linux/include/linux/sched.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_H
   3#define _LINUX_SCHED_H
   4
   5/*
   6 * Define 'struct task_struct' and provide the main scheduler
   7 * APIs (schedule(), wakeup variants, etc.)
   8 */
   9
  10#include <uapi/linux/sched.h>
  11
  12#include <asm/current.h>
  13
  14#include <linux/pid.h>
  15#include <linux/sem.h>
  16#include <linux/shm.h>
  17#include <linux/kcov.h>
  18#include <linux/mutex.h>
  19#include <linux/plist.h>
  20#include <linux/hrtimer.h>
  21#include <linux/seccomp.h>
  22#include <linux/nodemask.h>
  23#include <linux/rcupdate.h>
  24#include <linux/refcount.h>
  25#include <linux/resource.h>
  26#include <linux/latencytop.h>
  27#include <linux/sched/prio.h>
  28#include <linux/sched/types.h>
  29#include <linux/signal_types.h>
  30#include <linux/mm_types_task.h>
  31#include <linux/task_io_accounting.h>
  32#include <linux/posix-timers.h>
  33#include <linux/rseq.h>
  34#include <linux/kcsan.h>
  35
  36/* task_struct member predeclarations (sorted alphabetically): */
  37struct audit_context;
  38struct backing_dev_info;
  39struct bio_list;
  40struct blk_plug;
  41struct capture_control;
  42struct cfs_rq;
  43struct fs_struct;
  44struct futex_pi_state;
  45struct io_context;
  46struct mempolicy;
  47struct nameidata;
  48struct nsproxy;
  49struct perf_event_context;
  50struct pid_namespace;
  51struct pipe_inode_info;
  52struct rcu_node;
  53struct reclaim_state;
  54struct robust_list_head;
  55struct root_domain;
  56struct rq;
  57struct sched_attr;
  58struct sched_param;
  59struct seq_file;
  60struct sighand_struct;
  61struct signal_struct;
  62struct task_delay_info;
  63struct task_group;
  64
  65/*
  66 * Task state bitmask. NOTE! These bits are also
  67 * encoded in fs/proc/array.c: get_task_state().
  68 *
  69 * We have two separate sets of flags: task->state
  70 * is about runnability, while task->exit_state are
  71 * about the task exiting. Confusing, but this way
  72 * modifying one set can't modify the other one by
  73 * mistake.
  74 */
  75
  76/* Used in tsk->state: */
  77#define TASK_RUNNING                    0x0000
  78#define TASK_INTERRUPTIBLE              0x0001
  79#define TASK_UNINTERRUPTIBLE            0x0002
  80#define __TASK_STOPPED                  0x0004
  81#define __TASK_TRACED                   0x0008
  82/* Used in tsk->exit_state: */
  83#define EXIT_DEAD                       0x0010
  84#define EXIT_ZOMBIE                     0x0020
  85#define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
  86/* Used in tsk->state again: */
  87#define TASK_PARKED                     0x0040
  88#define TASK_DEAD                       0x0080
  89#define TASK_WAKEKILL                   0x0100
  90#define TASK_WAKING                     0x0200
  91#define TASK_NOLOAD                     0x0400
  92#define TASK_NEW                        0x0800
  93#define TASK_STATE_MAX                  0x1000
  94
  95/* Convenience macros for the sake of set_current_state: */
  96#define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
  97#define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
  98#define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
  99
 100#define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 101
 102/* Convenience macros for the sake of wake_up(): */
 103#define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 104
 105/* get_task_state(): */
 106#define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 107                                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 108                                         __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
 109                                         TASK_PARKED)
 110
 111#define task_is_traced(task)            ((task->state & __TASK_TRACED) != 0)
 112
 113#define task_is_stopped(task)           ((task->state & __TASK_STOPPED) != 0)
 114
 115#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 116
 117#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 118
 119/*
 120 * Special states are those that do not use the normal wait-loop pattern. See
 121 * the comment with set_special_state().
 122 */
 123#define is_special_task_state(state)                            \
 124        ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
 125
 126#define __set_current_state(state_value)                        \
 127        do {                                                    \
 128                WARN_ON_ONCE(is_special_task_state(state_value));\
 129                current->task_state_change = _THIS_IP_;         \
 130                current->state = (state_value);                 \
 131        } while (0)
 132
 133#define set_current_state(state_value)                          \
 134        do {                                                    \
 135                WARN_ON_ONCE(is_special_task_state(state_value));\
 136                current->task_state_change = _THIS_IP_;         \
 137                smp_store_mb(current->state, (state_value));    \
 138        } while (0)
 139
 140#define set_special_state(state_value)                                  \
 141        do {                                                            \
 142                unsigned long flags; /* may shadow */                   \
 143                WARN_ON_ONCE(!is_special_task_state(state_value));      \
 144                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 145                current->task_state_change = _THIS_IP_;                 \
 146                current->state = (state_value);                         \
 147                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 148        } while (0)
 149#else
 150/*
 151 * set_current_state() includes a barrier so that the write of current->state
 152 * is correctly serialised wrt the caller's subsequent test of whether to
 153 * actually sleep:
 154 *
 155 *   for (;;) {
 156 *      set_current_state(TASK_UNINTERRUPTIBLE);
 157 *      if (!need_sleep)
 158 *              break;
 159 *
 160 *      schedule();
 161 *   }
 162 *   __set_current_state(TASK_RUNNING);
 163 *
 164 * If the caller does not need such serialisation (because, for instance, the
 165 * condition test and condition change and wakeup are under the same lock) then
 166 * use __set_current_state().
 167 *
 168 * The above is typically ordered against the wakeup, which does:
 169 *
 170 *   need_sleep = false;
 171 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
 172 *
 173 * where wake_up_state() executes a full memory barrier before accessing the
 174 * task state.
 175 *
 176 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 177 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 178 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 179 *
 180 * However, with slightly different timing the wakeup TASK_RUNNING store can
 181 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
 182 * a problem either because that will result in one extra go around the loop
 183 * and our @cond test will save the day.
 184 *
 185 * Also see the comments of try_to_wake_up().
 186 */
 187#define __set_current_state(state_value)                                \
 188        current->state = (state_value)
 189
 190#define set_current_state(state_value)                                  \
 191        smp_store_mb(current->state, (state_value))
 192
 193/*
 194 * set_special_state() should be used for those states when the blocking task
 195 * can not use the regular condition based wait-loop. In that case we must
 196 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 197 * will not collide with our state change.
 198 */
 199#define set_special_state(state_value)                                  \
 200        do {                                                            \
 201                unsigned long flags; /* may shadow */                   \
 202                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 203                current->state = (state_value);                         \
 204                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 205        } while (0)
 206
 207#endif
 208
 209/* Task command name length: */
 210#define TASK_COMM_LEN                   16
 211
 212extern void scheduler_tick(void);
 213
 214#define MAX_SCHEDULE_TIMEOUT            LONG_MAX
 215
 216extern long schedule_timeout(long timeout);
 217extern long schedule_timeout_interruptible(long timeout);
 218extern long schedule_timeout_killable(long timeout);
 219extern long schedule_timeout_uninterruptible(long timeout);
 220extern long schedule_timeout_idle(long timeout);
 221asmlinkage void schedule(void);
 222extern void schedule_preempt_disabled(void);
 223asmlinkage void preempt_schedule_irq(void);
 224
 225extern int __must_check io_schedule_prepare(void);
 226extern void io_schedule_finish(int token);
 227extern long io_schedule_timeout(long timeout);
 228extern void io_schedule(void);
 229
 230/**
 231 * struct prev_cputime - snapshot of system and user cputime
 232 * @utime: time spent in user mode
 233 * @stime: time spent in system mode
 234 * @lock: protects the above two fields
 235 *
 236 * Stores previous user/system time values such that we can guarantee
 237 * monotonicity.
 238 */
 239struct prev_cputime {
 240#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 241        u64                             utime;
 242        u64                             stime;
 243        raw_spinlock_t                  lock;
 244#endif
 245};
 246
 247enum vtime_state {
 248        /* Task is sleeping or running in a CPU with VTIME inactive: */
 249        VTIME_INACTIVE = 0,
 250        /* Task is idle */
 251        VTIME_IDLE,
 252        /* Task runs in kernelspace in a CPU with VTIME active: */
 253        VTIME_SYS,
 254        /* Task runs in userspace in a CPU with VTIME active: */
 255        VTIME_USER,
 256        /* Task runs as guests in a CPU with VTIME active: */
 257        VTIME_GUEST,
 258};
 259
 260struct vtime {
 261        seqcount_t              seqcount;
 262        unsigned long long      starttime;
 263        enum vtime_state        state;
 264        unsigned int            cpu;
 265        u64                     utime;
 266        u64                     stime;
 267        u64                     gtime;
 268};
 269
 270/*
 271 * Utilization clamp constraints.
 272 * @UCLAMP_MIN: Minimum utilization
 273 * @UCLAMP_MAX: Maximum utilization
 274 * @UCLAMP_CNT: Utilization clamp constraints count
 275 */
 276enum uclamp_id {
 277        UCLAMP_MIN = 0,
 278        UCLAMP_MAX,
 279        UCLAMP_CNT
 280};
 281
 282#ifdef CONFIG_SMP
 283extern struct root_domain def_root_domain;
 284extern struct mutex sched_domains_mutex;
 285#endif
 286
 287struct sched_info {
 288#ifdef CONFIG_SCHED_INFO
 289        /* Cumulative counters: */
 290
 291        /* # of times we have run on this CPU: */
 292        unsigned long                   pcount;
 293
 294        /* Time spent waiting on a runqueue: */
 295        unsigned long long              run_delay;
 296
 297        /* Timestamps: */
 298
 299        /* When did we last run on a CPU? */
 300        unsigned long long              last_arrival;
 301
 302        /* When were we last queued to run? */
 303        unsigned long long              last_queued;
 304
 305#endif /* CONFIG_SCHED_INFO */
 306};
 307
 308/*
 309 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 310 * has a few: load, load_avg, util_avg, freq, and capacity.
 311 *
 312 * We define a basic fixed point arithmetic range, and then formalize
 313 * all these metrics based on that basic range.
 314 */
 315# define SCHED_FIXEDPOINT_SHIFT         10
 316# define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
 317
 318/* Increase resolution of cpu_capacity calculations */
 319# define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
 320# define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
 321
 322struct load_weight {
 323        unsigned long                   weight;
 324        u32                             inv_weight;
 325};
 326
 327/**
 328 * struct util_est - Estimation utilization of FAIR tasks
 329 * @enqueued: instantaneous estimated utilization of a task/cpu
 330 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 331 *            utilization of a task
 332 *
 333 * Support data structure to track an Exponential Weighted Moving Average
 334 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 335 * average each time a task completes an activation. Sample's weight is chosen
 336 * so that the EWMA will be relatively insensitive to transient changes to the
 337 * task's workload.
 338 *
 339 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 340 * - task:   the task's util_avg at last task dequeue time
 341 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 342 * Thus, the util_est.enqueued of a task represents the contribution on the
 343 * estimated utilization of the CPU where that task is currently enqueued.
 344 *
 345 * Only for tasks we track a moving average of the past instantaneous
 346 * estimated utilization. This allows to absorb sporadic drops in utilization
 347 * of an otherwise almost periodic task.
 348 */
 349struct util_est {
 350        unsigned int                    enqueued;
 351        unsigned int                    ewma;
 352#define UTIL_EST_WEIGHT_SHIFT           2
 353} __attribute__((__aligned__(sizeof(u64))));
 354
 355/*
 356 * The load/runnable/util_avg accumulates an infinite geometric series
 357 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
 358 *
 359 * [load_avg definition]
 360 *
 361 *   load_avg = runnable% * scale_load_down(load)
 362 *
 363 * [runnable_avg definition]
 364 *
 365 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
 366 *
 367 * [util_avg definition]
 368 *
 369 *   util_avg = running% * SCHED_CAPACITY_SCALE
 370 *
 371 * where runnable% is the time ratio that a sched_entity is runnable and
 372 * running% the time ratio that a sched_entity is running.
 373 *
 374 * For cfs_rq, they are the aggregated values of all runnable and blocked
 375 * sched_entities.
 376 *
 377 * The load/runnable/util_avg doesn't direcly factor frequency scaling and CPU
 378 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 379 * for computing those signals (see update_rq_clock_pelt())
 380 *
 381 * N.B., the above ratios (runnable% and running%) themselves are in the
 382 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 383 * to as large a range as necessary. This is for example reflected by
 384 * util_avg's SCHED_CAPACITY_SCALE.
 385 *
 386 * [Overflow issue]
 387 *
 388 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 389 * with the highest load (=88761), always runnable on a single cfs_rq,
 390 * and should not overflow as the number already hits PID_MAX_LIMIT.
 391 *
 392 * For all other cases (including 32-bit kernels), struct load_weight's
 393 * weight will overflow first before we do, because:
 394 *
 395 *    Max(load_avg) <= Max(load.weight)
 396 *
 397 * Then it is the load_weight's responsibility to consider overflow
 398 * issues.
 399 */
 400struct sched_avg {
 401        u64                             last_update_time;
 402        u64                             load_sum;
 403        u64                             runnable_sum;
 404        u32                             util_sum;
 405        u32                             period_contrib;
 406        unsigned long                   load_avg;
 407        unsigned long                   runnable_avg;
 408        unsigned long                   util_avg;
 409        struct util_est                 util_est;
 410} ____cacheline_aligned;
 411
 412struct sched_statistics {
 413#ifdef CONFIG_SCHEDSTATS
 414        u64                             wait_start;
 415        u64                             wait_max;
 416        u64                             wait_count;
 417        u64                             wait_sum;
 418        u64                             iowait_count;
 419        u64                             iowait_sum;
 420
 421        u64                             sleep_start;
 422        u64                             sleep_max;
 423        s64                             sum_sleep_runtime;
 424
 425        u64                             block_start;
 426        u64                             block_max;
 427        u64                             exec_max;
 428        u64                             slice_max;
 429
 430        u64                             nr_migrations_cold;
 431        u64                             nr_failed_migrations_affine;
 432        u64                             nr_failed_migrations_running;
 433        u64                             nr_failed_migrations_hot;
 434        u64                             nr_forced_migrations;
 435
 436        u64                             nr_wakeups;
 437        u64                             nr_wakeups_sync;
 438        u64                             nr_wakeups_migrate;
 439        u64                             nr_wakeups_local;
 440        u64                             nr_wakeups_remote;
 441        u64                             nr_wakeups_affine;
 442        u64                             nr_wakeups_affine_attempts;
 443        u64                             nr_wakeups_passive;
 444        u64                             nr_wakeups_idle;
 445#endif
 446};
 447
 448struct sched_entity {
 449        /* For load-balancing: */
 450        struct load_weight              load;
 451        struct rb_node                  run_node;
 452        struct list_head                group_node;
 453        unsigned int                    on_rq;
 454
 455        u64                             exec_start;
 456        u64                             sum_exec_runtime;
 457        u64                             vruntime;
 458        u64                             prev_sum_exec_runtime;
 459
 460        u64                             nr_migrations;
 461
 462        struct sched_statistics         statistics;
 463
 464#ifdef CONFIG_FAIR_GROUP_SCHED
 465        int                             depth;
 466        struct sched_entity             *parent;
 467        /* rq on which this entity is (to be) queued: */
 468        struct cfs_rq                   *cfs_rq;
 469        /* rq "owned" by this entity/group: */
 470        struct cfs_rq                   *my_q;
 471        /* cached value of my_q->h_nr_running */
 472        unsigned long                   runnable_weight;
 473#endif
 474
 475#ifdef CONFIG_SMP
 476        /*
 477         * Per entity load average tracking.
 478         *
 479         * Put into separate cache line so it does not
 480         * collide with read-mostly values above.
 481         */
 482        struct sched_avg                avg;
 483#endif
 484};
 485
 486struct sched_rt_entity {
 487        struct list_head                run_list;
 488        unsigned long                   timeout;
 489        unsigned long                   watchdog_stamp;
 490        unsigned int                    time_slice;
 491        unsigned short                  on_rq;
 492        unsigned short                  on_list;
 493
 494        struct sched_rt_entity          *back;
 495#ifdef CONFIG_RT_GROUP_SCHED
 496        struct sched_rt_entity          *parent;
 497        /* rq on which this entity is (to be) queued: */
 498        struct rt_rq                    *rt_rq;
 499        /* rq "owned" by this entity/group: */
 500        struct rt_rq                    *my_q;
 501#endif
 502} __randomize_layout;
 503
 504struct sched_dl_entity {
 505        struct rb_node                  rb_node;
 506
 507        /*
 508         * Original scheduling parameters. Copied here from sched_attr
 509         * during sched_setattr(), they will remain the same until
 510         * the next sched_setattr().
 511         */
 512        u64                             dl_runtime;     /* Maximum runtime for each instance    */
 513        u64                             dl_deadline;    /* Relative deadline of each instance   */
 514        u64                             dl_period;      /* Separation of two instances (period) */
 515        u64                             dl_bw;          /* dl_runtime / dl_period               */
 516        u64                             dl_density;     /* dl_runtime / dl_deadline             */
 517
 518        /*
 519         * Actual scheduling parameters. Initialized with the values above,
 520         * they are continuously updated during task execution. Note that
 521         * the remaining runtime could be < 0 in case we are in overrun.
 522         */
 523        s64                             runtime;        /* Remaining runtime for this instance  */
 524        u64                             deadline;       /* Absolute deadline for this instance  */
 525        unsigned int                    flags;          /* Specifying the scheduler behaviour   */
 526
 527        /*
 528         * Some bool flags:
 529         *
 530         * @dl_throttled tells if we exhausted the runtime. If so, the
 531         * task has to wait for a replenishment to be performed at the
 532         * next firing of dl_timer.
 533         *
 534         * @dl_boosted tells if we are boosted due to DI. If so we are
 535         * outside bandwidth enforcement mechanism (but only until we
 536         * exit the critical section);
 537         *
 538         * @dl_yielded tells if task gave up the CPU before consuming
 539         * all its available runtime during the last job.
 540         *
 541         * @dl_non_contending tells if the task is inactive while still
 542         * contributing to the active utilization. In other words, it
 543         * indicates if the inactive timer has been armed and its handler
 544         * has not been executed yet. This flag is useful to avoid race
 545         * conditions between the inactive timer handler and the wakeup
 546         * code.
 547         *
 548         * @dl_overrun tells if the task asked to be informed about runtime
 549         * overruns.
 550         */
 551        unsigned int                    dl_throttled      : 1;
 552        unsigned int                    dl_boosted        : 1;
 553        unsigned int                    dl_yielded        : 1;
 554        unsigned int                    dl_non_contending : 1;
 555        unsigned int                    dl_overrun        : 1;
 556
 557        /*
 558         * Bandwidth enforcement timer. Each -deadline task has its
 559         * own bandwidth to be enforced, thus we need one timer per task.
 560         */
 561        struct hrtimer                  dl_timer;
 562
 563        /*
 564         * Inactive timer, responsible for decreasing the active utilization
 565         * at the "0-lag time". When a -deadline task blocks, it contributes
 566         * to GRUB's active utilization until the "0-lag time", hence a
 567         * timer is needed to decrease the active utilization at the correct
 568         * time.
 569         */
 570        struct hrtimer inactive_timer;
 571};
 572
 573#ifdef CONFIG_UCLAMP_TASK
 574/* Number of utilization clamp buckets (shorter alias) */
 575#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
 576
 577/*
 578 * Utilization clamp for a scheduling entity
 579 * @value:              clamp value "assigned" to a se
 580 * @bucket_id:          bucket index corresponding to the "assigned" value
 581 * @active:             the se is currently refcounted in a rq's bucket
 582 * @user_defined:       the requested clamp value comes from user-space
 583 *
 584 * The bucket_id is the index of the clamp bucket matching the clamp value
 585 * which is pre-computed and stored to avoid expensive integer divisions from
 586 * the fast path.
 587 *
 588 * The active bit is set whenever a task has got an "effective" value assigned,
 589 * which can be different from the clamp value "requested" from user-space.
 590 * This allows to know a task is refcounted in the rq's bucket corresponding
 591 * to the "effective" bucket_id.
 592 *
 593 * The user_defined bit is set whenever a task has got a task-specific clamp
 594 * value requested from userspace, i.e. the system defaults apply to this task
 595 * just as a restriction. This allows to relax default clamps when a less
 596 * restrictive task-specific value has been requested, thus allowing to
 597 * implement a "nice" semantic. For example, a task running with a 20%
 598 * default boost can still drop its own boosting to 0%.
 599 */
 600struct uclamp_se {
 601        unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
 602        unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
 603        unsigned int active             : 1;
 604        unsigned int user_defined       : 1;
 605};
 606#endif /* CONFIG_UCLAMP_TASK */
 607
 608union rcu_special {
 609        struct {
 610                u8                      blocked;
 611                u8                      need_qs;
 612                u8                      exp_hint; /* Hint for performance. */
 613                u8                      need_mb; /* Readers need smp_mb(). */
 614        } b; /* Bits. */
 615        u32 s; /* Set of bits. */
 616};
 617
 618enum perf_event_task_context {
 619        perf_invalid_context = -1,
 620        perf_hw_context = 0,
 621        perf_sw_context,
 622        perf_nr_task_contexts,
 623};
 624
 625struct wake_q_node {
 626        struct wake_q_node *next;
 627};
 628
 629struct task_struct {
 630#ifdef CONFIG_THREAD_INFO_IN_TASK
 631        /*
 632         * For reasons of header soup (see current_thread_info()), this
 633         * must be the first element of task_struct.
 634         */
 635        struct thread_info              thread_info;
 636#endif
 637        /* -1 unrunnable, 0 runnable, >0 stopped: */
 638        volatile long                   state;
 639
 640        /*
 641         * This begins the randomizable portion of task_struct. Only
 642         * scheduling-critical items should be added above here.
 643         */
 644        randomized_struct_fields_start
 645
 646        void                            *stack;
 647        refcount_t                      usage;
 648        /* Per task flags (PF_*), defined further below: */
 649        unsigned int                    flags;
 650        unsigned int                    ptrace;
 651
 652#ifdef CONFIG_SMP
 653        int                             on_cpu;
 654        struct __call_single_node       wake_entry;
 655#ifdef CONFIG_THREAD_INFO_IN_TASK
 656        /* Current CPU: */
 657        unsigned int                    cpu;
 658#endif
 659        unsigned int                    wakee_flips;
 660        unsigned long                   wakee_flip_decay_ts;
 661        struct task_struct              *last_wakee;
 662
 663        /*
 664         * recent_used_cpu is initially set as the last CPU used by a task
 665         * that wakes affine another task. Waker/wakee relationships can
 666         * push tasks around a CPU where each wakeup moves to the next one.
 667         * Tracking a recently used CPU allows a quick search for a recently
 668         * used CPU that may be idle.
 669         */
 670        int                             recent_used_cpu;
 671        int                             wake_cpu;
 672#endif
 673        int                             on_rq;
 674
 675        int                             prio;
 676        int                             static_prio;
 677        int                             normal_prio;
 678        unsigned int                    rt_priority;
 679
 680        const struct sched_class        *sched_class;
 681        struct sched_entity             se;
 682        struct sched_rt_entity          rt;
 683#ifdef CONFIG_CGROUP_SCHED
 684        struct task_group               *sched_task_group;
 685#endif
 686        struct sched_dl_entity          dl;
 687
 688#ifdef CONFIG_UCLAMP_TASK
 689        /* Clamp values requested for a scheduling entity */
 690        struct uclamp_se                uclamp_req[UCLAMP_CNT];
 691        /* Effective clamp values used for a scheduling entity */
 692        struct uclamp_se                uclamp[UCLAMP_CNT];
 693#endif
 694
 695#ifdef CONFIG_PREEMPT_NOTIFIERS
 696        /* List of struct preempt_notifier: */
 697        struct hlist_head               preempt_notifiers;
 698#endif
 699
 700#ifdef CONFIG_BLK_DEV_IO_TRACE
 701        unsigned int                    btrace_seq;
 702#endif
 703
 704        unsigned int                    policy;
 705        int                             nr_cpus_allowed;
 706        const cpumask_t                 *cpus_ptr;
 707        cpumask_t                       cpus_mask;
 708
 709#ifdef CONFIG_PREEMPT_RCU
 710        int                             rcu_read_lock_nesting;
 711        union rcu_special               rcu_read_unlock_special;
 712        struct list_head                rcu_node_entry;
 713        struct rcu_node                 *rcu_blocked_node;
 714#endif /* #ifdef CONFIG_PREEMPT_RCU */
 715
 716#ifdef CONFIG_TASKS_RCU
 717        unsigned long                   rcu_tasks_nvcsw;
 718        u8                              rcu_tasks_holdout;
 719        u8                              rcu_tasks_idx;
 720        int                             rcu_tasks_idle_cpu;
 721        struct list_head                rcu_tasks_holdout_list;
 722#endif /* #ifdef CONFIG_TASKS_RCU */
 723
 724#ifdef CONFIG_TASKS_TRACE_RCU
 725        int                             trc_reader_nesting;
 726        int                             trc_ipi_to_cpu;
 727        union rcu_special               trc_reader_special;
 728        bool                            trc_reader_checked;
 729        struct list_head                trc_holdout_list;
 730#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 731
 732        struct sched_info               sched_info;
 733
 734        struct list_head                tasks;
 735#ifdef CONFIG_SMP
 736        struct plist_node               pushable_tasks;
 737        struct rb_node                  pushable_dl_tasks;
 738#endif
 739
 740        struct mm_struct                *mm;
 741        struct mm_struct                *active_mm;
 742
 743        /* Per-thread vma caching: */
 744        struct vmacache                 vmacache;
 745
 746#ifdef SPLIT_RSS_COUNTING
 747        struct task_rss_stat            rss_stat;
 748#endif
 749        int                             exit_state;
 750        int                             exit_code;
 751        int                             exit_signal;
 752        /* The signal sent when the parent dies: */
 753        int                             pdeath_signal;
 754        /* JOBCTL_*, siglock protected: */
 755        unsigned long                   jobctl;
 756
 757        /* Used for emulating ABI behavior of previous Linux versions: */
 758        unsigned int                    personality;
 759
 760        /* Scheduler bits, serialized by scheduler locks: */
 761        unsigned                        sched_reset_on_fork:1;
 762        unsigned                        sched_contributes_to_load:1;
 763        unsigned                        sched_migrated:1;
 764        unsigned                        sched_remote_wakeup:1;
 765#ifdef CONFIG_PSI
 766        unsigned                        sched_psi_wake_requeue:1;
 767#endif
 768
 769        /* Force alignment to the next boundary: */
 770        unsigned                        :0;
 771
 772        /* Unserialized, strictly 'current' */
 773
 774        /* Bit to tell LSMs we're in execve(): */
 775        unsigned                        in_execve:1;
 776        unsigned                        in_iowait:1;
 777#ifndef TIF_RESTORE_SIGMASK
 778        unsigned                        restore_sigmask:1;
 779#endif
 780#ifdef CONFIG_MEMCG
 781        unsigned                        in_user_fault:1;
 782#endif
 783#ifdef CONFIG_COMPAT_BRK
 784        unsigned                        brk_randomized:1;
 785#endif
 786#ifdef CONFIG_CGROUPS
 787        /* disallow userland-initiated cgroup migration */
 788        unsigned                        no_cgroup_migration:1;
 789        /* task is frozen/stopped (used by the cgroup freezer) */
 790        unsigned                        frozen:1;
 791#endif
 792#ifdef CONFIG_BLK_CGROUP
 793        unsigned                        use_memdelay:1;
 794#endif
 795#ifdef CONFIG_PSI
 796        /* Stalled due to lack of memory */
 797        unsigned                        in_memstall:1;
 798#endif
 799
 800        unsigned long                   atomic_flags; /* Flags requiring atomic access. */
 801
 802        struct restart_block            restart_block;
 803
 804        pid_t                           pid;
 805        pid_t                           tgid;
 806
 807#ifdef CONFIG_STACKPROTECTOR
 808        /* Canary value for the -fstack-protector GCC feature: */
 809        unsigned long                   stack_canary;
 810#endif
 811        /*
 812         * Pointers to the (original) parent process, youngest child, younger sibling,
 813         * older sibling, respectively.  (p->father can be replaced with
 814         * p->real_parent->pid)
 815         */
 816
 817        /* Real parent process: */
 818        struct task_struct __rcu        *real_parent;
 819
 820        /* Recipient of SIGCHLD, wait4() reports: */
 821        struct task_struct __rcu        *parent;
 822
 823        /*
 824         * Children/sibling form the list of natural children:
 825         */
 826        struct list_head                children;
 827        struct list_head                sibling;
 828        struct task_struct              *group_leader;
 829
 830        /*
 831         * 'ptraced' is the list of tasks this task is using ptrace() on.
 832         *
 833         * This includes both natural children and PTRACE_ATTACH targets.
 834         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
 835         */
 836        struct list_head                ptraced;
 837        struct list_head                ptrace_entry;
 838
 839        /* PID/PID hash table linkage. */
 840        struct pid                      *thread_pid;
 841        struct hlist_node               pid_links[PIDTYPE_MAX];
 842        struct list_head                thread_group;
 843        struct list_head                thread_node;
 844
 845        struct completion               *vfork_done;
 846
 847        /* CLONE_CHILD_SETTID: */
 848        int __user                      *set_child_tid;
 849
 850        /* CLONE_CHILD_CLEARTID: */
 851        int __user                      *clear_child_tid;
 852
 853        u64                             utime;
 854        u64                             stime;
 855#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 856        u64                             utimescaled;
 857        u64                             stimescaled;
 858#endif
 859        u64                             gtime;
 860        struct prev_cputime             prev_cputime;
 861#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 862        struct vtime                    vtime;
 863#endif
 864
 865#ifdef CONFIG_NO_HZ_FULL
 866        atomic_t                        tick_dep_mask;
 867#endif
 868        /* Context switch counts: */
 869        unsigned long                   nvcsw;
 870        unsigned long                   nivcsw;
 871
 872        /* Monotonic time in nsecs: */
 873        u64                             start_time;
 874
 875        /* Boot based time in nsecs: */
 876        u64                             start_boottime;
 877
 878        /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
 879        unsigned long                   min_flt;
 880        unsigned long                   maj_flt;
 881
 882        /* Empty if CONFIG_POSIX_CPUTIMERS=n */
 883        struct posix_cputimers          posix_cputimers;
 884
 885        /* Process credentials: */
 886
 887        /* Tracer's credentials at attach: */
 888        const struct cred __rcu         *ptracer_cred;
 889
 890        /* Objective and real subjective task credentials (COW): */
 891        const struct cred __rcu         *real_cred;
 892
 893        /* Effective (overridable) subjective task credentials (COW): */
 894        const struct cred __rcu         *cred;
 895
 896#ifdef CONFIG_KEYS
 897        /* Cached requested key. */
 898        struct key                      *cached_requested_key;
 899#endif
 900
 901        /*
 902         * executable name, excluding path.
 903         *
 904         * - normally initialized setup_new_exec()
 905         * - access it with [gs]et_task_comm()
 906         * - lock it with task_lock()
 907         */
 908        char                            comm[TASK_COMM_LEN];
 909
 910        struct nameidata                *nameidata;
 911
 912#ifdef CONFIG_SYSVIPC
 913        struct sysv_sem                 sysvsem;
 914        struct sysv_shm                 sysvshm;
 915#endif
 916#ifdef CONFIG_DETECT_HUNG_TASK
 917        unsigned long                   last_switch_count;
 918        unsigned long                   last_switch_time;
 919#endif
 920        /* Filesystem information: */
 921        struct fs_struct                *fs;
 922
 923        /* Open file information: */
 924        struct files_struct             *files;
 925
 926        /* Namespaces: */
 927        struct nsproxy                  *nsproxy;
 928
 929        /* Signal handlers: */
 930        struct signal_struct            *signal;
 931        struct sighand_struct __rcu             *sighand;
 932        sigset_t                        blocked;
 933        sigset_t                        real_blocked;
 934        /* Restored if set_restore_sigmask() was used: */
 935        sigset_t                        saved_sigmask;
 936        struct sigpending               pending;
 937        unsigned long                   sas_ss_sp;
 938        size_t                          sas_ss_size;
 939        unsigned int                    sas_ss_flags;
 940
 941        struct callback_head            *task_works;
 942
 943#ifdef CONFIG_AUDIT
 944#ifdef CONFIG_AUDITSYSCALL
 945        struct audit_context            *audit_context;
 946#endif
 947        kuid_t                          loginuid;
 948        unsigned int                    sessionid;
 949#endif
 950        struct seccomp                  seccomp;
 951
 952        /* Thread group tracking: */
 953        u64                             parent_exec_id;
 954        u64                             self_exec_id;
 955
 956        /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
 957        spinlock_t                      alloc_lock;
 958
 959        /* Protection of the PI data structures: */
 960        raw_spinlock_t                  pi_lock;
 961
 962        struct wake_q_node              wake_q;
 963
 964#ifdef CONFIG_RT_MUTEXES
 965        /* PI waiters blocked on a rt_mutex held by this task: */
 966        struct rb_root_cached           pi_waiters;
 967        /* Updated under owner's pi_lock and rq lock */
 968        struct task_struct              *pi_top_task;
 969        /* Deadlock detection and priority inheritance handling: */
 970        struct rt_mutex_waiter          *pi_blocked_on;
 971#endif
 972
 973#ifdef CONFIG_DEBUG_MUTEXES
 974        /* Mutex deadlock detection: */
 975        struct mutex_waiter             *blocked_on;
 976#endif
 977
 978#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 979        int                             non_block_count;
 980#endif
 981
 982#ifdef CONFIG_TRACE_IRQFLAGS
 983        unsigned int                    irq_events;
 984        unsigned int                    hardirq_threaded;
 985        unsigned long                   hardirq_enable_ip;
 986        unsigned long                   hardirq_disable_ip;
 987        unsigned int                    hardirq_enable_event;
 988        unsigned int                    hardirq_disable_event;
 989        int                             hardirqs_enabled;
 990        int                             hardirq_context;
 991        u64                             hardirq_chain_key;
 992        unsigned long                   softirq_disable_ip;
 993        unsigned long                   softirq_enable_ip;
 994        unsigned int                    softirq_disable_event;
 995        unsigned int                    softirq_enable_event;
 996        int                             softirqs_enabled;
 997        int                             softirq_context;
 998        int                             irq_config;
 999#endif
1000
1001#ifdef CONFIG_LOCKDEP
1002# define MAX_LOCK_DEPTH                 48UL
1003        u64                             curr_chain_key;
1004        int                             lockdep_depth;
1005        unsigned int                    lockdep_recursion;
1006        struct held_lock                held_locks[MAX_LOCK_DEPTH];
1007#endif
1008
1009#ifdef CONFIG_UBSAN
1010        unsigned int                    in_ubsan;
1011#endif
1012
1013        /* Journalling filesystem info: */
1014        void                            *journal_info;
1015
1016        /* Stacked block device info: */
1017        struct bio_list                 *bio_list;
1018
1019#ifdef CONFIG_BLOCK
1020        /* Stack plugging: */
1021        struct blk_plug                 *plug;
1022#endif
1023
1024        /* VM state: */
1025        struct reclaim_state            *reclaim_state;
1026
1027        struct backing_dev_info         *backing_dev_info;
1028
1029        struct io_context               *io_context;
1030
1031#ifdef CONFIG_COMPACTION
1032        struct capture_control          *capture_control;
1033#endif
1034        /* Ptrace state: */
1035        unsigned long                   ptrace_message;
1036        kernel_siginfo_t                *last_siginfo;
1037
1038        struct task_io_accounting       ioac;
1039#ifdef CONFIG_PSI
1040        /* Pressure stall state */
1041        unsigned int                    psi_flags;
1042#endif
1043#ifdef CONFIG_TASK_XACCT
1044        /* Accumulated RSS usage: */
1045        u64                             acct_rss_mem1;
1046        /* Accumulated virtual memory usage: */
1047        u64                             acct_vm_mem1;
1048        /* stime + utime since last update: */
1049        u64                             acct_timexpd;
1050#endif
1051#ifdef CONFIG_CPUSETS
1052        /* Protected by ->alloc_lock: */
1053        nodemask_t                      mems_allowed;
1054        /* Seqence number to catch updates: */
1055        seqcount_t                      mems_allowed_seq;
1056        int                             cpuset_mem_spread_rotor;
1057        int                             cpuset_slab_spread_rotor;
1058#endif
1059#ifdef CONFIG_CGROUPS
1060        /* Control Group info protected by css_set_lock: */
1061        struct css_set __rcu            *cgroups;
1062        /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1063        struct list_head                cg_list;
1064#endif
1065#ifdef CONFIG_X86_CPU_RESCTRL
1066        u32                             closid;
1067        u32                             rmid;
1068#endif
1069#ifdef CONFIG_FUTEX
1070        struct robust_list_head __user  *robust_list;
1071#ifdef CONFIG_COMPAT
1072        struct compat_robust_list_head __user *compat_robust_list;
1073#endif
1074        struct list_head                pi_state_list;
1075        struct futex_pi_state           *pi_state_cache;
1076        struct mutex                    futex_exit_mutex;
1077        unsigned int                    futex_state;
1078#endif
1079#ifdef CONFIG_PERF_EVENTS
1080        struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1081        struct mutex                    perf_event_mutex;
1082        struct list_head                perf_event_list;
1083#endif
1084#ifdef CONFIG_DEBUG_PREEMPT
1085        unsigned long                   preempt_disable_ip;
1086#endif
1087#ifdef CONFIG_NUMA
1088        /* Protected by alloc_lock: */
1089        struct mempolicy                *mempolicy;
1090        short                           il_prev;
1091        short                           pref_node_fork;
1092#endif
1093#ifdef CONFIG_NUMA_BALANCING
1094        int                             numa_scan_seq;
1095        unsigned int                    numa_scan_period;
1096        unsigned int                    numa_scan_period_max;
1097        int                             numa_preferred_nid;
1098        unsigned long                   numa_migrate_retry;
1099        /* Migration stamp: */
1100        u64                             node_stamp;
1101        u64                             last_task_numa_placement;
1102        u64                             last_sum_exec_runtime;
1103        struct callback_head            numa_work;
1104
1105        /*
1106         * This pointer is only modified for current in syscall and
1107         * pagefault context (and for tasks being destroyed), so it can be read
1108         * from any of the following contexts:
1109         *  - RCU read-side critical section
1110         *  - current->numa_group from everywhere
1111         *  - task's runqueue locked, task not running
1112         */
1113        struct numa_group __rcu         *numa_group;
1114
1115        /*
1116         * numa_faults is an array split into four regions:
1117         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1118         * in this precise order.
1119         *
1120         * faults_memory: Exponential decaying average of faults on a per-node
1121         * basis. Scheduling placement decisions are made based on these
1122         * counts. The values remain static for the duration of a PTE scan.
1123         * faults_cpu: Track the nodes the process was running on when a NUMA
1124         * hinting fault was incurred.
1125         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1126         * during the current scan window. When the scan completes, the counts
1127         * in faults_memory and faults_cpu decay and these values are copied.
1128         */
1129        unsigned long                   *numa_faults;
1130        unsigned long                   total_numa_faults;
1131
1132        /*
1133         * numa_faults_locality tracks if faults recorded during the last
1134         * scan window were remote/local or failed to migrate. The task scan
1135         * period is adapted based on the locality of the faults with different
1136         * weights depending on whether they were shared or private faults
1137         */
1138        unsigned long                   numa_faults_locality[3];
1139
1140        unsigned long                   numa_pages_migrated;
1141#endif /* CONFIG_NUMA_BALANCING */
1142
1143#ifdef CONFIG_RSEQ
1144        struct rseq __user *rseq;
1145        u32 rseq_sig;
1146        /*
1147         * RmW on rseq_event_mask must be performed atomically
1148         * with respect to preemption.
1149         */
1150        unsigned long rseq_event_mask;
1151#endif
1152
1153        struct tlbflush_unmap_batch     tlb_ubc;
1154
1155        union {
1156                refcount_t              rcu_users;
1157                struct rcu_head         rcu;
1158        };
1159
1160        /* Cache last used pipe for splice(): */
1161        struct pipe_inode_info          *splice_pipe;
1162
1163        struct page_frag                task_frag;
1164
1165#ifdef CONFIG_TASK_DELAY_ACCT
1166        struct task_delay_info          *delays;
1167#endif
1168
1169#ifdef CONFIG_FAULT_INJECTION
1170        int                             make_it_fail;
1171        unsigned int                    fail_nth;
1172#endif
1173        /*
1174         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1175         * balance_dirty_pages() for a dirty throttling pause:
1176         */
1177        int                             nr_dirtied;
1178        int                             nr_dirtied_pause;
1179        /* Start of a write-and-pause period: */
1180        unsigned long                   dirty_paused_when;
1181
1182#ifdef CONFIG_LATENCYTOP
1183        int                             latency_record_count;
1184        struct latency_record           latency_record[LT_SAVECOUNT];
1185#endif
1186        /*
1187         * Time slack values; these are used to round up poll() and
1188         * select() etc timeout values. These are in nanoseconds.
1189         */
1190        u64                             timer_slack_ns;
1191        u64                             default_timer_slack_ns;
1192
1193#ifdef CONFIG_KASAN
1194        unsigned int                    kasan_depth;
1195#endif
1196#ifdef CONFIG_KCSAN
1197        struct kcsan_ctx                kcsan_ctx;
1198#endif
1199
1200#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1201        /* Index of current stored address in ret_stack: */
1202        int                             curr_ret_stack;
1203        int                             curr_ret_depth;
1204
1205        /* Stack of return addresses for return function tracing: */
1206        struct ftrace_ret_stack         *ret_stack;
1207
1208        /* Timestamp for last schedule: */
1209        unsigned long long              ftrace_timestamp;
1210
1211        /*
1212         * Number of functions that haven't been traced
1213         * because of depth overrun:
1214         */
1215        atomic_t                        trace_overrun;
1216
1217        /* Pause tracing: */
1218        atomic_t                        tracing_graph_pause;
1219#endif
1220
1221#ifdef CONFIG_TRACING
1222        /* State flags for use by tracers: */
1223        unsigned long                   trace;
1224
1225        /* Bitmask and counter of trace recursion: */
1226        unsigned long                   trace_recursion;
1227#endif /* CONFIG_TRACING */
1228
1229#ifdef CONFIG_KCOV
1230        /* See kernel/kcov.c for more details. */
1231
1232        /* Coverage collection mode enabled for this task (0 if disabled): */
1233        unsigned int                    kcov_mode;
1234
1235        /* Size of the kcov_area: */
1236        unsigned int                    kcov_size;
1237
1238        /* Buffer for coverage collection: */
1239        void                            *kcov_area;
1240
1241        /* KCOV descriptor wired with this task or NULL: */
1242        struct kcov                     *kcov;
1243
1244        /* KCOV common handle for remote coverage collection: */
1245        u64                             kcov_handle;
1246
1247        /* KCOV sequence number: */
1248        int                             kcov_sequence;
1249
1250        /* Collect coverage from softirq context: */
1251        unsigned int                    kcov_softirq;
1252#endif
1253
1254#ifdef CONFIG_MEMCG
1255        struct mem_cgroup               *memcg_in_oom;
1256        gfp_t                           memcg_oom_gfp_mask;
1257        int                             memcg_oom_order;
1258
1259        /* Number of pages to reclaim on returning to userland: */
1260        unsigned int                    memcg_nr_pages_over_high;
1261
1262        /* Used by memcontrol for targeted memcg charge: */
1263        struct mem_cgroup               *active_memcg;
1264#endif
1265
1266#ifdef CONFIG_BLK_CGROUP
1267        struct request_queue            *throttle_queue;
1268#endif
1269
1270#ifdef CONFIG_UPROBES
1271        struct uprobe_task              *utask;
1272#endif
1273#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1274        unsigned int                    sequential_io;
1275        unsigned int                    sequential_io_avg;
1276#endif
1277#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1278        unsigned long                   task_state_change;
1279#endif
1280        int                             pagefault_disabled;
1281#ifdef CONFIG_MMU
1282        struct task_struct              *oom_reaper_list;
1283#endif
1284#ifdef CONFIG_VMAP_STACK
1285        struct vm_struct                *stack_vm_area;
1286#endif
1287#ifdef CONFIG_THREAD_INFO_IN_TASK
1288        /* A live task holds one reference: */
1289        refcount_t                      stack_refcount;
1290#endif
1291#ifdef CONFIG_LIVEPATCH
1292        int patch_state;
1293#endif
1294#ifdef CONFIG_SECURITY
1295        /* Used by LSM modules for access restriction: */
1296        void                            *security;
1297#endif
1298
1299#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1300        unsigned long                   lowest_stack;
1301        unsigned long                   prev_lowest_stack;
1302#endif
1303
1304#ifdef CONFIG_X86_MCE
1305        u64                             mce_addr;
1306        __u64                           mce_ripv : 1,
1307                                        mce_whole_page : 1,
1308                                        __mce_reserved : 62;
1309        struct callback_head            mce_kill_me;
1310#endif
1311
1312        /*
1313         * New fields for task_struct should be added above here, so that
1314         * they are included in the randomized portion of task_struct.
1315         */
1316        randomized_struct_fields_end
1317
1318        /* CPU-specific state of this task: */
1319        struct thread_struct            thread;
1320
1321        /*
1322         * WARNING: on x86, 'thread_struct' contains a variable-sized
1323         * structure.  It *MUST* be at the end of 'task_struct'.
1324         *
1325         * Do not put anything below here!
1326         */
1327};
1328
1329static inline struct pid *task_pid(struct task_struct *task)
1330{
1331        return task->thread_pid;
1332}
1333
1334/*
1335 * the helpers to get the task's different pids as they are seen
1336 * from various namespaces
1337 *
1338 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1339 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1340 *                     current.
1341 * task_xid_nr_ns()  : id seen from the ns specified;
1342 *
1343 * see also pid_nr() etc in include/linux/pid.h
1344 */
1345pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1346
1347static inline pid_t task_pid_nr(struct task_struct *tsk)
1348{
1349        return tsk->pid;
1350}
1351
1352static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1353{
1354        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1355}
1356
1357static inline pid_t task_pid_vnr(struct task_struct *tsk)
1358{
1359        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1360}
1361
1362
1363static inline pid_t task_tgid_nr(struct task_struct *tsk)
1364{
1365        return tsk->tgid;
1366}
1367
1368/**
1369 * pid_alive - check that a task structure is not stale
1370 * @p: Task structure to be checked.
1371 *
1372 * Test if a process is not yet dead (at most zombie state)
1373 * If pid_alive fails, then pointers within the task structure
1374 * can be stale and must not be dereferenced.
1375 *
1376 * Return: 1 if the process is alive. 0 otherwise.
1377 */
1378static inline int pid_alive(const struct task_struct *p)
1379{
1380        return p->thread_pid != NULL;
1381}
1382
1383static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1384{
1385        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1386}
1387
1388static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1389{
1390        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1391}
1392
1393
1394static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1395{
1396        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1397}
1398
1399static inline pid_t task_session_vnr(struct task_struct *tsk)
1400{
1401        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1402}
1403
1404static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1405{
1406        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1407}
1408
1409static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1410{
1411        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1412}
1413
1414static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1415{
1416        pid_t pid = 0;
1417
1418        rcu_read_lock();
1419        if (pid_alive(tsk))
1420                pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1421        rcu_read_unlock();
1422
1423        return pid;
1424}
1425
1426static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1427{
1428        return task_ppid_nr_ns(tsk, &init_pid_ns);
1429}
1430
1431/* Obsolete, do not use: */
1432static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1433{
1434        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1435}
1436
1437#define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1438#define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1439
1440static inline unsigned int task_state_index(struct task_struct *tsk)
1441{
1442        unsigned int tsk_state = READ_ONCE(tsk->state);
1443        unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1444
1445        BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1446
1447        if (tsk_state == TASK_IDLE)
1448                state = TASK_REPORT_IDLE;
1449
1450        return fls(state);
1451}
1452
1453static inline char task_index_to_char(unsigned int state)
1454{
1455        static const char state_char[] = "RSDTtXZPI";
1456
1457        BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1458
1459        return state_char[state];
1460}
1461
1462static inline char task_state_to_char(struct task_struct *tsk)
1463{
1464        return task_index_to_char(task_state_index(tsk));
1465}
1466
1467/**
1468 * is_global_init - check if a task structure is init. Since init
1469 * is free to have sub-threads we need to check tgid.
1470 * @tsk: Task structure to be checked.
1471 *
1472 * Check if a task structure is the first user space task the kernel created.
1473 *
1474 * Return: 1 if the task structure is init. 0 otherwise.
1475 */
1476static inline int is_global_init(struct task_struct *tsk)
1477{
1478        return task_tgid_nr(tsk) == 1;
1479}
1480
1481extern struct pid *cad_pid;
1482
1483/*
1484 * Per process flags
1485 */
1486#define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1487#define PF_EXITING              0x00000004      /* Getting shut down */
1488#define PF_VCPU                 0x00000010      /* I'm a virtual CPU */
1489#define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1490#define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1491#define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1492#define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1493#define PF_DUMPCORE             0x00000200      /* Dumped core */
1494#define PF_SIGNALED             0x00000400      /* Killed by a signal */
1495#define PF_MEMALLOC             0x00000800      /* Allocating memory */
1496#define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1497#define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1498#define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1499#define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1500#define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1501#define PF_KSWAPD               0x00020000      /* I am kswapd */
1502#define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1503#define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1504#define PF_LOCAL_THROTTLE       0x00100000      /* Throttle writes only against the bdi I write to,
1505                                                 * I am cleaning dirty pages from some other bdi. */
1506#define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1507#define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1508#define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1509#define PF_UMH                  0x02000000      /* I'm an Usermodehelper process */
1510#define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1511#define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1512#define PF_MEMALLOC_NOCMA       0x10000000      /* All allocation request will have _GFP_MOVABLE cleared */
1513#define PF_IO_WORKER            0x20000000      /* Task is an IO worker */
1514#define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1515#define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1516
1517/*
1518 * Only the _current_ task can read/write to tsk->flags, but other
1519 * tasks can access tsk->flags in readonly mode for example
1520 * with tsk_used_math (like during threaded core dumping).
1521 * There is however an exception to this rule during ptrace
1522 * or during fork: the ptracer task is allowed to write to the
1523 * child->flags of its traced child (same goes for fork, the parent
1524 * can write to the child->flags), because we're guaranteed the
1525 * child is not running and in turn not changing child->flags
1526 * at the same time the parent does it.
1527 */
1528#define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1529#define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1530#define clear_used_math()                       clear_stopped_child_used_math(current)
1531#define set_used_math()                         set_stopped_child_used_math(current)
1532
1533#define conditional_stopped_child_used_math(condition, child) \
1534        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1535
1536#define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1537
1538#define copy_to_stopped_child_used_math(child) \
1539        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1540
1541/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1542#define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1543#define used_math()                             tsk_used_math(current)
1544
1545static inline bool is_percpu_thread(void)
1546{
1547#ifdef CONFIG_SMP
1548        return (current->flags & PF_NO_SETAFFINITY) &&
1549                (current->nr_cpus_allowed  == 1);
1550#else
1551        return true;
1552#endif
1553}
1554
1555/* Per-process atomic flags. */
1556#define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1557#define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1558#define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1559#define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1560#define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1561#define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1562#define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1563#define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1564
1565#define TASK_PFA_TEST(name, func)                                       \
1566        static inline bool task_##func(struct task_struct *p)           \
1567        { return test_bit(PFA_##name, &p->atomic_flags); }
1568
1569#define TASK_PFA_SET(name, func)                                        \
1570        static inline void task_set_##func(struct task_struct *p)       \
1571        { set_bit(PFA_##name, &p->atomic_flags); }
1572
1573#define TASK_PFA_CLEAR(name, func)                                      \
1574        static inline void task_clear_##func(struct task_struct *p)     \
1575        { clear_bit(PFA_##name, &p->atomic_flags); }
1576
1577TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1578TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1579
1580TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1581TASK_PFA_SET(SPREAD_PAGE, spread_page)
1582TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1583
1584TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1585TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1586TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1587
1588TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1589TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1590TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1591
1592TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1593TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1594TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1595
1596TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1597TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1598
1599TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1600TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1601TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1602
1603TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1604TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1605
1606static inline void
1607current_restore_flags(unsigned long orig_flags, unsigned long flags)
1608{
1609        current->flags &= ~flags;
1610        current->flags |= orig_flags & flags;
1611}
1612
1613extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1614extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1615#ifdef CONFIG_SMP
1616extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1617extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1618#else
1619static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1620{
1621}
1622static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1623{
1624        if (!cpumask_test_cpu(0, new_mask))
1625                return -EINVAL;
1626        return 0;
1627}
1628#endif
1629
1630extern int yield_to(struct task_struct *p, bool preempt);
1631extern void set_user_nice(struct task_struct *p, long nice);
1632extern int task_prio(const struct task_struct *p);
1633
1634/**
1635 * task_nice - return the nice value of a given task.
1636 * @p: the task in question.
1637 *
1638 * Return: The nice value [ -20 ... 0 ... 19 ].
1639 */
1640static inline int task_nice(const struct task_struct *p)
1641{
1642        return PRIO_TO_NICE((p)->static_prio);
1643}
1644
1645extern int can_nice(const struct task_struct *p, const int nice);
1646extern int task_curr(const struct task_struct *p);
1647extern int idle_cpu(int cpu);
1648extern int available_idle_cpu(int cpu);
1649extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1650extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1651extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1652extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1653extern struct task_struct *idle_task(int cpu);
1654
1655/**
1656 * is_idle_task - is the specified task an idle task?
1657 * @p: the task in question.
1658 *
1659 * Return: 1 if @p is an idle task. 0 otherwise.
1660 */
1661static inline bool is_idle_task(const struct task_struct *p)
1662{
1663        return !!(p->flags & PF_IDLE);
1664}
1665
1666extern struct task_struct *curr_task(int cpu);
1667extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1668
1669void yield(void);
1670
1671union thread_union {
1672#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1673        struct task_struct task;
1674#endif
1675#ifndef CONFIG_THREAD_INFO_IN_TASK
1676        struct thread_info thread_info;
1677#endif
1678        unsigned long stack[THREAD_SIZE/sizeof(long)];
1679};
1680
1681#ifndef CONFIG_THREAD_INFO_IN_TASK
1682extern struct thread_info init_thread_info;
1683#endif
1684
1685extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1686
1687#ifdef CONFIG_THREAD_INFO_IN_TASK
1688static inline struct thread_info *task_thread_info(struct task_struct *task)
1689{
1690        return &task->thread_info;
1691}
1692#elif !defined(__HAVE_THREAD_FUNCTIONS)
1693# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1694#endif
1695
1696/*
1697 * find a task by one of its numerical ids
1698 *
1699 * find_task_by_pid_ns():
1700 *      finds a task by its pid in the specified namespace
1701 * find_task_by_vpid():
1702 *      finds a task by its virtual pid
1703 *
1704 * see also find_vpid() etc in include/linux/pid.h
1705 */
1706
1707extern struct task_struct *find_task_by_vpid(pid_t nr);
1708extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1709
1710/*
1711 * find a task by its virtual pid and get the task struct
1712 */
1713extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1714
1715extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1716extern int wake_up_process(struct task_struct *tsk);
1717extern void wake_up_new_task(struct task_struct *tsk);
1718
1719#ifdef CONFIG_SMP
1720extern void kick_process(struct task_struct *tsk);
1721#else
1722static inline void kick_process(struct task_struct *tsk) { }
1723#endif
1724
1725extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1726
1727static inline void set_task_comm(struct task_struct *tsk, const char *from)
1728{
1729        __set_task_comm(tsk, from, false);
1730}
1731
1732extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1733#define get_task_comm(buf, tsk) ({                      \
1734        BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1735        __get_task_comm(buf, sizeof(buf), tsk);         \
1736})
1737
1738#ifdef CONFIG_SMP
1739static __always_inline void scheduler_ipi(void)
1740{
1741        /*
1742         * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1743         * TIF_NEED_RESCHED remotely (for the first time) will also send
1744         * this IPI.
1745         */
1746        preempt_fold_need_resched();
1747}
1748extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1749#else
1750static inline void scheduler_ipi(void) { }
1751static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1752{
1753        return 1;
1754}
1755#endif
1756
1757/*
1758 * Set thread flags in other task's structures.
1759 * See asm/thread_info.h for TIF_xxxx flags available:
1760 */
1761static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1762{
1763        set_ti_thread_flag(task_thread_info(tsk), flag);
1764}
1765
1766static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1767{
1768        clear_ti_thread_flag(task_thread_info(tsk), flag);
1769}
1770
1771static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1772                                          bool value)
1773{
1774        update_ti_thread_flag(task_thread_info(tsk), flag, value);
1775}
1776
1777static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1778{
1779        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1780}
1781
1782static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1783{
1784        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1785}
1786
1787static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1788{
1789        return test_ti_thread_flag(task_thread_info(tsk), flag);
1790}
1791
1792static inline void set_tsk_need_resched(struct task_struct *tsk)
1793{
1794        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1795}
1796
1797static inline void clear_tsk_need_resched(struct task_struct *tsk)
1798{
1799        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1800}
1801
1802static inline int test_tsk_need_resched(struct task_struct *tsk)
1803{
1804        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1805}
1806
1807/*
1808 * cond_resched() and cond_resched_lock(): latency reduction via
1809 * explicit rescheduling in places that are safe. The return
1810 * value indicates whether a reschedule was done in fact.
1811 * cond_resched_lock() will drop the spinlock before scheduling,
1812 */
1813#ifndef CONFIG_PREEMPTION
1814extern int _cond_resched(void);
1815#else
1816static inline int _cond_resched(void) { return 0; }
1817#endif
1818
1819#define cond_resched() ({                       \
1820        ___might_sleep(__FILE__, __LINE__, 0);  \
1821        _cond_resched();                        \
1822})
1823
1824extern int __cond_resched_lock(spinlock_t *lock);
1825
1826#define cond_resched_lock(lock) ({                              \
1827        ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1828        __cond_resched_lock(lock);                              \
1829})
1830
1831static inline void cond_resched_rcu(void)
1832{
1833#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1834        rcu_read_unlock();
1835        cond_resched();
1836        rcu_read_lock();
1837#endif
1838}
1839
1840/*
1841 * Does a critical section need to be broken due to another
1842 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1843 * but a general need for low latency)
1844 */
1845static inline int spin_needbreak(spinlock_t *lock)
1846{
1847#ifdef CONFIG_PREEMPTION
1848        return spin_is_contended(lock);
1849#else
1850        return 0;
1851#endif
1852}
1853
1854static __always_inline bool need_resched(void)
1855{
1856        return unlikely(tif_need_resched());
1857}
1858
1859/*
1860 * Wrappers for p->thread_info->cpu access. No-op on UP.
1861 */
1862#ifdef CONFIG_SMP
1863
1864static inline unsigned int task_cpu(const struct task_struct *p)
1865{
1866#ifdef CONFIG_THREAD_INFO_IN_TASK
1867        return READ_ONCE(p->cpu);
1868#else
1869        return READ_ONCE(task_thread_info(p)->cpu);
1870#endif
1871}
1872
1873extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1874
1875#else
1876
1877static inline unsigned int task_cpu(const struct task_struct *p)
1878{
1879        return 0;
1880}
1881
1882static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1883{
1884}
1885
1886#endif /* CONFIG_SMP */
1887
1888/*
1889 * In order to reduce various lock holder preemption latencies provide an
1890 * interface to see if a vCPU is currently running or not.
1891 *
1892 * This allows us to terminate optimistic spin loops and block, analogous to
1893 * the native optimistic spin heuristic of testing if the lock owner task is
1894 * running or not.
1895 */
1896#ifndef vcpu_is_preempted
1897static inline bool vcpu_is_preempted(int cpu)
1898{
1899        return false;
1900}
1901#endif
1902
1903extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1904extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1905
1906#ifndef TASK_SIZE_OF
1907#define TASK_SIZE_OF(tsk)       TASK_SIZE
1908#endif
1909
1910#ifdef CONFIG_RSEQ
1911
1912/*
1913 * Map the event mask on the user-space ABI enum rseq_cs_flags
1914 * for direct mask checks.
1915 */
1916enum rseq_event_mask_bits {
1917        RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1918        RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1919        RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1920};
1921
1922enum rseq_event_mask {
1923        RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
1924        RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
1925        RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
1926};
1927
1928static inline void rseq_set_notify_resume(struct task_struct *t)
1929{
1930        if (t->rseq)
1931                set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1932}
1933
1934void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1935
1936static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1937                                             struct pt_regs *regs)
1938{
1939        if (current->rseq)
1940                __rseq_handle_notify_resume(ksig, regs);
1941}
1942
1943static inline void rseq_signal_deliver(struct ksignal *ksig,
1944                                       struct pt_regs *regs)
1945{
1946        preempt_disable();
1947        __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1948        preempt_enable();
1949        rseq_handle_notify_resume(ksig, regs);
1950}
1951
1952/* rseq_preempt() requires preemption to be disabled. */
1953static inline void rseq_preempt(struct task_struct *t)
1954{
1955        __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1956        rseq_set_notify_resume(t);
1957}
1958
1959/* rseq_migrate() requires preemption to be disabled. */
1960static inline void rseq_migrate(struct task_struct *t)
1961{
1962        __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1963        rseq_set_notify_resume(t);
1964}
1965
1966/*
1967 * If parent process has a registered restartable sequences area, the
1968 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1969 */
1970static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1971{
1972        if (clone_flags & CLONE_VM) {
1973                t->rseq = NULL;
1974                t->rseq_sig = 0;
1975                t->rseq_event_mask = 0;
1976        } else {
1977                t->rseq = current->rseq;
1978                t->rseq_sig = current->rseq_sig;
1979                t->rseq_event_mask = current->rseq_event_mask;
1980        }
1981}
1982
1983static inline void rseq_execve(struct task_struct *t)
1984{
1985        t->rseq = NULL;
1986        t->rseq_sig = 0;
1987        t->rseq_event_mask = 0;
1988}
1989
1990#else
1991
1992static inline void rseq_set_notify_resume(struct task_struct *t)
1993{
1994}
1995static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1996                                             struct pt_regs *regs)
1997{
1998}
1999static inline void rseq_signal_deliver(struct ksignal *ksig,
2000                                       struct pt_regs *regs)
2001{
2002}
2003static inline void rseq_preempt(struct task_struct *t)
2004{
2005}
2006static inline void rseq_migrate(struct task_struct *t)
2007{
2008}
2009static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2010{
2011}
2012static inline void rseq_execve(struct task_struct *t)
2013{
2014}
2015
2016#endif
2017
2018void __exit_umh(struct task_struct *tsk);
2019
2020static inline void exit_umh(struct task_struct *tsk)
2021{
2022        if (unlikely(tsk->flags & PF_UMH))
2023                __exit_umh(tsk);
2024}
2025
2026#ifdef CONFIG_DEBUG_RSEQ
2027
2028void rseq_syscall(struct pt_regs *regs);
2029
2030#else
2031
2032static inline void rseq_syscall(struct pt_regs *regs)
2033{
2034}
2035
2036#endif
2037
2038const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2039char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2040int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2041
2042const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2043const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2044const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2045
2046int sched_trace_rq_cpu(struct rq *rq);
2047
2048const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2049
2050#endif
2051