linux/include/linux/mmzone.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MMZONE_H
   3#define _LINUX_MMZONE_H
   4
   5#ifndef __ASSEMBLY__
   6#ifndef __GENERATING_BOUNDS_H
   7
   8#include <linux/spinlock.h>
   9#include <linux/list.h>
  10#include <linux/wait.h>
  11#include <linux/bitops.h>
  12#include <linux/cache.h>
  13#include <linux/threads.h>
  14#include <linux/numa.h>
  15#include <linux/init.h>
  16#include <linux/seqlock.h>
  17#include <linux/nodemask.h>
  18#include <linux/pageblock-flags.h>
  19#include <linux/page-flags-layout.h>
  20#include <linux/atomic.h>
  21#include <linux/mm_types.h>
  22#include <linux/page-flags.h>
  23#include <asm/page.h>
  24
  25/* Free memory management - zoned buddy allocator.  */
  26#ifndef CONFIG_FORCE_MAX_ZONEORDER
  27#define MAX_ORDER 11
  28#else
  29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  30#endif
  31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  32
  33/*
  34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  35 * costly to service.  That is between allocation orders which should
  36 * coalesce naturally under reasonable reclaim pressure and those which
  37 * will not.
  38 */
  39#define PAGE_ALLOC_COSTLY_ORDER 3
  40
  41enum migratetype {
  42        MIGRATE_UNMOVABLE,
  43        MIGRATE_MOVABLE,
  44        MIGRATE_RECLAIMABLE,
  45        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  46        MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  47#ifdef CONFIG_CMA
  48        /*
  49         * MIGRATE_CMA migration type is designed to mimic the way
  50         * ZONE_MOVABLE works.  Only movable pages can be allocated
  51         * from MIGRATE_CMA pageblocks and page allocator never
  52         * implicitly change migration type of MIGRATE_CMA pageblock.
  53         *
  54         * The way to use it is to change migratetype of a range of
  55         * pageblocks to MIGRATE_CMA which can be done by
  56         * __free_pageblock_cma() function.  What is important though
  57         * is that a range of pageblocks must be aligned to
  58         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  59         * a single pageblock.
  60         */
  61        MIGRATE_CMA,
  62#endif
  63#ifdef CONFIG_MEMORY_ISOLATION
  64        MIGRATE_ISOLATE,        /* can't allocate from here */
  65#endif
  66        MIGRATE_TYPES
  67};
  68
  69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  70extern const char * const migratetype_names[MIGRATE_TYPES];
  71
  72#ifdef CONFIG_CMA
  73#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  74#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
  75#else
  76#  define is_migrate_cma(migratetype) false
  77#  define is_migrate_cma_page(_page) false
  78#endif
  79
  80static inline bool is_migrate_movable(int mt)
  81{
  82        return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
  83}
  84
  85#define for_each_migratetype_order(order, type) \
  86        for (order = 0; order < MAX_ORDER; order++) \
  87                for (type = 0; type < MIGRATE_TYPES; type++)
  88
  89extern int page_group_by_mobility_disabled;
  90
  91#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  92#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  93
  94#define get_pageblock_migratetype(page)                                 \
  95        get_pfnblock_flags_mask(page, page_to_pfn(page),                \
  96                        PB_migrate_end, MIGRATETYPE_MASK)
  97
  98struct free_area {
  99        struct list_head        free_list[MIGRATE_TYPES];
 100        unsigned long           nr_free;
 101};
 102
 103static inline struct page *get_page_from_free_area(struct free_area *area,
 104                                            int migratetype)
 105{
 106        return list_first_entry_or_null(&area->free_list[migratetype],
 107                                        struct page, lru);
 108}
 109
 110static inline bool free_area_empty(struct free_area *area, int migratetype)
 111{
 112        return list_empty(&area->free_list[migratetype]);
 113}
 114
 115struct pglist_data;
 116
 117/*
 118 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
 119 * So add a wild amount of padding here to ensure that they fall into separate
 120 * cachelines.  There are very few zone structures in the machine, so space
 121 * consumption is not a concern here.
 122 */
 123#if defined(CONFIG_SMP)
 124struct zone_padding {
 125        char x[0];
 126} ____cacheline_internodealigned_in_smp;
 127#define ZONE_PADDING(name)      struct zone_padding name;
 128#else
 129#define ZONE_PADDING(name)
 130#endif
 131
 132#ifdef CONFIG_NUMA
 133enum numa_stat_item {
 134        NUMA_HIT,               /* allocated in intended node */
 135        NUMA_MISS,              /* allocated in non intended node */
 136        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 137        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 138        NUMA_LOCAL,             /* allocation from local node */
 139        NUMA_OTHER,             /* allocation from other node */
 140        NR_VM_NUMA_STAT_ITEMS
 141};
 142#else
 143#define NR_VM_NUMA_STAT_ITEMS 0
 144#endif
 145
 146enum zone_stat_item {
 147        /* First 128 byte cacheline (assuming 64 bit words) */
 148        NR_FREE_PAGES,
 149        NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
 150        NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
 151        NR_ZONE_ACTIVE_ANON,
 152        NR_ZONE_INACTIVE_FILE,
 153        NR_ZONE_ACTIVE_FILE,
 154        NR_ZONE_UNEVICTABLE,
 155        NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
 156        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 157        NR_PAGETABLE,           /* used for pagetables */
 158        NR_KERNEL_STACK_KB,     /* measured in KiB */
 159#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
 160        NR_KERNEL_SCS_KB,       /* measured in KiB */
 161#endif
 162        /* Second 128 byte cacheline */
 163        NR_BOUNCE,
 164#if IS_ENABLED(CONFIG_ZSMALLOC)
 165        NR_ZSPAGES,             /* allocated in zsmalloc */
 166#endif
 167        NR_FREE_CMA_PAGES,
 168        NR_VM_ZONE_STAT_ITEMS };
 169
 170enum node_stat_item {
 171        NR_LRU_BASE,
 172        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 173        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 174        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 175        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 176        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 177        NR_SLAB_RECLAIMABLE,
 178        NR_SLAB_UNRECLAIMABLE,
 179        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 180        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 181        WORKINGSET_NODES,
 182        WORKINGSET_REFAULT,
 183        WORKINGSET_ACTIVATE,
 184        WORKINGSET_RESTORE,
 185        WORKINGSET_NODERECLAIM,
 186        NR_ANON_MAPPED, /* Mapped anonymous pages */
 187        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 188                           only modified from process context */
 189        NR_FILE_PAGES,
 190        NR_FILE_DIRTY,
 191        NR_WRITEBACK,
 192        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 193        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 194        NR_SHMEM_THPS,
 195        NR_SHMEM_PMDMAPPED,
 196        NR_FILE_THPS,
 197        NR_FILE_PMDMAPPED,
 198        NR_ANON_THPS,
 199        NR_VMSCAN_WRITE,
 200        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 201        NR_DIRTIED,             /* page dirtyings since bootup */
 202        NR_WRITTEN,             /* page writings since bootup */
 203        NR_KERNEL_MISC_RECLAIMABLE,     /* reclaimable non-slab kernel pages */
 204        NR_FOLL_PIN_ACQUIRED,   /* via: pin_user_page(), gup flag: FOLL_PIN */
 205        NR_FOLL_PIN_RELEASED,   /* pages returned via unpin_user_page() */
 206        NR_VM_NODE_STAT_ITEMS
 207};
 208
 209/*
 210 * We do arithmetic on the LRU lists in various places in the code,
 211 * so it is important to keep the active lists LRU_ACTIVE higher in
 212 * the array than the corresponding inactive lists, and to keep
 213 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 214 *
 215 * This has to be kept in sync with the statistics in zone_stat_item
 216 * above and the descriptions in vmstat_text in mm/vmstat.c
 217 */
 218#define LRU_BASE 0
 219#define LRU_ACTIVE 1
 220#define LRU_FILE 2
 221
 222enum lru_list {
 223        LRU_INACTIVE_ANON = LRU_BASE,
 224        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 225        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 226        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 227        LRU_UNEVICTABLE,
 228        NR_LRU_LISTS
 229};
 230
 231#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 232
 233#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 234
 235static inline bool is_file_lru(enum lru_list lru)
 236{
 237        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 238}
 239
 240static inline bool is_active_lru(enum lru_list lru)
 241{
 242        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 243}
 244
 245enum lruvec_flags {
 246        LRUVEC_CONGESTED,               /* lruvec has many dirty pages
 247                                         * backed by a congested BDI
 248                                         */
 249};
 250
 251struct lruvec {
 252        struct list_head                lists[NR_LRU_LISTS];
 253        /*
 254         * These track the cost of reclaiming one LRU - file or anon -
 255         * over the other. As the observed cost of reclaiming one LRU
 256         * increases, the reclaim scan balance tips toward the other.
 257         */
 258        unsigned long                   anon_cost;
 259        unsigned long                   file_cost;
 260        /* Non-resident age, driven by LRU movement */
 261        atomic_long_t                   nonresident_age;
 262        /* Refaults at the time of last reclaim cycle */
 263        unsigned long                   refaults;
 264        /* Various lruvec state flags (enum lruvec_flags) */
 265        unsigned long                   flags;
 266#ifdef CONFIG_MEMCG
 267        struct pglist_data *pgdat;
 268#endif
 269};
 270
 271/* Isolate unmapped pages */
 272#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 273/* Isolate for asynchronous migration */
 274#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 275/* Isolate unevictable pages */
 276#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 277
 278/* LRU Isolation modes. */
 279typedef unsigned __bitwise isolate_mode_t;
 280
 281enum zone_watermarks {
 282        WMARK_MIN,
 283        WMARK_LOW,
 284        WMARK_HIGH,
 285        NR_WMARK
 286};
 287
 288#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
 289#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
 290#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
 291#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
 292
 293struct per_cpu_pages {
 294        int count;              /* number of pages in the list */
 295        int high;               /* high watermark, emptying needed */
 296        int batch;              /* chunk size for buddy add/remove */
 297
 298        /* Lists of pages, one per migrate type stored on the pcp-lists */
 299        struct list_head lists[MIGRATE_PCPTYPES];
 300};
 301
 302struct per_cpu_pageset {
 303        struct per_cpu_pages pcp;
 304#ifdef CONFIG_NUMA
 305        s8 expire;
 306        u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
 307#endif
 308#ifdef CONFIG_SMP
 309        s8 stat_threshold;
 310        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 311#endif
 312};
 313
 314struct per_cpu_nodestat {
 315        s8 stat_threshold;
 316        s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
 317};
 318
 319#endif /* !__GENERATING_BOUNDS.H */
 320
 321enum zone_type {
 322        /*
 323         * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
 324         * to DMA to all of the addressable memory (ZONE_NORMAL).
 325         * On architectures where this area covers the whole 32 bit address
 326         * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
 327         * DMA addressing constraints. This distinction is important as a 32bit
 328         * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
 329         * platforms may need both zones as they support peripherals with
 330         * different DMA addressing limitations.
 331         *
 332         * Some examples:
 333         *
 334         *  - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
 335         *    rest of the lower 4G.
 336         *
 337         *  - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
 338         *    the specific device.
 339         *
 340         *  - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
 341         *    lower 4G.
 342         *
 343         *  - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
 344         *    depending on the specific device.
 345         *
 346         *  - s390 uses ZONE_DMA fixed to the lower 2G.
 347         *
 348         *  - ia64 and riscv only use ZONE_DMA32.
 349         *
 350         *  - parisc uses neither.
 351         */
 352#ifdef CONFIG_ZONE_DMA
 353        ZONE_DMA,
 354#endif
 355#ifdef CONFIG_ZONE_DMA32
 356        ZONE_DMA32,
 357#endif
 358        /*
 359         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 360         * performed on pages in ZONE_NORMAL if the DMA devices support
 361         * transfers to all addressable memory.
 362         */
 363        ZONE_NORMAL,
 364#ifdef CONFIG_HIGHMEM
 365        /*
 366         * A memory area that is only addressable by the kernel through
 367         * mapping portions into its own address space. This is for example
 368         * used by i386 to allow the kernel to address the memory beyond
 369         * 900MB. The kernel will set up special mappings (page
 370         * table entries on i386) for each page that the kernel needs to
 371         * access.
 372         */
 373        ZONE_HIGHMEM,
 374#endif
 375        ZONE_MOVABLE,
 376#ifdef CONFIG_ZONE_DEVICE
 377        ZONE_DEVICE,
 378#endif
 379        __MAX_NR_ZONES
 380
 381};
 382
 383#ifndef __GENERATING_BOUNDS_H
 384
 385struct zone {
 386        /* Read-mostly fields */
 387
 388        /* zone watermarks, access with *_wmark_pages(zone) macros */
 389        unsigned long _watermark[NR_WMARK];
 390        unsigned long watermark_boost;
 391
 392        unsigned long nr_reserved_highatomic;
 393
 394        /*
 395         * We don't know if the memory that we're going to allocate will be
 396         * freeable or/and it will be released eventually, so to avoid totally
 397         * wasting several GB of ram we must reserve some of the lower zone
 398         * memory (otherwise we risk to run OOM on the lower zones despite
 399         * there being tons of freeable ram on the higher zones).  This array is
 400         * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 401         * changes.
 402         */
 403        long lowmem_reserve[MAX_NR_ZONES];
 404
 405#ifdef CONFIG_NUMA
 406        int node;
 407#endif
 408        struct pglist_data      *zone_pgdat;
 409        struct per_cpu_pageset __percpu *pageset;
 410
 411#ifndef CONFIG_SPARSEMEM
 412        /*
 413         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 414         * In SPARSEMEM, this map is stored in struct mem_section
 415         */
 416        unsigned long           *pageblock_flags;
 417#endif /* CONFIG_SPARSEMEM */
 418
 419        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 420        unsigned long           zone_start_pfn;
 421
 422        /*
 423         * spanned_pages is the total pages spanned by the zone, including
 424         * holes, which is calculated as:
 425         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 426         *
 427         * present_pages is physical pages existing within the zone, which
 428         * is calculated as:
 429         *      present_pages = spanned_pages - absent_pages(pages in holes);
 430         *
 431         * managed_pages is present pages managed by the buddy system, which
 432         * is calculated as (reserved_pages includes pages allocated by the
 433         * bootmem allocator):
 434         *      managed_pages = present_pages - reserved_pages;
 435         *
 436         * So present_pages may be used by memory hotplug or memory power
 437         * management logic to figure out unmanaged pages by checking
 438         * (present_pages - managed_pages). And managed_pages should be used
 439         * by page allocator and vm scanner to calculate all kinds of watermarks
 440         * and thresholds.
 441         *
 442         * Locking rules:
 443         *
 444         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 445         * It is a seqlock because it has to be read outside of zone->lock,
 446         * and it is done in the main allocator path.  But, it is written
 447         * quite infrequently.
 448         *
 449         * The span_seq lock is declared along with zone->lock because it is
 450         * frequently read in proximity to zone->lock.  It's good to
 451         * give them a chance of being in the same cacheline.
 452         *
 453         * Write access to present_pages at runtime should be protected by
 454         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 455         * present_pages should get_online_mems() to get a stable value.
 456         */
 457        atomic_long_t           managed_pages;
 458        unsigned long           spanned_pages;
 459        unsigned long           present_pages;
 460
 461        const char              *name;
 462
 463#ifdef CONFIG_MEMORY_ISOLATION
 464        /*
 465         * Number of isolated pageblock. It is used to solve incorrect
 466         * freepage counting problem due to racy retrieving migratetype
 467         * of pageblock. Protected by zone->lock.
 468         */
 469        unsigned long           nr_isolate_pageblock;
 470#endif
 471
 472#ifdef CONFIG_MEMORY_HOTPLUG
 473        /* see spanned/present_pages for more description */
 474        seqlock_t               span_seqlock;
 475#endif
 476
 477        int initialized;
 478
 479        /* Write-intensive fields used from the page allocator */
 480        ZONE_PADDING(_pad1_)
 481
 482        /* free areas of different sizes */
 483        struct free_area        free_area[MAX_ORDER];
 484
 485        /* zone flags, see below */
 486        unsigned long           flags;
 487
 488        /* Primarily protects free_area */
 489        spinlock_t              lock;
 490
 491        /* Write-intensive fields used by compaction and vmstats. */
 492        ZONE_PADDING(_pad2_)
 493
 494        /*
 495         * When free pages are below this point, additional steps are taken
 496         * when reading the number of free pages to avoid per-cpu counter
 497         * drift allowing watermarks to be breached
 498         */
 499        unsigned long percpu_drift_mark;
 500
 501#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 502        /* pfn where compaction free scanner should start */
 503        unsigned long           compact_cached_free_pfn;
 504        /* pfn where async and sync compaction migration scanner should start */
 505        unsigned long           compact_cached_migrate_pfn[2];
 506        unsigned long           compact_init_migrate_pfn;
 507        unsigned long           compact_init_free_pfn;
 508#endif
 509
 510#ifdef CONFIG_COMPACTION
 511        /*
 512         * On compaction failure, 1<<compact_defer_shift compactions
 513         * are skipped before trying again. The number attempted since
 514         * last failure is tracked with compact_considered.
 515         */
 516        unsigned int            compact_considered;
 517        unsigned int            compact_defer_shift;
 518        int                     compact_order_failed;
 519#endif
 520
 521#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 522        /* Set to true when the PG_migrate_skip bits should be cleared */
 523        bool                    compact_blockskip_flush;
 524#endif
 525
 526        bool                    contiguous;
 527
 528        ZONE_PADDING(_pad3_)
 529        /* Zone statistics */
 530        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 531        atomic_long_t           vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
 532} ____cacheline_internodealigned_in_smp;
 533
 534enum pgdat_flags {
 535        PGDAT_DIRTY,                    /* reclaim scanning has recently found
 536                                         * many dirty file pages at the tail
 537                                         * of the LRU.
 538                                         */
 539        PGDAT_WRITEBACK,                /* reclaim scanning has recently found
 540                                         * many pages under writeback
 541                                         */
 542        PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
 543};
 544
 545enum zone_flags {
 546        ZONE_BOOSTED_WATERMARK,         /* zone recently boosted watermarks.
 547                                         * Cleared when kswapd is woken.
 548                                         */
 549};
 550
 551static inline unsigned long zone_managed_pages(struct zone *zone)
 552{
 553        return (unsigned long)atomic_long_read(&zone->managed_pages);
 554}
 555
 556static inline unsigned long zone_end_pfn(const struct zone *zone)
 557{
 558        return zone->zone_start_pfn + zone->spanned_pages;
 559}
 560
 561static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 562{
 563        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 564}
 565
 566static inline bool zone_is_initialized(struct zone *zone)
 567{
 568        return zone->initialized;
 569}
 570
 571static inline bool zone_is_empty(struct zone *zone)
 572{
 573        return zone->spanned_pages == 0;
 574}
 575
 576/*
 577 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
 578 * intersection with the given zone
 579 */
 580static inline bool zone_intersects(struct zone *zone,
 581                unsigned long start_pfn, unsigned long nr_pages)
 582{
 583        if (zone_is_empty(zone))
 584                return false;
 585        if (start_pfn >= zone_end_pfn(zone) ||
 586            start_pfn + nr_pages <= zone->zone_start_pfn)
 587                return false;
 588
 589        return true;
 590}
 591
 592/*
 593 * The "priority" of VM scanning is how much of the queues we will scan in one
 594 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 595 * queues ("queue_length >> 12") during an aging round.
 596 */
 597#define DEF_PRIORITY 12
 598
 599/* Maximum number of zones on a zonelist */
 600#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 601
 602enum {
 603        ZONELIST_FALLBACK,      /* zonelist with fallback */
 604#ifdef CONFIG_NUMA
 605        /*
 606         * The NUMA zonelists are doubled because we need zonelists that
 607         * restrict the allocations to a single node for __GFP_THISNODE.
 608         */
 609        ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
 610#endif
 611        MAX_ZONELISTS
 612};
 613
 614/*
 615 * This struct contains information about a zone in a zonelist. It is stored
 616 * here to avoid dereferences into large structures and lookups of tables
 617 */
 618struct zoneref {
 619        struct zone *zone;      /* Pointer to actual zone */
 620        int zone_idx;           /* zone_idx(zoneref->zone) */
 621};
 622
 623/*
 624 * One allocation request operates on a zonelist. A zonelist
 625 * is a list of zones, the first one is the 'goal' of the
 626 * allocation, the other zones are fallback zones, in decreasing
 627 * priority.
 628 *
 629 * To speed the reading of the zonelist, the zonerefs contain the zone index
 630 * of the entry being read. Helper functions to access information given
 631 * a struct zoneref are
 632 *
 633 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 634 * zonelist_zone_idx()  - Return the index of the zone for an entry
 635 * zonelist_node_idx()  - Return the index of the node for an entry
 636 */
 637struct zonelist {
 638        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 639};
 640
 641#ifndef CONFIG_DISCONTIGMEM
 642/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 643extern struct page *mem_map;
 644#endif
 645
 646#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 647struct deferred_split {
 648        spinlock_t split_queue_lock;
 649        struct list_head split_queue;
 650        unsigned long split_queue_len;
 651};
 652#endif
 653
 654/*
 655 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 656 * it's memory layout. On UMA machines there is a single pglist_data which
 657 * describes the whole memory.
 658 *
 659 * Memory statistics and page replacement data structures are maintained on a
 660 * per-zone basis.
 661 */
 662typedef struct pglist_data {
 663        /*
 664         * node_zones contains just the zones for THIS node. Not all of the
 665         * zones may be populated, but it is the full list. It is referenced by
 666         * this node's node_zonelists as well as other node's node_zonelists.
 667         */
 668        struct zone node_zones[MAX_NR_ZONES];
 669
 670        /*
 671         * node_zonelists contains references to all zones in all nodes.
 672         * Generally the first zones will be references to this node's
 673         * node_zones.
 674         */
 675        struct zonelist node_zonelists[MAX_ZONELISTS];
 676
 677        int nr_zones; /* number of populated zones in this node */
 678#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 679        struct page *node_mem_map;
 680#ifdef CONFIG_PAGE_EXTENSION
 681        struct page_ext *node_page_ext;
 682#endif
 683#endif
 684#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
 685        /*
 686         * Must be held any time you expect node_start_pfn,
 687         * node_present_pages, node_spanned_pages or nr_zones to stay constant.
 688         * Also synchronizes pgdat->first_deferred_pfn during deferred page
 689         * init.
 690         *
 691         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 692         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
 693         * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
 694         *
 695         * Nests above zone->lock and zone->span_seqlock
 696         */
 697        spinlock_t node_size_lock;
 698#endif
 699        unsigned long node_start_pfn;
 700        unsigned long node_present_pages; /* total number of physical pages */
 701        unsigned long node_spanned_pages; /* total size of physical page
 702                                             range, including holes */
 703        int node_id;
 704        wait_queue_head_t kswapd_wait;
 705        wait_queue_head_t pfmemalloc_wait;
 706        struct task_struct *kswapd;     /* Protected by
 707                                           mem_hotplug_begin/end() */
 708        int kswapd_order;
 709        enum zone_type kswapd_highest_zoneidx;
 710
 711        int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
 712
 713#ifdef CONFIG_COMPACTION
 714        int kcompactd_max_order;
 715        enum zone_type kcompactd_highest_zoneidx;
 716        wait_queue_head_t kcompactd_wait;
 717        struct task_struct *kcompactd;
 718#endif
 719        /*
 720         * This is a per-node reserve of pages that are not available
 721         * to userspace allocations.
 722         */
 723        unsigned long           totalreserve_pages;
 724
 725#ifdef CONFIG_NUMA
 726        /*
 727         * node reclaim becomes active if more unmapped pages exist.
 728         */
 729        unsigned long           min_unmapped_pages;
 730        unsigned long           min_slab_pages;
 731#endif /* CONFIG_NUMA */
 732
 733        /* Write-intensive fields used by page reclaim */
 734        ZONE_PADDING(_pad1_)
 735        spinlock_t              lru_lock;
 736
 737#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 738        /*
 739         * If memory initialisation on large machines is deferred then this
 740         * is the first PFN that needs to be initialised.
 741         */
 742        unsigned long first_deferred_pfn;
 743#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 744
 745#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 746        struct deferred_split deferred_split_queue;
 747#endif
 748
 749        /* Fields commonly accessed by the page reclaim scanner */
 750
 751        /*
 752         * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
 753         *
 754         * Use mem_cgroup_lruvec() to look up lruvecs.
 755         */
 756        struct lruvec           __lruvec;
 757
 758        unsigned long           flags;
 759
 760        ZONE_PADDING(_pad2_)
 761
 762        /* Per-node vmstats */
 763        struct per_cpu_nodestat __percpu *per_cpu_nodestats;
 764        atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
 765} pg_data_t;
 766
 767#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 768#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 769#ifdef CONFIG_FLAT_NODE_MEM_MAP
 770#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 771#else
 772#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 773#endif
 774#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 775
 776#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 777#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 778
 779static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 780{
 781        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 782}
 783
 784static inline bool pgdat_is_empty(pg_data_t *pgdat)
 785{
 786        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 787}
 788
 789#include <linux/memory_hotplug.h>
 790
 791void build_all_zonelists(pg_data_t *pgdat);
 792void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
 793                   enum zone_type highest_zoneidx);
 794bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 795                         int highest_zoneidx, unsigned int alloc_flags,
 796                         long free_pages);
 797bool zone_watermark_ok(struct zone *z, unsigned int order,
 798                unsigned long mark, int highest_zoneidx,
 799                unsigned int alloc_flags);
 800bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 801                unsigned long mark, int highest_zoneidx);
 802enum memmap_context {
 803        MEMMAP_EARLY,
 804        MEMMAP_HOTPLUG,
 805};
 806extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 807                                     unsigned long size);
 808
 809extern void lruvec_init(struct lruvec *lruvec);
 810
 811static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
 812{
 813#ifdef CONFIG_MEMCG
 814        return lruvec->pgdat;
 815#else
 816        return container_of(lruvec, struct pglist_data, __lruvec);
 817#endif
 818}
 819
 820extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
 821
 822#ifdef CONFIG_HAVE_MEMORY_PRESENT
 823void memory_present(int nid, unsigned long start, unsigned long end);
 824#else
 825static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 826#endif
 827
 828#if defined(CONFIG_SPARSEMEM)
 829void memblocks_present(void);
 830#else
 831static inline void memblocks_present(void) {}
 832#endif
 833
 834#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 835int local_memory_node(int node_id);
 836#else
 837static inline int local_memory_node(int node_id) { return node_id; };
 838#endif
 839
 840/*
 841 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 842 */
 843#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 844
 845/*
 846 * Returns true if a zone has pages managed by the buddy allocator.
 847 * All the reclaim decisions have to use this function rather than
 848 * populated_zone(). If the whole zone is reserved then we can easily
 849 * end up with populated_zone() && !managed_zone().
 850 */
 851static inline bool managed_zone(struct zone *zone)
 852{
 853        return zone_managed_pages(zone);
 854}
 855
 856/* Returns true if a zone has memory */
 857static inline bool populated_zone(struct zone *zone)
 858{
 859        return zone->present_pages;
 860}
 861
 862#ifdef CONFIG_NUMA
 863static inline int zone_to_nid(struct zone *zone)
 864{
 865        return zone->node;
 866}
 867
 868static inline void zone_set_nid(struct zone *zone, int nid)
 869{
 870        zone->node = nid;
 871}
 872#else
 873static inline int zone_to_nid(struct zone *zone)
 874{
 875        return 0;
 876}
 877
 878static inline void zone_set_nid(struct zone *zone, int nid) {}
 879#endif
 880
 881extern int movable_zone;
 882
 883#ifdef CONFIG_HIGHMEM
 884static inline int zone_movable_is_highmem(void)
 885{
 886#ifdef CONFIG_NEED_MULTIPLE_NODES
 887        return movable_zone == ZONE_HIGHMEM;
 888#else
 889        return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 890#endif
 891}
 892#endif
 893
 894static inline int is_highmem_idx(enum zone_type idx)
 895{
 896#ifdef CONFIG_HIGHMEM
 897        return (idx == ZONE_HIGHMEM ||
 898                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 899#else
 900        return 0;
 901#endif
 902}
 903
 904/**
 905 * is_highmem - helper function to quickly check if a struct zone is a
 906 *              highmem zone or not.  This is an attempt to keep references
 907 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 908 * @zone - pointer to struct zone variable
 909 */
 910static inline int is_highmem(struct zone *zone)
 911{
 912#ifdef CONFIG_HIGHMEM
 913        return is_highmem_idx(zone_idx(zone));
 914#else
 915        return 0;
 916#endif
 917}
 918
 919/* These two functions are used to setup the per zone pages min values */
 920struct ctl_table;
 921
 922int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
 923                loff_t *);
 924int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
 925                size_t *, loff_t *);
 926extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
 927int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
 928                size_t *, loff_t *);
 929int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 930                void *, size_t *, loff_t *);
 931int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 932                void *, size_t *, loff_t *);
 933int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 934                void *, size_t *, loff_t *);
 935int numa_zonelist_order_handler(struct ctl_table *, int,
 936                void *, size_t *, loff_t *);
 937extern int percpu_pagelist_fraction;
 938extern char numa_zonelist_order[];
 939#define NUMA_ZONELIST_ORDER_LEN 16
 940
 941#ifndef CONFIG_NEED_MULTIPLE_NODES
 942
 943extern struct pglist_data contig_page_data;
 944#define NODE_DATA(nid)          (&contig_page_data)
 945#define NODE_MEM_MAP(nid)       mem_map
 946
 947#else /* CONFIG_NEED_MULTIPLE_NODES */
 948
 949#include <asm/mmzone.h>
 950
 951#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 952
 953extern struct pglist_data *first_online_pgdat(void);
 954extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 955extern struct zone *next_zone(struct zone *zone);
 956
 957/**
 958 * for_each_online_pgdat - helper macro to iterate over all online nodes
 959 * @pgdat - pointer to a pg_data_t variable
 960 */
 961#define for_each_online_pgdat(pgdat)                    \
 962        for (pgdat = first_online_pgdat();              \
 963             pgdat;                                     \
 964             pgdat = next_online_pgdat(pgdat))
 965/**
 966 * for_each_zone - helper macro to iterate over all memory zones
 967 * @zone - pointer to struct zone variable
 968 *
 969 * The user only needs to declare the zone variable, for_each_zone
 970 * fills it in.
 971 */
 972#define for_each_zone(zone)                             \
 973        for (zone = (first_online_pgdat())->node_zones; \
 974             zone;                                      \
 975             zone = next_zone(zone))
 976
 977#define for_each_populated_zone(zone)                   \
 978        for (zone = (first_online_pgdat())->node_zones; \
 979             zone;                                      \
 980             zone = next_zone(zone))                    \
 981                if (!populated_zone(zone))              \
 982                        ; /* do nothing */              \
 983                else
 984
 985static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 986{
 987        return zoneref->zone;
 988}
 989
 990static inline int zonelist_zone_idx(struct zoneref *zoneref)
 991{
 992        return zoneref->zone_idx;
 993}
 994
 995static inline int zonelist_node_idx(struct zoneref *zoneref)
 996{
 997        return zone_to_nid(zoneref->zone);
 998}
 999
1000struct zoneref *__next_zones_zonelist(struct zoneref *z,
1001                                        enum zone_type highest_zoneidx,
1002                                        nodemask_t *nodes);
1003
1004/**
1005 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1006 * @z - The cursor used as a starting point for the search
1007 * @highest_zoneidx - The zone index of the highest zone to return
1008 * @nodes - An optional nodemask to filter the zonelist with
1009 *
1010 * This function returns the next zone at or below a given zone index that is
1011 * within the allowed nodemask using a cursor as the starting point for the
1012 * search. The zoneref returned is a cursor that represents the current zone
1013 * being examined. It should be advanced by one before calling
1014 * next_zones_zonelist again.
1015 */
1016static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1017                                        enum zone_type highest_zoneidx,
1018                                        nodemask_t *nodes)
1019{
1020        if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1021                return z;
1022        return __next_zones_zonelist(z, highest_zoneidx, nodes);
1023}
1024
1025/**
1026 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1027 * @zonelist - The zonelist to search for a suitable zone
1028 * @highest_zoneidx - The zone index of the highest zone to return
1029 * @nodes - An optional nodemask to filter the zonelist with
1030 * @return - Zoneref pointer for the first suitable zone found (see below)
1031 *
1032 * This function returns the first zone at or below a given zone index that is
1033 * within the allowed nodemask. The zoneref returned is a cursor that can be
1034 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1035 * one before calling.
1036 *
1037 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1038 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1039 * update due to cpuset modification.
1040 */
1041static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1042                                        enum zone_type highest_zoneidx,
1043                                        nodemask_t *nodes)
1044{
1045        return next_zones_zonelist(zonelist->_zonerefs,
1046                                                        highest_zoneidx, nodes);
1047}
1048
1049/**
1050 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1051 * @zone - The current zone in the iterator
1052 * @z - The current pointer within zonelist->_zonerefs being iterated
1053 * @zlist - The zonelist being iterated
1054 * @highidx - The zone index of the highest zone to return
1055 * @nodemask - Nodemask allowed by the allocator
1056 *
1057 * This iterator iterates though all zones at or below a given zone index and
1058 * within a given nodemask
1059 */
1060#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1061        for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
1062                zone;                                                   \
1063                z = next_zones_zonelist(++z, highidx, nodemask),        \
1064                        zone = zonelist_zone(z))
1065
1066#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1067        for (zone = z->zone;    \
1068                zone;                                                   \
1069                z = next_zones_zonelist(++z, highidx, nodemask),        \
1070                        zone = zonelist_zone(z))
1071
1072
1073/**
1074 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1075 * @zone - The current zone in the iterator
1076 * @z - The current pointer within zonelist->zones being iterated
1077 * @zlist - The zonelist being iterated
1078 * @highidx - The zone index of the highest zone to return
1079 *
1080 * This iterator iterates though all zones at or below a given zone index.
1081 */
1082#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1083        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1084
1085#ifdef CONFIG_SPARSEMEM
1086#include <asm/sparsemem.h>
1087#endif
1088
1089#ifdef CONFIG_FLATMEM
1090#define pfn_to_nid(pfn)         (0)
1091#endif
1092
1093#ifdef CONFIG_SPARSEMEM
1094
1095/*
1096 * SECTION_SHIFT                #bits space required to store a section #
1097 *
1098 * PA_SECTION_SHIFT             physical address to/from section number
1099 * PFN_SECTION_SHIFT            pfn to/from section number
1100 */
1101#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1102#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1103
1104#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1105
1106#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1107#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1108
1109#define SECTION_BLOCKFLAGS_BITS \
1110        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1111
1112#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1113#error Allocator MAX_ORDER exceeds SECTION_SIZE
1114#endif
1115
1116static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1117{
1118        return pfn >> PFN_SECTION_SHIFT;
1119}
1120static inline unsigned long section_nr_to_pfn(unsigned long sec)
1121{
1122        return sec << PFN_SECTION_SHIFT;
1123}
1124
1125#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1126#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1127
1128#define SUBSECTION_SHIFT 21
1129#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1130
1131#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1132#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1133#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1134
1135#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1136#error Subsection size exceeds section size
1137#else
1138#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1139#endif
1140
1141#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1142#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1143
1144struct mem_section_usage {
1145#ifdef CONFIG_SPARSEMEM_VMEMMAP
1146        DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1147#endif
1148        /* See declaration of similar field in struct zone */
1149        unsigned long pageblock_flags[0];
1150};
1151
1152void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1153
1154struct page;
1155struct page_ext;
1156struct mem_section {
1157        /*
1158         * This is, logically, a pointer to an array of struct
1159         * pages.  However, it is stored with some other magic.
1160         * (see sparse.c::sparse_init_one_section())
1161         *
1162         * Additionally during early boot we encode node id of
1163         * the location of the section here to guide allocation.
1164         * (see sparse.c::memory_present())
1165         *
1166         * Making it a UL at least makes someone do a cast
1167         * before using it wrong.
1168         */
1169        unsigned long section_mem_map;
1170
1171        struct mem_section_usage *usage;
1172#ifdef CONFIG_PAGE_EXTENSION
1173        /*
1174         * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1175         * section. (see page_ext.h about this.)
1176         */
1177        struct page_ext *page_ext;
1178        unsigned long pad;
1179#endif
1180        /*
1181         * WARNING: mem_section must be a power-of-2 in size for the
1182         * calculation and use of SECTION_ROOT_MASK to make sense.
1183         */
1184};
1185
1186#ifdef CONFIG_SPARSEMEM_EXTREME
1187#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1188#else
1189#define SECTIONS_PER_ROOT       1
1190#endif
1191
1192#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1193#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1194#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1195
1196#ifdef CONFIG_SPARSEMEM_EXTREME
1197extern struct mem_section **mem_section;
1198#else
1199extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1200#endif
1201
1202static inline unsigned long *section_to_usemap(struct mem_section *ms)
1203{
1204        return ms->usage->pageblock_flags;
1205}
1206
1207static inline struct mem_section *__nr_to_section(unsigned long nr)
1208{
1209#ifdef CONFIG_SPARSEMEM_EXTREME
1210        if (!mem_section)
1211                return NULL;
1212#endif
1213        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1214                return NULL;
1215        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1216}
1217extern unsigned long __section_nr(struct mem_section *ms);
1218extern size_t mem_section_usage_size(void);
1219
1220/*
1221 * We use the lower bits of the mem_map pointer to store
1222 * a little bit of information.  The pointer is calculated
1223 * as mem_map - section_nr_to_pfn(pnum).  The result is
1224 * aligned to the minimum alignment of the two values:
1225 *   1. All mem_map arrays are page-aligned.
1226 *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1227 *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1228 *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1229 *      worst combination is powerpc with 256k pages,
1230 *      which results in PFN_SECTION_SHIFT equal 6.
1231 * To sum it up, at least 6 bits are available.
1232 */
1233#define SECTION_MARKED_PRESENT  (1UL<<0)
1234#define SECTION_HAS_MEM_MAP     (1UL<<1)
1235#define SECTION_IS_ONLINE       (1UL<<2)
1236#define SECTION_IS_EARLY        (1UL<<3)
1237#define SECTION_MAP_LAST_BIT    (1UL<<4)
1238#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1239#define SECTION_NID_SHIFT       3
1240
1241static inline struct page *__section_mem_map_addr(struct mem_section *section)
1242{
1243        unsigned long map = section->section_mem_map;
1244        map &= SECTION_MAP_MASK;
1245        return (struct page *)map;
1246}
1247
1248static inline int present_section(struct mem_section *section)
1249{
1250        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1251}
1252
1253static inline int present_section_nr(unsigned long nr)
1254{
1255        return present_section(__nr_to_section(nr));
1256}
1257
1258static inline int valid_section(struct mem_section *section)
1259{
1260        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1261}
1262
1263static inline int early_section(struct mem_section *section)
1264{
1265        return (section && (section->section_mem_map & SECTION_IS_EARLY));
1266}
1267
1268static inline int valid_section_nr(unsigned long nr)
1269{
1270        return valid_section(__nr_to_section(nr));
1271}
1272
1273static inline int online_section(struct mem_section *section)
1274{
1275        return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1276}
1277
1278static inline int online_section_nr(unsigned long nr)
1279{
1280        return online_section(__nr_to_section(nr));
1281}
1282
1283#ifdef CONFIG_MEMORY_HOTPLUG
1284void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1285#ifdef CONFIG_MEMORY_HOTREMOVE
1286void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1287#endif
1288#endif
1289
1290static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1291{
1292        return __nr_to_section(pfn_to_section_nr(pfn));
1293}
1294
1295extern unsigned long __highest_present_section_nr;
1296
1297static inline int subsection_map_index(unsigned long pfn)
1298{
1299        return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1300}
1301
1302#ifdef CONFIG_SPARSEMEM_VMEMMAP
1303static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1304{
1305        int idx = subsection_map_index(pfn);
1306
1307        return test_bit(idx, ms->usage->subsection_map);
1308}
1309#else
1310static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1311{
1312        return 1;
1313}
1314#endif
1315
1316#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1317static inline int pfn_valid(unsigned long pfn)
1318{
1319        struct mem_section *ms;
1320
1321        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1322                return 0;
1323        ms = __nr_to_section(pfn_to_section_nr(pfn));
1324        if (!valid_section(ms))
1325                return 0;
1326        /*
1327         * Traditionally early sections always returned pfn_valid() for
1328         * the entire section-sized span.
1329         */
1330        return early_section(ms) || pfn_section_valid(ms, pfn);
1331}
1332#endif
1333
1334static inline int pfn_in_present_section(unsigned long pfn)
1335{
1336        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1337                return 0;
1338        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1339}
1340
1341static inline unsigned long next_present_section_nr(unsigned long section_nr)
1342{
1343        while (++section_nr <= __highest_present_section_nr) {
1344                if (present_section_nr(section_nr))
1345                        return section_nr;
1346        }
1347
1348        return -1;
1349}
1350
1351/*
1352 * These are _only_ used during initialisation, therefore they
1353 * can use __initdata ...  They could have names to indicate
1354 * this restriction.
1355 */
1356#ifdef CONFIG_NUMA
1357#define pfn_to_nid(pfn)                                                 \
1358({                                                                      \
1359        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1360        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1361})
1362#else
1363#define pfn_to_nid(pfn)         (0)
1364#endif
1365
1366#define early_pfn_valid(pfn)    pfn_valid(pfn)
1367void sparse_init(void);
1368#else
1369#define sparse_init()   do {} while (0)
1370#define sparse_index_init(_sec, _nid)  do {} while (0)
1371#define pfn_in_present_section pfn_valid
1372#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1373#endif /* CONFIG_SPARSEMEM */
1374
1375/*
1376 * During memory init memblocks map pfns to nids. The search is expensive and
1377 * this caches recent lookups. The implementation of __early_pfn_to_nid
1378 * may treat start/end as pfns or sections.
1379 */
1380struct mminit_pfnnid_cache {
1381        unsigned long last_start;
1382        unsigned long last_end;
1383        int last_nid;
1384};
1385
1386#ifndef early_pfn_valid
1387#define early_pfn_valid(pfn)    (1)
1388#endif
1389
1390void memory_present(int nid, unsigned long start, unsigned long end);
1391
1392/*
1393 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1394 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1395 * pfn_valid_within() should be used in this case; we optimise this away
1396 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1397 */
1398#ifdef CONFIG_HOLES_IN_ZONE
1399#define pfn_valid_within(pfn) pfn_valid(pfn)
1400#else
1401#define pfn_valid_within(pfn) (1)
1402#endif
1403
1404#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1405/*
1406 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1407 * associated with it or not. This means that a struct page exists for this
1408 * pfn. The caller cannot assume the page is fully initialized in general.
1409 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1410 * will ensure the struct page is fully online and initialized. Special pages
1411 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1412 *
1413 * In FLATMEM, it is expected that holes always have valid memmap as long as
1414 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1415 * that a valid section has a memmap for the entire section.
1416 *
1417 * However, an ARM, and maybe other embedded architectures in the future
1418 * free memmap backing holes to save memory on the assumption the memmap is
1419 * never used. The page_zone linkages are then broken even though pfn_valid()
1420 * returns true. A walker of the full memmap must then do this additional
1421 * check to ensure the memmap they are looking at is sane by making sure
1422 * the zone and PFN linkages are still valid. This is expensive, but walkers
1423 * of the full memmap are extremely rare.
1424 */
1425bool memmap_valid_within(unsigned long pfn,
1426                                        struct page *page, struct zone *zone);
1427#else
1428static inline bool memmap_valid_within(unsigned long pfn,
1429                                        struct page *page, struct zone *zone)
1430{
1431        return true;
1432}
1433#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1434
1435#endif /* !__GENERATING_BOUNDS.H */
1436#endif /* !__ASSEMBLY__ */
1437#endif /* _LINUX_MMZONE_H */
1438