linux/include/linux/spi/spi-mem.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Copyright (C) 2018 Exceet Electronics GmbH
   4 * Copyright (C) 2018 Bootlin
   5 *
   6 * Author:
   7 *      Peter Pan <peterpandong@micron.com>
   8 *      Boris Brezillon <boris.brezillon@bootlin.com>
   9 */
  10
  11#ifndef __LINUX_SPI_MEM_H
  12#define __LINUX_SPI_MEM_H
  13
  14#include <linux/spi/spi.h>
  15
  16#define SPI_MEM_OP_CMD(__opcode, __buswidth)                    \
  17        {                                                       \
  18                .buswidth = __buswidth,                         \
  19                .opcode = __opcode,                             \
  20        }
  21
  22#define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth)            \
  23        {                                                       \
  24                .nbytes = __nbytes,                             \
  25                .val = __val,                                   \
  26                .buswidth = __buswidth,                         \
  27        }
  28
  29#define SPI_MEM_OP_NO_ADDR      { }
  30
  31#define SPI_MEM_OP_DUMMY(__nbytes, __buswidth)                  \
  32        {                                                       \
  33                .nbytes = __nbytes,                             \
  34                .buswidth = __buswidth,                         \
  35        }
  36
  37#define SPI_MEM_OP_NO_DUMMY     { }
  38
  39#define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth)         \
  40        {                                                       \
  41                .dir = SPI_MEM_DATA_IN,                         \
  42                .nbytes = __nbytes,                             \
  43                .buf.in = __buf,                                \
  44                .buswidth = __buswidth,                         \
  45        }
  46
  47#define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth)        \
  48        {                                                       \
  49                .dir = SPI_MEM_DATA_OUT,                        \
  50                .nbytes = __nbytes,                             \
  51                .buf.out = __buf,                               \
  52                .buswidth = __buswidth,                         \
  53        }
  54
  55#define SPI_MEM_OP_NO_DATA      { }
  56
  57/**
  58 * enum spi_mem_data_dir - describes the direction of a SPI memory data
  59 *                         transfer from the controller perspective
  60 * @SPI_MEM_NO_DATA: no data transferred
  61 * @SPI_MEM_DATA_IN: data coming from the SPI memory
  62 * @SPI_MEM_DATA_OUT: data sent to the SPI memory
  63 */
  64enum spi_mem_data_dir {
  65        SPI_MEM_NO_DATA,
  66        SPI_MEM_DATA_IN,
  67        SPI_MEM_DATA_OUT,
  68};
  69
  70/**
  71 * struct spi_mem_op - describes a SPI memory operation
  72 * @cmd.buswidth: number of IO lines used to transmit the command
  73 * @cmd.opcode: operation opcode
  74 * @addr.nbytes: number of address bytes to send. Can be zero if the operation
  75 *               does not need to send an address
  76 * @addr.buswidth: number of IO lines used to transmit the address cycles
  77 * @addr.val: address value. This value is always sent MSB first on the bus.
  78 *            Note that only @addr.nbytes are taken into account in this
  79 *            address value, so users should make sure the value fits in the
  80 *            assigned number of bytes.
  81 * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
  82 *                be zero if the operation does not require dummy bytes
  83 * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
  84 * @data.buswidth: number of IO lanes used to send/receive the data
  85 * @data.dir: direction of the transfer
  86 * @data.nbytes: number of data bytes to send/receive. Can be zero if the
  87 *               operation does not involve transferring data
  88 * @data.buf.in: input buffer (must be DMA-able)
  89 * @data.buf.out: output buffer (must be DMA-able)
  90 */
  91struct spi_mem_op {
  92        struct {
  93                u8 buswidth;
  94                u8 opcode;
  95        } cmd;
  96
  97        struct {
  98                u8 nbytes;
  99                u8 buswidth;
 100                u64 val;
 101        } addr;
 102
 103        struct {
 104                u8 nbytes;
 105                u8 buswidth;
 106        } dummy;
 107
 108        struct {
 109                u8 buswidth;
 110                enum spi_mem_data_dir dir;
 111                unsigned int nbytes;
 112                union {
 113                        void *in;
 114                        const void *out;
 115                } buf;
 116        } data;
 117};
 118
 119#define SPI_MEM_OP(__cmd, __addr, __dummy, __data)              \
 120        {                                                       \
 121                .cmd = __cmd,                                   \
 122                .addr = __addr,                                 \
 123                .dummy = __dummy,                               \
 124                .data = __data,                                 \
 125        }
 126
 127/**
 128 * struct spi_mem_dirmap_info - Direct mapping information
 129 * @op_tmpl: operation template that should be used by the direct mapping when
 130 *           the memory device is accessed
 131 * @offset: absolute offset this direct mapping is pointing to
 132 * @length: length in byte of this direct mapping
 133 *
 134 * These information are used by the controller specific implementation to know
 135 * the portion of memory that is directly mapped and the spi_mem_op that should
 136 * be used to access the device.
 137 * A direct mapping is only valid for one direction (read or write) and this
 138 * direction is directly encoded in the ->op_tmpl.data.dir field.
 139 */
 140struct spi_mem_dirmap_info {
 141        struct spi_mem_op op_tmpl;
 142        u64 offset;
 143        u64 length;
 144};
 145
 146/**
 147 * struct spi_mem_dirmap_desc - Direct mapping descriptor
 148 * @mem: the SPI memory device this direct mapping is attached to
 149 * @info: information passed at direct mapping creation time
 150 * @nodirmap: set to 1 if the SPI controller does not implement
 151 *            ->mem_ops->dirmap_create() or when this function returned an
 152 *            error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
 153 *            calls will use spi_mem_exec_op() to access the memory. This is a
 154 *            degraded mode that allows spi_mem drivers to use the same code
 155 *            no matter whether the controller supports direct mapping or not
 156 * @priv: field pointing to controller specific data
 157 *
 158 * Common part of a direct mapping descriptor. This object is created by
 159 * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
 160 * can create/attach direct mapping resources to the descriptor in the ->priv
 161 * field.
 162 */
 163struct spi_mem_dirmap_desc {
 164        struct spi_mem *mem;
 165        struct spi_mem_dirmap_info info;
 166        unsigned int nodirmap;
 167        void *priv;
 168};
 169
 170/**
 171 * struct spi_mem - describes a SPI memory device
 172 * @spi: the underlying SPI device
 173 * @drvpriv: spi_mem_driver private data
 174 * @name: name of the SPI memory device
 175 *
 176 * Extra information that describe the SPI memory device and may be needed by
 177 * the controller to properly handle this device should be placed here.
 178 *
 179 * One example would be the device size since some controller expose their SPI
 180 * mem devices through a io-mapped region.
 181 */
 182struct spi_mem {
 183        struct spi_device *spi;
 184        void *drvpriv;
 185        const char *name;
 186};
 187
 188/**
 189 * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
 190 *                                device
 191 * @mem: memory device
 192 * @data: data to attach to the memory device
 193 */
 194static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
 195{
 196        mem->drvpriv = data;
 197}
 198
 199/**
 200 * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
 201 *                                device
 202 * @mem: memory device
 203 *
 204 * Return: the data attached to the mem device.
 205 */
 206static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
 207{
 208        return mem->drvpriv;
 209}
 210
 211/**
 212 * struct spi_controller_mem_ops - SPI memory operations
 213 * @adjust_op_size: shrink the data xfer of an operation to match controller's
 214 *                  limitations (can be alignment of max RX/TX size
 215 *                  limitations)
 216 * @supports_op: check if an operation is supported by the controller
 217 * @exec_op: execute a SPI memory operation
 218 * @get_name: get a custom name for the SPI mem device from the controller.
 219 *            This might be needed if the controller driver has been ported
 220 *            to use the SPI mem layer and a custom name is used to keep
 221 *            mtdparts compatible.
 222 *            Note that if the implementation of this function allocates memory
 223 *            dynamically, then it should do so with devm_xxx(), as we don't
 224 *            have a ->free_name() function.
 225 * @dirmap_create: create a direct mapping descriptor that can later be used to
 226 *                 access the memory device. This method is optional
 227 * @dirmap_destroy: destroy a memory descriptor previous created by
 228 *                  ->dirmap_create()
 229 * @dirmap_read: read data from the memory device using the direct mapping
 230 *               created by ->dirmap_create(). The function can return less
 231 *               data than requested (for example when the request is crossing
 232 *               the currently mapped area), and the caller of
 233 *               spi_mem_dirmap_read() is responsible for calling it again in
 234 *               this case.
 235 * @dirmap_write: write data to the memory device using the direct mapping
 236 *                created by ->dirmap_create(). The function can return less
 237 *                data than requested (for example when the request is crossing
 238 *                the currently mapped area), and the caller of
 239 *                spi_mem_dirmap_write() is responsible for calling it again in
 240 *                this case.
 241 *
 242 * This interface should be implemented by SPI controllers providing an
 243 * high-level interface to execute SPI memory operation, which is usually the
 244 * case for QSPI controllers.
 245 *
 246 * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
 247 * mapping from the CPU because doing that can stall the CPU waiting for the
 248 * SPI mem transaction to finish, and this will make real-time maintainers
 249 * unhappy and might make your system less reactive. Instead, drivers should
 250 * use DMA to access this direct mapping.
 251 */
 252struct spi_controller_mem_ops {
 253        int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
 254        bool (*supports_op)(struct spi_mem *mem,
 255                            const struct spi_mem_op *op);
 256        int (*exec_op)(struct spi_mem *mem,
 257                       const struct spi_mem_op *op);
 258        const char *(*get_name)(struct spi_mem *mem);
 259        int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
 260        void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
 261        ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
 262                               u64 offs, size_t len, void *buf);
 263        ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
 264                                u64 offs, size_t len, const void *buf);
 265};
 266
 267/**
 268 * struct spi_mem_driver - SPI memory driver
 269 * @spidrv: inherit from a SPI driver
 270 * @probe: probe a SPI memory. Usually where detection/initialization takes
 271 *         place
 272 * @remove: remove a SPI memory
 273 * @shutdown: take appropriate action when the system is shutdown
 274 *
 275 * This is just a thin wrapper around a spi_driver. The core takes care of
 276 * allocating the spi_mem object and forwarding the probe/remove/shutdown
 277 * request to the spi_mem_driver. The reason we use this wrapper is because
 278 * we might have to stuff more information into the spi_mem struct to let
 279 * SPI controllers know more about the SPI memory they interact with, and
 280 * having this intermediate layer allows us to do that without adding more
 281 * useless fields to the spi_device object.
 282 */
 283struct spi_mem_driver {
 284        struct spi_driver spidrv;
 285        int (*probe)(struct spi_mem *mem);
 286        int (*remove)(struct spi_mem *mem);
 287        void (*shutdown)(struct spi_mem *mem);
 288};
 289
 290#if IS_ENABLED(CONFIG_SPI_MEM)
 291int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
 292                                       const struct spi_mem_op *op,
 293                                       struct sg_table *sg);
 294
 295void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
 296                                          const struct spi_mem_op *op,
 297                                          struct sg_table *sg);
 298
 299bool spi_mem_default_supports_op(struct spi_mem *mem,
 300                                 const struct spi_mem_op *op);
 301
 302#else
 303static inline int
 304spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
 305                                   const struct spi_mem_op *op,
 306                                   struct sg_table *sg)
 307{
 308        return -ENOTSUPP;
 309}
 310
 311static inline void
 312spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
 313                                     const struct spi_mem_op *op,
 314                                     struct sg_table *sg)
 315{
 316}
 317
 318static inline
 319bool spi_mem_default_supports_op(struct spi_mem *mem,
 320                                 const struct spi_mem_op *op)
 321{
 322        return false;
 323}
 324
 325#endif /* CONFIG_SPI_MEM */
 326
 327int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
 328
 329bool spi_mem_supports_op(struct spi_mem *mem,
 330                         const struct spi_mem_op *op);
 331
 332int spi_mem_exec_op(struct spi_mem *mem,
 333                    const struct spi_mem_op *op);
 334
 335const char *spi_mem_get_name(struct spi_mem *mem);
 336
 337struct spi_mem_dirmap_desc *
 338spi_mem_dirmap_create(struct spi_mem *mem,
 339                      const struct spi_mem_dirmap_info *info);
 340void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
 341ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
 342                            u64 offs, size_t len, void *buf);
 343ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
 344                             u64 offs, size_t len, const void *buf);
 345struct spi_mem_dirmap_desc *
 346devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
 347                           const struct spi_mem_dirmap_info *info);
 348void devm_spi_mem_dirmap_destroy(struct device *dev,
 349                                 struct spi_mem_dirmap_desc *desc);
 350
 351int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
 352                                       struct module *owner);
 353
 354void spi_mem_driver_unregister(struct spi_mem_driver *drv);
 355
 356#define spi_mem_driver_register(__drv)                                  \
 357        spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
 358
 359#define module_spi_mem_driver(__drv)                                    \
 360        module_driver(__drv, spi_mem_driver_register,                   \
 361                      spi_mem_driver_unregister)
 362
 363#endif /* __LINUX_SPI_MEM_H */
 364