linux/fs/ubifs/orphan.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
   7 * Author: Adrian Hunter
   8 */
   9
  10#include "ubifs.h"
  11
  12/*
  13 * An orphan is an inode number whose inode node has been committed to the index
  14 * with a link count of zero. That happens when an open file is deleted
  15 * (unlinked) and then a commit is run. In the normal course of events the inode
  16 * would be deleted when the file is closed. However in the case of an unclean
  17 * unmount, orphans need to be accounted for. After an unclean unmount, the
  18 * orphans' inodes must be deleted which means either scanning the entire index
  19 * looking for them, or keeping a list on flash somewhere. This unit implements
  20 * the latter approach.
  21 *
  22 * The orphan area is a fixed number of LEBs situated between the LPT area and
  23 * the main area. The number of orphan area LEBs is specified when the file
  24 * system is created. The minimum number is 1. The size of the orphan area
  25 * should be so that it can hold the maximum number of orphans that are expected
  26 * to ever exist at one time.
  27 *
  28 * The number of orphans that can fit in a LEB is:
  29 *
  30 *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
  31 *
  32 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
  33 *
  34 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
  35 * zero, the inode number is added to the rb-tree. It is removed from the tree
  36 * when the inode is deleted.  Any new orphans that are in the orphan tree when
  37 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
  38 * If the orphan area is full, it is consolidated to make space.  There is
  39 * always enough space because validation prevents the user from creating more
  40 * than the maximum number of orphans allowed.
  41 */
  42
  43static int dbg_check_orphans(struct ubifs_info *c);
  44
  45static struct ubifs_orphan *orphan_add(struct ubifs_info *c, ino_t inum,
  46                                       struct ubifs_orphan *parent_orphan)
  47{
  48        struct ubifs_orphan *orphan, *o;
  49        struct rb_node **p, *parent = NULL;
  50
  51        orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
  52        if (!orphan)
  53                return ERR_PTR(-ENOMEM);
  54        orphan->inum = inum;
  55        orphan->new = 1;
  56        INIT_LIST_HEAD(&orphan->child_list);
  57
  58        spin_lock(&c->orphan_lock);
  59        if (c->tot_orphans >= c->max_orphans) {
  60                spin_unlock(&c->orphan_lock);
  61                kfree(orphan);
  62                return ERR_PTR(-ENFILE);
  63        }
  64        p = &c->orph_tree.rb_node;
  65        while (*p) {
  66                parent = *p;
  67                o = rb_entry(parent, struct ubifs_orphan, rb);
  68                if (inum < o->inum)
  69                        p = &(*p)->rb_left;
  70                else if (inum > o->inum)
  71                        p = &(*p)->rb_right;
  72                else {
  73                        ubifs_err(c, "orphaned twice");
  74                        spin_unlock(&c->orphan_lock);
  75                        kfree(orphan);
  76                        return ERR_PTR(-EINVAL);
  77                }
  78        }
  79        c->tot_orphans += 1;
  80        c->new_orphans += 1;
  81        rb_link_node(&orphan->rb, parent, p);
  82        rb_insert_color(&orphan->rb, &c->orph_tree);
  83        list_add_tail(&orphan->list, &c->orph_list);
  84        list_add_tail(&orphan->new_list, &c->orph_new);
  85
  86        if (parent_orphan) {
  87                list_add_tail(&orphan->child_list,
  88                              &parent_orphan->child_list);
  89        }
  90
  91        spin_unlock(&c->orphan_lock);
  92        dbg_gen("ino %lu", (unsigned long)inum);
  93        return orphan;
  94}
  95
  96static struct ubifs_orphan *lookup_orphan(struct ubifs_info *c, ino_t inum)
  97{
  98        struct ubifs_orphan *o;
  99        struct rb_node *p;
 100
 101        p = c->orph_tree.rb_node;
 102        while (p) {
 103                o = rb_entry(p, struct ubifs_orphan, rb);
 104                if (inum < o->inum)
 105                        p = p->rb_left;
 106                else if (inum > o->inum)
 107                        p = p->rb_right;
 108                else {
 109                        return o;
 110                }
 111        }
 112        return NULL;
 113}
 114
 115static void __orphan_drop(struct ubifs_info *c, struct ubifs_orphan *o)
 116{
 117        rb_erase(&o->rb, &c->orph_tree);
 118        list_del(&o->list);
 119        c->tot_orphans -= 1;
 120
 121        if (o->new) {
 122                list_del(&o->new_list);
 123                c->new_orphans -= 1;
 124        }
 125
 126        kfree(o);
 127}
 128
 129static void orphan_delete(struct ubifs_info *c, struct ubifs_orphan *orph)
 130{
 131        if (orph->del) {
 132                dbg_gen("deleted twice ino %lu", (unsigned long)orph->inum);
 133                return;
 134        }
 135
 136        if (orph->cmt) {
 137                orph->del = 1;
 138                orph->dnext = c->orph_dnext;
 139                c->orph_dnext = orph;
 140                dbg_gen("delete later ino %lu", (unsigned long)orph->inum);
 141                return;
 142        }
 143
 144        __orphan_drop(c, orph);
 145}
 146
 147/**
 148 * ubifs_add_orphan - add an orphan.
 149 * @c: UBIFS file-system description object
 150 * @inum: orphan inode number
 151 *
 152 * Add an orphan. This function is called when an inodes link count drops to
 153 * zero.
 154 */
 155int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
 156{
 157        int err = 0;
 158        ino_t xattr_inum;
 159        union ubifs_key key;
 160        struct ubifs_dent_node *xent, *pxent = NULL;
 161        struct fscrypt_name nm = {0};
 162        struct ubifs_orphan *xattr_orphan;
 163        struct ubifs_orphan *orphan;
 164
 165        orphan = orphan_add(c, inum, NULL);
 166        if (IS_ERR(orphan))
 167                return PTR_ERR(orphan);
 168
 169        lowest_xent_key(c, &key, inum);
 170        while (1) {
 171                xent = ubifs_tnc_next_ent(c, &key, &nm);
 172                if (IS_ERR(xent)) {
 173                        err = PTR_ERR(xent);
 174                        if (err == -ENOENT)
 175                                break;
 176                        return err;
 177                }
 178
 179                fname_name(&nm) = xent->name;
 180                fname_len(&nm) = le16_to_cpu(xent->nlen);
 181                xattr_inum = le64_to_cpu(xent->inum);
 182
 183                xattr_orphan = orphan_add(c, xattr_inum, orphan);
 184                if (IS_ERR(xattr_orphan)) {
 185                        kfree(xent);
 186                        return PTR_ERR(xattr_orphan);
 187                }
 188
 189                kfree(pxent);
 190                pxent = xent;
 191                key_read(c, &xent->key, &key);
 192        }
 193        kfree(pxent);
 194
 195        return 0;
 196}
 197
 198/**
 199 * ubifs_delete_orphan - delete an orphan.
 200 * @c: UBIFS file-system description object
 201 * @inum: orphan inode number
 202 *
 203 * Delete an orphan. This function is called when an inode is deleted.
 204 */
 205void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
 206{
 207        struct ubifs_orphan *orph, *child_orph, *tmp_o;
 208
 209        spin_lock(&c->orphan_lock);
 210
 211        orph = lookup_orphan(c, inum);
 212        if (!orph) {
 213                spin_unlock(&c->orphan_lock);
 214                ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
 215                dump_stack();
 216
 217                return;
 218        }
 219
 220        list_for_each_entry_safe(child_orph, tmp_o, &orph->child_list, child_list) {
 221                list_del(&child_orph->child_list);
 222                orphan_delete(c, child_orph);
 223        }
 224        
 225        orphan_delete(c, orph);
 226
 227        spin_unlock(&c->orphan_lock);
 228}
 229
 230/**
 231 * ubifs_orphan_start_commit - start commit of orphans.
 232 * @c: UBIFS file-system description object
 233 *
 234 * Start commit of orphans.
 235 */
 236int ubifs_orphan_start_commit(struct ubifs_info *c)
 237{
 238        struct ubifs_orphan *orphan, **last;
 239
 240        spin_lock(&c->orphan_lock);
 241        last = &c->orph_cnext;
 242        list_for_each_entry(orphan, &c->orph_new, new_list) {
 243                ubifs_assert(c, orphan->new);
 244                ubifs_assert(c, !orphan->cmt);
 245                orphan->new = 0;
 246                orphan->cmt = 1;
 247                *last = orphan;
 248                last = &orphan->cnext;
 249        }
 250        *last = NULL;
 251        c->cmt_orphans = c->new_orphans;
 252        c->new_orphans = 0;
 253        dbg_cmt("%d orphans to commit", c->cmt_orphans);
 254        INIT_LIST_HEAD(&c->orph_new);
 255        if (c->tot_orphans == 0)
 256                c->no_orphs = 1;
 257        else
 258                c->no_orphs = 0;
 259        spin_unlock(&c->orphan_lock);
 260        return 0;
 261}
 262
 263/**
 264 * avail_orphs - calculate available space.
 265 * @c: UBIFS file-system description object
 266 *
 267 * This function returns the number of orphans that can be written in the
 268 * available space.
 269 */
 270static int avail_orphs(struct ubifs_info *c)
 271{
 272        int avail_lebs, avail, gap;
 273
 274        avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
 275        avail = avail_lebs *
 276               ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 277        gap = c->leb_size - c->ohead_offs;
 278        if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
 279                avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 280        return avail;
 281}
 282
 283/**
 284 * tot_avail_orphs - calculate total space.
 285 * @c: UBIFS file-system description object
 286 *
 287 * This function returns the number of orphans that can be written in half
 288 * the total space. That leaves half the space for adding new orphans.
 289 */
 290static int tot_avail_orphs(struct ubifs_info *c)
 291{
 292        int avail_lebs, avail;
 293
 294        avail_lebs = c->orph_lebs;
 295        avail = avail_lebs *
 296               ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
 297        return avail / 2;
 298}
 299
 300/**
 301 * do_write_orph_node - write a node to the orphan head.
 302 * @c: UBIFS file-system description object
 303 * @len: length of node
 304 * @atomic: write atomically
 305 *
 306 * This function writes a node to the orphan head from the orphan buffer. If
 307 * %atomic is not zero, then the write is done atomically. On success, %0 is
 308 * returned, otherwise a negative error code is returned.
 309 */
 310static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
 311{
 312        int err = 0;
 313
 314        if (atomic) {
 315                ubifs_assert(c, c->ohead_offs == 0);
 316                ubifs_prepare_node(c, c->orph_buf, len, 1);
 317                len = ALIGN(len, c->min_io_size);
 318                err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
 319        } else {
 320                if (c->ohead_offs == 0) {
 321                        /* Ensure LEB has been unmapped */
 322                        err = ubifs_leb_unmap(c, c->ohead_lnum);
 323                        if (err)
 324                                return err;
 325                }
 326                err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
 327                                       c->ohead_offs);
 328        }
 329        return err;
 330}
 331
 332/**
 333 * write_orph_node - write an orphan node.
 334 * @c: UBIFS file-system description object
 335 * @atomic: write atomically
 336 *
 337 * This function builds an orphan node from the cnext list and writes it to the
 338 * orphan head. On success, %0 is returned, otherwise a negative error code
 339 * is returned.
 340 */
 341static int write_orph_node(struct ubifs_info *c, int atomic)
 342{
 343        struct ubifs_orphan *orphan, *cnext;
 344        struct ubifs_orph_node *orph;
 345        int gap, err, len, cnt, i;
 346
 347        ubifs_assert(c, c->cmt_orphans > 0);
 348        gap = c->leb_size - c->ohead_offs;
 349        if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
 350                c->ohead_lnum += 1;
 351                c->ohead_offs = 0;
 352                gap = c->leb_size;
 353                if (c->ohead_lnum > c->orph_last) {
 354                        /*
 355                         * We limit the number of orphans so that this should
 356                         * never happen.
 357                         */
 358                        ubifs_err(c, "out of space in orphan area");
 359                        return -EINVAL;
 360                }
 361        }
 362        cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
 363        if (cnt > c->cmt_orphans)
 364                cnt = c->cmt_orphans;
 365        len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
 366        ubifs_assert(c, c->orph_buf);
 367        orph = c->orph_buf;
 368        orph->ch.node_type = UBIFS_ORPH_NODE;
 369        spin_lock(&c->orphan_lock);
 370        cnext = c->orph_cnext;
 371        for (i = 0; i < cnt; i++) {
 372                orphan = cnext;
 373                ubifs_assert(c, orphan->cmt);
 374                orph->inos[i] = cpu_to_le64(orphan->inum);
 375                orphan->cmt = 0;
 376                cnext = orphan->cnext;
 377                orphan->cnext = NULL;
 378        }
 379        c->orph_cnext = cnext;
 380        c->cmt_orphans -= cnt;
 381        spin_unlock(&c->orphan_lock);
 382        if (c->cmt_orphans)
 383                orph->cmt_no = cpu_to_le64(c->cmt_no);
 384        else
 385                /* Mark the last node of the commit */
 386                orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
 387        ubifs_assert(c, c->ohead_offs + len <= c->leb_size);
 388        ubifs_assert(c, c->ohead_lnum >= c->orph_first);
 389        ubifs_assert(c, c->ohead_lnum <= c->orph_last);
 390        err = do_write_orph_node(c, len, atomic);
 391        c->ohead_offs += ALIGN(len, c->min_io_size);
 392        c->ohead_offs = ALIGN(c->ohead_offs, 8);
 393        return err;
 394}
 395
 396/**
 397 * write_orph_nodes - write orphan nodes until there are no more to commit.
 398 * @c: UBIFS file-system description object
 399 * @atomic: write atomically
 400 *
 401 * This function writes orphan nodes for all the orphans to commit. On success,
 402 * %0 is returned, otherwise a negative error code is returned.
 403 */
 404static int write_orph_nodes(struct ubifs_info *c, int atomic)
 405{
 406        int err;
 407
 408        while (c->cmt_orphans > 0) {
 409                err = write_orph_node(c, atomic);
 410                if (err)
 411                        return err;
 412        }
 413        if (atomic) {
 414                int lnum;
 415
 416                /* Unmap any unused LEBs after consolidation */
 417                for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
 418                        err = ubifs_leb_unmap(c, lnum);
 419                        if (err)
 420                                return err;
 421                }
 422        }
 423        return 0;
 424}
 425
 426/**
 427 * consolidate - consolidate the orphan area.
 428 * @c: UBIFS file-system description object
 429 *
 430 * This function enables consolidation by putting all the orphans into the list
 431 * to commit. The list is in the order that the orphans were added, and the
 432 * LEBs are written atomically in order, so at no time can orphans be lost by
 433 * an unclean unmount.
 434 *
 435 * This function returns %0 on success and a negative error code on failure.
 436 */
 437static int consolidate(struct ubifs_info *c)
 438{
 439        int tot_avail = tot_avail_orphs(c), err = 0;
 440
 441        spin_lock(&c->orphan_lock);
 442        dbg_cmt("there is space for %d orphans and there are %d",
 443                tot_avail, c->tot_orphans);
 444        if (c->tot_orphans - c->new_orphans <= tot_avail) {
 445                struct ubifs_orphan *orphan, **last;
 446                int cnt = 0;
 447
 448                /* Change the cnext list to include all non-new orphans */
 449                last = &c->orph_cnext;
 450                list_for_each_entry(orphan, &c->orph_list, list) {
 451                        if (orphan->new)
 452                                continue;
 453                        orphan->cmt = 1;
 454                        *last = orphan;
 455                        last = &orphan->cnext;
 456                        cnt += 1;
 457                }
 458                *last = NULL;
 459                ubifs_assert(c, cnt == c->tot_orphans - c->new_orphans);
 460                c->cmt_orphans = cnt;
 461                c->ohead_lnum = c->orph_first;
 462                c->ohead_offs = 0;
 463        } else {
 464                /*
 465                 * We limit the number of orphans so that this should
 466                 * never happen.
 467                 */
 468                ubifs_err(c, "out of space in orphan area");
 469                err = -EINVAL;
 470        }
 471        spin_unlock(&c->orphan_lock);
 472        return err;
 473}
 474
 475/**
 476 * commit_orphans - commit orphans.
 477 * @c: UBIFS file-system description object
 478 *
 479 * This function commits orphans to flash. On success, %0 is returned,
 480 * otherwise a negative error code is returned.
 481 */
 482static int commit_orphans(struct ubifs_info *c)
 483{
 484        int avail, atomic = 0, err;
 485
 486        ubifs_assert(c, c->cmt_orphans > 0);
 487        avail = avail_orphs(c);
 488        if (avail < c->cmt_orphans) {
 489                /* Not enough space to write new orphans, so consolidate */
 490                err = consolidate(c);
 491                if (err)
 492                        return err;
 493                atomic = 1;
 494        }
 495        err = write_orph_nodes(c, atomic);
 496        return err;
 497}
 498
 499/**
 500 * erase_deleted - erase the orphans marked for deletion.
 501 * @c: UBIFS file-system description object
 502 *
 503 * During commit, the orphans being committed cannot be deleted, so they are
 504 * marked for deletion and deleted by this function. Also, the recovery
 505 * adds killed orphans to the deletion list, and therefore they are deleted
 506 * here too.
 507 */
 508static void erase_deleted(struct ubifs_info *c)
 509{
 510        struct ubifs_orphan *orphan, *dnext;
 511
 512        spin_lock(&c->orphan_lock);
 513        dnext = c->orph_dnext;
 514        while (dnext) {
 515                orphan = dnext;
 516                dnext = orphan->dnext;
 517                ubifs_assert(c, !orphan->new);
 518                ubifs_assert(c, orphan->del);
 519                rb_erase(&orphan->rb, &c->orph_tree);
 520                list_del(&orphan->list);
 521                c->tot_orphans -= 1;
 522                dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
 523                kfree(orphan);
 524        }
 525        c->orph_dnext = NULL;
 526        spin_unlock(&c->orphan_lock);
 527}
 528
 529/**
 530 * ubifs_orphan_end_commit - end commit of orphans.
 531 * @c: UBIFS file-system description object
 532 *
 533 * End commit of orphans.
 534 */
 535int ubifs_orphan_end_commit(struct ubifs_info *c)
 536{
 537        int err;
 538
 539        if (c->cmt_orphans != 0) {
 540                err = commit_orphans(c);
 541                if (err)
 542                        return err;
 543        }
 544        erase_deleted(c);
 545        err = dbg_check_orphans(c);
 546        return err;
 547}
 548
 549/**
 550 * ubifs_clear_orphans - erase all LEBs used for orphans.
 551 * @c: UBIFS file-system description object
 552 *
 553 * If recovery is not required, then the orphans from the previous session
 554 * are not needed. This function locates the LEBs used to record
 555 * orphans, and un-maps them.
 556 */
 557int ubifs_clear_orphans(struct ubifs_info *c)
 558{
 559        int lnum, err;
 560
 561        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 562                err = ubifs_leb_unmap(c, lnum);
 563                if (err)
 564                        return err;
 565        }
 566        c->ohead_lnum = c->orph_first;
 567        c->ohead_offs = 0;
 568        return 0;
 569}
 570
 571/**
 572 * insert_dead_orphan - insert an orphan.
 573 * @c: UBIFS file-system description object
 574 * @inum: orphan inode number
 575 *
 576 * This function is a helper to the 'do_kill_orphans()' function. The orphan
 577 * must be kept until the next commit, so it is added to the rb-tree and the
 578 * deletion list.
 579 */
 580static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
 581{
 582        struct ubifs_orphan *orphan, *o;
 583        struct rb_node **p, *parent = NULL;
 584
 585        orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
 586        if (!orphan)
 587                return -ENOMEM;
 588        orphan->inum = inum;
 589
 590        p = &c->orph_tree.rb_node;
 591        while (*p) {
 592                parent = *p;
 593                o = rb_entry(parent, struct ubifs_orphan, rb);
 594                if (inum < o->inum)
 595                        p = &(*p)->rb_left;
 596                else if (inum > o->inum)
 597                        p = &(*p)->rb_right;
 598                else {
 599                        /* Already added - no problem */
 600                        kfree(orphan);
 601                        return 0;
 602                }
 603        }
 604        c->tot_orphans += 1;
 605        rb_link_node(&orphan->rb, parent, p);
 606        rb_insert_color(&orphan->rb, &c->orph_tree);
 607        list_add_tail(&orphan->list, &c->orph_list);
 608        orphan->del = 1;
 609        orphan->dnext = c->orph_dnext;
 610        c->orph_dnext = orphan;
 611        dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
 612                c->new_orphans, c->tot_orphans);
 613        return 0;
 614}
 615
 616/**
 617 * do_kill_orphans - remove orphan inodes from the index.
 618 * @c: UBIFS file-system description object
 619 * @sleb: scanned LEB
 620 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
 621 * @outofdate: whether the LEB is out of date is returned here
 622 * @last_flagged: whether the end orphan node is encountered
 623 *
 624 * This function is a helper to the 'kill_orphans()' function. It goes through
 625 * every orphan node in a LEB and for every inode number recorded, removes
 626 * all keys for that inode from the TNC.
 627 */
 628static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 629                           unsigned long long *last_cmt_no, int *outofdate,
 630                           int *last_flagged)
 631{
 632        struct ubifs_scan_node *snod;
 633        struct ubifs_orph_node *orph;
 634        struct ubifs_ino_node *ino = NULL;
 635        unsigned long long cmt_no;
 636        ino_t inum;
 637        int i, n, err, first = 1;
 638
 639        ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 640        if (!ino)
 641                return -ENOMEM;
 642
 643        list_for_each_entry(snod, &sleb->nodes, list) {
 644                if (snod->type != UBIFS_ORPH_NODE) {
 645                        ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
 646                                  snod->type, sleb->lnum, snod->offs);
 647                        ubifs_dump_node(c, snod->node);
 648                        err = -EINVAL;
 649                        goto out_free;
 650                }
 651
 652                orph = snod->node;
 653
 654                /* Check commit number */
 655                cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
 656                /*
 657                 * The commit number on the master node may be less, because
 658                 * of a failed commit. If there are several failed commits in a
 659                 * row, the commit number written on orphan nodes will continue
 660                 * to increase (because the commit number is adjusted here) even
 661                 * though the commit number on the master node stays the same
 662                 * because the master node has not been re-written.
 663                 */
 664                if (cmt_no > c->cmt_no)
 665                        c->cmt_no = cmt_no;
 666                if (cmt_no < *last_cmt_no && *last_flagged) {
 667                        /*
 668                         * The last orphan node had a higher commit number and
 669                         * was flagged as the last written for that commit
 670                         * number. That makes this orphan node, out of date.
 671                         */
 672                        if (!first) {
 673                                ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
 674                                          cmt_no, sleb->lnum, snod->offs);
 675                                ubifs_dump_node(c, snod->node);
 676                                err = -EINVAL;
 677                                goto out_free;
 678                        }
 679                        dbg_rcvry("out of date LEB %d", sleb->lnum);
 680                        *outofdate = 1;
 681                        err = 0;
 682                        goto out_free;
 683                }
 684
 685                if (first)
 686                        first = 0;
 687
 688                n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 689                for (i = 0; i < n; i++) {
 690                        union ubifs_key key1, key2;
 691
 692                        inum = le64_to_cpu(orph->inos[i]);
 693
 694                        ino_key_init(c, &key1, inum);
 695                        err = ubifs_tnc_lookup(c, &key1, ino);
 696                        if (err && err != -ENOENT)
 697                                goto out_free;
 698
 699                        /*
 700                         * Check whether an inode can really get deleted.
 701                         * linkat() with O_TMPFILE allows rebirth of an inode.
 702                         */
 703                        if (err == 0 && ino->nlink == 0) {
 704                                dbg_rcvry("deleting orphaned inode %lu",
 705                                          (unsigned long)inum);
 706
 707                                lowest_ino_key(c, &key1, inum);
 708                                highest_ino_key(c, &key2, inum);
 709
 710                                err = ubifs_tnc_remove_range(c, &key1, &key2);
 711                                if (err)
 712                                        goto out_ro;
 713                        }
 714
 715                        err = insert_dead_orphan(c, inum);
 716                        if (err)
 717                                goto out_free;
 718                }
 719
 720                *last_cmt_no = cmt_no;
 721                if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
 722                        dbg_rcvry("last orph node for commit %llu at %d:%d",
 723                                  cmt_no, sleb->lnum, snod->offs);
 724                        *last_flagged = 1;
 725                } else
 726                        *last_flagged = 0;
 727        }
 728
 729        err = 0;
 730out_free:
 731        kfree(ino);
 732        return err;
 733
 734out_ro:
 735        ubifs_ro_mode(c, err);
 736        kfree(ino);
 737        return err;
 738}
 739
 740/**
 741 * kill_orphans - remove all orphan inodes from the index.
 742 * @c: UBIFS file-system description object
 743 *
 744 * If recovery is required, then orphan inodes recorded during the previous
 745 * session (which ended with an unclean unmount) must be deleted from the index.
 746 * This is done by updating the TNC, but since the index is not updated until
 747 * the next commit, the LEBs where the orphan information is recorded are not
 748 * erased until the next commit.
 749 */
 750static int kill_orphans(struct ubifs_info *c)
 751{
 752        unsigned long long last_cmt_no = 0;
 753        int lnum, err = 0, outofdate = 0, last_flagged = 0;
 754
 755        c->ohead_lnum = c->orph_first;
 756        c->ohead_offs = 0;
 757        /* Check no-orphans flag and skip this if no orphans */
 758        if (c->no_orphs) {
 759                dbg_rcvry("no orphans");
 760                return 0;
 761        }
 762        /*
 763         * Orph nodes always start at c->orph_first and are written to each
 764         * successive LEB in turn. Generally unused LEBs will have been unmapped
 765         * but may contain out of date orphan nodes if the unmap didn't go
 766         * through. In addition, the last orphan node written for each commit is
 767         * marked (top bit of orph->cmt_no is set to 1). It is possible that
 768         * there are orphan nodes from the next commit (i.e. the commit did not
 769         * complete successfully). In that case, no orphans will have been lost
 770         * due to the way that orphans are written, and any orphans added will
 771         * be valid orphans anyway and so can be deleted.
 772         */
 773        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 774                struct ubifs_scan_leb *sleb;
 775
 776                dbg_rcvry("LEB %d", lnum);
 777                sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
 778                if (IS_ERR(sleb)) {
 779                        if (PTR_ERR(sleb) == -EUCLEAN)
 780                                sleb = ubifs_recover_leb(c, lnum, 0,
 781                                                         c->sbuf, -1);
 782                        if (IS_ERR(sleb)) {
 783                                err = PTR_ERR(sleb);
 784                                break;
 785                        }
 786                }
 787                err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
 788                                      &last_flagged);
 789                if (err || outofdate) {
 790                        ubifs_scan_destroy(sleb);
 791                        break;
 792                }
 793                if (sleb->endpt) {
 794                        c->ohead_lnum = lnum;
 795                        c->ohead_offs = sleb->endpt;
 796                }
 797                ubifs_scan_destroy(sleb);
 798        }
 799        return err;
 800}
 801
 802/**
 803 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
 804 * @c: UBIFS file-system description object
 805 * @unclean: indicates recovery from unclean unmount
 806 * @read_only: indicates read only mount
 807 *
 808 * This function is called when mounting to erase orphans from the previous
 809 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
 810 * orphans are deleted.
 811 */
 812int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
 813{
 814        int err = 0;
 815
 816        c->max_orphans = tot_avail_orphs(c);
 817
 818        if (!read_only) {
 819                c->orph_buf = vmalloc(c->leb_size);
 820                if (!c->orph_buf)
 821                        return -ENOMEM;
 822        }
 823
 824        if (unclean)
 825                err = kill_orphans(c);
 826        else if (!read_only)
 827                err = ubifs_clear_orphans(c);
 828
 829        return err;
 830}
 831
 832/*
 833 * Everything below is related to debugging.
 834 */
 835
 836struct check_orphan {
 837        struct rb_node rb;
 838        ino_t inum;
 839};
 840
 841struct check_info {
 842        unsigned long last_ino;
 843        unsigned long tot_inos;
 844        unsigned long missing;
 845        unsigned long long leaf_cnt;
 846        struct ubifs_ino_node *node;
 847        struct rb_root root;
 848};
 849
 850static bool dbg_find_orphan(struct ubifs_info *c, ino_t inum)
 851{
 852        bool found = false;
 853
 854        spin_lock(&c->orphan_lock);
 855        found = !!lookup_orphan(c, inum);
 856        spin_unlock(&c->orphan_lock);
 857
 858        return found;
 859}
 860
 861static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
 862{
 863        struct check_orphan *orphan, *o;
 864        struct rb_node **p, *parent = NULL;
 865
 866        orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
 867        if (!orphan)
 868                return -ENOMEM;
 869        orphan->inum = inum;
 870
 871        p = &root->rb_node;
 872        while (*p) {
 873                parent = *p;
 874                o = rb_entry(parent, struct check_orphan, rb);
 875                if (inum < o->inum)
 876                        p = &(*p)->rb_left;
 877                else if (inum > o->inum)
 878                        p = &(*p)->rb_right;
 879                else {
 880                        kfree(orphan);
 881                        return 0;
 882                }
 883        }
 884        rb_link_node(&orphan->rb, parent, p);
 885        rb_insert_color(&orphan->rb, root);
 886        return 0;
 887}
 888
 889static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
 890{
 891        struct check_orphan *o;
 892        struct rb_node *p;
 893
 894        p = root->rb_node;
 895        while (p) {
 896                o = rb_entry(p, struct check_orphan, rb);
 897                if (inum < o->inum)
 898                        p = p->rb_left;
 899                else if (inum > o->inum)
 900                        p = p->rb_right;
 901                else
 902                        return 1;
 903        }
 904        return 0;
 905}
 906
 907static void dbg_free_check_tree(struct rb_root *root)
 908{
 909        struct check_orphan *o, *n;
 910
 911        rbtree_postorder_for_each_entry_safe(o, n, root, rb)
 912                kfree(o);
 913}
 914
 915static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 916                            void *priv)
 917{
 918        struct check_info *ci = priv;
 919        ino_t inum;
 920        int err;
 921
 922        inum = key_inum(c, &zbr->key);
 923        if (inum != ci->last_ino) {
 924                /* Lowest node type is the inode node, so it comes first */
 925                if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
 926                        ubifs_err(c, "found orphan node ino %lu, type %d",
 927                                  (unsigned long)inum, key_type(c, &zbr->key));
 928                ci->last_ino = inum;
 929                ci->tot_inos += 1;
 930                err = ubifs_tnc_read_node(c, zbr, ci->node);
 931                if (err) {
 932                        ubifs_err(c, "node read failed, error %d", err);
 933                        return err;
 934                }
 935                if (ci->node->nlink == 0)
 936                        /* Must be recorded as an orphan */
 937                        if (!dbg_find_check_orphan(&ci->root, inum) &&
 938                            !dbg_find_orphan(c, inum)) {
 939                                ubifs_err(c, "missing orphan, ino %lu",
 940                                          (unsigned long)inum);
 941                                ci->missing += 1;
 942                        }
 943        }
 944        ci->leaf_cnt += 1;
 945        return 0;
 946}
 947
 948static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
 949{
 950        struct ubifs_scan_node *snod;
 951        struct ubifs_orph_node *orph;
 952        ino_t inum;
 953        int i, n, err;
 954
 955        list_for_each_entry(snod, &sleb->nodes, list) {
 956                cond_resched();
 957                if (snod->type != UBIFS_ORPH_NODE)
 958                        continue;
 959                orph = snod->node;
 960                n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
 961                for (i = 0; i < n; i++) {
 962                        inum = le64_to_cpu(orph->inos[i]);
 963                        err = dbg_ins_check_orphan(&ci->root, inum);
 964                        if (err)
 965                                return err;
 966                }
 967        }
 968        return 0;
 969}
 970
 971static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
 972{
 973        int lnum, err = 0;
 974        void *buf;
 975
 976        /* Check no-orphans flag and skip this if no orphans */
 977        if (c->no_orphs)
 978                return 0;
 979
 980        buf = __vmalloc(c->leb_size, GFP_NOFS);
 981        if (!buf) {
 982                ubifs_err(c, "cannot allocate memory to check orphans");
 983                return 0;
 984        }
 985
 986        for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
 987                struct ubifs_scan_leb *sleb;
 988
 989                sleb = ubifs_scan(c, lnum, 0, buf, 0);
 990                if (IS_ERR(sleb)) {
 991                        err = PTR_ERR(sleb);
 992                        break;
 993                }
 994
 995                err = dbg_read_orphans(ci, sleb);
 996                ubifs_scan_destroy(sleb);
 997                if (err)
 998                        break;
 999        }
1000
1001        vfree(buf);
1002        return err;
1003}
1004
1005static int dbg_check_orphans(struct ubifs_info *c)
1006{
1007        struct check_info ci;
1008        int err;
1009
1010        if (!dbg_is_chk_orph(c))
1011                return 0;
1012
1013        ci.last_ino = 0;
1014        ci.tot_inos = 0;
1015        ci.missing  = 0;
1016        ci.leaf_cnt = 0;
1017        ci.root = RB_ROOT;
1018        ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
1019        if (!ci.node) {
1020                ubifs_err(c, "out of memory");
1021                return -ENOMEM;
1022        }
1023
1024        err = dbg_scan_orphans(c, &ci);
1025        if (err)
1026                goto out;
1027
1028        err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
1029        if (err) {
1030                ubifs_err(c, "cannot scan TNC, error %d", err);
1031                goto out;
1032        }
1033
1034        if (ci.missing) {
1035                ubifs_err(c, "%lu missing orphan(s)", ci.missing);
1036                err = -EINVAL;
1037                goto out;
1038        }
1039
1040        dbg_cmt("last inode number is %lu", ci.last_ino);
1041        dbg_cmt("total number of inodes is %lu", ci.tot_inos);
1042        dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
1043
1044out:
1045        dbg_free_check_tree(&ci.root);
1046        kfree(ci.node);
1047        return err;
1048}
1049