linux/fs/xfs/libxfs/xfs_trans_resv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
   4 * Copyright (C) 2010 Red Hat, Inc.
   5 * All Rights Reserved.
   6 */
   7#include "xfs.h"
   8#include "xfs_fs.h"
   9#include "xfs_shared.h"
  10#include "xfs_format.h"
  11#include "xfs_log_format.h"
  12#include "xfs_trans_resv.h"
  13#include "xfs_mount.h"
  14#include "xfs_da_format.h"
  15#include "xfs_da_btree.h"
  16#include "xfs_inode.h"
  17#include "xfs_bmap_btree.h"
  18#include "xfs_quota.h"
  19#include "xfs_trans.h"
  20#include "xfs_qm.h"
  21#include "xfs_trans_space.h"
  22
  23#define _ALLOC  true
  24#define _FREE   false
  25
  26/*
  27 * A buffer has a format structure overhead in the log in addition
  28 * to the data, so we need to take this into account when reserving
  29 * space in a transaction for a buffer.  Round the space required up
  30 * to a multiple of 128 bytes so that we don't change the historical
  31 * reservation that has been used for this overhead.
  32 */
  33STATIC uint
  34xfs_buf_log_overhead(void)
  35{
  36        return round_up(sizeof(struct xlog_op_header) +
  37                        sizeof(struct xfs_buf_log_format), 128);
  38}
  39
  40/*
  41 * Calculate out transaction log reservation per item in bytes.
  42 *
  43 * The nbufs argument is used to indicate the number of items that
  44 * will be changed in a transaction.  size is used to tell how many
  45 * bytes should be reserved per item.
  46 */
  47STATIC uint
  48xfs_calc_buf_res(
  49        uint            nbufs,
  50        uint            size)
  51{
  52        return nbufs * (size + xfs_buf_log_overhead());
  53}
  54
  55/*
  56 * Per-extent log reservation for the btree changes involved in freeing or
  57 * allocating an extent.  In classic XFS there were two trees that will be
  58 * modified (bnobt + cntbt).  With rmap enabled, there are three trees
  59 * (rmapbt).  With reflink, there are four trees (refcountbt).  The number of
  60 * blocks reserved is based on the formula:
  61 *
  62 * num trees * ((2 blocks/level * max depth) - 1)
  63 *
  64 * Keep in mind that max depth is calculated separately for each type of tree.
  65 */
  66uint
  67xfs_allocfree_log_count(
  68        struct xfs_mount *mp,
  69        uint            num_ops)
  70{
  71        uint            blocks;
  72
  73        blocks = num_ops * 2 * (2 * mp->m_ag_maxlevels - 1);
  74        if (xfs_sb_version_hasrmapbt(&mp->m_sb))
  75                blocks += num_ops * (2 * mp->m_rmap_maxlevels - 1);
  76        if (xfs_sb_version_hasreflink(&mp->m_sb))
  77                blocks += num_ops * (2 * mp->m_refc_maxlevels - 1);
  78
  79        return blocks;
  80}
  81
  82/*
  83 * Logging inodes is really tricksy. They are logged in memory format,
  84 * which means that what we write into the log doesn't directly translate into
  85 * the amount of space they use on disk.
  86 *
  87 * Case in point - btree format forks in memory format use more space than the
  88 * on-disk format. In memory, the buffer contains a normal btree block header so
  89 * the btree code can treat it as though it is just another generic buffer.
  90 * However, when we write it to the inode fork, we don't write all of this
  91 * header as it isn't needed. e.g. the root is only ever in the inode, so
  92 * there's no need for sibling pointers which would waste 16 bytes of space.
  93 *
  94 * Hence when we have an inode with a maximally sized btree format fork, then
  95 * amount of information we actually log is greater than the size of the inode
  96 * on disk. Hence we need an inode reservation function that calculates all this
  97 * correctly. So, we log:
  98 *
  99 * - 4 log op headers for object
 100 *      - for the ilf, the inode core and 2 forks
 101 * - inode log format object
 102 * - the inode core
 103 * - two inode forks containing bmap btree root blocks.
 104 *      - the btree data contained by both forks will fit into the inode size,
 105 *        hence when combined with the inode core above, we have a total of the
 106 *        actual inode size.
 107 *      - the BMBT headers need to be accounted separately, as they are
 108 *        additional to the records and pointers that fit inside the inode
 109 *        forks.
 110 */
 111STATIC uint
 112xfs_calc_inode_res(
 113        struct xfs_mount        *mp,
 114        uint                    ninodes)
 115{
 116        return ninodes *
 117                (4 * sizeof(struct xlog_op_header) +
 118                 sizeof(struct xfs_inode_log_format) +
 119                 mp->m_sb.sb_inodesize +
 120                 2 * XFS_BMBT_BLOCK_LEN(mp));
 121}
 122
 123/*
 124 * Inode btree record insertion/removal modifies the inode btree and free space
 125 * btrees (since the inobt does not use the agfl). This requires the following
 126 * reservation:
 127 *
 128 * the inode btree: max depth * blocksize
 129 * the allocation btrees: 2 trees * (max depth - 1) * block size
 130 *
 131 * The caller must account for SB and AG header modifications, etc.
 132 */
 133STATIC uint
 134xfs_calc_inobt_res(
 135        struct xfs_mount        *mp)
 136{
 137        return xfs_calc_buf_res(M_IGEO(mp)->inobt_maxlevels,
 138                        XFS_FSB_TO_B(mp, 1)) +
 139                                xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1),
 140                        XFS_FSB_TO_B(mp, 1));
 141}
 142
 143/*
 144 * The free inode btree is a conditional feature. The behavior differs slightly
 145 * from that of the traditional inode btree in that the finobt tracks records
 146 * for inode chunks with at least one free inode. A record can be removed from
 147 * the tree during individual inode allocation. Therefore the finobt
 148 * reservation is unconditional for both the inode chunk allocation and
 149 * individual inode allocation (modify) cases.
 150 *
 151 * Behavior aside, the reservation for finobt modification is equivalent to the
 152 * traditional inobt: cover a full finobt shape change plus block allocation.
 153 */
 154STATIC uint
 155xfs_calc_finobt_res(
 156        struct xfs_mount        *mp)
 157{
 158        if (!xfs_sb_version_hasfinobt(&mp->m_sb))
 159                return 0;
 160
 161        return xfs_calc_inobt_res(mp);
 162}
 163
 164/*
 165 * Calculate the reservation required to allocate or free an inode chunk. This
 166 * includes:
 167 *
 168 * the allocation btrees: 2 trees * (max depth - 1) * block size
 169 * the inode chunk: m_ino_geo.ialloc_blks * N
 170 *
 171 * The size N of the inode chunk reservation depends on whether it is for
 172 * allocation or free and which type of create transaction is in use. An inode
 173 * chunk free always invalidates the buffers and only requires reservation for
 174 * headers (N == 0). An inode chunk allocation requires a chunk sized
 175 * reservation on v4 and older superblocks to initialize the chunk. No chunk
 176 * reservation is required for allocation on v5 supers, which use ordered
 177 * buffers to initialize.
 178 */
 179STATIC uint
 180xfs_calc_inode_chunk_res(
 181        struct xfs_mount        *mp,
 182        bool                    alloc)
 183{
 184        uint                    res, size = 0;
 185
 186        res = xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1),
 187                               XFS_FSB_TO_B(mp, 1));
 188        if (alloc) {
 189                /* icreate tx uses ordered buffers */
 190                if (xfs_sb_version_has_v3inode(&mp->m_sb))
 191                        return res;
 192                size = XFS_FSB_TO_B(mp, 1);
 193        }
 194
 195        res += xfs_calc_buf_res(M_IGEO(mp)->ialloc_blks, size);
 196        return res;
 197}
 198
 199/*
 200 * Per-extent log reservation for the btree changes involved in freeing or
 201 * allocating a realtime extent.  We have to be able to log as many rtbitmap
 202 * blocks as needed to mark inuse MAXEXTLEN blocks' worth of realtime extents,
 203 * as well as the realtime summary block.
 204 */
 205static unsigned int
 206xfs_rtalloc_log_count(
 207        struct xfs_mount        *mp,
 208        unsigned int            num_ops)
 209{
 210        unsigned int            blksz = XFS_FSB_TO_B(mp, 1);
 211        unsigned int            rtbmp_bytes;
 212
 213        rtbmp_bytes = (MAXEXTLEN / mp->m_sb.sb_rextsize) / NBBY;
 214        return (howmany(rtbmp_bytes, blksz) + 1) * num_ops;
 215}
 216
 217/*
 218 * Various log reservation values.
 219 *
 220 * These are based on the size of the file system block because that is what
 221 * most transactions manipulate.  Each adds in an additional 128 bytes per
 222 * item logged to try to account for the overhead of the transaction mechanism.
 223 *
 224 * Note:  Most of the reservations underestimate the number of allocation
 225 * groups into which they could free extents in the xfs_defer_finish() call.
 226 * This is because the number in the worst case is quite high and quite
 227 * unusual.  In order to fix this we need to change xfs_defer_finish() to free
 228 * extents in only a single AG at a time.  This will require changes to the
 229 * EFI code as well, however, so that the EFI for the extents not freed is
 230 * logged again in each transaction.  See SGI PV #261917.
 231 *
 232 * Reservation functions here avoid a huge stack in xfs_trans_init due to
 233 * register overflow from temporaries in the calculations.
 234 */
 235
 236
 237/*
 238 * In a write transaction we can allocate a maximum of 2
 239 * extents.  This gives (t1):
 240 *    the inode getting the new extents: inode size
 241 *    the inode's bmap btree: max depth * block size
 242 *    the agfs of the ags from which the extents are allocated: 2 * sector
 243 *    the superblock free block counter: sector size
 244 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 245 * Or, if we're writing to a realtime file (t2):
 246 *    the inode getting the new extents: inode size
 247 *    the inode's bmap btree: max depth * block size
 248 *    the agfs of the ags from which the extents are allocated: 2 * sector
 249 *    the superblock free block counter: sector size
 250 *    the realtime bitmap: ((MAXEXTLEN / rtextsize) / NBBY) bytes
 251 *    the realtime summary: 1 block
 252 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
 253 * And the bmap_finish transaction can free bmap blocks in a join (t3):
 254 *    the agfs of the ags containing the blocks: 2 * sector size
 255 *    the agfls of the ags containing the blocks: 2 * sector size
 256 *    the super block free block counter: sector size
 257 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 258 */
 259STATIC uint
 260xfs_calc_write_reservation(
 261        struct xfs_mount        *mp)
 262{
 263        unsigned int            t1, t2, t3;
 264        unsigned int            blksz = XFS_FSB_TO_B(mp, 1);
 265
 266        t1 = xfs_calc_inode_res(mp, 1) +
 267             xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), blksz) +
 268             xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
 269             xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2), blksz);
 270
 271        if (xfs_sb_version_hasrealtime(&mp->m_sb)) {
 272                t2 = xfs_calc_inode_res(mp, 1) +
 273                     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
 274                                     blksz) +
 275                     xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
 276                     xfs_calc_buf_res(xfs_rtalloc_log_count(mp, 1), blksz) +
 277                     xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1), blksz);
 278        } else {
 279                t2 = 0;
 280        }
 281
 282        t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
 283             xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2), blksz);
 284
 285        return XFS_DQUOT_LOGRES(mp) + max3(t1, t2, t3);
 286}
 287
 288/*
 289 * In truncating a file we free up to two extents at once.  We can modify (t1):
 290 *    the inode being truncated: inode size
 291 *    the inode's bmap btree: (max depth + 1) * block size
 292 * And the bmap_finish transaction can free the blocks and bmap blocks (t2):
 293 *    the agf for each of the ags: 4 * sector size
 294 *    the agfl for each of the ags: 4 * sector size
 295 *    the super block to reflect the freed blocks: sector size
 296 *    worst case split in allocation btrees per extent assuming 4 extents:
 297 *              4 exts * 2 trees * (2 * max depth - 1) * block size
 298 * Or, if it's a realtime file (t3):
 299 *    the agf for each of the ags: 2 * sector size
 300 *    the agfl for each of the ags: 2 * sector size
 301 *    the super block to reflect the freed blocks: sector size
 302 *    the realtime bitmap: 2 exts * ((MAXEXTLEN / rtextsize) / NBBY) bytes
 303 *    the realtime summary: 2 exts * 1 block
 304 *    worst case split in allocation btrees per extent assuming 2 extents:
 305 *              2 exts * 2 trees * (2 * max depth - 1) * block size
 306 */
 307STATIC uint
 308xfs_calc_itruncate_reservation(
 309        struct xfs_mount        *mp)
 310{
 311        unsigned int            t1, t2, t3;
 312        unsigned int            blksz = XFS_FSB_TO_B(mp, 1);
 313
 314        t1 = xfs_calc_inode_res(mp, 1) +
 315             xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1, blksz);
 316
 317        t2 = xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
 318             xfs_calc_buf_res(xfs_allocfree_log_count(mp, 4), blksz);
 319
 320        if (xfs_sb_version_hasrealtime(&mp->m_sb)) {
 321                t3 = xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
 322                     xfs_calc_buf_res(xfs_rtalloc_log_count(mp, 2), blksz) +
 323                     xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2), blksz);
 324        } else {
 325                t3 = 0;
 326        }
 327
 328        return XFS_DQUOT_LOGRES(mp) + max3(t1, t2, t3);
 329}
 330
 331/*
 332 * In renaming a files we can modify:
 333 *    the four inodes involved: 4 * inode size
 334 *    the two directory btrees: 2 * (max depth + v2) * dir block size
 335 *    the two directory bmap btrees: 2 * max depth * block size
 336 * And the bmap_finish transaction can free dir and bmap blocks (two sets
 337 *      of bmap blocks) giving:
 338 *    the agf for the ags in which the blocks live: 3 * sector size
 339 *    the agfl for the ags in which the blocks live: 3 * sector size
 340 *    the superblock for the free block count: sector size
 341 *    the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
 342 */
 343STATIC uint
 344xfs_calc_rename_reservation(
 345        struct xfs_mount        *mp)
 346{
 347        return XFS_DQUOT_LOGRES(mp) +
 348                max((xfs_calc_inode_res(mp, 4) +
 349                     xfs_calc_buf_res(2 * XFS_DIROP_LOG_COUNT(mp),
 350                                      XFS_FSB_TO_B(mp, 1))),
 351                    (xfs_calc_buf_res(7, mp->m_sb.sb_sectsize) +
 352                     xfs_calc_buf_res(xfs_allocfree_log_count(mp, 3),
 353                                      XFS_FSB_TO_B(mp, 1))));
 354}
 355
 356/*
 357 * For removing an inode from unlinked list at first, we can modify:
 358 *    the agi hash list and counters: sector size
 359 *    the on disk inode before ours in the agi hash list: inode cluster size
 360 *    the on disk inode in the agi hash list: inode cluster size
 361 */
 362STATIC uint
 363xfs_calc_iunlink_remove_reservation(
 364        struct xfs_mount        *mp)
 365{
 366        return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 367               2 * M_IGEO(mp)->inode_cluster_size;
 368}
 369
 370/*
 371 * For creating a link to an inode:
 372 *    the parent directory inode: inode size
 373 *    the linked inode: inode size
 374 *    the directory btree could split: (max depth + v2) * dir block size
 375 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
 376 * And the bmap_finish transaction can free some bmap blocks giving:
 377 *    the agf for the ag in which the blocks live: sector size
 378 *    the agfl for the ag in which the blocks live: sector size
 379 *    the superblock for the free block count: sector size
 380 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
 381 */
 382STATIC uint
 383xfs_calc_link_reservation(
 384        struct xfs_mount        *mp)
 385{
 386        return XFS_DQUOT_LOGRES(mp) +
 387                xfs_calc_iunlink_remove_reservation(mp) +
 388                max((xfs_calc_inode_res(mp, 2) +
 389                     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
 390                                      XFS_FSB_TO_B(mp, 1))),
 391                    (xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
 392                     xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1),
 393                                      XFS_FSB_TO_B(mp, 1))));
 394}
 395
 396/*
 397 * For adding an inode to unlinked list we can modify:
 398 *    the agi hash list: sector size
 399 *    the on disk inode: inode cluster size
 400 */
 401STATIC uint
 402xfs_calc_iunlink_add_reservation(xfs_mount_t *mp)
 403{
 404        return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 405                        M_IGEO(mp)->inode_cluster_size;
 406}
 407
 408/*
 409 * For removing a directory entry we can modify:
 410 *    the parent directory inode: inode size
 411 *    the removed inode: inode size
 412 *    the directory btree could join: (max depth + v2) * dir block size
 413 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
 414 * And the bmap_finish transaction can free the dir and bmap blocks giving:
 415 *    the agf for the ag in which the blocks live: 2 * sector size
 416 *    the agfl for the ag in which the blocks live: 2 * sector size
 417 *    the superblock for the free block count: sector size
 418 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 419 */
 420STATIC uint
 421xfs_calc_remove_reservation(
 422        struct xfs_mount        *mp)
 423{
 424        return XFS_DQUOT_LOGRES(mp) +
 425                xfs_calc_iunlink_add_reservation(mp) +
 426                max((xfs_calc_inode_res(mp, 1) +
 427                     xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp),
 428                                      XFS_FSB_TO_B(mp, 1))),
 429                    (xfs_calc_buf_res(4, mp->m_sb.sb_sectsize) +
 430                     xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2),
 431                                      XFS_FSB_TO_B(mp, 1))));
 432}
 433
 434/*
 435 * For create, break it in to the two cases that the transaction
 436 * covers. We start with the modify case - allocation done by modification
 437 * of the state of existing inodes - and the allocation case.
 438 */
 439
 440/*
 441 * For create we can modify:
 442 *    the parent directory inode: inode size
 443 *    the new inode: inode size
 444 *    the inode btree entry: block size
 445 *    the superblock for the nlink flag: sector size
 446 *    the directory btree: (max depth + v2) * dir block size
 447 *    the directory inode's bmap btree: (max depth + v2) * block size
 448 *    the finobt (record modification and allocation btrees)
 449 */
 450STATIC uint
 451xfs_calc_create_resv_modify(
 452        struct xfs_mount        *mp)
 453{
 454        return xfs_calc_inode_res(mp, 2) +
 455                xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 456                (uint)XFS_FSB_TO_B(mp, 1) +
 457                xfs_calc_buf_res(XFS_DIROP_LOG_COUNT(mp), XFS_FSB_TO_B(mp, 1)) +
 458                xfs_calc_finobt_res(mp);
 459}
 460
 461/*
 462 * For icreate we can allocate some inodes giving:
 463 *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
 464 *    the superblock for the nlink flag: sector size
 465 *    the inode chunk (allocation, optional init)
 466 *    the inobt (record insertion)
 467 *    the finobt (optional, record insertion)
 468 */
 469STATIC uint
 470xfs_calc_icreate_resv_alloc(
 471        struct xfs_mount        *mp)
 472{
 473        return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
 474                mp->m_sb.sb_sectsize +
 475                xfs_calc_inode_chunk_res(mp, _ALLOC) +
 476                xfs_calc_inobt_res(mp) +
 477                xfs_calc_finobt_res(mp);
 478}
 479
 480STATIC uint
 481xfs_calc_icreate_reservation(xfs_mount_t *mp)
 482{
 483        return XFS_DQUOT_LOGRES(mp) +
 484                max(xfs_calc_icreate_resv_alloc(mp),
 485                    xfs_calc_create_resv_modify(mp));
 486}
 487
 488STATIC uint
 489xfs_calc_create_tmpfile_reservation(
 490        struct xfs_mount        *mp)
 491{
 492        uint    res = XFS_DQUOT_LOGRES(mp);
 493
 494        res += xfs_calc_icreate_resv_alloc(mp);
 495        return res + xfs_calc_iunlink_add_reservation(mp);
 496}
 497
 498/*
 499 * Making a new directory is the same as creating a new file.
 500 */
 501STATIC uint
 502xfs_calc_mkdir_reservation(
 503        struct xfs_mount        *mp)
 504{
 505        return xfs_calc_icreate_reservation(mp);
 506}
 507
 508
 509/*
 510 * Making a new symplink is the same as creating a new file, but
 511 * with the added blocks for remote symlink data which can be up to 1kB in
 512 * length (XFS_SYMLINK_MAXLEN).
 513 */
 514STATIC uint
 515xfs_calc_symlink_reservation(
 516        struct xfs_mount        *mp)
 517{
 518        return xfs_calc_icreate_reservation(mp) +
 519               xfs_calc_buf_res(1, XFS_SYMLINK_MAXLEN);
 520}
 521
 522/*
 523 * In freeing an inode we can modify:
 524 *    the inode being freed: inode size
 525 *    the super block free inode counter, AGF and AGFL: sector size
 526 *    the on disk inode (agi unlinked list removal)
 527 *    the inode chunk (invalidated, headers only)
 528 *    the inode btree
 529 *    the finobt (record insertion, removal or modification)
 530 *
 531 * Note that the inode chunk res. includes an allocfree res. for freeing of the
 532 * inode chunk. This is technically extraneous because the inode chunk free is
 533 * deferred (it occurs after a transaction roll). Include the extra reservation
 534 * anyways since we've had reports of ifree transaction overruns due to too many
 535 * agfl fixups during inode chunk frees.
 536 */
 537STATIC uint
 538xfs_calc_ifree_reservation(
 539        struct xfs_mount        *mp)
 540{
 541        return XFS_DQUOT_LOGRES(mp) +
 542                xfs_calc_inode_res(mp, 1) +
 543                xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
 544                xfs_calc_iunlink_remove_reservation(mp) +
 545                xfs_calc_inode_chunk_res(mp, _FREE) +
 546                xfs_calc_inobt_res(mp) +
 547                xfs_calc_finobt_res(mp);
 548}
 549
 550/*
 551 * When only changing the inode we log the inode and possibly the superblock
 552 * We also add a bit of slop for the transaction stuff.
 553 */
 554STATIC uint
 555xfs_calc_ichange_reservation(
 556        struct xfs_mount        *mp)
 557{
 558        return XFS_DQUOT_LOGRES(mp) +
 559                xfs_calc_inode_res(mp, 1) +
 560                xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
 561
 562}
 563
 564/*
 565 * Growing the data section of the filesystem.
 566 *      superblock
 567 *      agi and agf
 568 *      allocation btrees
 569 */
 570STATIC uint
 571xfs_calc_growdata_reservation(
 572        struct xfs_mount        *mp)
 573{
 574        return xfs_calc_buf_res(3, mp->m_sb.sb_sectsize) +
 575                xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1),
 576                                 XFS_FSB_TO_B(mp, 1));
 577}
 578
 579/*
 580 * Growing the rt section of the filesystem.
 581 * In the first set of transactions (ALLOC) we allocate space to the
 582 * bitmap or summary files.
 583 *      superblock: sector size
 584 *      agf of the ag from which the extent is allocated: sector size
 585 *      bmap btree for bitmap/summary inode: max depth * blocksize
 586 *      bitmap/summary inode: inode size
 587 *      allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
 588 */
 589STATIC uint
 590xfs_calc_growrtalloc_reservation(
 591        struct xfs_mount        *mp)
 592{
 593        return xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
 594                xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK),
 595                                 XFS_FSB_TO_B(mp, 1)) +
 596                xfs_calc_inode_res(mp, 1) +
 597                xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1),
 598                                 XFS_FSB_TO_B(mp, 1));
 599}
 600
 601/*
 602 * Growing the rt section of the filesystem.
 603 * In the second set of transactions (ZERO) we zero the new metadata blocks.
 604 *      one bitmap/summary block: blocksize
 605 */
 606STATIC uint
 607xfs_calc_growrtzero_reservation(
 608        struct xfs_mount        *mp)
 609{
 610        return xfs_calc_buf_res(1, mp->m_sb.sb_blocksize);
 611}
 612
 613/*
 614 * Growing the rt section of the filesystem.
 615 * In the third set of transactions (FREE) we update metadata without
 616 * allocating any new blocks.
 617 *      superblock: sector size
 618 *      bitmap inode: inode size
 619 *      summary inode: inode size
 620 *      one bitmap block: blocksize
 621 *      summary blocks: new summary size
 622 */
 623STATIC uint
 624xfs_calc_growrtfree_reservation(
 625        struct xfs_mount        *mp)
 626{
 627        return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 628                xfs_calc_inode_res(mp, 2) +
 629                xfs_calc_buf_res(1, mp->m_sb.sb_blocksize) +
 630                xfs_calc_buf_res(1, mp->m_rsumsize);
 631}
 632
 633/*
 634 * Logging the inode modification timestamp on a synchronous write.
 635 *      inode
 636 */
 637STATIC uint
 638xfs_calc_swrite_reservation(
 639        struct xfs_mount        *mp)
 640{
 641        return xfs_calc_inode_res(mp, 1);
 642}
 643
 644/*
 645 * Logging the inode mode bits when writing a setuid/setgid file
 646 *      inode
 647 */
 648STATIC uint
 649xfs_calc_writeid_reservation(
 650        struct xfs_mount        *mp)
 651{
 652        return xfs_calc_inode_res(mp, 1);
 653}
 654
 655/*
 656 * Converting the inode from non-attributed to attributed.
 657 *      the inode being converted: inode size
 658 *      agf block and superblock (for block allocation)
 659 *      the new block (directory sized)
 660 *      bmap blocks for the new directory block
 661 *      allocation btrees
 662 */
 663STATIC uint
 664xfs_calc_addafork_reservation(
 665        struct xfs_mount        *mp)
 666{
 667        return XFS_DQUOT_LOGRES(mp) +
 668                xfs_calc_inode_res(mp, 1) +
 669                xfs_calc_buf_res(2, mp->m_sb.sb_sectsize) +
 670                xfs_calc_buf_res(1, mp->m_dir_geo->blksize) +
 671                xfs_calc_buf_res(XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1,
 672                                 XFS_FSB_TO_B(mp, 1)) +
 673                xfs_calc_buf_res(xfs_allocfree_log_count(mp, 1),
 674                                 XFS_FSB_TO_B(mp, 1));
 675}
 676
 677/*
 678 * Removing the attribute fork of a file
 679 *    the inode being truncated: inode size
 680 *    the inode's bmap btree: max depth * block size
 681 * And the bmap_finish transaction can free the blocks and bmap blocks:
 682 *    the agf for each of the ags: 4 * sector size
 683 *    the agfl for each of the ags: 4 * sector size
 684 *    the super block to reflect the freed blocks: sector size
 685 *    worst case split in allocation btrees per extent assuming 4 extents:
 686 *              4 exts * 2 trees * (2 * max depth - 1) * block size
 687 */
 688STATIC uint
 689xfs_calc_attrinval_reservation(
 690        struct xfs_mount        *mp)
 691{
 692        return max((xfs_calc_inode_res(mp, 1) +
 693                    xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
 694                                     XFS_FSB_TO_B(mp, 1))),
 695                   (xfs_calc_buf_res(9, mp->m_sb.sb_sectsize) +
 696                    xfs_calc_buf_res(xfs_allocfree_log_count(mp, 4),
 697                                     XFS_FSB_TO_B(mp, 1))));
 698}
 699
 700/*
 701 * Setting an attribute at mount time.
 702 *      the inode getting the attribute
 703 *      the superblock for allocations
 704 *      the agfs extents are allocated from
 705 *      the attribute btree * max depth
 706 *      the inode allocation btree
 707 * Since attribute transaction space is dependent on the size of the attribute,
 708 * the calculation is done partially at mount time and partially at runtime(see
 709 * below).
 710 */
 711STATIC uint
 712xfs_calc_attrsetm_reservation(
 713        struct xfs_mount        *mp)
 714{
 715        return XFS_DQUOT_LOGRES(mp) +
 716                xfs_calc_inode_res(mp, 1) +
 717                xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 718                xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH, XFS_FSB_TO_B(mp, 1));
 719}
 720
 721/*
 722 * Setting an attribute at runtime, transaction space unit per block.
 723 *      the superblock for allocations: sector size
 724 *      the inode bmap btree could join or split: max depth * block size
 725 * Since the runtime attribute transaction space is dependent on the total
 726 * blocks needed for the 1st bmap, here we calculate out the space unit for
 727 * one block so that the caller could figure out the total space according
 728 * to the attibute extent length in blocks by:
 729 *      ext * M_RES(mp)->tr_attrsetrt.tr_logres
 730 */
 731STATIC uint
 732xfs_calc_attrsetrt_reservation(
 733        struct xfs_mount        *mp)
 734{
 735        return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize) +
 736                xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK),
 737                                 XFS_FSB_TO_B(mp, 1));
 738}
 739
 740/*
 741 * Removing an attribute.
 742 *    the inode: inode size
 743 *    the attribute btree could join: max depth * block size
 744 *    the inode bmap btree could join or split: max depth * block size
 745 * And the bmap_finish transaction can free the attr blocks freed giving:
 746 *    the agf for the ag in which the blocks live: 2 * sector size
 747 *    the agfl for the ag in which the blocks live: 2 * sector size
 748 *    the superblock for the free block count: sector size
 749 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 750 */
 751STATIC uint
 752xfs_calc_attrrm_reservation(
 753        struct xfs_mount        *mp)
 754{
 755        return XFS_DQUOT_LOGRES(mp) +
 756                max((xfs_calc_inode_res(mp, 1) +
 757                     xfs_calc_buf_res(XFS_DA_NODE_MAXDEPTH,
 758                                      XFS_FSB_TO_B(mp, 1)) +
 759                     (uint)XFS_FSB_TO_B(mp,
 760                                        XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
 761                     xfs_calc_buf_res(XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK), 0)),
 762                    (xfs_calc_buf_res(5, mp->m_sb.sb_sectsize) +
 763                     xfs_calc_buf_res(xfs_allocfree_log_count(mp, 2),
 764                                      XFS_FSB_TO_B(mp, 1))));
 765}
 766
 767/*
 768 * Clearing a bad agino number in an agi hash bucket.
 769 */
 770STATIC uint
 771xfs_calc_clear_agi_bucket_reservation(
 772        struct xfs_mount        *mp)
 773{
 774        return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
 775}
 776
 777/*
 778 * Adjusting quota limits.
 779 *    the disk quota buffer: sizeof(struct xfs_disk_dquot)
 780 */
 781STATIC uint
 782xfs_calc_qm_setqlim_reservation(void)
 783{
 784        return xfs_calc_buf_res(1, sizeof(struct xfs_disk_dquot));
 785}
 786
 787/*
 788 * Allocating quota on disk if needed.
 789 *      the write transaction log space for quota file extent allocation
 790 *      the unit of quota allocation: one system block size
 791 */
 792STATIC uint
 793xfs_calc_qm_dqalloc_reservation(
 794        struct xfs_mount        *mp)
 795{
 796        return xfs_calc_write_reservation(mp) +
 797                xfs_calc_buf_res(1,
 798                        XFS_FSB_TO_B(mp, XFS_DQUOT_CLUSTER_SIZE_FSB) - 1);
 799}
 800
 801/*
 802 * Turning off quotas.
 803 *    the quota off logitems: sizeof(struct xfs_qoff_logitem) * 2
 804 *    the superblock for the quota flags: sector size
 805 */
 806STATIC uint
 807xfs_calc_qm_quotaoff_reservation(
 808        struct xfs_mount        *mp)
 809{
 810        return sizeof(struct xfs_qoff_logitem) * 2 +
 811                xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
 812}
 813
 814/*
 815 * End of turning off quotas.
 816 *    the quota off logitems: sizeof(struct xfs_qoff_logitem) * 2
 817 */
 818STATIC uint
 819xfs_calc_qm_quotaoff_end_reservation(void)
 820{
 821        return sizeof(struct xfs_qoff_logitem) * 2;
 822}
 823
 824/*
 825 * Syncing the incore super block changes to disk.
 826 *     the super block to reflect the changes: sector size
 827 */
 828STATIC uint
 829xfs_calc_sb_reservation(
 830        struct xfs_mount        *mp)
 831{
 832        return xfs_calc_buf_res(1, mp->m_sb.sb_sectsize);
 833}
 834
 835void
 836xfs_trans_resv_calc(
 837        struct xfs_mount        *mp,
 838        struct xfs_trans_resv   *resp)
 839{
 840        /*
 841         * The following transactions are logged in physical format and
 842         * require a permanent reservation on space.
 843         */
 844        resp->tr_write.tr_logres = xfs_calc_write_reservation(mp);
 845        if (xfs_sb_version_hasreflink(&mp->m_sb))
 846                resp->tr_write.tr_logcount = XFS_WRITE_LOG_COUNT_REFLINK;
 847        else
 848                resp->tr_write.tr_logcount = XFS_WRITE_LOG_COUNT;
 849        resp->tr_write.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 850
 851        resp->tr_itruncate.tr_logres = xfs_calc_itruncate_reservation(mp);
 852        if (xfs_sb_version_hasreflink(&mp->m_sb))
 853                resp->tr_itruncate.tr_logcount =
 854                                XFS_ITRUNCATE_LOG_COUNT_REFLINK;
 855        else
 856                resp->tr_itruncate.tr_logcount = XFS_ITRUNCATE_LOG_COUNT;
 857        resp->tr_itruncate.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 858
 859        resp->tr_rename.tr_logres = xfs_calc_rename_reservation(mp);
 860        resp->tr_rename.tr_logcount = XFS_RENAME_LOG_COUNT;
 861        resp->tr_rename.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 862
 863        resp->tr_link.tr_logres = xfs_calc_link_reservation(mp);
 864        resp->tr_link.tr_logcount = XFS_LINK_LOG_COUNT;
 865        resp->tr_link.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 866
 867        resp->tr_remove.tr_logres = xfs_calc_remove_reservation(mp);
 868        resp->tr_remove.tr_logcount = XFS_REMOVE_LOG_COUNT;
 869        resp->tr_remove.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 870
 871        resp->tr_symlink.tr_logres = xfs_calc_symlink_reservation(mp);
 872        resp->tr_symlink.tr_logcount = XFS_SYMLINK_LOG_COUNT;
 873        resp->tr_symlink.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 874
 875        resp->tr_create.tr_logres = xfs_calc_icreate_reservation(mp);
 876        resp->tr_create.tr_logcount = XFS_CREATE_LOG_COUNT;
 877        resp->tr_create.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 878
 879        resp->tr_create_tmpfile.tr_logres =
 880                        xfs_calc_create_tmpfile_reservation(mp);
 881        resp->tr_create_tmpfile.tr_logcount = XFS_CREATE_TMPFILE_LOG_COUNT;
 882        resp->tr_create_tmpfile.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 883
 884        resp->tr_mkdir.tr_logres = xfs_calc_mkdir_reservation(mp);
 885        resp->tr_mkdir.tr_logcount = XFS_MKDIR_LOG_COUNT;
 886        resp->tr_mkdir.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 887
 888        resp->tr_ifree.tr_logres = xfs_calc_ifree_reservation(mp);
 889        resp->tr_ifree.tr_logcount = XFS_INACTIVE_LOG_COUNT;
 890        resp->tr_ifree.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 891
 892        resp->tr_addafork.tr_logres = xfs_calc_addafork_reservation(mp);
 893        resp->tr_addafork.tr_logcount = XFS_ADDAFORK_LOG_COUNT;
 894        resp->tr_addafork.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 895
 896        resp->tr_attrinval.tr_logres = xfs_calc_attrinval_reservation(mp);
 897        resp->tr_attrinval.tr_logcount = XFS_ATTRINVAL_LOG_COUNT;
 898        resp->tr_attrinval.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 899
 900        resp->tr_attrsetm.tr_logres = xfs_calc_attrsetm_reservation(mp);
 901        resp->tr_attrsetm.tr_logcount = XFS_ATTRSET_LOG_COUNT;
 902        resp->tr_attrsetm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 903
 904        resp->tr_attrrm.tr_logres = xfs_calc_attrrm_reservation(mp);
 905        resp->tr_attrrm.tr_logcount = XFS_ATTRRM_LOG_COUNT;
 906        resp->tr_attrrm.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 907
 908        resp->tr_growrtalloc.tr_logres = xfs_calc_growrtalloc_reservation(mp);
 909        resp->tr_growrtalloc.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
 910        resp->tr_growrtalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 911
 912        resp->tr_qm_dqalloc.tr_logres = xfs_calc_qm_dqalloc_reservation(mp);
 913        if (xfs_sb_version_hasreflink(&mp->m_sb))
 914                resp->tr_qm_dqalloc.tr_logcount = XFS_WRITE_LOG_COUNT_REFLINK;
 915        else
 916                resp->tr_qm_dqalloc.tr_logcount = XFS_WRITE_LOG_COUNT;
 917        resp->tr_qm_dqalloc.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 918
 919        /*
 920         * The following transactions are logged in logical format with
 921         * a default log count.
 922         */
 923        resp->tr_qm_setqlim.tr_logres = xfs_calc_qm_setqlim_reservation();
 924        resp->tr_qm_setqlim.tr_logcount = XFS_DEFAULT_LOG_COUNT;
 925
 926        resp->tr_qm_quotaoff.tr_logres = xfs_calc_qm_quotaoff_reservation(mp);
 927        resp->tr_qm_quotaoff.tr_logcount = XFS_DEFAULT_LOG_COUNT;
 928
 929        resp->tr_qm_equotaoff.tr_logres =
 930                xfs_calc_qm_quotaoff_end_reservation();
 931        resp->tr_qm_equotaoff.tr_logcount = XFS_DEFAULT_LOG_COUNT;
 932
 933        resp->tr_sb.tr_logres = xfs_calc_sb_reservation(mp);
 934        resp->tr_sb.tr_logcount = XFS_DEFAULT_LOG_COUNT;
 935
 936        /* growdata requires permanent res; it can free space to the last AG */
 937        resp->tr_growdata.tr_logres = xfs_calc_growdata_reservation(mp);
 938        resp->tr_growdata.tr_logcount = XFS_DEFAULT_PERM_LOG_COUNT;
 939        resp->tr_growdata.tr_logflags |= XFS_TRANS_PERM_LOG_RES;
 940
 941        /* The following transaction are logged in logical format */
 942        resp->tr_ichange.tr_logres = xfs_calc_ichange_reservation(mp);
 943        resp->tr_fsyncts.tr_logres = xfs_calc_swrite_reservation(mp);
 944        resp->tr_writeid.tr_logres = xfs_calc_writeid_reservation(mp);
 945        resp->tr_attrsetrt.tr_logres = xfs_calc_attrsetrt_reservation(mp);
 946        resp->tr_clearagi.tr_logres = xfs_calc_clear_agi_bucket_reservation(mp);
 947        resp->tr_growrtzero.tr_logres = xfs_calc_growrtzero_reservation(mp);
 948        resp->tr_growrtfree.tr_logres = xfs_calc_growrtfree_reservation(mp);
 949}
 950