:
1174                test = test_single_super;
1175                break;
1176        case vfs_get_keyed_super:
1177                test = test_keyed_super;
1178                break;
1179        case vfs_get_independent_super:
1180                test = NULL;
1181                break;
1182        default:
1183                BUG();
1184        }
1185
1186        sb = sget_fc(fc, test, set_anon_super_fc);
1187        if (IS_ERR(sb))
1188                return PTR_ERR(sb);
1189
1190        if (!sb->s_root) {
1191                err = fill_super(sb, fc);
1192                if (err)
1193                        goto error;
1194
1195                sb->s_flags |= SB_ACTIVE;
1196                fc->root = dget(sb->s_root);
1197        } else {
1198                fc->root = dget(sb->s_root);
1199                if (keying == vfs_get_single_reconf_super) {
1200                        err = reconfigure_super(fc);
1201                        if (err < 0) {
1202                                dput(fc->root);
1203                                fc->root = NULL;
1204                                goto error;
1205                        }
1206                }
1207        }
1208
1209        return 0;
1210
1211error:
1212        deactivate_locked_super(sb);
1213        return err;
1214}
1215EXPORT_SYMBOL(vfs_get_super);
1216
1217int get_tree_nodev(struct fs_context *fc,
1218                  int (*fill_super)(struct super_block *sb,
1219                                    struct fs_context *fc))
1220{
1221        return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1222}
1223EXPORT_SYMBOL(get_tree_nodev);
1224
1225int get_tree_single(struct fs_context *fc,
1226                  int (*fill_super)(struct super_block *sb,
1227                                    struct fs_context *fc))
1228{
1229        return vfs_get_super(fc, vfs_get_single_super, fill_super);
1230}
1231EXPORT_SYMBOL(get_tree_single);
1232
1233int get_tree_single_reconf(struct fs_context *fc,
1234                  int (*fill_super)(struct super_block *sb,
1235                                    struct fs_context *fc))
1236{
1237        return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1238}
1239EXPORT_SYMBOL(get_tree_single_reconf);
1240
1241int get_tree_keyed(struct fs_context *fc,
1242                  int (*fill_super)(struct super_block *sb,
1243                                    struct fs_context *fc),
1244                void *key)
1245{
1246        fc->s_fs_info = key;
1247        return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1248}
1249EXPORT_SYMBOL(get_tree_keyed);
1250
1251#ifdef CONFIG_BLOCK
1252
1253static int set_bdev_super(struct super_block *s, void *data)
1254{
1255        s->s_bdev = data;
1256        s->s_dev = s->s_bdev->bd_dev;
1257        s->s_bdi = bdi_get(s->s_bdev->bd_bdi);
1258
1259        return 0;
1260}
1261
1262static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1263{
1264        return set_bdev_super(s, fc->sget_key);
1265}
1266
1267static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1268{
1269        return s->s_bdev == fc->sget_key;
1270}
1271
1272/**
1273 * get_tree_bdev - Get a superblock based on a single block device
1274 * @fc: The filesystem context holding the parameters
1275 * @fill_super: Helper to initialise a new superblock
1276 */
1277int get_tree_bdev(struct fs_context *fc,
1278                int (*fill_super)(struct super_block *,
1279                                  struct fs_context *))
1280{
1281        struct block_device *bdev;
1282        struct super_block *s;
1283        fmode_t mode = FMODE_READ | FMODE_EXCL;
1284        int error = 0;
1285
1286        if (!(fc->sb_flags & SB_RDONLY))
1287                mode |= FMODE_WRITE;
1288
1289        if (!fc->source)
1290                return invalf(fc, "No source specified");
1291
1292        bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1293        if (IS_ERR(bdev)) {
1294                errorf(fc, "%s: Can't open blockdev", fc->source);
1295                return PTR_ERR(bdev);
1296        }
1297
1298        /* Once the superblock is inserted into the list by sget_fc(), s_umount
1299         * will protect the lockfs code from trying to start a snapshot while
1300         * we are mounting
1301         */
1302        mutex_lock(&bdev->bd_fsfreeze_mutex);
1303        if (bdev->bd_fsfreeze_count > 0) {
1304                mutex_unlock(&bdev->bd_fsfreeze_mutex);
1305                warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1306                blkdev_put(bdev, mode);
1307                return -EBUSY;
1308        }
1309
1310        fc->sb_flags |= SB_NOSEC;
1311        fc->sget_key = bdev;
1312        s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1313        mutex_unlock(&bdev->bd_fsfreeze_mutex);
1314        if (IS_ERR(s)) {
1315                blkdev_put(bdev, mode);
1316                return PTR_ERR(s);
1317        }
1318
1319        if (s->s_root) {
1320                /* Don't summarily change the RO/RW state. */
1321                if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1322                        warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1323                        deactivate_locked_super(s);
1324                        blkdev_put(bdev, mode);
1325                        return -EBUSY;
1326                }
1327
1328                /*
1329                 * s_umount nests inside bd_mutex during
1330                 * __invalidate_device().  blkdev_put() acquires
1331                 * bd_mutex and can't be called under s_umount.  Drop
1332                 * s_umount temporarily.  This is safe as we're
1333                 * holding an active reference.
1334                 */
1335                up_write(&s->s_umount);
1336                blkdev_put(bdev, mode);
1337                down_write(&s->s_umount);
1338        } else {
1339                s->s_mode = mode;
1340                snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1341                sb_set_blocksize(s, block_size(bdev));
1342                error = fill_super(s, fc);
1343                if (error) {
1344                        deactivate_locked_super(s);
1345                        return error;
1346                }
1347
1348                s->s_flags |= SB_ACTIVE;
1349                bdev->bd_super = s;
1350        }
1351
1352        BUG_ON(fc->root);
1353        fc->root = dget(s->s_root);
1354        return 0;
1355}
1356EXPORT_SYMBOL(get_tree_bdev);
1357
1358static int test_bdev_super(struct super_block *s, void *data)
1359{
1360        return (void *)s->s_bdev == data;
1361}
1362
1363struct dentry *mount_bdev(struct file_system_type *fs_type,
1364        int flags, const char *dev_name, void *data,
1365        int (*fill_super)(struct super_block *, void *, int))
1366{
1367        struct block_device *bdev;
1368        struct super_block *s;
1369        fmode_t mode = FMODE_READ | FMODE_EXCL;
1370        int error = 0;
1371
1372        if (!(flags & SB_RDONLY))
1373                mode |= FMODE_WRITE;
1374
1375        bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1376        if (IS_ERR(bdev))
1377                return ERR_CAST(bdev);
1378
1379        /*
1380         * once the super is inserted into the list by sget, s_umount
1381         * will protect the lockfs code from trying to start a snapshot
1382         * while we are mounting
1383         */
1384        mutex_lock(&bdev->bd_fsfreeze_mutex);
1385        if (bdev->bd_fsfreeze_count > 0) {
1386                mutex_unlock(&bdev->bd_fsfreeze_mutex);
1387                error = -EBUSY;
1388                goto error_bdev;
1389        }
1390        s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1391                 bdev);
1392        mutex_unlock(&bdev->bd_fsfreeze_mutex);
1393        if (IS_ERR(s))
1394                goto error_s;
1395
1396        if (s->s_root) {
1397                if ((flags ^ s->s_flags) & SB_RDONLY) {
1398                        deactivate_locked_super(s);
1399                        error = -EBUSY;
1400                        goto error_bdev;
1401                }
1402
1403                /*
1404                 * s_umount nests inside bd_mutex during
1405                 * __invalidate_device().  blkdev_put() acquires
1406                 * bd_mutex and can't be called under s_umount.  Drop
1407                 * s_umount temporarily.  This is safe as we're
1408                 * holding an active reference.
1409                 */
1410                up_write(&s->s_umount);
1411                blkdev_put(bdev, mode);
1412                down_write(&s->s_umount);
1413        } else {
1414                s->s_mode = mode;
1415                snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1416                sb_set_blocksize(s, block_size(bdev));
1417                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1418                if (error) {
1419                        deactivate_locked_super(s);
1420                        goto error;
1421                }
1422
1423                s->s_flags |= SB_ACTIVE;
1424                bdev->bd_super = s;
1425        }
1426
1427        return dget(s->s_root);
1428
1429error_s:
1430        error = PTR_ERR(s);
1431error_bdev:
1432        blkdev_put(bdev, mode);
1433error:
1434        return ERR_PTR(error);
1435}
1436EXPORT_SYMBOL(mount_bdev);
1437
1438void kill_block_super(struct super_block *sb)
1439{
1440        struct block_device *bdev = sb->s_bdev;
1441        fmode_t mode = sb->s_mode;
1442
1443        bdev->bd_super = NULL;
1444        generic_shutdown_super(sb);
1445        sync_blockdev(bdev);
1446        WARN_ON_ONCE(!(mode & FMODE_EXCL));
1447        blkdev_put(bdev, mode | FMODE_EXCL);
1448}
1449
1450EXPORT_SYMBOL(kill_block_super);
1451#endif
1452
1453struct dentry *mount_nodev(struct file_system_type *fs_type,
1454        int flags, void *data,
1455        int (*fill_super)(struct super_block *, void *, int))
1456{
1457        int error;
1458        struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1459
1460        if (IS_ERR(s))
1461                return ERR_CAST(s);
1462
1463        error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1464        if (error) {
1465                deactivate_locked_super(s);
1466                return ERR_PTR(error);
1467        }
1468        s->s_flags |= SB_ACTIVE;
1469        return dget(s->s_root);
1470}
1471EXPORT_SYMBOL(mount_nodev);
1472
1473static int reconfigure_single(struct super_block *s,
1474                              int flags, void *data)
1475{
1476        struct fs_context *fc;
1477        int ret;
1478
1479        /* The caller really need to be passing fc down into mount_single(),
1480         * then a chunk of this can be removed.  [Bollocks -- AV]
1481         * Better yet, reconfiguration shouldn't happen, but rather the second
1482         * mount should be rejected if the parameters are not compatible.
1483         */
1484        fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1485        if (IS_ERR(fc))
1486                return PTR_ERR(fc);
1487
1488        ret = parse_monolithic_mount_data(fc, data);
1489        if (ret < 0)
1490                goto out;
1491
1492        ret = reconfigure_super(fc);
1493out:
1494        put_fs_context(fc);
1495        return ret;
1496}
1497
1498static int compare_single(struct super_block *s, void *p)
1499{
1500        return 1;
1501}
1502
1503struct dentry *mount_single(struct file_system_type *fs_type,
1504        int flags, void *data,
1505        int (*fill_super)(struct super_block *, void *, int))
1506{
1507        struct super_block *s;
1508        int error;
1509
1510        s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1511        if (IS_ERR(s))
1512                return ERR_CAST(s);
1513        if (!s->s_root) {
1514                error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1515                if (!error)
1516                        s->s_flags |= SB_ACTIVE;
1517        } else {
1518                error = reconfigure_single(s, flags, data);
1519        }
1520        if (unlikely(error)) {
1521                deactivate_locked_super(s);
1522                return ERR_PTR(error);
1523        }
1524        return dget(s->s_root);
1525}
1526EXPORT_SYMBOL(mount_single);
1527
1528/**
1529 * vfs_get_tree - Get the mountable root
1530 * @fc: The superblock configuration context.
1531 *
1532 * The filesystem is invoked to get or create a superblock which can then later
1533 * be used for mounting.  The filesystem places a pointer to the root to be
1534 * used for mounting in @fc->root.
1535 */
1536int vfs_get_tree(struct fs_context *fc)
1537{
1538        struct super_block *sb;
1539        int error;
1540
1541        if (fc->root)
1542                return -EBUSY;
1543
1544        /* Get the mountable root in fc->root, with a ref on the root and a ref
1545         * on the superblock.
1546         */
1547        error = fc->ops->get_tree(fc);
1548        if (error < 0)
1549                return error;
1550
1551        if (!fc->root) {
1552                pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1553                       fc->fs_type->name);
1554                /* We don't know what the locking state of the superblock is -
1555                 * if there is a superblock.
1556                 */
1557                BUG();
1558        }
1559
1560        sb = fc->root->d_sb;
1561        WARN_ON(!sb->s_bdi);
1562
1563        /*
1564         * Write barrier is for super_cache_count(). We place it before setting
1565         * SB_BORN as the data dependency between the two functions is the
1566         * superblock structure contents that we just set up, not the SB_BORN
1567         * flag.
1568         */
1569        smp_wmb();
1570        sb->s_flags |= SB_BORN;
1571
1572        error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1573        if (unlikely(error)) {
1574                fc_drop_locked(fc);
1575                return error;
1576        }
1577
1578        /*
1579         * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1580         * but s_maxbytes was an unsigned long long for many releases. Throw
1581         * this warning for a little while to try and catch filesystems that
1582         * violate this rule.
1583         */
1584        WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1585                "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1586
1587        return 0;
1588}
1589EXPORT_SYMBOL(vfs_get_tree);
1590
1591/*
1592 * Setup private BDI for given superblock. It gets automatically cleaned up
1593 * in generic_shutdown_super().
1594 */
1595int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1596{
1597        struct backing_dev_info *bdi;
1598        int err;
1599        va_list args;
1600
1601        bdi = bdi_alloc(NUMA_NO_NODE);
1602        if (!bdi)
1603                return -ENOMEM;
1604
1605        va_start(args, fmt);
1606        err = bdi_register_va(bdi, fmt, args);
1607        va_end(args);
1608        if (err) {
1609                bdi_put(bdi);
1610                return err;
1611        }
1612        WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1613        sb->s_bdi = bdi;
1614
1615        return 0;
1616}
1617EXPORT_SYMBOL(super_setup_bdi_name);
1618
1619/*
1620 * Setup private BDI for given superblock. I gets automatically cleaned up
1621 * in generic_shutdown_super().
1622 */
1623int super_setup_bdi(struct super_block *sb)
1624{
1625        static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1626
1627        return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1628                                    atomic_long_inc_return(&bdi_seq));
1629}
1630EXPORT_SYMBOL(super_setup_bdi);
1631
1632/*
1633 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1634 * instead.
1635 */
1636void __sb_end_write(struct super_block *sb, int level)
1637{
1638        percpu_up_read(sb->s_writers.rw_sem + level-1);
1639}
1640EXPORT_SYMBOL(__sb_end_write);
1641
1642/*
1643 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1644 * instead.
1645 */
1646int __sb_start_write(struct super_block *sb, int level, bool wait)
1647{
1648        bool force_trylock = false;
1649        int ret = 1;
1650
1651#ifdef CONFIG_LOCKDEP
1652        /*
1653         * We want lockdep to tell us about possible deadlocks with freezing
1654         * but it's it bit tricky to properly instrument it. Getting a freeze
1655         * protection works as getting a read lock but there are subtle
1656         * problems. XFS for example gets freeze protection on internal level
1657         * twice in some cases, which is OK only because we already hold a
1658         * freeze protection also on higher level. Due to these cases we have
1659         * to use wait == F (trylock mode) which must not fail.
1660         */
1661        if (wait) {
1662                int i;
1663
1664                for (i = 0; i < level - 1; i++)
1665                        if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1666                                force_trylock = true;
1667                                break;
1668                        }
1669        }
1670#endif
1671        if (wait && !force_trylock)
1672                percpu_down_read(sb->s_writers.rw_sem + level-1);
1673        else
1674                ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1675
1676        WARN_ON(force_trylock && !ret);
1677        return ret;
1678}
1679EXPORT_SYMBOL(__sb_start_write);
1680
1681/**
1682 * sb_wait_write - wait until all writers to given file system finish
1683 * @sb: the super for which we wait
1684 * @level: type of writers we wait for (normal vs page fault)
1685 *
1686 * This function waits until there are no writers of given type to given file
1687 * system.
1688 */
1689static void sb_wait_write(struct super_block *sb, int level)
1690{
1691        percpu_down_write(sb->s_writers.rw_sem + level-1);
1692}
1693
1694/*
1695 * We are going to return to userspace and forget about these locks, the
1696 * ownership goes to the caller of thaw_super() which does unlock().
1697 */
1698static void lockdep_sb_freeze_release(struct super_block *sb)
1699{
1700        int level;
1701
1702        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1703                percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1704}
1705
1706/*
1707 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1708 */
1709static void lockdep_sb_freeze_acquire(struct super_block *sb)
1710{
1711        int level;
1712
1713        for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1714                percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1715}
1716
1717static void sb_freeze_unlock(struct super_block *sb)
1718{
1719        int level;
1720
1721        for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1722                percpu_up_write(sb->s_writers.rw_sem + level);
1723}
1724
1725/**
1726 * freeze_super - lock the filesystem and force it into a consistent state
1727 * @sb: the super to lock
1728 *
1729 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1730 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1731 * -EBUSY.
1732 *
1733 * During this function, sb->s_writers.frozen goes through these values:
1734 *
1735 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1736 *
1737 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1738 * writes should be blocked, though page faults are still allowed. We wait for
1739 * all writes to complete and then proceed to the next stage.
1740 *
1741 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1742 * but internal fs threads can still modify the filesystem (although they
1743 * should not dirty new pages or inodes), writeback can run etc. After waiting
1744 * for all running page faults we sync the filesystem which will clean all
1745 * dirty pages and inodes (no new dirty pages or inodes can be created when
1746 * sync is running).
1747 *
1748 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1749 * modification are blocked (e.g. XFS preallocation truncation on inode
1750 * reclaim). This is usually implemented by blocking new transactions for
1751 * filesystems that have them and need this additional guard. After all
1752 * internal writers are finished we call ->freeze_fs() to finish filesystem
1753 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1754 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1755 *
1756 * sb->s_writers.frozen is protected by sb->s_umount.
1757 */
1758int freeze_super(struct super_block *sb)
1759{
1760        int ret;
1761
1762        atomic_inc(&sb->s_active);
1763        down_write(&sb->s_umount);
1764        if (sb->s_writers.frozen != SB_UNFROZEN) {
1765                deactivate_locked_super(sb);
1766                return -EBUSY;
1767        }
1768
1769        if (!(sb->s_flags & SB_BORN)) {
1770                up_write(&sb->s_umount);
1771                return 0;       /* sic - it's "nothing to do" */
1772        }
1773
1774        if (sb_rdonly(sb)) {
1775                /* Nothing to do really... */
1776                sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1777                up_write(&sb->s_umount);
1778                return 0;
1779        }
1780
1781        sb->s_writers.frozen = SB_FREEZE_WRITE;
1782        /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1783        up_write(&sb->s_umount);
1784        sb_wait_write(sb, SB_FREEZE_WRITE);
1785        down_write(&sb->s_umount);
1786
1787        /* Now we go and block page faults... */
1788        sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1789        sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1790
1791        /* All writers are done so after syncing there won't be dirty data */
1792        sync_filesystem(sb);
1793
1794        /* Now wait for internal filesystem counter */
1795        sb->s_writers.frozen = SB_FREEZE_FS;
1796        sb_wait_write(sb, SB_FREEZE_FS);
1797
1798        if (sb->s_op->freeze_fs) {
1799                ret = sb->s_op->freeze_fs(sb);
1800                if (ret) {
1801                        printk(KERN_ERR
1802                                "VFS:Filesystem freeze failed\n");
1803                        sb->s_writers.frozen = SB_UNFROZEN;
1804                        sb_freeze_unlock(sb);
1805                        wake_up(&sb->s_writers.wait_unfrozen);
1806                        deactivate_locked_super(sb);
1807                        return ret;
1808                }
1809        }
1810        /*
1811         * For debugging purposes so that fs can warn if it sees write activity
1812         * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1813         */
1814        sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1815        lockdep_sb_freeze_release(sb);
1816        up_write(&sb->s_umount);
1817        return 0;
1818}
1819EXPORT_SYMBOL(freeze_super);
1820
1821/**
1822 * thaw_super -- unlock filesystem
1823 * @sb: the super to thaw
1824 *
1825 * Unlocks the filesystem and marks it writeable again after freeze_super().
1826 */
1827static int thaw_super_locked(struct super_block *sb)
1828{
1829        int error;
1830
1831        if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1832                up_write(&sb->s_umount);
1833                return -EINVAL;
1834        }
1835
1836        if (sb_rdonly(sb)) {
1837                sb->s_writers.frozen = SB_UNFROZEN;
1838                goto out;
1839        }
1840
1841        lockdep_sb_freeze_acquire(sb);
1842
1843        if (sb->s_op->unfreeze_fs) {
1844                error = sb->s_op->unfreeze_fs(sb);
1845                if (error) {
1846                        printk(KERN_ERR
1847                                "VFS:Filesystem thaw failed\n");
1848                        lockdep_sb_freeze_release(sb);
1849                        up_write(&sb->s_umount);
1850                        return error;
1851                }
1852        }
1853
1854        sb->s_writers.frozen = SB_UNFROZEN;
1855        sb_freeze_unlock(sb);
1856out:
1857        wake_up(&sb->s_writers.wait_unfrozen);
1858        deactivate_locked_super(sb);
1859        return 0;
1860}
1861
1862int thaw_super(struct super_block *sb)
1863{
1864        down_write(&sb->s_umount);
1865        return thaw_super_locked(sb);
1866}
1867EXPORT_SYMBOL(thaw_super);
1868